JP2004299991A - Composition for refractory - Google Patents

Composition for refractory Download PDF

Info

Publication number
JP2004299991A
JP2004299991A JP2003096597A JP2003096597A JP2004299991A JP 2004299991 A JP2004299991 A JP 2004299991A JP 2003096597 A JP2003096597 A JP 2003096597A JP 2003096597 A JP2003096597 A JP 2003096597A JP 2004299991 A JP2004299991 A JP 2004299991A
Authority
JP
Japan
Prior art keywords
component
composition
water
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096597A
Other languages
Japanese (ja)
Inventor
Akihiro Fujii
晃浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2003096597A priority Critical patent/JP2004299991A/en
Publication of JP2004299991A publication Critical patent/JP2004299991A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for refractory which can be thin-filmed, and can sufficiently exhibit desired refractory performance. <P>SOLUTION: The composition for refractory comprises: (A) hydraulic cement; (B) a water-absorbable layered inorganic compound; and (C) a deliquescent substance. Particularly, the water-absorbable layered inorganic compound in (B) is preferably the one subjected to electrolyte-proof treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、耐火性能が要求される部位に適用可能な組成物に関するものである。
【0002】
【従来の技術】
建築物の内壁、外壁、天井、屋根、柱、梁、間仕切り、扉等の各部位に用いられる一般の基材は、火災等により加熱されると強度が著しく低下する事が知られている。そのため、人命および財産の保護等を目的とし、火災等に対する耐久性を高めるため、各部位においては優れた耐火性能が要求される。
これらの各部位に使用される耐火用材料としては、例えば、セメント及びロックウール等を主体とした湿式材料、繊維混合ケイ酸カルシウム板及び軽量気泡コンクリート(ALC)板等の乾式材料等が挙げられる。
【0003】
【本発明が解決しようとする課題】
このような耐火用材料が、建築基準法規定の耐火性能を得るためには、かなりの厚みが必要となる。例えば、梁を3時間耐火とするためには、上述のような耐火用材料の厚みを、通常50mm以上とする必要がある。
このため、建築現場において施工を行う際には比較的大量の耐火用材料を搬入しなければならなず、コスト上からも非常に不利である。また、厚みがあると、施工部が基材から大幅に突出し、外観上圧迫感を与えることにもなりかねない。
【0004】
このような問題に対し、最近では、耐火用材料の薄膜化と耐火性向上を目的とし、水分の蒸発による吸熱効果を利用した耐火用組成物が提案されている。
例えば、特許文献1には、セメントに吸水性樹脂および潮解性物質を配合してなる耐火組成物が開示されており、薄膜化と耐火性の向上を図っている。しかしながら、この組成物では、実際に火災が生じた場合、有機物である吸水性樹脂自体が燃焼するため、耐火組成物自体の温度が上昇し、また水分の蒸発による吸熱効果も持続されないため、所望の耐火性能が得られない場合があった。
【0005】
【特許文献1】特開平10−68182号公報
【0006】
【課題を解決するための手段】
本発明は、このような問題点に鑑みなされたものであり、(A)水硬性セメント、(B)吸水性層状無機化合物、(C)潮解性物質を含有する耐火用組成物が、薄膜化ができ、かつ、所望の耐火性能を十分に発揮できることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、下記の耐火用組成物に係るものである。
1.(A)水硬性セメント、(B)吸水性層状無機化合物、及び(C)潮解性物質を含有することを特徴とする耐火用組成物。
2.(B)成分が耐電解質処理された吸水性層状無機化合物であることを特徴とする1.に記載の耐火用組成物。
3.(B)成分が層状ケイ酸塩であることを特徴とする1.または2.に記載の耐火用組成物。
4.(A)成分100重量部に対し、(B)成分0.1〜30重量部、(C)成分1〜80重量部を含有することを特徴とする1.から3.のいずれかに記載の耐火用組成物。
【0008】
【発明の実施の形態】
本発明の耐火用組成物は、(A)水硬性セメント(以下、「(A)成分」ともいう。)、(B)吸水性層状無機化合物(以下、「(B)成分」ともいう。)、及び(C)潮解性物質(以下、「(C)成分」ともいう。)を含有するものである。
【0009】
(A)成分は、特に限定されず、公知のもの又は市販品を使用することができる。例えば、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント、アルミナセメント、超速硬セメント、膨張セメント、酸性リン酸塩セメント、シリカセメント、石灰混合セメント、高炉セメント、フライアッシュセメント、キーンスセメント等が挙げられる。これらは1種又は2種以上で使用することができる。
【0010】
(B)成分は、主として、水分及び(C)成分を吸収、保持する成分である。この際、(B)成分中の水分によって生じる蒸気圧と空気中の水蒸気圧とが、ある一定のバランスを維持するように、空気中の水分を吸収することとなる。
このようにして吸収された水分により、火災等による温度上昇時には、蒸発潜熱や気化熱によって基材の温度上昇を大幅に抑制することができ、優れた耐火性能を発揮することができる。また、無機化合物であるため、有機物のように燃焼することもなく、優れた耐火性能を発揮することができる。
さらに(B)成分が、層状構造を有することにより、多くの水分を吸収、保持することができるため、優れた耐火性能を発揮するとともに、その性能を維持することができる。また、層状構造を有することにより、層間の微細な空隙による断熱的な作用から、温度上昇を抑制することもできる。さらに、層間の多量の空隙により材料の軽量化が可能となる。
【0011】
本発明の(B)成分は、吸水性の層状無機化合物であれば特に限定されず、公知のものを使用すればよいが、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチブンサイト、膨潤性マイカ等の層状ケイ酸塩等が挙げられる。層状ケイ酸塩は、膨潤性に優れ、水分を多量に吸水できる点で好ましい。
【0012】
本発明の(B)成分は、吸水倍率が1以上(好ましくは3以上、さらに好ましくは5以上100以下)であることが好ましい。
なお吸水倍率(g/g)とは、温度23℃、湿度50%(以下、「標準状態」という。)において、(B)成分1gあたりに吸収できる水の量(g)のことである。
【0013】
さらに(B)成分は、耐電解質処理されたものであることが好ましい。(B)成分が耐電解質処理されたものであれば、潮解性物質等の電解質を含む溶液中でもより優れた吸水倍率を示すことができ、水分による吸熱効果が十分発揮され、より優れた耐火性能を得ることができる。
【0014】
耐電解質処理としては、公知の方法を用いればよいが、具体的には、(B)成分を有機酸で処理する方法等が挙げられる。
【0015】
有機酸は、水に溶解させたときに酸性を呈する有機化合物であり、例えば、カルボン酸基、スルホン酸基、スルフィン酸基、フェノール基、エノール基、チオール基等の官能基を含むものが挙げられる。これらのうち1種または2種以上を用いることができる。
本発明では、特に、上述した官能基を含む高分子ポリマーであることが好ましく、特に、カルボン酸基、スルホン酸基を含む高分子ポリマーであることがより好ましい。
【0016】
(C)成分の潮解性物質は、同一温度にて、水の蒸気圧よりも、(C)成分の水溶液状態における蒸気圧の方が低い物質のことである。(C)成分を含有することにより、耐火用組成物の吸水量を高めることができ、また、吸収した水分を維持することができるため、優れた耐火性能を得ることができる。
【0017】
このような(C)成分としては、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、アルミニウム、スズ等の金属ハロゲン化物、金属(亜)硝酸塩、炭酸塩、酢酸塩等が挙げられる。これらは、1種または2種類以上で使用することができる。
本発明では特に、硝酸リチウム、硝酸ナトリウム、硝酸カルシウム、硝酸マグネシウム、硝酸アルミニウム、亜硝酸ナトリウム、亜硝酸カルシウム等の金属(亜)硝酸塩や、炭酸カリウム等の炭酸塩、酢酸カリウム等の酢酸塩等が好ましい。
【0018】
本発明組成物の混合比率は限定的でなく、用いる成分の種類、最終製品の用途等に応じて適宜設定すれば良いが、通常、(A)成分100重量部に対し、(B)成分を0.1〜30重量部(好ましくは1〜30重量部、さらに好ましくは10〜30重量部)程度、(C)成分を1〜80重量部(好ましくは10〜60重量部、好ましくは20〜40重量部)程度とすることが好ましい。
かかる範囲内において、より優れた耐火性能と高い強度を得ることができる。
(B)成分が0.1重量部より少ない場合は、水分を十分吸収、保持できず、所望の耐火性能を得ることが難しい。(B)成分が30重量部より多い場合は、強度が低下する。
(C)成分が1重量部より少ない場合は、水分を十分吸水できず、所望の耐火性能を得ることが難しい。(C)成分が80重量部より多い場合は、強度が低下する。
【0019】
本発明組成物では、必要に応じて、(D)水酸化アルミニウム及び/又は水酸化マグネシウム(以下、「(D)成分」ともいう。)を配合できる。(D)成分は、加熱の際、水蒸気などの不燃性ガスを多量に発生させ得るもので、その吸熱作用により温度上昇を大幅に抑制する効果をもつものである。(D)成分の混合比率は限定的ではないが、通常は水硬性セメント100重量部に対し、50〜800重量部(好ましくは、200〜600重量部)程度とすることが好ましい。
【0020】
本発明組成物では、必要に応じて、さらに合成樹脂を配合することができる。合成樹脂の形態としては、水可溶型樹脂、樹脂エマルション、粉末樹脂等のいずれであっても良い。とりわけ、プレミックスが可能であり、加水後の分散性に優れるという点で再乳化形粉末樹脂を好適に用いることができる。樹脂成分としては、最終的に得られる硬化体の強度向上、耐火被覆材として用いる場合の鉄骨等への付着性の向上等を図ることができるものであれば限定的でなく、公知のもの又は市販品を使用することができる。例えば、アクリル樹脂、酢酸ビニル樹脂、プロピオン酸ビニル樹脂、アクリル酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル樹脂、エポキシ樹脂、ベオバ(商品名)樹脂等を挙げることができる。これらの樹脂成分を添加することにより、強度等の向上を図ることができる。樹脂成分の添加量は限定的ではないが、通常は水硬性セメント100重量部に対し、3〜50重量部(好ましくは、20〜40重量部)程度とすることが強度向上の点で望ましい。
【0021】
上述の成分のほか、本発明の効果を妨げない範囲内で、珪砂、砂等の骨材、膨張パーライト、膨張バーミキュライト、シラスバルーン等の軽量骨材;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;ガラス繊維、ロックウール、パルプ等の繊維物質;セルロース類等の水溶性樹脂;その他にも界面活性剤、減水剤、消泡剤、防錆剤、低融点無機質物質等の公知の添加剤を配合してもよい。
【0022】
本発明組成物は、これらの成分を各種の混合機で均一に混合することによって製造することができる。これらの成分は順次又は同時に添加することができる。
【0023】
本発明を使用する場合は、公知の水硬性組成物と同様にして用いれば良い。本発明組成物に水を配合してなる混練物(スラリー)を成形、養生硬化させれば良い。
【0024】
具体的には、本発明組成物に水を配合して混練し、所定の形状に成形して得られた硬化体を建造物の内壁、外壁、天井、屋根、柱、梁、間仕切り、扉等の部位に適用すれば良い。あるいは、本発明組成物に水を配合して得られる混練物を所定の部位表面に塗付積層し、耐火被覆材として使用することもできる。本発明では、混練物を調整する際の水の配合量は特に限定されないが、通常は本発明組成物100重量部に対して、概ね50〜300重量部程度の比率とすれば良い。
【0025】
【実施例】
以下に実施例および比較例を示し、本発明の特徴をより明確にする。ただし、本発明は、以下の実施例に限定されるものではない。
【0026】
【表1】

Figure 2004299991
【0027】
(実施例1)
ポルトランドセメント100重量部、耐電解質ベントナイト25重量部からなる組成物を30%酢酸カリウム水溶液125重量部とともに混合し、充分に攪拌してスラリー状にした。得られたスラリー(配合例1)を用い、下記のようにそれぞれ試験体を作製し各試験を行った。その結果を表1に示す。
なお、耐電解質ベントナイトとしては、カルボン酸基含有ポリマーで処理したベントナイトを使用した。
【0028】
(耐火性試験)
上記スラリーを型枠(120mm×120mm×25mm)に流し込み、標準状態にて28日間乾燥・養生させた後脱型し、さらに温度105℃の乾燥器中で3日間、標準状態にて7日間放置することにより試験体を作製した。
作製した試験体を、セラミックボード型枠にはめ込み、予め1000℃に設定した電気炉開口部に蓋をするように固定し、試験体裏面中心部分の温度が550℃に達するまでの時間を測定した。試験結果を表1に示す。
その結果、配合例1の組成物は、耐火性試験において、良好な結果を得ることができ、優れた耐火性能を有していた。
【0029】
(実施例2)
表1に示す配合例2によって得られるスラリーを用いた以外は、実施例1と同様にして測定、試験を行った。その結果、配合例2の組成物は、耐火性能に優れていた。
【0030】
(比較例1)
表1に示す配合例3によって得られるスラリーを用いた以外は、実施例1と同様にして試験を行った。その結果、耐火性能に劣る結果となった。なお、吸水性ポリマーとしては、ポリアルキレンオキサイドを使用した。
【0031】
(比較例2)
表1に示す配合例4によって得られるスラリーを用いた以外は、実施例1と同様にして試験を行った。その結果、耐火性能に劣る結果となった。
【0032】
(比較例3)
表1に示す配合例5によって得られるスラリーを用いた以外は、実施例1と同様にして試験を行った。その結果、耐火性能に劣る結果となった。
【0033】
【発明の効果】
本発明は、薄膜化ができ、かつ、所望の耐火性能を十分に発揮できる耐火用組成物を提供することができる。このような本発明組成物は、建造物の内壁、外壁、天井、屋根、柱、梁、間仕切り、扉等に好適に用いることができる。また、鉄骨、鋼鈑等を基材とする建造物の各部位に用いる耐火被覆材(耐火被覆用組成物)としても好適であり、特に高層建築物において、崩落、脱落および建築物の倒壊等の危険性を回避することが可能となる。[0001]
[Industrial applications]
The present invention relates to a composition applicable to a site where fire resistance is required.
[0002]
[Prior art]
It is known that the strength of a general base material used for each part such as an inner wall, an outer wall, a ceiling, a roof, a column, a beam, a partition, a door, and the like of a building is significantly reduced when heated by a fire or the like. Therefore, in order to protect human lives and property, etc., and to increase durability against fires and the like, each part is required to have excellent fire resistance performance.
Examples of the refractory material used for each of these parts include a wet material mainly composed of cement and rock wool, and a dry material such as a fiber-mixed calcium silicate plate and a lightweight aerated concrete (ALC) plate. .
[0003]
[Problems to be solved by the present invention]
Such a fireproof material requires a considerable thickness in order to obtain the fireproof performance specified by the Building Standards Law. For example, in order to make the beam fire-resistant for 3 hours, the thickness of the above-mentioned fire-resistant material usually needs to be 50 mm or more.
For this reason, when performing construction at a construction site, a relatively large amount of fireproof material must be carried in, which is very disadvantageous in terms of cost. In addition, if the thickness is large, the construction portion may protrude significantly from the base material, giving a sense of oppression in appearance.
[0004]
In response to such a problem, recently, a fire-resistant composition utilizing the endothermic effect by evaporation of water has been proposed for the purpose of reducing the thickness of the fire-resistant material and improving the fire resistance.
For example, Patent Literature 1 discloses a refractory composition in which a water-absorbing resin and a deliquescent substance are mixed with cement to achieve a thinner film and improved fire resistance. However, in this composition, when a fire actually occurs, the water-absorbing resin itself, which is an organic substance, burns, so that the temperature of the refractory composition itself rises, and the heat absorbing effect due to evaporation of moisture is not maintained. In some cases could not obtain the fire resistance performance.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. H10-68182
[Means for Solving the Problems]
The present invention has been made in view of such a problem, and a refractory composition containing (A) a hydraulic cement, (B) a water-absorbing layered inorganic compound, and (C) a deliquescent substance has a reduced thickness. And found that the desired fire resistance can be sufficiently exhibited, and completed the present invention.
[0007]
That is, the present invention relates to the following refractory composition.
1. A fire-resistant composition comprising (A) a hydraulic cement, (B) a water-absorbing layered inorganic compound, and (C) a deliquescent substance.
2. (B) The component is a water-absorbing layered inorganic compound treated with an electrolyte. The composition for refractory described in the above.
3. (B) The component is a layered silicate. Or 2. The composition for refractory described in the above.
4. It is characterized by containing 0.1 to 30 parts by weight of component (B) and 1 to 80 parts by weight of component (C) based on 100 parts by weight of component (A). From 3. The refractory composition according to any one of the above.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The refractory composition of the present invention comprises (A) a hydraulic cement (hereinafter, also referred to as “component (A)”), and (B) a water-absorbing layered inorganic compound (hereinafter, also referred to as “component (B)”). , And (C) a deliquescent substance (hereinafter, also referred to as “component (C)”).
[0009]
The component (A) is not particularly limited, and a known or commercially available component can be used. For example, ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately heated Portland cement, sulfate-resistant Portland cement, white Portland cement, alumina cement, ultra-fast setting cement, expansion cement, acid phosphate cement, silica cement Lime mixed cement, blast furnace cement, fly ash cement, keince cement and the like. These can be used alone or in combination of two or more.
[0010]
The component (B) is a component that mainly absorbs and retains moisture and the component (C). At this time, the moisture in the air is absorbed so that the vapor pressure generated by the moisture in the component (B) and the water vapor pressure in the air maintain a certain balance.
Due to the moisture absorbed in this way, when the temperature rises due to a fire or the like, the rise in the temperature of the base material can be largely suppressed by latent heat of vaporization or heat of vaporization, and excellent fire resistance can be exhibited. Moreover, since it is an inorganic compound, it does not burn like an organic substance, and can exhibit excellent fire resistance performance.
Further, since the component (B) has a layered structure, it can absorb and retain a large amount of water, and therefore can exhibit excellent fire resistance performance and maintain the performance. In addition, by having a layered structure, a temperature rise can be suppressed due to an adiabatic effect due to minute voids between layers. Further, the material can be reduced in weight due to the large amount of voids between the layers.
[0011]
The component (B) of the present invention is not particularly limited as long as it is a water-absorbing layered inorganic compound, and any known compounds may be used. Layered silicates such as swellable mica are exemplified. Layered silicates are preferred because they have excellent swelling properties and can absorb a large amount of water.
[0012]
The component (B) of the present invention preferably has a water absorption capacity of 1 or more (preferably 3 or more, more preferably 5 or more and 100 or less).
The water absorption capacity (g / g) means the amount (g) of water that can be absorbed per 1 g of the component (B) at a temperature of 23 ° C. and a humidity of 50% (hereinafter referred to as “standard state”).
[0013]
Further, the component (B) is preferably one subjected to an electrolytic treatment. If the component (B) has been subjected to an electrolytic treatment, it can exhibit a higher water absorption capacity even in a solution containing an electrolyte such as a deliquescent substance, exhibit a sufficient heat absorbing effect by moisture, and have a better fire resistance performance. Can be obtained.
[0014]
A known method may be used as the electrolyte-resistant treatment, and specific examples include a method of treating the component (B) with an organic acid.
[0015]
Organic acids are organic compounds that exhibit acidity when dissolved in water, and include, for example, those containing functional groups such as a carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a phenol group, an enol group, and a thiol group. Can be One or more of these can be used.
In the present invention, the polymer is preferably a polymer containing the above-described functional group, and more preferably a polymer containing a carboxylic acid group and a sulfonic acid group.
[0016]
The deliquescent substance of the component (C) is a substance having a lower vapor pressure in the aqueous solution state of the component (C) than the vapor pressure of water at the same temperature. By containing the component (C), the amount of water absorption of the fire-resistant composition can be increased, and the absorbed moisture can be maintained, so that excellent fire-resistance performance can be obtained.
[0017]
Examples of such a component (C) include metal halides such as lithium, sodium, potassium, magnesium, calcium, zinc, aluminum, and tin, metal (nitrite) nitrates, carbonates, acetates, and the like. These can be used alone or in combination of two or more.
In the present invention, in particular, metal (nitrite) nitrates such as lithium nitrate, sodium nitrate, calcium nitrate, magnesium nitrate, aluminum nitrate, sodium nitrite and calcium nitrite; carbonates such as potassium carbonate; acetates such as potassium acetate; Is preferred.
[0018]
The mixing ratio of the composition of the present invention is not limited, and may be appropriately set according to the type of the component used, the use of the final product, etc. Usually, the component (B) is added to the component (A) in an amount of 100 parts by weight. About 0.1 to 30 parts by weight (preferably 1 to 30 parts by weight, more preferably 10 to 30 parts by weight), and component (C) in an amount of 1 to 80 parts by weight (preferably 10 to 60 parts by weight, preferably 20 to 60 parts by weight) 40 parts by weight).
Within such a range, more excellent fire resistance and higher strength can be obtained.
When the amount of the component (B) is less than 0.1 part by weight, water cannot be sufficiently absorbed and retained, and it is difficult to obtain desired fire resistance. When the component (B) is more than 30 parts by weight, the strength is reduced.
When the amount of the component (C) is less than 1 part by weight, water cannot be sufficiently absorbed, and it is difficult to obtain a desired fire resistance. When the component (C) is more than 80 parts by weight, the strength is reduced.
[0019]
In the composition of the present invention, (D) aluminum hydroxide and / or magnesium hydroxide (hereinafter, also referred to as “component (D)”) can be blended, if necessary. The component (D) is capable of generating a large amount of nonflammable gas such as water vapor when heated, and has an effect of greatly suppressing a rise in temperature by its endothermic effect. The mixing ratio of the component (D) is not limited, but is usually preferably about 50 to 800 parts by weight (preferably 200 to 600 parts by weight) per 100 parts by weight of the hydraulic cement.
[0020]
In the composition of the present invention, a synthetic resin can be further compounded, if necessary. The form of the synthetic resin may be any of a water-soluble resin, a resin emulsion, a powder resin, and the like. In particular, a re-emulsifiable powder resin can be preferably used in that premixing is possible and dispersibility after water addition is excellent. The resin component is not limited as long as it can improve the strength of the finally obtained cured product, and can improve the adhesion to a steel frame or the like when used as a fire-resistant coating material. Commercial products can be used. For example, an acrylic resin, a vinyl acetate resin, a vinyl propionate resin, a vinyl acrylate resin, an ethylene vinyl acetate resin, a vinyl chloride resin, an epoxy resin, a Veova (trade name) resin, and the like can be given. By adding these resin components, the strength and the like can be improved. Although the amount of the resin component added is not limited, it is usually desirable to set the amount to about 3 to 50 parts by weight (preferably, 20 to 40 parts by weight) with respect to 100 parts by weight of the hydraulic cement, from the viewpoint of improving the strength.
[0021]
Other than the above-mentioned components, aggregates such as silica sand and sand, lightweight aggregates such as expanded perlite, expanded vermiculite, and shirasu balloon; carbonates such as calcium carbonate and magnesium carbonate; Fiber materials such as fibers, rock wool, and pulp; water-soluble resins such as cellulose; and other known additives such as surfactants, water reducing agents, defoamers, rust inhibitors, and low-melting inorganic materials. May be.
[0022]
The composition of the present invention can be produced by uniformly mixing these components with various mixers. These components can be added sequentially or simultaneously.
[0023]
When the present invention is used, it may be used in the same manner as a known hydraulic composition. A kneaded product (slurry) obtained by mixing water with the composition of the present invention may be formed, cured and cured.
[0024]
Specifically, water is mixed and kneaded with the composition of the present invention, and a cured product obtained by molding into a predetermined shape is used as an inner wall, outer wall, ceiling, roof, column, beam, partition, door, etc. of a building. It is sufficient to apply to the part. Alternatively, a kneaded product obtained by blending water with the composition of the present invention can be applied and laminated on the surface of a predetermined site and used as a fireproof coating material. In the present invention, the blending amount of water when preparing the kneaded material is not particularly limited, but usually, the ratio may be about 50 to 300 parts by weight with respect to 100 parts by weight of the present composition.
[0025]
【Example】
Examples and comparative examples are shown below to further clarify the features of the present invention. However, the present invention is not limited to the following examples.
[0026]
[Table 1]
Figure 2004299991
[0027]
(Example 1)
A composition comprising 100 parts by weight of Portland cement and 25 parts by weight of electrolyte-resistant bentonite was mixed with 125 parts by weight of a 30% aqueous potassium acetate solution, and sufficiently stirred to form a slurry. Using the obtained slurry (Formulation Example 1), test pieces were prepared as described below, and each test was performed. Table 1 shows the results.
The bentonite treated with the carboxylic acid group-containing polymer was used as the electrolyte-resistant bentonite.
[0028]
(Fire resistance test)
The slurry was poured into a mold (120 mm × 120 mm × 25 mm), dried and cured in a standard state for 28 days, demolded, and left in a dryer at a temperature of 105 ° C. for 3 days and in a standard state for 7 days. Thus, a test body was prepared.
The prepared test piece was fitted into a ceramic board form, fixed so as to cover an electric furnace opening previously set at 1000 ° C., and the time required for the temperature at the center portion of the back surface of the test piece to reach 550 ° C. was measured. . Table 1 shows the test results.
As a result, the composition of Formulation Example 1 was able to obtain good results in a fire resistance test and had excellent fire resistance performance.
[0029]
(Example 2)
The measurement and test were performed in the same manner as in Example 1 except that the slurry obtained in Formulation Example 2 shown in Table 1 was used. As a result, the composition of Formulation Example 2 was excellent in fire resistance performance.
[0030]
(Comparative Example 1)
The test was performed in the same manner as in Example 1 except that the slurry obtained in Formulation Example 3 shown in Table 1 was used. As a result, the result was inferior in fire resistance performance. In addition, polyalkylene oxide was used as the water absorbing polymer.
[0031]
(Comparative Example 2)
The test was performed in the same manner as in Example 1 except that the slurry obtained in Formulation Example 4 shown in Table 1 was used. As a result, the result was inferior in fire resistance performance.
[0032]
(Comparative Example 3)
The test was performed in the same manner as in Example 1 except that the slurry obtained in Formulation Example 5 shown in Table 1 was used. As a result, the result was inferior in fire resistance performance.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION This invention can provide the refractory composition which can be made into a thin film and which can fully exhibit desired refractory performance. Such a composition of the present invention can be suitably used for inner walls, outer walls, ceilings, roofs, columns, beams, partitions, doors, and the like of buildings. Further, it is also suitable as a fire-resistant coating material (composition for fire-resistant coating) used for each part of a building having a steel frame, a steel plate or the like as a base material. Danger can be avoided.

Claims (4)

(A)水硬性セメント、(B)吸水性層状無機化合物、及び(C)潮解性物質を含有することを特徴とする耐火用組成物。A fire-resistant composition comprising (A) a hydraulic cement, (B) a water-absorbing layered inorganic compound, and (C) a deliquescent substance. (B)成分が耐電解質処理された吸水性層状無機化合物であることを特徴とする請求項1に記載の耐火用組成物。The refractory composition according to claim 1, wherein the component (B) is a water-absorbing layered inorganic compound that has been treated with an electrolyte. (B)成分が層状ケイ酸塩であることを特徴とする請求項1または請求項2に記載の耐火用組成物。The refractory composition according to claim 1 or 2, wherein the component (B) is a layered silicate. (A)成分100重量部に対し、(B)成分0.1〜30重量部、(C)成分1〜80重量部を含有することを特徴とする請求項1から請求項3のいずれかに記載の耐火用組成物。The composition according to any one of claims 1 to 3, wherein 0.1 to 30 parts by weight of the component (B) and 1 to 80 parts by weight of the component (C) are contained with respect to 100 parts by weight of the component (A). The refractory composition according to any one of the preceding claims.
JP2003096597A 2003-03-31 2003-03-31 Composition for refractory Pending JP2004299991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096597A JP2004299991A (en) 2003-03-31 2003-03-31 Composition for refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096597A JP2004299991A (en) 2003-03-31 2003-03-31 Composition for refractory

Publications (1)

Publication Number Publication Date
JP2004299991A true JP2004299991A (en) 2004-10-28

Family

ID=33408597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096597A Pending JP2004299991A (en) 2003-03-31 2003-03-31 Composition for refractory

Country Status (1)

Country Link
JP (1) JP2004299991A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306646A (en) * 2005-04-27 2006-11-09 Denki Kagaku Kogyo Kk Alumina cement composition and repairing method using the same
JP2007223876A (en) * 2006-02-27 2007-09-06 Denki Kagaku Kogyo Kk Alumina cement composition and repair method using the same
JP2011094353A (en) * 2009-10-28 2011-05-12 Takenaka Komuten Co Ltd Fireproof joint structure and outer wall having the same
CN107605066A (en) * 2017-10-09 2018-01-19 安徽安能建设集团有限公司 A kind of building construction wall

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306646A (en) * 2005-04-27 2006-11-09 Denki Kagaku Kogyo Kk Alumina cement composition and repairing method using the same
JP4634212B2 (en) * 2005-04-27 2011-02-16 電気化学工業株式会社 Alumina cement composition and repair method using the same
JP2007223876A (en) * 2006-02-27 2007-09-06 Denki Kagaku Kogyo Kk Alumina cement composition and repair method using the same
JP2011094353A (en) * 2009-10-28 2011-05-12 Takenaka Komuten Co Ltd Fireproof joint structure and outer wall having the same
CN107605066A (en) * 2017-10-09 2018-01-19 安徽安能建设集团有限公司 A kind of building construction wall

Similar Documents

Publication Publication Date Title
KR101649052B1 (en) Mortar composition comprising rice hull and preparation method thereof
BR112015024596B1 (en) INSULATING MORTAR REDUCED IN WEIGHT AND INSULATION COATING
CN1162512C (en) Fire resistant compositions
JP2002293600A (en) Fire proof, humidity conditionable building material
JP2004299991A (en) Composition for refractory
JPH07223856A (en) Magnesia cement composition
JP2002201057A (en) Adiabatic mortar
CN113683350B (en) Fire prevention and extinguishing type strong reinforcing material for filling underground space, preparation method and application
JP2003096930A (en) Humidity-adjustable fire-protective building material and method for producing the same
KR101740278B1 (en) Board Manufacturing Method
JPH02267148A (en) Production of gypsum board
JP3181152B2 (en) Composition for fireproof coating
KR20030029419A (en) Fireproof Reinforced Materials for Building Construction and Preparation Method Thereof
JPH1036161A (en) Hydraulic composition and its hardened product
JPH06271367A (en) Fireproof coating material
JP4424891B2 (en) Refractory composition
JP2003155786A (en) Moisture absorbing and discharging fire-protecting building material
ES2245895B1 (en) OBTAINING INSULATING MATERIALS FROM RESIDUES OF THERMAL PROCESSES THAT USE BIOMASS.
JP2004161567A (en) Composition for refractory
JP3537511B2 (en) Magnesia ultra-lightweight refractory material
JPH0478586B2 (en)
KR100668802B1 (en) Inorganic Panel for Fire-resisting Use
JP2006028339A (en) Inorganic finishing material composition for building
JPH07119305B2 (en) Foamable insulation composition
JPH09314726A (en) Refractory board for building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090601