JP4634212B2 - Alumina cement composition and repair method using the same - Google Patents

Alumina cement composition and repair method using the same Download PDF

Info

Publication number
JP4634212B2
JP4634212B2 JP2005129527A JP2005129527A JP4634212B2 JP 4634212 B2 JP4634212 B2 JP 4634212B2 JP 2005129527 A JP2005129527 A JP 2005129527A JP 2005129527 A JP2005129527 A JP 2005129527A JP 4634212 B2 JP4634212 B2 JP 4634212B2
Authority
JP
Japan
Prior art keywords
alumina cement
mass
cement composition
parts
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005129527A
Other languages
Japanese (ja)
Other versions
JP2006306646A (en
Inventor
昭俊 荒木
一行 水島
巧 串橋
聖一 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005129527A priority Critical patent/JP4634212B2/en
Publication of JP2006306646A publication Critical patent/JP2006306646A/en
Application granted granted Critical
Publication of JP4634212B2 publication Critical patent/JP4634212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Sewage (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、コンクリート構造物の補修、特に硫酸により劣化を受けた下水処理施設のコンクリート構造物の補修などに使用するアルミナセメント組成物およびそれを用いた補修工法に関する。   The present invention relates to an alumina cement composition used for repairing a concrete structure, particularly repairing a concrete structure in a sewage treatment facility that has been deteriorated by sulfuric acid, and a repair method using the same.

下水処理施設におけるコンクリート構造物は、下水中で発生する硫酸還元細菌の影響で硫酸が発生しコンクリートが侵食され、さらに内部の鉄筋の腐食で錆による膨張圧が生じ、コンクリートにひび割れ、浮きが発生し、コンクリート片のはく落などが起きている。このような下水処理施設での補修工法としては、劣化部をウォータージェットにより除去し断面修復してから樹脂ライニングを行う方法が多く実施されている。これに用いる断面修復材は、高炉水砕スラグにポリマーを配合した材料(特許文献1)、アルミナセメントからなる材料(特許文献2、3)、高炉水砕スラグやシリカフュームなどの微粉末を多量に混和したセメントモルタルが使用されている(特許文献4)。また、アルミナセメントと高炉スラグ微粉末を用いた材料で、5μm以下のアルミナセメント粒子を25重量%以下とし、リチウム塩を含有する材料が提案されている(特許文献5)。
特開平03−290348号公報 特開2003−89565号公報 特開2004−292245号公報 特開2000−128618号公報 特開2002−293603号公報
In concrete structures in sewage treatment facilities, sulfuric acid is generated due to the effect of sulfate-reducing bacteria generated in the sewage, and the concrete is eroded. In addition, corrosion of the internal reinforcing bars creates rust expansion pressure, which causes cracks and floats in the concrete. However, the concrete pieces are peeled off. As a repair method in such a sewage treatment facility, a method of removing a deteriorated portion with a water jet and repairing a cross section and then performing resin lining is often performed. The cross-sectional restoration material used for this is a material containing a polymer blended with blast furnace granulated slag (Patent Document 1), a material made of alumina cement (Patent Documents 2 and 3), and a large amount of fine powder such as blast furnace granulated slag and silica fume. Mixed cement mortar is used (Patent Document 4). Further, a material using alumina cement and blast furnace slag fine powder, and a material containing 5 μm or less of alumina cement particles of 25 μ% or less and containing a lithium salt has been proposed (Patent Document 5).
Japanese Patent Laid-Open No. 03-290348 JP 2003-89565 A JP 2004-292245 A JP 2000-128618 A JP 2002-293603 A

しかしながら、硫酸によるコンクリート構造物の劣化は、セメントの水和で生じる水酸化カルシウムと硫酸が反応することで進行するため、通常のポルトランドセメントを用いた補修材料では樹脂ライニングにわずかなピンホールが存在すれば長期的な耐久性は望めないという課題があった。また、下水処理施設には、湿度が低く風通りのよい開放されたピットや水路なども存在し、冬季の寒い時期の施工では、セメントの凝結時間が遅れるため初期収縮ひび割れが発生しやすいという課題があった。さらに、微粉末を多量に混和した材料は、自己収縮がポリマーセメントよりも大きく、冬季に限らず初期ひび割れが発生しやすく、モルタルの粘りが強く作業性が悪いという課題があった。
本発明者らは、前記課題を解決するため、特定のアルミナセメント組成物およびそれを用いた補修工法を提供する。
However, the deterioration of concrete structures due to sulfuric acid proceeds due to the reaction of calcium hydroxide and sulfuric acid generated by cement hydration, so there is a slight pinhole in the resin lining in repair materials using ordinary Portland cement. Then, there was a problem that long-term durability could not be expected. In addition, sewage treatment facilities have open pits and waterways with low humidity and good wind passage, and in the cold season of winter, the setting time of cement is delayed, so initial shrinkage cracks are likely to occur. was there. Furthermore, a material in which a large amount of fine powder is mixed has a problem that self-shrinkage is larger than that of polymer cement, initial cracking is likely to occur not only in winter, but mortar has a strong stickiness and workability is poor.
In order to solve the above problems, the present inventors provide a specific alumina cement composition and a repair method using the same.

すなわち、本発明は、(1)アルミナセメント、ポゾラン物質、およびLiO含有量が0.7〜2.5質量%のヘクトライト、ならびに骨材を含有するアルミナセメント組成物、(2)高分子繊維を含有する(1)のアルミナセメント組成物、(3)高分子繊維の繊維長が2〜15mmでアスペクト比が300〜1000である(2)のアルミナセメント組成物、(4)流動化剤を含有する(1)〜(3)のいずれかのアルミナセメント組成物、(5)セメント混和用ポリマーを含有する(1)〜(4)のいずれかのアルミナセメント組成物、(6)吸水防止剤を含有する(1)〜(5)のいずれかのアルミナセメント組成物、(7)(1)〜()のいずれかのアルミナセメント組成物を用いるコンクリート構造物の補修工法、である。 That is, the present invention includes (1) an alumina cement composition containing an alumina cement, a pozzolanic material, and hectorite having a Li 2 O content of 0.7 to 2.5% by mass , and an aggregate ; (1) Alumina cement composition containing molecular fibers, (3) Alumina cement composition (2) having a fiber length of 2 to 15 mm and an aspect ratio of 300 to 1000, (4) Fluidization The alumina cement composition according to any one of (1) to (3) containing an agent, (5) The alumina cement composition according to any one of (1) to (4) containing a polymer for admixture with cement, (6) Water absorption containing inhibitor (1) either alumina cement composition to (5), (7) (1) repairing method of the concrete structure using any of the alumina cement composition to (6), der .

本発明のアルミナセメント組成物およびそれを用いた補修工法により、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性などに優れ、長期耐久性が良好なコンクリート構造物の補修を行うことが可能となる。   Repair of concrete structures excellent in workability, low-temperature curing properties, initial crack resistance, strength development, sulfuric acid resistance, etc., and long-term durability by the alumina cement composition of the present invention and the repair method using the same Can be performed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で使用するアルミナセメントとは、モノカルシウムアルミネートを主要鉱物として含有するクリンカー粉砕物から得られるものであり、例えば、アルミナセメント1号やアルミナセメント2号などが使用できる。アルミナセメントの粉末度は、水和活性の点で2000〜8000cm/gが好ましい。また、アルミナセメントの粒度調整を行い、粒子径5μm以下の粒子を全体の30質量%未満としたものが硬化するときの収縮が小さくなるので好ましい。 The alumina cement used in the present invention is obtained from a clinker pulverized product containing monocalcium aluminate as a main mineral. For example, alumina cement 1 or alumina cement 2 can be used. The fineness of the alumina cement is preferably 2000 to 8000 cm 2 / g in terms of hydration activity. Moreover, the particle size of the alumina cement is adjusted, and particles having a particle diameter of 5 μm or less and less than 30% by mass are preferable because shrinkage when cured is reduced.

本発明で使用するポゾラン物質とは、アルカリ刺激によりポゾラン活性を示す物質であり、アルミナセメントと併用することで、水和物の相転移による強度低下を抑制する目的や、施工時のモルタルのダレ抵抗性を向上させる目的で使用するものである。例えば、高炉水砕スラグ、高炉徐冷スラグ、転炉スラグ、シリカフューム、およびフライアッシュなどが挙げられる。
ポゾラン物質の粉末度は、水和活性の点でブレーン比表面積3000cm/g以上が好ましい。
ポゾラン物質の使用量は、通常、アルミナセメント100質量部に対して、80〜200質量部が好ましく、100〜150質量部がより好ましい。なお、シリカフュームは、アルミナセメント100質量部に対して1〜10質量部が好ましい。
The pozzolanic substance used in the present invention is a substance that exhibits pozzolanic activity by alkali stimulation, and is used in combination with alumina cement for the purpose of suppressing strength reduction due to phase transition of hydrate, and dripping of mortar during construction. It is used for the purpose of improving resistance. Examples include blast furnace granulated slag, blast furnace slow-cooled slag, converter slag, silica fume, fly ash, and the like.
The fineness of the pozzolanic material is preferably a brane specific surface area of 3000 cm 2 / g or more in terms of hydration activity.
Usually, the amount of the pozzolanic material is preferably 80 to 200 parts by mass and more preferably 100 to 150 parts by mass with respect to 100 parts by mass of the alumina cement. Silica fume is preferably 1 to 10 parts by mass with respect to 100 parts by mass of alumina cement.

本発明で使用するLiO(酸化リチウム)含有量が0.7〜2.5質量%のヘクトライトとは、スメクタイト類に属する粘土鉱物の一種であり、層状構造を有している。特徴としては、その層間には水分子を伴った種々の金属イオンが入っており、層間の金属イオンが交換性を有している。ヘクトライトの場合は、リチウムを含有するのが特徴である。ヘクトライトのLiO含有量は0.7〜2.5質量%が好ましく、0.7質量%未満では低温での硬化促進効果が小さく、2.5質量%を超えると流動性に影響する場合がある。ヘクトライトの従来の用途は、チクソ性を有することからセメント系材料のレオロジー特性を改善する目的で使用されているが、アルミナセメント系材料に適用すると、低温時の硬化性状が改善する。
ヘクトライトの使用量は、アルミナセメント100質量部に対して0.1〜10質量部が好ましく、0.3〜5質量部がより好ましい。0.1質量部未満では低温での硬化促進効果が小さく、10質量部を超えると硬化が早くなりすぎモルタルの流動性に影響する場合がある。
Hectorite having a Li 2 O (lithium oxide) content of 0.7 to 2.5% by mass used in the present invention is a kind of clay mineral belonging to smectites and has a layered structure. Characteristically, various metal ions with water molecules are contained between the layers, and the metal ions between the layers have exchangeability. Hectorite is characterized by containing lithium. The Li 2 O content of hectorite is preferably 0.7 to 2.5% by mass. If it is less than 0.7% by mass, the effect of promoting curing at low temperatures is small, and if it exceeds 2.5% by mass, the fluidity is affected. There is a case. Although the conventional use of hectorite has thixotropy, it is used for the purpose of improving the rheological properties of cementitious materials. However, when applied to alumina cementitious materials, the curing properties at low temperatures are improved.
0.1-10 mass parts is preferable with respect to 100 mass parts of alumina cement, and, as for the usage-amount of hectorite, 0.3-5 mass parts is more preferable. If it is less than 0.1 parts by mass, the effect of promoting curing at low temperatures is small, and if it exceeds 10 parts by mass, curing may become too fast and affect the fluidity of the mortar.

本発明で使用する高分子繊維とは、アルミナセメントが硬化するときの収縮による大きなひび割れを抑制する目的で使用する。高分子繊維の種類としては、ビニロン繊維、ポリプロピレン繊維、アクリル繊維、ナイロン繊維などが挙げられる。特に限定されるものではないが、これらの中でモルタル中における繊維の付着力が比較的優れるビニロン繊維やアクリル繊維の使用が好ましい。特に、繊維長が2〜15mmでアスペクト比が300〜1000の高分子繊維が硬化するときの収縮で入る大きなひび割れを抑制するのに好ましい。
高分子繊維の使用量は、アルミナセメントとポゾラン物質とヘクトライトと骨材の合計100質量部に対して0.02〜0.6質量部が好ましく、0.05〜0.4質量部がより好ましい。0.02質量部未満では、ひび割れ抑制効果が小さく、0.6質量部を超えるとモルタルの流動性に影響する場合がある。
The polymer fiber used in the present invention is used for the purpose of suppressing large cracks due to shrinkage when the alumina cement is cured. Examples of the polymer fiber include vinylon fiber, polypropylene fiber, acrylic fiber, and nylon fiber. Although not particularly limited, it is preferable to use vinylon fibers or acrylic fibers, which have relatively good fiber adhesion in mortar. In particular, it is preferable for suppressing large cracks caused by shrinkage when polymer fibers having a fiber length of 2 to 15 mm and an aspect ratio of 300 to 1000 are cured.
The amount of the polymer fiber used is preferably 0.02 to 0.6 parts by mass, more preferably 0.05 to 0.4 parts by mass with respect to 100 parts by mass in total of the alumina cement, pozzolanic substance, hectorite and aggregate. preferable. If it is less than 0.02 parts by mass, the effect of suppressing cracking is small, and if it exceeds 0.6 parts by mass, it may affect the fluidity of the mortar.

本発明で使用する流動化剤は、モルタルに適度な流動性を与える目的で使用するものであり、例えば、ポリカルボン酸系化合物、メラミン系化合物、リグニンスルホン酸系化合物、ナフタレンスルホン酸系化合物などが挙げられる。これらの中で、適度な流動性を与え、強度発現性に影響を与えにくい点でポリカルボン酸系化合物、メラミン系化合物の使用が好ましい。
流動化剤の使用量は、アルミナセメント100質量部に対して0.01〜1質量部が好ましく、0.05〜0.5質量部がより好ましい。0.01質量部未満では、適度な流動性を与えにくく、1質量部を超えると強度発現性に影響する場合がある。
The fluidizing agent used in the present invention is used for the purpose of imparting an appropriate fluidity to the mortar. For example, a polycarboxylic acid compound, a melamine compound, a lignin sulfonic acid compound, a naphthalene sulfonic acid compound, etc. Is mentioned. Among these, it is preferable to use a polycarboxylic acid compound or a melamine compound from the viewpoint of giving appropriate fluidity and hardly affecting the strength development.
The amount of the fluidizing agent used is preferably 0.01 to 1 part by mass and more preferably 0.05 to 0.5 part by mass with respect to 100 parts by mass of the alumina cement. If it is less than 0.01 part by mass, it is difficult to give an appropriate fluidity, and if it exceeds 1 part by mass, strength development may be affected.

本発明で使用するセメント混和用ポリマーは、JIS A 6203で規定されているセメント混和用のポリマー(ポリマーディスパージョン)であり、中性化、塩害、凍害などの耐久性を向上させ、モルタルの付着強度、曲げ強度、引張強度などの強度特性を改善する目的で使用する。例えば、アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、および天然ゴムなどのゴムラテックス、エチレン・酢酸ビニル共重合体、ポリアクリル酸エステル、酢酸ビニルビニルバーサテート系共重合体、およびスチレン・アクリル酸エステル共重合体やアクリロニトリル・アクリル酸エステルに代表されるアクリル酸エステル系共重合体、エポキシ樹脂、不飽和ポリエステル樹脂に代表される液状ポリマーなどが挙げられ、これらの1種または2種以上の混合物を使用できる。
セメント混和用ポリマーの使用量は、アルミナセメント100質量部に対して固形分で0.5〜20質量部が好ましく、2〜15質量部がより好ましい。0.5質量部未満では耐久性の向上効果が小さく、20質量部を超えると強度発現性に影響する場合がある。
The cement-mixing polymer used in the present invention is a cement-mixing polymer (polymer dispersion) defined in JIS A 6203, which improves the durability of neutralization, salt damage, frost damage, etc., and adheres to mortar. Used to improve strength properties such as strength, bending strength, and tensile strength. For example, rubber latex such as acrylonitrile-butadiene rubber, styrene-butadiene rubber, chloroprene rubber, and natural rubber, ethylene-vinyl acetate copolymer, polyacrylate ester, vinyl acetate vinyl versatate copolymer, and styrene-acrylic Examples include acid ester copolymers, acrylic ester copolymers represented by acrylonitrile / acrylic acid esters, epoxy resins, liquid polymers represented by unsaturated polyester resins, and the like. Mixtures can be used.
The amount of the cement-mixing polymer used is preferably 0.5 to 20 parts by mass, more preferably 2 to 15 parts by mass, based on 100 parts by mass of the alumina cement. If it is less than 0.5 part by mass, the effect of improving the durability is small, and if it exceeds 20 parts by mass, the strength development may be affected.

本発明で使用する吸水防止剤とは、硬化したモルタルの吸水性を低下させる目的で使用するものであり、水分中に溶け込んでいる硫酸イオンの浸透を抑制する効果がある。例えば、ステアリン酸カルシウムなどの高級脂肪酸系化合物や、パラフィン、アルキルアルコキシシランなどのシラン類がある。これらの中で、モルタルの流動性に悪影響を与えにくく、撥水効果が大きい点でシラン系吸水防止剤の使用が好ましい。また、液状及び粉末状いずれも使用できるが、予めプレミックスできる粉末状の吸水防止剤の使用が好ましい。
吸水防止剤の使用量は、アルミナセメント100質量部に対して0.2〜8質量部が好ましく、0.5〜5質量部がより好ましい。0.2質量部未満では、硫酸イオンの浸透抑制効果が小さく、8質量部を超えると強度発現性に影響する場合がある。
The water absorption inhibitor used in the present invention is used for the purpose of lowering the water absorption of the cured mortar, and has an effect of suppressing permeation of sulfate ions dissolved in moisture. For example, there are higher fatty acid compounds such as calcium stearate and silanes such as paraffin and alkylalkoxysilane. Among these, the use of a silane-based water absorption inhibitor is preferable because it hardly affects the fluidity of the mortar and has a large water-repellent effect. Both liquid and powder can be used, but it is preferable to use a powdery water absorption inhibitor that can be premixed in advance.
0.2-8 mass parts is preferable with respect to 100 mass parts of alumina cement, and, as for the usage-amount of a water absorption inhibitor, 0.5-5 mass parts is more preferable. If the amount is less than 0.2 parts by mass, the effect of suppressing the permeation of sulfate ions is small. If the amount exceeds 8 parts by mass, the strength development may be affected.

本発明のアルミナセメント組成物は、水と混合し、骨材を含まないペースト、あるいは骨材を含むモルタルやコンクリートとして使用できるが、使用する骨材の種類としては、特に限定されるものではないが、耐酸性を有する骨材の使用が好ましい。例えば、珪石骨材、アルミナ骨材、ムライト骨材、シャモット骨材、炭化珪素骨材、アルミナセメントクリンカー骨材などが挙げられる。
骨材の使用量は、アルミナセメントとポゾラン物質とヘクトライトの合計100質量部に対して0〜250質量部が好ましく、250質量部を超えると流動性や付着強度が低下する傾向がある。また、2mm以下の薄塗りをする場合は骨材を含まないペーストを使用し、2mmを超える厚みを確保する場合は骨材を含むモルタルやコンクリートを使用することが好ましい。
The alumina cement composition of the present invention can be mixed with water and used as a paste containing no aggregate, or as a mortar or concrete containing aggregate, but the type of aggregate to be used is not particularly limited. However, it is preferable to use an aggregate having acid resistance. Examples thereof include silica aggregate, alumina aggregate, mullite aggregate, chamotte aggregate, silicon carbide aggregate, alumina cement clinker aggregate, and the like.
The amount of the aggregate used is preferably 0 to 250 parts by mass with respect to 100 parts by mass in total of the alumina cement, the pozzolanic substance, and hectorite, and if it exceeds 250 parts by mass, the fluidity and adhesion strength tend to decrease. Moreover, it is preferable to use the paste which does not contain an aggregate when thinly coating 2 mm or less, and to use the mortar and concrete containing an aggregate when ensuring the thickness exceeding 2 mm.

本発明では、低温においてより迅速な強度発現が必要な場合は、炭酸、硫酸、ケイ酸、硝酸、水酸化物、リン酸、ホウ酸、有機酸などのリチウム塩を併用することができる。
また、本発明のアルミナセメント組成物には品質に悪影響を与えない範囲でAE剤、増粘剤、発泡剤、凝結遅延剤、防凍剤、収縮低減剤、抗菌剤などの各種添加剤を併用することができる。
In the present invention, when more rapid strength development is required at a low temperature, lithium salts such as carbonic acid, sulfuric acid, silicic acid, nitric acid, hydroxide, phosphoric acid, boric acid and organic acid can be used in combination.
The alumina cement composition of the present invention is used in combination with various additives such as an AE agent, a thickener, a foaming agent, a setting retarder, an antifreezing agent, a shrinkage reducing agent, and an antibacterial agent as long as the quality is not adversely affected. be able to.

本発明のアルミナセメント組成物の補修方法は、ミキサーで練り混ぜたモルタルをコテで塗ってもよく、型枠を作りその内部に充填してもよく、圧縮空気を用いてモルタルを吹き飛ばす吹付けで施工してもよい。   The repair method of the alumina cement composition of the present invention may be a mortar kneaded with a mixer, coated with a trowel, filled into a mold, or sprayed by blowing off the mortar using compressed air. You may construct.

以下、実施例で詳細に説明する。   Examples will be described in detail below.

アルミナセメント100質量部に対してポゾラン物質A120質量部、表1に示すLiO含有量のヘクトライトを0.3質量部加えた配合物を調製し、この配合物100質量部に対して骨材170質量部加えドライモルタルとし、このドライモルタル100質量部に対して水を16質量部加えたモルタルのフロー、始発時間、初期ひび割れ抵抗性、圧縮強度、耐硫酸性を測定した。その結果を表1に示す。 A compound was prepared by adding 120 parts by mass of pozzolanic material A to 100 parts by mass of alumina cement and 0.3 parts by mass of hectorite having the Li 2 O content shown in Table 1. 170 parts by mass of the material was added to form dry mortar, and the flow, initial time, initial crack resistance, compressive strength, and sulfuric acid resistance of the mortar obtained by adding 16 parts by mass of water to 100 parts by mass of the dry mortar were measured. The results are shown in Table 1.

(使用材料)
アルミナセメント:アルミナセメント1号、市販品
ポゾラン物質A:高炉水砕スラグ微粉末、ブレーン比表面積7000cm/g、市販品
ヘクトライト:密度2.6g/cm、最大粒子径100μm、市販品
モンモリロナイト:密度2.7g/cm、最大粒子径150μm、市販品
骨材:乾燥珪砂、最大粒径1.2mm
(Materials used)
Alumina cement: Alumina cement No. 1, commercial product pozzolanic substance A: ground granulated blast furnace slag, Blaine specific surface area 7000 cm 2 / g, commercial product hectorite: density 2.6 g / cm 3 , maximum particle size 100 μm, commercial product montmorillonite : Density 2.7 g / cm 3 , maximum particle size 150 μm, commercial product aggregate: dry silica sand, maximum particle size 1.2 mm

(測定方法)
フロー試験、圧縮強度試験:JIS R 5201に準拠して測定した。
始発時間:JIS A 1147に準拠して測定した(試験温度5℃)。
初期ひび割れ抵抗性:練り混ぜたモルタルを縦30cmm×横30cm×厚さ6cmのコンクリート製平板に厚さ10mmとなるようにコテで塗り付け、温度5℃、湿度40%、平均風速:2m/sの空間に放置し、1日後のひび割れ全長さを測定した。
耐硫酸性試験:練り混ぜたモルタルをφ7.5×15cmに成形し、温度20℃の水中に28日間養生後、温度20℃で5%硫酸水溶液中に28日間浸漬したときの硫酸イオンの浸透深さを測定した。浸透深さの判定はフェノールフタレイン法で行った。
(Measuring method)
Flow test, compressive strength test: Measured according to JIS R 5201.
First time: Measured according to JIS A 1147 (test temperature 5 ° C.).
Initial crack resistance: Kneaded mortar is applied to a concrete flat plate with a length of 30 cm x width 30 cm x thickness 6 cm to a thickness of 10 mm, temperature 5 ° C, humidity 40%, average wind speed: 2 m / s The total length of the crack after one day was measured.
Sulfuric acid resistance test: Kneaded mortar is molded into φ7.5 × 15cm, cured in water at 20 ° C for 28 days, and then immersed in 5% sulfuric acid aqueous solution at 20 ° C for 28 days. The depth was measured. The penetration depth was determined by the phenolphthalein method.

Figure 0004634212
Figure 0004634212

表1より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、本発明の範囲外のLiO含有量のヘクトライトでは流動性が低下し、モンモリロナイトでは初期ひび割れ抵抗性が低下することが判る。 From Table 1, the alumina cement composition of the present invention is excellent in workability, low-temperature curing property, initial crack resistance, strength development, and sulfuric acid resistance, and in the case of hectorite having a Li 2 O content outside the scope of the present invention. It can be seen that the fluidity decreases, and the initial cracking resistance decreases with montmorillonite.

実施例1の実験No.1-3において、アルミナセメント100質量部に対してヘクトライトの使用量を表2に示すように変えたこと以外は実施例1と同様に行った。その結果を表2に示す。   In Experiment No. 1-3 of Example 1, it carried out like Example 1 except having changed the usage-amount of hectorite as shown in Table 2 with respect to 100 mass parts of alumina cements. The results are shown in Table 2.

Figure 0004634212
Figure 0004634212

表2より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、ヘクトライトにより初期ひび割れ抵抗性が向上することが判る。   From Table 2, it can be seen that the alumina cement composition of the present invention is excellent in workability, low-temperature curing property, initial crack resistance, strength development, and sulfuric acid resistance, and the initial crack resistance is improved by hectorite.

実施例1の実験No.1-3において、ポゾラン物質の種類と量を表3に示すように変えたこと以外は実施例1と同様に行った。その結果を表3に示す。   In Experiment No. 1-3 of Example 1, the same procedure as in Example 1 was performed except that the kind and amount of the pozzolanic substance were changed as shown in Table 3. The results are shown in Table 3.

(使用材料)
ポゾラン物質B:フライアッシュ、ブレーン比表面積4500cm/g、市販品
ポゾラン物質C:シリカフューム、平均粒子径0.1〜0.2μm、市販品
(Materials used)
Pozzolanic material B: fly ash, Blaine specific surface area 4500 cm 2 / g, commercial product pozzolanic material C: silica fume, average particle size 0.1-0.2 μm, commercial product

Figure 0004634212
Figure 0004634212

表3より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、ポゾラン物質により強度発現性や耐硫酸性が向上することが判る。   From Table 3, the alumina cement composition of the present invention is excellent in workability, low-temperature curability, initial crack resistance, strength development, and sulfuric acid resistance, and the pozzolanic substance improves strength development and sulfuric acid resistance. I understand.

実施例1の実験No.1-3において、ドライモルタル100質量部に対して高分子繊維を表4に示すように加えたこと以外は実施例1と同様に行った。その結果を表4に示す。   In Experiment No. 1-3 of Example 1, it carried out like Example 1 except having added polymer fiber as shown in Table 4 with respect to 100 mass parts of dry mortar. The results are shown in Table 4.

(使用材料)
高分子繊維A:ポリプロピレン繊維、繊維長12mm、繊維径18μm、アスペクト比667、市販品
高分子繊維B:ビニロン繊維、繊維長6mm、繊維径14μm、アスペクト比429、市販品
(Materials used)
Polymer fiber A: polypropylene fiber, fiber length 12 mm, fiber diameter 18 μm, aspect ratio 667, commercially available polymer fiber B: vinylon fiber, fiber length 6 mm, fiber diameter 14 μm, aspect ratio 429, commercially available product

Figure 0004634212
Figure 0004634212

表4より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、高分子繊維を使用することにより初期ひび割れ抵抗性が向上することが判る。   From Table 4, the alumina cement composition of the present invention is excellent in workability, low-temperature curing properties, initial crack resistance, strength development, and sulfuric acid resistance, and the initial crack resistance is improved by using polymer fibers. I understand that.

実施例1の実験No.1-3において、アルミナセメント100質量部に対して流動化剤を表5に示すように加え配合物を調製し、ドライモルタル100質量部に対して水を14.5質量部、実施例4で使用した高分子繊維B0.1質量部を加えたこと以外は実施例1と同様に行った。その結果を表5に示す。   In Experiment No. 1-3 of Example 1, a blending agent was prepared by adding a fluidizing agent to 100 parts by mass of alumina cement as shown in Table 5, and 14.5% of water was added to 100 parts by mass of dry mortar. The same procedure as in Example 1 was performed except that 0.1 part by mass of polymer fiber B used in Example 4 was added. The results are shown in Table 5.

(使用材料)
流動化剤A:メチロールメラミン系化合物、市販品
流動化剤B:ポリカルボン酸系流動化剤、粉末、市販品
(Materials used)
Fluidizer A: Methylolmelamine compound, commercially available fluidizer B: Polycarboxylic acid fluidizer, powder, commercially available product

Figure 0004634212
Figure 0004634212

表5より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、流動化剤を使用することによりモルタルの流動性が向上することが判る。   From Table 5, the alumina cement composition of the present invention is excellent in workability, low-temperature curing properties, initial crack resistance, strength development, and sulfuric acid resistance, and the fluidity of the mortar is improved by using a fluidizing agent. I understand that.

実施例5の実験No.5-5において、アルミナセメント100質量部に対してセメント混和用ポリマー(固形分換算)を表6に示すように加え配合物を調製し、このドライモルタル100質量部に対して水を14.5質量部、実施例4で使用した高分子繊維B0.1質量部を加えたこと以外は実施例1と同様に行った。その結果を表6に示す。   In Experiment No. 5-5 of Example 5, a blending polymer was prepared by adding a cement-mixing polymer (in terms of solid content) to 100 parts by mass of alumina cement as shown in Table 6, and into 100 parts by mass of this dry mortar. On the other hand, it carried out like Example 1 except having added 14.5 mass parts of water and 0.1 mass part of polymer fiber B used in Example 4. The results are shown in Table 6.

(使用材料)
セメント混和用ポリマー:アクリル−スチレン系再乳化型粉末樹脂、市販品
(Materials used)
Cement admixture polymer: Acrylic-styrene re-emulsifying powder resin, commercial product

Figure 0004634212
Figure 0004634212

表6より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、セメント混和用ポリマーを使用することにより作業性や耐硫酸性が向上することが判る。   From Table 6, the alumina cement composition of the present invention is excellent in workability, low-temperature curing properties, initial crack resistance, strength development, and sulfuric acid resistance. Can be seen to improve.

実施例5の実験No.5-5において、アルミナセメント100質量部に対して吸水防止剤と実施例6で使用したセメント混和用ポリマーの使用量を表7に示すように変え配合物を調製したこと以外は実施例6と同様に行った。その結果を表7に示す。   In Experiment No. 5-5 of Example 5, a blend was prepared by changing the amounts of the water absorption inhibitor and the cement-mixing polymer used in Example 6 to 100 parts by mass of alumina cement as shown in Table 7. Except that, the same procedure as in Example 6 was performed. The results are shown in Table 7.

(使用材料)
吸水防止剤:粉末アルキルアルコキシシラン系吸水防止剤、市販品
(Materials used)
Water absorption inhibitor: Powdered alkylalkoxysilane water absorption inhibitor, commercial product

Figure 0004634212
Figure 0004634212

表7より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、吸収防止剤とセメント混和用ポリマーを使用することにより耐硫酸性が向上することが判る。   From Table 7, the alumina cement composition of the present invention is excellent in workability, low-temperature curing properties, initial crack resistance, strength development, and sulfuric acid resistance, and is resistant to sulfuric acid by using an absorption inhibitor and a cement admixing polymer. It can be seen that the performance is improved.

実施例6の実験No.6-4において、骨材の使用量を表8に示すように変え付着強度を測定したこと以外は実施例6と同様に行った。その結果を表8に示す。   In Experiment No. 6-4 of Example 6, the same procedure as in Example 6 was performed except that the amount of aggregate used was changed as shown in Table 8 and the adhesion strength was measured. The results are shown in Table 8.

(付着強度)
JIS A 1171に準拠して測定した。
(Adhesion strength)
Measurement was performed in accordance with JIS A 1171.

Figure 0004634212
Figure 0004634212

表8より、本発明のアルミナセメント組成物は、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性に優れ、骨材の使用量により付着強度が変わることが判る。   From Table 8, it can be seen that the alumina cement composition of the present invention is excellent in workability, low-temperature curing properties, initial crack resistance, strength development, and sulfuric acid resistance, and the adhesion strength varies depending on the amount of aggregate used.

実施例1の実験No.1-3、実施例5の実験No.5-5、実施例6の実験No.6-4のアルミナセメント組成物のモルタルを気温5℃、湿度40%にコントロールした部屋で天井面に設置したコンクリート板に厚さ20mmとなるようにコテ塗りした(コテ塗り面積:0.5m程度)。その結果、コテ塗りの作業性は良好であり、1回で厚さ20mmとなるように塗り付けてもはく落は無かった。また、1日後に打音検査を行ったところ浮きも認められなかった。さらに、材齢7日に実施例8と同様に付着強度試験を行ったところ、実施例1の実験No.1-3のモルタルで2.0N/mm、実施例5の実験No.5-5のモルタルで2.3N/mm、実施例6の実験No.6-4のモルタルで2.4N/mmと高い付着力を示した。 Experiment 1 No. 1-3 of Example 1, Experiment No. 5-5 of Example 5 and Mortar of the alumina cement composition of Experiment No. 6-4 of Example 6 were controlled at a temperature of 5 ° C. and a humidity of 40%. A concrete plate placed on the ceiling surface in the room was coated with a iron so that the thickness was 20 mm (coating area: about 0.5 m 2 ). As a result, the workability of the trowel application was good, and even if it was applied so that the thickness became 20 mm at a time, there was no peeling. Further, when a hammering test was conducted one day later, no floating was observed. Furthermore, when the adhesion strength test was performed on the 7th day of age in the same manner as in Example 8, it was 2.0 N / mm 2 in the mortar of Experiment No. 1-3 in Example 1, and in Experiment No. 5- in Example 5. The mortar of 5 showed 2.3 N / mm 2 , and the mortar of Experiment No. 6-4 of Example 6 showed high adhesion of 2.4 N / mm 2 .

本発明のアルミナセメント組成物およびそれを用いた補修工法により、作業性、低温硬化性状、初期ひび割れ抵抗性、強度発現性、耐硫酸性などに優れ、長期耐久性が良好なコンクリート構造物の補修を行うことが可能となるので、下水処理施設などの土木分野などで幅広く適用できる。   Repair of concrete structures excellent in workability, low-temperature curing properties, initial crack resistance, strength development, sulfuric acid resistance, etc., and long-term durability by the alumina cement composition of the present invention and the repair method using the same Therefore, it can be widely applied in civil engineering fields such as sewage treatment facilities.

Claims (7)

アルミナセメント、ポゾラン物質、およびLiO含有量が0.7〜2.5質量%のヘクトライト、ならびに骨材を含有するアルミナセメント組成物。 An alumina cement composition containing an alumina cement, a pozzolanic material, hectorite having a Li 2 O content of 0.7 to 2.5% by mass , and an aggregate . 高分子繊維を含有する請求項1に記載のアルミナセメント組成物。 The alumina cement composition according to claim 1, comprising a polymer fiber. 高分子繊維の繊維長が2〜15mmでアスペクト比が300〜1000である請求項2に記載のアルミナセメント組成物。 The alumina cement composition according to claim 2, wherein the polymer fiber has a fiber length of 2 to 15 mm and an aspect ratio of 300 to 1,000. 流動化剤を含有する請求項1〜3のいずれか1項に記載のアルミナセメント組成物。 The alumina cement composition according to any one of claims 1 to 3, comprising a fluidizing agent. セメント混和用ポリマーを含有する請求項1〜4のいずれか1項に記載のアルミナセメント組成物。 The alumina cement composition according to any one of claims 1 to 4, comprising a cement admixing polymer. 吸水防止剤を含有する請求項1〜5のいずれか1項に記載のアルミナセメント組成物。 The alumina cement composition according to any one of claims 1 to 5, comprising a water absorption inhibitor. 請求項1〜のいずれか1項に記載のアルミナセメント組成物を用いるコンクリート構造物の補修工法。 The repair method of the concrete structure using the alumina cement composition of any one of Claims 1-6 .
JP2005129527A 2005-04-27 2005-04-27 Alumina cement composition and repair method using the same Active JP4634212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005129527A JP4634212B2 (en) 2005-04-27 2005-04-27 Alumina cement composition and repair method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005129527A JP4634212B2 (en) 2005-04-27 2005-04-27 Alumina cement composition and repair method using the same

Publications (2)

Publication Number Publication Date
JP2006306646A JP2006306646A (en) 2006-11-09
JP4634212B2 true JP4634212B2 (en) 2011-02-16

Family

ID=37473967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005129527A Active JP4634212B2 (en) 2005-04-27 2005-04-27 Alumina cement composition and repair method using the same

Country Status (1)

Country Link
JP (1) JP4634212B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068954B2 (en) * 2006-02-27 2012-11-07 電気化学工業株式会社 Alumina cement composition and repair method using the same
JP5255240B2 (en) * 2007-07-25 2013-08-07 電気化学工業株式会社 Cement concrete hardened body, method for producing the same, and cement concrete used therefor
DE102008043766A1 (en) 2008-11-14 2010-05-20 Wacker Chemie Ag Hydraulically setting compounds at low temperatures
JP5603016B2 (en) * 2009-02-06 2014-10-08 電気化学工業株式会社 Cement quick setting agent and cement composition
CN105133853A (en) * 2015-09-10 2015-12-09 中铁西北科学研究院有限公司 Concrete crack repairing construction technology suitable for high and cold regions
WO2022092037A1 (en) * 2020-10-30 2022-05-05 デンカ株式会社 Anticorrosion cover material, anticorrosion cover layer, and method for preventing corrosion in concrete structure
CN116283168A (en) * 2023-04-06 2023-06-23 石家庄铁道大学 Self-stress desert sand ultra-high ductility concrete and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293540A (en) * 1993-04-07 1994-10-21 Osaka Gas Co Ltd Short fiber pre-dispersion and production thereof
JP2003089565A (en) * 2001-09-13 2003-03-28 Sumitomo Osaka Cement Co Ltd Material for repairing acid resistant concrete cross section
JP2003212621A (en) * 2001-01-08 2003-07-30 Elementis Specialties Inc Viscosity stable smectite clay slurry and mixture of smectite clay and one or more phosphonate useful to manufacture the slurry
JP2003261372A (en) * 2002-03-12 2003-09-16 Ube Ind Ltd Mortar composition for facility in corrosive environment, and construction method for inhibiting corrosion of concrete structure
JP2004292245A (en) * 2003-03-27 2004-10-21 Japan Sewage Works Agency Acid-proof cement composition
JP2004299991A (en) * 2003-03-31 2004-10-28 Sk Kaken Co Ltd Composition for refractory
JP2005015268A (en) * 2003-06-25 2005-01-20 Taiheiyo Material Kk Acid-proof mortar composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293540A (en) * 1993-04-07 1994-10-21 Osaka Gas Co Ltd Short fiber pre-dispersion and production thereof
JP2003212621A (en) * 2001-01-08 2003-07-30 Elementis Specialties Inc Viscosity stable smectite clay slurry and mixture of smectite clay and one or more phosphonate useful to manufacture the slurry
JP2003089565A (en) * 2001-09-13 2003-03-28 Sumitomo Osaka Cement Co Ltd Material for repairing acid resistant concrete cross section
JP2003261372A (en) * 2002-03-12 2003-09-16 Ube Ind Ltd Mortar composition for facility in corrosive environment, and construction method for inhibiting corrosion of concrete structure
JP2004292245A (en) * 2003-03-27 2004-10-21 Japan Sewage Works Agency Acid-proof cement composition
JP2004299991A (en) * 2003-03-31 2004-10-28 Sk Kaken Co Ltd Composition for refractory
JP2005015268A (en) * 2003-06-25 2005-01-20 Taiheiyo Material Kk Acid-proof mortar composition

Also Published As

Publication number Publication date
JP2006306646A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
KR101681596B1 (en) Mortar composition of improving chemical resistance and durability for repairing and reinforcing concrete structures , and method of repairing and reinforcing concrete structures using the same
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
JP5939776B2 (en) Repair mortar composition
JP4634213B2 (en) Alumina cement composition and repair method using the same
JP4634212B2 (en) Alumina cement composition and repair method using the same
KR102232477B1 (en) Mortar composition with excellent wet curable properties and method of repairing concrete structure using the same
JP4842050B2 (en) Section repair material and section repair method
JP2016121030A (en) Fiber-reinforced cement composite material and method of producing the same
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
JP4490200B2 (en) High acid resistant mortar composition with improved wet adhesion
JP2009084092A (en) Mortar-based restoring material
JP2008050214A (en) Cement composition and method of repair using it
JP2020158348A (en) Polymer cement grout mortar composition and polymer cement grout mortar
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP4963190B2 (en) Hydraulic material and repair method using the same
JP7465451B2 (en) Cement composition, mortar composition, and method for repairing concrete structure
JP7034573B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP4767785B2 (en) Mortar or concrete composition
JP2023049713A (en) Cement admixture, quick curing mortar concrete material, quick curing mortar concrete composition, and cured body
JP5068954B2 (en) Alumina cement composition and repair method using the same
JP2011207634A (en) Acid-proof cement composition
JP4225873B2 (en) Polymer cement acid-resistant repair material
JP5730627B2 (en) Curing agent for alumina cement composition and repair method using the same
JP4963189B2 (en) Hydraulic material and repair method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4634212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250