JP3537511B2 - Magnesia ultra-lightweight refractory material - Google Patents

Magnesia ultra-lightweight refractory material

Info

Publication number
JP3537511B2
JP3537511B2 JP27126894A JP27126894A JP3537511B2 JP 3537511 B2 JP3537511 B2 JP 3537511B2 JP 27126894 A JP27126894 A JP 27126894A JP 27126894 A JP27126894 A JP 27126894A JP 3537511 B2 JP3537511 B2 JP 3537511B2
Authority
JP
Japan
Prior art keywords
refractory material
magnesia
zeolite
material according
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27126894A
Other languages
Japanese (ja)
Other versions
JPH08133811A (en
Inventor
英雄 居上
公平 小田
Original Assignee
有限会社アドセラミックス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社アドセラミックス研究所 filed Critical 有限会社アドセラミックス研究所
Priority to JP27126894A priority Critical patent/JP3537511B2/en
Publication of JPH08133811A publication Critical patent/JPH08133811A/en
Application granted granted Critical
Publication of JP3537511B2 publication Critical patent/JP3537511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/30Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing magnesium cements or similar cements
    • C04B28/32Magnesium oxychloride cements, e.g. Sorel cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ゼオライトと無機質
または合成樹脂系中空発泡体を骨材として混入したマグ
ネシア系超軽量質耐火性材料に関するものである。さら
に詳しくは、この発明は、断熱、耐火、耐久性が要求さ
れる建築構造材料等に有用な、ゼオライトと無機質また
は合成樹脂系中空発泡体を骨材としたマグネシア系超軽
量質耐火性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia-based ultralight refractory material in which zeolite and an inorganic or synthetic resin-based hollow foam are mixed as an aggregate. More particularly, the present invention relates to a magnesia-based ultra-lightweight refractory material using zeolite and an inorganic or synthetic resin-based hollow foam as an aggregate, which is useful for building structural materials and the like that require heat insulation, fire resistance, and durability. Things.

【0002】[0002]

【従来の技術とその課題】従来より、軽量な無機質材料
として焼結発泡セラミックスや微小口径ハニカム構造の
セラミックスが知られているが、これらは成形、焼成の
プロセスが複雑であってコストも高いことから大型構造
材料への利用が困難であり、小形の耐火断熱材またはバ
イオリアクター等の触媒担体として利用されるにとどま
っている。また、繊維状セラミックスも軽量な耐火断熱
材として利用されているに過ぎない。さらに、ガラスウ
ールやスラグウールがマット状の断熱、防音材として利
用されているが、これらも構造材とはなり得ない。
2. Description of the Related Art Sintered foamed ceramics and ceramics having a small-diameter honeycomb structure have been conventionally known as lightweight inorganic materials, but these require complicated forming and firing processes and high costs. However, it is difficult to use it for large structural materials, and it is only used as a small-sized refractory heat insulating material or a catalyst carrier for a bioreactor. Further, fibrous ceramics are also merely used as lightweight fire-resistant heat insulating materials. Further, glass wool and slag wool are used as mat-like heat insulating and soundproofing materials, but they cannot be structural materials.

【0003】一方、繊維状珪酸カルシウム、セラミック
発泡体をポルトランドセメントで硬化した軽量質コンク
リート板も知られているが、BSGが1.5以上で強度
が低く、炭酸化による経年劣化が顕著である等の欠点が
ある。また、ALC(Autoclaved Light weight Concret
e)に分類され、水熱合成法によって生成された珪酸カル
シウム発泡体は、鉄筋を内蔵する大型耐火構造材料とし
て広く利用され、現状においては唯一のセラミック構造
材料として扱われている。しかしながら、このALCは
含水珪酸カルシウム(Tobermorite) と未反応の二酸化珪
素(SiO2)の混合組織であるため、含水珪酸カルシウムが
炭酸化によってゲル状酸化珪素と炭酸カルシウムに分解
し、これによる吸収、乾燥に伴い膨張、収縮を繰り返す
ため、経年劣化が大きいことが指摘されている。また、
吸水率が大きく、強度が弱いために脆く、取り扱い中に
破壊しやすく、表面塗装膜も劣化しやすい等の欠点があ
る。
[0003] On the other hand, there is also known a lightweight concrete plate obtained by hardening fibrous calcium silicate or ceramic foam with Portland cement. However, the strength is low when BSG is 1.5 or more, and deterioration over time due to carbonation is remarkable. And the like. ALC (Autoclaved Light weight Concret
Calcium silicate foams classified by e) and produced by a hydrothermal synthesis method are widely used as large-scale refractory structural materials containing a reinforcing bar, and are currently treated as the only ceramic structural materials. However, since this ALC is a mixed structure of hydrated calcium silicate (Tobermorite) and unreacted silicon dioxide (SiO 2 ), hydrated calcium silicate is decomposed into gelled silicon oxide and calcium carbonate by carbonation, and absorption by this is caused. It has been pointed out that aging and shrinkage are repeated due to repeated expansion and contraction with drying. Also,
It has disadvantages such as high water absorption, low strength, brittleness, easy breakage during handling, and easy deterioration of the surface coating film.

【0004】このように、従来の軽量質無機質材料は、
建築構造材料として利用するには物性ならびに経済性の
面で適正さを欠いており、唯一広く利用されているAL
Cも強度不足と経年劣化という二つの大きな問題を抱え
ている。この発明は、以上の通りの事情に鑑みてなされ
たものであり、これまでのものとは異なる発想をもと
に、軽量かつ大型の構造材料として安定した物性を示
し、経済性にも優れ、特に大きな疎水性を持つマグネシ
ア系軽量質耐火性構造材料を提供することを目的として
いる。
As described above, the conventional lightweight inorganic materials are:
It is not suitable for use as a building structural material in terms of physical properties and economic efficiency, and is the only widely used AL
C also has two major problems: insufficient strength and aging. The present invention has been made in view of the circumstances described above, and based on a different idea from the conventional ones, shows stable physical properties as a lightweight and large-sized structural material, is excellent in economic efficiency, It is an object of the present invention to provide a magnesia-based lightweight fire-resistant structural material having particularly high hydrophobicity.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、ゼオライトもしくはそれを主成
分とする凝灰岩粒子と無機質または合成樹脂系の中空発
泡体を骨材として、活性度の高いマグネシアならびにそ
の塩類を混合して成形したものを低温で硬化させること
によって、軽量でかつ大型の構造材料として安定した物
性を示すことを特徴とする軽量質耐火性材料を提供す
る。
The present invention solves the above-mentioned problems by using zeolite or a tuff particle containing the same as a main component and an inorganic or synthetic resin-based hollow foam as an aggregate, and the activity of the zeolite is reduced. A light-weight fire-resistant material characterized by exhibiting stable physical properties as a light-weight and large-sized structural material by hardening at a low temperature a molded product obtained by mixing high magnesia and its salts.

【0006】さらにこの発明について、その背景を説明
すると、マグネシアとその塩類であるリン酸塩、硫酸
塩、塩化物等との反応によって生成するマグネシウムオ
キシ塩セメントは、軽量であり、曲げ強度が大きく、木
材や岩石等との接着力に優れていることは従来より知ら
れており、さらにオキシ塩の可溶性によって、金属表面
上で加水分解を起こし腐食が生じることも知られてい
る。このようなマグネシアセメントの欠点を改善するた
めの手段として種々の添加物が提案されているが完全な
ものはない。
Further, the background of the present invention will be described. The magnesium oxysalt cement produced by the reaction of magnesia with its salts, such as phosphates, sulfates, chlorides, etc., is lightweight and has high bending strength. It has been known that it has excellent adhesion to wood, rocks and the like, and it is also known that the solubility of the oxysalt causes hydrolysis on the metal surface to cause corrosion. Various additives have been proposed as means for remedying the drawbacks of magnesia cement, but none of them have been perfect.

【0007】そこで、この発明の発明者らは、マグネシ
ウムオキシ塩の吸着水による可溶性を抑止するために、
ゼオライトの吸着性とイオン交換性に着目し、これらを
複合することによって上記現象を完全に抑止でき、さら
に凝灰岩粒子を酸で処理することによって、その複合効
果が発揮されることを見いだした。しかしながら、ゼオ
ライトを主成分とする凝灰岩は多孔性であるため、粒子
の容積重量(BSG)が0.9と低く、またマグネシア
のBSGが0.7以下であるため、その硬化体のBSG
を0.8以下とすることも容易である。だが、近年、省
エネルギーの観点から超軽量化が要求されており、材料
のBSGを極限まで低下させることが重要となってい
る。
Therefore, the inventors of the present invention have proposed the following in order to suppress the solubility of magnesium oxy salt due to adsorbed water.
Focusing on the adsorption and ion-exchange properties of zeolites, it was found that the above phenomena could be completely suppressed by combining them, and that the combined effect was exhibited by treating the tuff particles with an acid. However, since the tuff mainly composed of zeolite is porous, the volume weight (BSG) of the particles is as low as 0.9 and the BSG of magnesia is 0.7 or less.
Can easily be set to 0.8 or less. However, in recent years, ultra light weight is required from the viewpoint of energy saving, and it is important to reduce the BSG of the material to the limit.

【0008】そこで、この発明の発明者らは、無機質、
または合成樹脂系中空発泡体を混入させることにより、
BSGを0.6以下から0.3以下までに低くし、同時
に曲げ強度(MOR)を10Kgf/cm2 に保持する
ことが可能であることを見いだした。これにより、構造
体の構築エネルギーと構造体自身の省エネルギー化を達
成できることを確認し、この発明を完成した。
Therefore, the inventors of the present invention have proposed inorganic,
Or by mixing a synthetic resin hollow foam,
It has been found that it is possible to lower the BSG from 0.6 or less to 0.3 or less and at the same time keep the bending strength (MOR) at 10 Kgf / cm 2 . As a result, it has been confirmed that the construction energy of the structure and the energy saving of the structure itself can be achieved, and the present invention has been completed.

【0009】そしてまた、この発明による軽量材は、大
型パネルとして利用することができ、この場合には、合
成樹脂によるコーティングを施した鉄筋によってRC構
造とすることが構築物の安全上望ましい。
Further, the lightweight material according to the present invention can be used as a large-sized panel. In this case, it is desirable from the viewpoint of safety of the structure that the RC structure be made of a reinforcing bar coated with a synthetic resin.

【0010】[0010]

【作用】この発明においては、マグネシアならびにその
塩類に、ゼオライトを主成分とする凝灰岩粒子と無機質
または合成樹脂の中空粒子を骨材として混合し硬化さ
せ、マグネシア系軽量質耐火性材料を製造する。そし
て、特にこの発明では、ゼオライトを整粒し、十分に乾
燥させ、この粒子にリン酸、塩酸、硫酸等を10%以下
に希薄したものを加えてゼオライト表面層のアルカリな
らびにアルカリ土類金属イオンを置換し、ゾル、ゲル化
状態になった粒子表面にマグネシアを反応させ水和珪酸
塩を生成させることで、その粒子表面層は粒子内部のゼ
オライト効果を失うことなく、マグネシウムオキシ塩の
セメント接着性を強める作用を発揮する。
According to the present invention, magnesia and its salts are mixed with aggregates of tuff particles composed mainly of zeolite and hollow particles of an inorganic or synthetic resin and cured to produce a magnesia-based lightweight refractory material. In particular, in the present invention, the zeolite is sized, dried sufficiently, and the particles obtained by diluting phosphoric acid, hydrochloric acid, sulfuric acid, etc. to 10% or less are added to the alkali and alkaline earth metal ions of the zeolite surface layer. Is replaced by magnesia on the surface of the sol and gelled particles to form hydrated silicate, so that the particle surface layer does not lose the zeolite effect inside the particles and cements the magnesium oxy salt with cement. Exhibits the effect of strengthening sex.

【0011】これらの配合組成物に、無機質または合成
樹脂の中空発泡体として、セラミックバルーン、ガラス
バルーンなどの無機質中空発泡体や、ポリスチレン、ポ
リエチレン等の樹脂発泡粒子を混合することで、この発
明の超軽量質耐火材料が実現される。さらに詳しくは、
この発明においては、ゼオライト石が天然またはその酸
もしくはアルカリ処理したもの、特に[(Ca;Na2
…K2 )(Al2 Si7 13)・6H2 O]を主鉱物と
する凝灰岩粒子を酸処理したもの等と上記の無機または
合成樹脂の中空発泡体とを骨材とし、マグネシア(Mg
O)をその塩類とからなるマグネシアオモシ塩化物とに
よって耐火材を構成する。
According to the present invention, by mixing an inorganic or synthetic resin hollow foam such as a ceramic balloon or a glass balloon, or a resin foam particle such as polystyrene or polyethylene, as a hollow foam of an inorganic or synthetic resin, into these compounded compositions. An ultralight refractory material is realized. For more information,
In the present invention, zeolite stone is natural or its acid or alkali treated, especially [(Ca; Na 2
... K 2) (Al 2 Si 7 O 13) · 6H 2 O] mainly minerals to ones tuff particles treated with acid or the like and the inorganic or synthetic resin and hollow foam and aggregate, magnesia (Mg
The refractory material is constituted by magnesia sorghum chloride consisting of O) and its salts.

【0012】マグネシアは、マグネシウム塩を1000
℃以下の温度で焼成して得られる活性マグネシアであっ
て、粒径50μm以下で、比表面積が25〜40m2
gであることを特に好ましい態様としている。また、マ
グネシア微粉末は、ゼオライト石にコーティングして配
合することが有効でもある。マグネシウムオキシ塩化合
物は、[(nMgO・MgCl2 ・SO4 ・P2 5)・
mH2 O](n=5〜10)で表わされるものを好適に
使用する。このものはマグネシアとマグネシウム塩との
混合スラリーとして実現される。また、高分子エマルジ
ョンを配合することも有利である。
Magnesia has a magnesium salt of 1000
An active magnesia obtained by calcining at a temperature of not more than ℃, having a particle size of not more than 50 μm and a specific surface area of 25 to 40 m 2 /
g is a particularly preferred embodiment. It is also effective to coat and mix the magnesia fine powder with zeolite stone. The magnesium oxysalt compound is [(nMgO.MgCl 2 .SO 4 .P 2 O 5 ).
mH 2 O] (n = 5 to 10) is preferably used. This is realized as a mixed slurry of magnesia and magnesium salt. It is also advantageous to incorporate a polymer emulsion.

【0013】全体の配合については、マグネシア、その
塩、ゼオライト、さらには高分子エマルジョンの総量が
90〜99重量%、中空発泡体が1〜10重量%程度と
し、また、ゼオライトは3〜20重量%、マグネシア、
その塩は80〜95重量%、高分子エマルジョンは30
%以下とするのが好ましい。なお、耐火性の観点から
は、合成樹脂系発泡体の場合は1〜5重量%とするのが
好ましい。
The total amount of magnesia, its salt, zeolite, and polymer emulsion is about 90 to 99% by weight, hollow foam is about 1 to 10% by weight, and zeolite is about 3 to 20% by weight. %, Magnesia,
The salt is 80 to 95% by weight, the polymer emulsion is 30% by weight.
% Is preferable. In addition, from the viewpoint of fire resistance, in the case of a synthetic resin foam, the content is preferably 1 to 5% by weight.

【0014】以下、実施例を示してさらに詳しくこの発
明の超軽量質耐火材について説明する。
Hereinafter, the ultralight refractory material of the present invention will be described in more detail with reference to examples.

【0015】[0015]

【実施例】サイズ600×600×40mmの超軽量質
耐火材料中に5mm×400mmの鉄筋を配筋し、振動
成形により成形し、24時間養生して硬化体を得た。す
なわち、ゼオライトを主成分とする凝灰岩(大谷石)を
粒径2mm以下に整粒し、これにリン酸(H2 PO4
の5%水溶液をスプレーし、1時間後にマグネシアの微
粉末をまぶして2時間放置した。このコーティング処理
により、凝灰岩粒子は白色の薄膜と強く接着され、振動
攪拌によっても粉状物質の発生は認められなかった。
EXAMPLE A 5 mm.times.400 mm reinforcing bar was arranged in an ultra-lightweight refractory material having a size of 600.times.600.times.40 mm, molded by vibration molding, and cured for 24 hours to obtain a cured product. That is, a tuff (Oya stone) mainly composed of zeolite is sized to a particle size of 2 mm or less, and phosphoric acid (H 2 PO 4 ) is added thereto.
5% aqueous solution was sprayed, and after one hour, fine magnesia powder was sprinkled thereon and left for 2 hours. As a result of this coating treatment, the tuff particles were strongly adhered to the white thin film, and no generation of powdery material was observed even by vibration stirring.

【0016】なお、ここでは、マグネシアの25%の塩
化マグネシウム溶液を8MgO・(MgCl2 +MgS
4 )・3H2 Oのような組成比となるように添加しス
ラリー状とした。表1のような配合比(重合比)でコー
ティング処理を施した凝灰岩粒子とマグネシウムスラリ
ーを混合し、さらに粒径3mm以下のポリスチレン中空
発泡体を配合し、セメントミキサー内で5分間混合攪拌
した。これを型枠に流し込み、約5分間振動成形を行っ
た後、型枠のまま60℃、湿度70%の条件で6時間養
生室にて硬化させた。硬化後、150℃の空気乾燥炉で
24時間乾燥硬化させ、さらに空気中で三日間放置し
た。
Here, a 25% magnesium chloride solution of magnesia was added to 8MgO · (MgCl 2 + MgS
O 4 ) · 3H 2 O was added to form a slurry. The tuff particles and the magnesium slurry which had been subjected to the coating treatment at the compounding ratio (polymerization ratio) shown in Table 1 were mixed, and a polystyrene hollow foam having a particle size of 3 mm or less was further compounded, followed by mixing and stirring in a cement mixer for 5 minutes. This was poured into a mold, subjected to vibration molding for about 5 minutes, and then cured in a curing room for 6 hours at 60 ° C. and 70% humidity while keeping the mold. After the curing, the composition was dried and cured in an air drying oven at 150 ° C. for 24 hours, and left in air for three days.

【0017】以上の通りに製造した硬化体の乾燥収縮、
吸水性、曲げ強度を測定し、その結果を表2に示した。
試料No.1は、型枠面は白色でやや光沢を帯び、乾燥
収縮はなかった。試料No.2は、型枠面にはやや粒子
がみられたが、乾燥収縮はなかった。なお、乾湿収縮率
は乾気中から湿気中への環境変化を10回繰り返し、そ
の後の寸法変化を示した。吸水率は1時間水中に浸した
後の吸水量を示した。また、曲げ強度は空気中に1時間
放置した後に計測した。
Drying shrinkage of the cured product produced as described above,
The water absorption and bending strength were measured, and the results are shown in Table 2.
Sample No. In No. 1, the mold surface was white and slightly glossy, and there was no drying shrinkage. Sample No. In No. 2, although some particles were observed on the mold surface, there was no drying shrinkage. In addition, the dry-wet shrinkage ratio was such that the environmental change from dry air to moisture was repeated 10 times, and the subsequent dimensional change was shown. The water absorption indicates the amount of water absorbed after immersion in water for one hour. Further, the bending strength was measured after being left in the air for one hour.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】この発明により、以上詳しく説明したと
おり、軽量質耐火材料として広く利用されているALC
と比較し、高い寸法精度、半分の吸水率、約2.5倍の
曲げ強度という優れた性質を示し、長期的に空気中にお
ける炭酸ガスによる劣化もない、軽量質で耐火性、断熱
性を具備し、大型構造材料として利用できうる新しい材
料を提供することが可能となる。
According to the present invention, as described in detail above, ALC widely used as a lightweight refractory material.
Compared to, it shows excellent properties such as high dimensional accuracy, half water absorption rate, about 2.5 times bending strength, lightweight, fire resistance and heat insulation without long term deterioration due to carbon dioxide in air. It is possible to provide a new material that can be provided and used as a large-sized structural material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 38/08 C04B 38/08 A (58)調査した分野(Int.Cl.7,DB名) C04B 2/00 - 32/02 B28B 23/02 C04B 35/66 C04B 38/08 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 7 identification code FI C04B 38/08 C04B 38/08 A (58) Field surveyed (Int.Cl. 7 , DB name) C04B 2/00-32 / 02 B28B 23/02 C04B 35/66 C04B 38/08

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグネシア(MgO)とその塩類とから
なるマグネシウムオキシ塩化合物に骨材を混入して硬化
させたもの、またはそのRC構造体からなるマグネシア
系耐火性材料であって、骨材として、ゼオライトと無機
質もしくは合成樹脂系中空発泡体を混入したことを特徴
とするマグネシア系超軽量質耐火性材料。
1. A magnesium oxysalt compound composed of magnesia (MgO) and its salts mixed with an aggregate and cured, or a magnesia-based refractory material composed of an RC structure thereof, and used as an aggregate. A magnesia-based ultralight refractory material, characterized by mixing zeolite and an inorganic or synthetic resin hollow foam.
【請求項2】 ゼオライト石が、天然ゼオライトまたは
その酸もしくはアルカリ処理されたものである請求項1
の耐火性材料。
2. The zeolite stone is a natural zeolite or an acid or alkali-treated zeolite.
Refractory material.
【請求項3】 ゼオライト石が、[(Ca;Na2 …K
2 )(Al2 Si713)・6H2 O]を主鉱物とする
凝灰岩粒子を酸処理したものである請求項2の耐火性材
料。
3. The method of claim 1, wherein the zeolite stone is [(Ca; Na 2 ... K)
2) (Al 2 Si 7 O 13) · 6H 2 O] a refractory material according to claim 2 in which the tuff particles consisting mainly mineral acid treated.
【請求項4】 請求項5の酸処理したゼオライト石にマ
グネシア微粉末がコーティングされているものを配合し
た請求項1の耐火性材料。
4. The refractory material according to claim 1, wherein the acid-treated zeolite stone is coated with fine magnesia powder.
【請求項5】 マグネシアは、マグネシム塩を1000
℃以下の温度で焼成して得られる活性マグネシアであっ
て、粒径50μm以下で、比表面積が25〜40m2
gである請求項1の耐火性材料。
5. Magnesia is a magnesium salt of 1000
An active magnesia obtained by calcining at a temperature of not more than ℃, having a particle size of not more than 50 μm and a specific surface area of 25 to 40 m 2 /
g.
【請求項6】 請求項1の耐火性材料において、マグネ
シウムオキシ塩化合物が[nMgO・(MgCl2 ,S
4 ,P2 5 )・mH2 O](n=5〜10)で表わ
されるものである請求項1の耐火性材料。
6. The refractory material according to claim 1, wherein the magnesium oxysalt compound is [nMgO. (MgCl 2 , S
O 4, P 2 O 5) · mH 2 O] (n = 5~10) refractory material according to claim 1 which is intended to represent at.
【請求項7】 無機質または合成樹脂系の中空発泡体
が、1〜10重量%の割合で配合されている請求項1の
耐火性材料。
7. The refractory material according to claim 1, wherein the inorganic or synthetic resin-based hollow foam is blended at a ratio of 1 to 10% by weight.
【請求項8】 高分子エマルジュンが配合されている請
求項1の耐火性材料。
8. The refractory material according to claim 1, further comprising a polymer emulsion.
【請求項9】 合成樹脂を被覆した鉄筋、または亜鉛メ
ッキした鉄筋によってかご状に配筋したRC構造体から
なることを特徴とする請求項1ないし8のいずれかのマ
グネシア系軽量質耐火性材料。
9. A magnesia-based light-weight refractory material according to claim 1, wherein the RC structure comprises a reinforcing member coated with a synthetic resin or an RC structure arranged in a cage with a galvanized reinforcing bar. .
JP27126894A 1994-11-04 1994-11-04 Magnesia ultra-lightweight refractory material Expired - Fee Related JP3537511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27126894A JP3537511B2 (en) 1994-11-04 1994-11-04 Magnesia ultra-lightweight refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27126894A JP3537511B2 (en) 1994-11-04 1994-11-04 Magnesia ultra-lightweight refractory material

Publications (2)

Publication Number Publication Date
JPH08133811A JPH08133811A (en) 1996-05-28
JP3537511B2 true JP3537511B2 (en) 2004-06-14

Family

ID=17497720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27126894A Expired - Fee Related JP3537511B2 (en) 1994-11-04 1994-11-04 Magnesia ultra-lightweight refractory material

Country Status (1)

Country Link
JP (1) JP3537511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069351A1 (en) * 2005-12-14 2007-06-21 Azmec Co., Ltd. Adsorbent-containing cold-setting composition, adsorbent-containing molded object, and building material and impregnant for paving both containing adsorbent

Also Published As

Publication number Publication date
JPH08133811A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US4174230A (en) Gypsum compositions
US12012361B2 (en) Geopolymer cement
JPWO2002066396A1 (en) High strength calcium silicate cured product
JP2004505876A (en) Method for producing concrete or mortar using vegetable aggregate
RU2378218C2 (en) Raw composition for manufacturing of construction materials and products
CN105350707A (en) Mineral fiber reinforced green energy-saving environmentally-friendly novel wall and preparation method
RU2361833C2 (en) Complex modifier of concrete with polyfunctional action (versions)
JP4453997B2 (en) High strength hardened calcium silicate
JPH08217561A (en) Light-weight calcium silicate formed body and its production
JP3373883B2 (en) Light refractory structural material of zeolite-magnesia system
KR20040100202A (en) Concrete Composition for Lightweight and Sound Absorber and Method of Making The Same
JP3537511B2 (en) Magnesia ultra-lightweight refractory material
JP2000143328A (en) Heat insulating coating composition
JPH03122060A (en) Refractory coating composition having excellent adhesive force to iron
CN1087071A (en) Building material of volcanic ash for large wall
JP2001329629A (en) Heat-insulating coating granule
JP2001072480A (en) Heat-insulative coating composition
JP2006001794A (en) Moisture absorbing/releasing building material and method for producing the same
KR20200047489A (en) Room temperature curing non-cement composition for light weight block
KR20030029419A (en) Fireproof Reinforced Materials for Building Construction and Preparation Method Thereof
JP2002338327A (en) Method for producing moisture control building material
JPH0761876A (en) Production of inorganic hardened material
JP2001058884A (en) Production of calcium silicate hardened body
JPH06321599A (en) Refractory coating material
JP2003062822A (en) Method for manufacturing inorganic cured object

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees