KR101165666B1 - Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass - Google Patents
Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass Download PDFInfo
- Publication number
- KR101165666B1 KR101165666B1 KR20110128539A KR20110128539A KR101165666B1 KR 101165666 B1 KR101165666 B1 KR 101165666B1 KR 20110128539 A KR20110128539 A KR 20110128539A KR 20110128539 A KR20110128539 A KR 20110128539A KR 101165666 B1 KR101165666 B1 KR 101165666B1
- Authority
- KR
- South Korea
- Prior art keywords
- aggregate
- waste glass
- weight
- bottom ash
- concrete
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 42
- 239000011521 glass Substances 0.000 title claims abstract description 39
- 239000010882 bottom ash Substances 0.000 title claims abstract description 30
- 239000011810 insulating material Substances 0.000 title claims description 27
- 239000004568 cement Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 238000010276 construction Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000004088 foaming agent Substances 0.000 claims abstract description 10
- 239000012774 insulation material Substances 0.000 claims abstract description 6
- 238000009413 insulation Methods 0.000 claims description 30
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 8
- 230000000704 physical effect Effects 0.000 claims description 7
- 239000004604 Blowing Agent Substances 0.000 claims description 4
- 239000008188 pellet Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 9
- 239000004567 concrete Substances 0.000 description 59
- 238000002156 mixing Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 230000005484 gravity Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000004794 expanded polystyrene Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000009422 external insulation Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 239000002956 ash Substances 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 238000010169 landfilling Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 바텀애시와 폐유리로 제조된 경량골재를 사용한 건축용 외단열재에 관한 것으로서, 보다 상세하게는 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 펠렛화 시켜 일정크기로 성형한 골재와 그 골재의 표면을 폐유리분말로 코팅한 다음 소성하여 제조된 경량골재를 크기에 따라 분류하여 종래의 콘크리트용 골재를 대체하여, 단열성, 경량성, 경제성, 시공성 등이 우수한 건축용 외단열재에 관한 것이다.
The present invention relates to a building outer heat insulating material using a lightweight aggregate made of bottom ash and waste glass, and more particularly, aggregates and aggregates formed into pellets by pelletizing a mixture of bottom ash, waste glass and foaming agent. The surface of the coated with waste glass powder and then fired to classify the lightweight aggregate produced according to the size to replace the conventional aggregate for concrete, relates to an excellent heat insulating material for building excellent in heat insulation, light weight, economical, constructability.
인간생활 및 산업에서 열에너지의 손실을 방지하기 위해 여러 종류의 단열재가 사용되고 있다. 통상 단열재로는 주로 석유화학의 원료를 이용한 것으로 내부에 다수의 기공을 형성시켜서 사용되고 있는데, 즉 발포우레탄(Foam Urethan) 및 발포폴리스틸렌(Expended Polystylene)과 같이 유기화학제품으로 구성됨으로써 우 수한 경량성과 단열성을 제공하고 있다. 그러나, 이러한 유기화학 조성물들은 내열성이 취약하여 열 또는 불에 의해 쉽게 변형 또는 인화되는 단점이 있어 화재 발생과 발화시 유독 가스의 발생으로 인간에게 치명적 위해를 끼쳐 주고 있다.Various types of insulation are used to prevent the loss of thermal energy in human life and industry. In general, the heat insulating material is mainly used as a raw material of petrochemical, and is formed by forming a large number of pores therein. That is, it is composed of organic chemical products such as foam urethane and expanded polystyrene, which is excellent in light weight and heat insulation. To provide. However, these organic chemical compositions have a disadvantage in that they are easily deformed or ignited by heat or fire due to their poor heat resistance, thus causing a fatal hazard to humans due to the generation of toxic gases during fire and ignition.
또한, 난연성의 단열재로는 글래스울(Glass Wool)이나 석면등이 사용되고 있다. 그러나, 이 역시 유리나 광석 등을 용융하여 면사(綿絲)형상으로 성형하고 페놀 등으로 표면처리한 것으로 인체에 폐암을 유발시킬 수 있는 공해물질로 분류되어 이들의 사용을 규제하고 있지만, 시공성 및 경제성이 있는 대체재가 없어 난연성이 요구되는 단열부분에는 불가피하게 사용하고 있는 실정이다.In addition, glass wool or asbestos is used as a flame-retardant heat insulating material. However, it is also classified as a pollutant that can cause lung cancer in the human body by melting glass or ore, forming a cotton yarn, and surface-treating with phenol. However, the use and economical efficiency are regulated. Since there is no substitute material with this, it is inevitably used for the insulation part which requires flame retardancy.
한편, 발포폴리스틸렌은 대단히 가볍고 경제성이 뛰어난 단열재이기 때문에 현재까지 매우 광범위하게 사용되어지고 있다. 이러한 특성으로 포장완충재, 경량단열건축재, 각종의 용기 등의 대부분을 발포폴리스틸렌이 점유하고 있으며 그 점유율도 점점 증가하는 추세에 있다. 발포폴리스틸렌은 무게가 가볍기 때문에 유용하기도 하지만 그 경량성이 오히려 중요한 문제점이 되고 있다. 즉, 발포폴리스틸렌을 사용 후 폐기 시 많은 체적을 차지하게 되고, 천연의 상태에서는 거의 분해되지 않기 때문에 이것의 처리가 환경문제로 크게 대두되고 있다.On the other hand, expanded polystyrene has been used very widely to date because it is a very light and economical heat insulating material. Due to these characteristics, foam polystyrene occupies most of packaging buffers, lightweight insulation building materials, and various containers, and its share is also gradually increasing. Although expanded polystyrene is useful because of its light weight, its lightness has become a rather important problem. That is, since disposal of foamed polystyrene takes up a large volume when used and hardly decomposes in a natural state, its treatment is a large environmental problem.
또한, 현재 폐 발포폴리스틸렌의 처리방법은 매립, 소각, 연료화, 회수 재자원화 등이 있으나 매립은 여타 폐기물과 같이 2차 공해발생이나 매립지 등의 문제를 내포하고 있으며 소각처리에서는 다이옥신등의 인체유해가스 성분이 다량 배출 되는 문제가 있다.In addition, the current method of treating waste expanded polystyrene includes landfilling, incineration, fuelization, and recycling of reclaimed materials.However, landfilling involves problems such as secondary pollution or landfills, and other hazardous wastes such as dioxins in incineration. There is a problem that a large amount of components are discharged.
발포폴리스틸렌을 분쇄하여 포틀랜트시멘트, 석고등의 슬러리상에 이용하는 방법이 다수 공지되고 있지만, 통상의 시멘트 슬러리에 발포폴리스틸렌의 사용량이 한정 되었었다.Although a number of known methods for pulverizing expanded polystyrene and using it on slurry such as portant cement and gypsum have been known, the amount of expanded polystyrene has been limited to ordinary cement slurry.
따라서, 시멘트의 사용을 최소화하면서 발포스틸렌 칩의 사용을 최대로 함과 동시에 난연성을 크게 향상시킬 수 있는 초경량의 단열재 조성물에 대한 요구가 지속적으로 있어 왔다.
Therefore, there has been a continuous need for ultralight insulation compositions that can greatly improve the flame retardancy while maximizing the use of expanded styrene chips while minimizing the use of cement.
본 발명에서는 종래의 문제점을 해소하기 위한 것으로, 외단열재로 시공되는 시멘트콘크리트를 구성하는 잔골재와 굵은 골재를 바텀애쉬를 소성가공하여 되는 경량골재를 잔골재와 굵은 골재로 사용함으로써, 별도의 단열재 시공이 필요하지 않고, 또한 종래의 단열재에 비해 내열성 우수하며, 동시에 난연성이 크게 향상된 경량성 외단열재를 제공하는 것을 그 해결과제로 한다.
In the present invention to solve the conventional problems, by using a light aggregate aggregated from the bottom ash and coarse aggregate constituting the cement concrete to be constructed with the outer insulation material as the bottom aggregate and coarse aggregate, the construction of a separate insulation material It is a problem to provide a lightweight outer heat insulating material which is not necessary and which is excellent in heat resistance compared to the conventional heat insulating material and at the same time greatly improved in flame retardancy.
상기한 과제를 해결한 본 발명의 바텀애시와 폐유리로 제조된 경량골재를 사용한 건축용 외단열재는 시멘트, 잔골재, 굵은골재, 혼화제 및 물을 포함하여 이루어지고, 상기 잔골재는 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 성형소성한 골재로 0.6 ~ 5㎜의 크기를 가지는 경량골재를 사용하고, 상기 굵은골재는 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 성형한 골재로 5 ~ 20㎜의 크기를 가지는 경량골재를 사용하여 혼합한 것을 특징으로 한다. The outer insulation for building using lightweight ash manufactured from the bottom ash and waste glass of the present invention solved the above problems is made of cement, fine aggregate, coarse aggregate, admixture and water, the fine aggregate is the bottom ash and waste glass and A lightweight aggregate having a size of 0.6-5 mm is used as an aggregate formed by molding a mixture of a foaming agent, and the coarse aggregate is an aggregate formed by mixing a mixture of bottom ash, waste glass and a foaming agent of 5-20 mm. It is characterized by mixing using a lightweight aggregate having a size.
여기서, 상기 잔골재와 굵은골재로 사용되는 경량골재는 바텀애시와 폐유리 및 발포제를 혼합한 혼합물에 점결제를 첨가하면서 펠렛상으로 성형하고, 그 성형물의 표면을 폐유리분말로 코팅한 다음, 로터리 킬른에서 소성시켜 내부에 기공이 형성된 경량골제인 것을 특징으로 한다. Here, the lightweight aggregate used as coarse aggregate and coarse aggregate is formed into pellets by adding a caking additive to a mixture of bottom ash, waste glass and blowing agent, and coated the surface of the molded product with waste glass powder, followed by a rotary By firing in the kiln is characterized in that the lightweight bone formed pores therein.
여기서, 상기 잔골재는 콘크리트 총량에 대하여 5 ~ 20중량%를 포함하도록 혼합하는 것을 특징으로 한다. Here, the fine aggregate is characterized in that the mixing to include 5 to 20% by weight relative to the total amount of concrete.
여기서, 상기 굵은골재는 콘크리트 총량에 대하여 5 ~ 20중량%를 포함하도록 혼합하는 것을 특징으로 한다. Here, the coarse aggregate is characterized in that it contains 5 to 20% by weight relative to the total amount of concrete.
여기서, 상기 잔골재와 굵은골재는 중량비로 80:20 ~ 20:80의 비율이 되도록 혼합하는 것을 특징으로 한다. Here, the fine aggregate and coarse aggregate is characterized in that the mixing ratio of 80:20 ~ 20:80 by weight ratio.
여기서, 상기 외단열재는 시멘트 20~60중량%, 잔골재 1~40중량%, 굵은골재 1~40중량%, 혼화제 0.01~2중량% 및 잔량의 물을 포함하여 이루어지는 것을 특징으로 한다.
Here, the outer insulation is characterized in that it comprises 20 to 60% by weight of cement, 1 to 40% by weight of fine aggregate, 1 to 40% by weight of coarse aggregate, 0.01 to 2% by weight of admixture and residual amount of water.
본 발명은 단열성이 뛰어나고 낮은 흡수율과 비중을 보이는 경량 골재를 사용함으로써 내열성이 우수하고 난연성이 향상된 건축용 경량성 외단열재를 제공할 수 있다. The present invention can provide a lightweight outer insulation for building excellent heat resistance and improved flame retardancy by using a lightweight aggregate having excellent heat insulation and low absorption and specific gravity.
또한, 본 발명에서 제공되는 외단열재는 종래 건축용 외단열재 시공시 외벽에 우레탄수지와 같은 단열재를 시공한 다음, 외벽에 콘크리트를 타설하여 양생하는 복잡한 시공 공정을 필요로 하지 않고, 제공되는 건축용 외단열재만을 외벽공사시 타설함으로써 한번의 시공으로 단열재와 외벽체를 형성할 수 있어 시공공정의 단순화를 이룰 수 있으며, 또한 시공비의 절감과 재료비의 절감효과를 얻을 수 있게된다.
In addition, the outer heat insulating material provided in the present invention, after the construction of a heat insulating material such as urethane resin on the outer wall during the construction of the conventional heat insulating material for the building, it does not require a complicated construction process to cure by pouring concrete on the outer wall, the building outer heat insulating material provided By placing the bay during the external wall construction, it is possible to form the insulation and the external wall in one construction, thereby simplifying the construction process, and also reducing the construction cost and material cost.
도 1 은 본 발명의 건축용 외단열재를 준비하여 단열재를 시공하는 공정의 일예를 도시한 블록도이다.
도 2 는 종래의 단열재를 사용한 건축외벽과 본 발명의 단열재를 사용한 외벽의 구조를 비교한 단면도이다.
도 3 은 일반콘크리트와 본 발명의 건축용 외단열재의 양생후 그 단면을 비교한 사진이다.
도 4 내지 10 은 본 발명의 건축용 외단열재와 종래의 콘크리트의 물성실험 결과를 나타낸 그래프이다.1 is a block diagram showing an example of a process of preparing a heat insulating material by preparing an outer heat insulating material for construction of the present invention.
2 is a cross-sectional view comparing the structure of the building exterior wall using a conventional heat insulating material and the outer wall using the heat insulating material of the present invention.
Figure 3 is a photograph comparing the cross section after curing of the concrete and the building insulation of the present invention.
4 to 10 is a graph showing the physical property test results of the building insulation and conventional concrete of the present invention.
이하, 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described in more detail with reference to the accompanying drawings.
본 발명은 건축용 외단열재에 관한 것으로, 콘크리트를 구성하는 기존 일반골재를 대체하여 폐자원인 바텀애시와 폐유리로 제조한 비중 및 흡수율이 낮고 내부에 기공이 형성되어 있는 경량골재로 대체함으로써, 양생 후의 콘크리트 구조체의 경량성을 확보하고, 별도의 단열재를 사용하지 않아도 일정수준의 단열성을 확보할 수 있는 건축용 외단열재로의 적용이 가능한 콘크리트를 제공하고자 한다. The present invention relates to an outer insulation for building, by replacing the existing general aggregate constituting concrete by replacing the light weight aggregate with low specific gravity and absorption rate made of waste ash bottom ash and waste glass and pores are formed inside, curing It is to provide a concrete that can be applied to the external insulation of the building to secure the lightweight of the concrete structure, and to ensure a certain level of insulation without using a separate insulation.
본 발명에 따른 건축용 외단열재는 종래 콘크리트에 사용되는 모래 및 자갈 등의 골재를 바텀애시와 폐유리를 사용한 경량골재로 대체하여 일정수준으로 배합한 것으로, External insulation for building according to the present invention is to replace the aggregates such as sand and gravel used in the conventional concrete with a light aggregate using a bottom ash and waste glass to be compounded to a certain level,
시멘트, 잔골재, 굵은골재, 혼화제 및 물을 포함하여 이루어지며, 상기 잔골재로 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 성형한 골재로 0.6 ~ 5㎜의 크기를 가지는 경량골재를 사용하고, 상기 굵은골재로 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 성형한 골재로 5 ~ 20㎜의 크기를 가지는 경량골재를 사용하여 혼합한 것이다. It consists of cement, fine aggregate, coarse aggregate, admixture and water, and uses a lightweight aggregate having a size of 0.6 ~ 5㎜ as an aggregate of a mixture of bottom ash, waste glass and foaming agent as the fine aggregate. As a coarse aggregate, a mixture of bottom ash, waste glass, and foaming agent is molded into aggregate, which is mixed using lightweight aggregate having a size of 5 to 20 mm.
바람직하게는 본 발명에 따른 건축용 외단열재는 시멘트 20~60중량%, 잔골재 1~40중량%, 굵은골재 1~40중량%, 혼화제 0.01~2중량% 및 잔량의 물을 포함하는 것이다. Preferably, the external insulation for building according to the present invention is 20 to 60% by weight of cement, 1 to 40% by weight of aggregate, 1 to 40% by weight of coarse aggregate, 0.01 to 2% by weight of admixture and residual amount of water.
본 발명을 구성하는 시멘트와 혼화제는 시멘트콘크리트로 되는 외단열재에 사용되는 것이라면 어느 것을 사용하여도 무방하며, 그 예로 상기 시멘트는 1종 포틀랜드시멘트일 수 있고, 혼화제로는 고성능 감수제로 폴리카본산을 예로 들 수 있다.The cement and the admixture constituting the present invention may be used as long as it is used in an external insulation made of cement concrete. For example, the cement may be one kind of Portland cement, and as the admixture, polycarboxylic acid is used as a high performance water reducing agent. For example.
또한, 본 발명을 저해하지 않는 범위내에서 혼합재로 고로슬래그 또는 플라이애시를 더 첨가할 수도 있다.
In addition, blast furnace slag or fly ash may be further added as a mixed material within the range which does not inhibit this invention.
본 발명에 따르면, 상기 잔골재와 굵은 골재로 사용되는 경량골재는 바텀애시와 폐유리 및 발포제를 혼합한 혼합물에 점결제를 첨가하면서 펠렛상으로 성형하고, 그 성형물의 표면을 폐유리분말로 코팅한 다음, 로터리 킬른에서 소성시켜 된 내부에 기공이 형성된 경량골재이다. 기존 일반 잔골재와 굵은골재를 상기 경량골재로 대체활용하였을 경우, 콘크리트의 단위용적중량이 감소하여 경량성을 확보할 수 있으며 경량골재 내부의 기공에 의해 열전도도가 감소되고 이에 따른 단열성 증가의 효과를 얻을 수 있다.According to the present invention, the lightweight aggregate used as the coarse aggregate and the coarse aggregate is formed into pellets by adding a caking additive to a mixture of bottom ash, waste glass and blowing agent, and the surface of the molded product is coated with waste glass powder. Next, it is a lightweight aggregate formed with pores inside the fired in the rotary kiln. When the existing general aggregate and coarse aggregate are replaced with the lightweight aggregate, the unit volume weight of concrete can be reduced to ensure lightness, and the thermal conductivity is reduced by the pores inside the lightweight aggregate, thereby increasing the thermal insulation effect. You can get it.
상기 경량골재의 제조과정예를 설명하면, Referring to the manufacturing process example of the lightweight aggregate,
바텀애쉬와 폐유리 및 발포제를 혼합하는 혼합단계 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시키는 성형체 제조단계 상기 성형체 표면을 폐유리분말로 코팅하는 코팅단계 및 상기 코팅된 성형체를 로터리 킬른에서 소성시키는 소성단계를 거쳐 제조된다. Mixing step of mixing bottom ash, waste glass and foaming agent A step of manufacturing a molded body pelletizing while adding a binder to the mixed raw material A coating step of coating the surface of the molded body with waste glass powder and firing the coated molded body in a rotary kiln It is manufactured through a calcination step.
상기 혼합단계에서는 바텀애쉬와 폐유리는 0.1 : 99.9 내지 30 : 70 중량비, 바람직하게는 10 : 90 내지 25 : 75 중량비로 혼합하게 된다. 바텀애쉬가 상기 하한치 미만이면 경량골재의 수분흡수율이 너무 높고, 상기 상한치를 초과하면 비중이 1.2를 초과하게 되는 문제가 있기 때문이다.In the mixing step, the bottom ash and the waste glass are mixed in a weight ratio of 0.1: 99.9 to 30:70, preferably 10:90 to 25:75. If the bottom ash is less than the lower limit, there is a problem that the water absorption of the lightweight aggregate is too high, and if the upper ash exceeds the upper limit, the specific gravity exceeds 1.2.
상기 바텀애쉬와 폐유리의 합 100 중량부에 대하여 발포제 0.1 ~ 10 중량부, 바람직하게는 0.2 ~ 4 중량부, 더욱 바람직하게는 0.25 ~ 2 중량부이다. 발포제 함량이 상기 하한치 미만이면 경량골재 내부의 기공생성이 충분하지 않아 비중이 너무 높아지고, 상기 상한치를 초과하면 폐유리로 경량골재를 코팅하더라도 파괴강도가 낮아져 파쇄되기 쉽고 파쇄로 인하여 폐기공이 열려 수분흡수율이 증대된다. 이때, 사용되는 발포제로는 탄산칼슘, 흑연(graphite) 및 삼이산화철(Fe2O3 또는 헤마타이트) 등이 바람직하다.The foaming agent is 0.1 to 10 parts by weight, preferably 0.2 to 4 parts by weight, more preferably 0.25 to 2 parts by weight based on 100 parts by weight of the bottom ash and the waste glass. If the foaming agent content is less than the lower limit, the specific gravity is too high due to insufficient porosity inside the lightweight aggregate, and if the upper limit is exceeded, even if the lightweight aggregate is coated with waste glass, the fracture strength is low, and the waste hole is opened due to the crushing. Is increased. At this time, as the blowing agent used, calcium carbonate, graphite and iron trioxide (Fe 2
상기 성형체 제조단계는 상기 혼합단계의 혼합된 원료 100 중량부에 점결제 1 내지 40 중량부, 바람직하게는 20 ~ 35 중량부 첨가하여 이루어진다. 점결제로는 물유리 수용액을 사용하는 것이 좋으며, 물유리 수용액은 물유리가 20 ~ 90 중량%, 바람직하게는 40 ~ 80 중량% 사용된 것을 사용한다.The molded article manufacturing step is made by adding 1 to 40 parts by weight of the binder, preferably 20 to 35 parts by weight to 100 parts by weight of the mixed raw materials of the mixing step. It is preferable to use a water glass aqueous solution as a caking agent, and the water glass aqueous solution uses 20-90 weight% of water glass, Preferably it uses 40-80 weight%.
상기 성형체 제조단계는 펠렛타이저의 교반날개와 바닥면 사이 간격을 소정의 성형체의 입자크기에 따라 조정하고 상기 교반날개를 50 ~ 1000 rpm, 바람직하게는 200 ~ 500 rpm에서 1 ~ 100 분, 바람직하게는 5 ~ 20 분 회전시켜 제조할 수 있다.The molding step is to adjust the interval between the stirring blade and the bottom surface of the pelletizer according to the particle size of the predetermined molded body and the stirring blade is 1 to 100 minutes at 50 ~ 1000 rpm, preferably 200 ~ 500 rpm, preferably Can be prepared by rotating for 5 to 20 minutes.
상기 코팅단계는 성형체 100 중량부에 폐유리분말 1 내지 60 중량부, 바람직하게는 10 ~ 50 중량부, 더욱 바람직하게는 25 ~ 45 중량부 포함한다. 코팅용 폐유리분말이 상기 하한치 미만이면 비중은 낮지만 수분흡수율이 높아지고, 상기 상한치를 초과하면 수분흡수율은 낮지만 비중이 높아지게 되는 문제가 있다.The coating step includes 1 to 60 parts by weight of waste glass powder, preferably 10 to 50 parts by weight, and more preferably 25 to 45 parts by weight, in 100 parts by weight of the molded body. If the waste glass powder for coating is less than the lower limit, the specific gravity is low, but the water absorption rate is high. If the waste glass powder for coating is above the upper limit, the moisture absorption rate is low, but the specific gravity is high.
상기 소성단계는 로터리킬른에서 600 ~ 1200℃, 바람직하게는 800 ~ 1000℃ 에서 0.1 ~ 60분, 바람직하게는 1 ~ 30분 소성한다.The firing step is baked in a rotary kiln at 0.1 to 60 minutes, preferably 1 to 30 minutes at 600 to 1200 ° C, preferably at 800 to 1000 ° C.
이상에서 경량골재의 제조과정예에 따라 제조된 경량골재는 본 발명의 목적하는 바에 따라 분쇄하여 잔골재와 굵은골재로 분류하여 사용하게 되는 것이다.
The lightweight aggregate manufactured according to the manufacturing process example of the lightweight aggregate in the above is to be used to classify as fine aggregate and coarse aggregate by pulverizing according to the purpose of the present invention.
본 발명에 따르면, 상기 잔골재는 그 골재크기가 0.6 ~ 5㎜의 크기를 가지도록 골재화한 경량골재를 사용하는 것이 바람직하며, 콘크리트 총량에 대하여 5 ~ 20중량%를 포함하도록 혼합하는 것이 바람직하다. 일반적으로 잔골재는 5mm 이하의 골재를 말하며 상기 잔골재의 크기가 0.6mm 이하일 경우에는 단열성 저하, 경량성 저하 및 강도 저하의 문제점이 발생한다. 또한 잔골재의 함량이 많아지면 강도 저하의 문제점이 있고, 잔골재의 함량이 적어지면 단열성 저하, 경량성 저하 등의 문제점이 있다. According to the present invention, the fine aggregate is preferably to use a lightweight aggregate aggregated so that the aggregate size has a size of 0.6 ~ 5㎜, it is preferable to mix to include 5 to 20% by weight relative to the total amount of concrete. . Generally, aggregate aggregate refers to aggregate of 5 mm or less, and when the size of the aggregate is 0.6 mm or less, problems of lowering of thermal insulation, lowering of light weight, and lowering of strength occur. In addition, when the content of fine aggregates increases, there is a problem of lowering strength, and when the content of fine aggregates decreases, there is a problem such as lowering of thermal insulation and light weight.
본 발명에 따르면, 상기 굵은골재는 그 골재크기가 5 ~ 20㎜의 크기를 가지도록 골재화한 경량골재를 사용하는 것이 바람직하며, 시멘트콘크리트 총량에 대하여 5 ~ 20중량%를 포함하도록 혼합하는 것이 바람직하다. 일반적으로 굵은골재는 5mm 이상의 골재를 말하며 상기 굵은골재의 크기가 5mm 이하일 경우에는 단열성 저하, 경량성 저하의 문제점이 발생 되고 20mm이상일 경우에는 강도저하의 큰 원인이 된다. 또한 굵은골재의 함량이 많아지면 강도 저하의 문제점이 있고, 굵은골재의 함량이 적어지면 단열성 저하, 경량성 저하 등의 문제점이 있다. According to the present invention, the coarse aggregate is preferably to use a lightweight aggregate aggregated so that the aggregate size has a size of 5 ~ 20㎜, it is mixed to include 5 to 20% by weight relative to the total amount of cement concrete desirable. Generally, coarse aggregate refers to aggregate of 5 mm or more, and when the size of the coarse aggregate is 5 mm or less, problems of deterioration of thermal insulation and light weight are generated. In addition, when the content of the coarse aggregate increases, there is a problem of lowering the strength, and when the content of the coarse aggregate decreases, there is a problem such as lowering of insulation and lowering of light weight.
본 발명에 따르면, 상기 잔골재와 굵은골재는 중량비로 80:20 ~ 20:80의 비율로 혼합되도록 하는 것이 바람직하다. 만일. 상기 잔골재의 혼합량이 20중량비 미만일 경우 재료분리가 발생되는 문제가 있고, 80 중량비를 초과할 경우에는 단열성 및 경량성이 저하되는 문제가 있다. According to the present invention, the fine aggregate and coarse aggregate are preferably mixed in a ratio of 80:20 to 20:80 by weight. if. If the mixing amount of the fine aggregate is less than 20 weight ratio, there is a problem that the material separation occurs, if the excess weight ratio exceeds 80, there is a problem that the heat insulation and light weight.
보다 바람직하게는 상기에서 개시된 바와 같이, 콘크리트의 총량에 대한 잔골재와 굵은골재의 혼합량을 벗어나지 않는 범위 내에서 잔골재와 굵은골재의 혼합량비를 적절히 조절하는 것이다. More preferably, as disclosed above, the mixing ratio of the fine aggregate and the coarse aggregate is appropriately adjusted within a range not departing from the mixed amount of the fine aggregate and the coarse aggregate with respect to the total amount of concrete.
이상에서 개시되는 본 발명의 건축용 외단열재는 도 1에 도시된 바와 같이, 본 발명을 구성하는 각 구성요소를 적정비율로 혼합하고, 타설한 다음, 경화 및 양생시켜 건축용 외단열재로 사용한다. 상기와 같이 양생된 외단열재는 도 3에 도시된 바와 같이, 일반콘크리트 양생연마면과 단면을 대비하여 보면 일반 콘크리트는 골재의 크기가 불규칙한 반면, 본 발명의 외단열재는 구형의 잔골재와 굵은골재로 이루어져 있음을 알 수 있다. As described above, the building exterior heat insulating material of the present invention is mixed with each component constituting the present invention at an appropriate ratio, poured, then cured and cured to be used as building heat insulating material. As shown in FIG. 3, the external heat insulating material cured as described above is compared with general concrete curing polishing surfaces and cross-sections, whereas general concrete is irregular in size of aggregate, whereas external heat insulating material of the present invention is spherical fine aggregate and coarse aggregate. It can be seen that.
본 발명의 건축용 외단열재는 도 2에서 도시된 바와 같이, 단열재를 구성하는 잔골재와 굵은 골재를 바텀애쉬와 폐유리를 발포시켜 된 경량골재를 사용함으로써, 사용된 경량골재의 난연성, 내열성 및 흡차음성 등 물리적 특성을 가지게 됨으로, 기존 단열공법에서처럼 콘크리트를 타설하고난 다음 단열재를 시공하고, 그 위에 마감재로 처리하지 않고, 본 발명의 외단열재를 타설양생한 다음, 바로 마감재처리함으로써 시공시간이 단축되어 시공성이 우수하고, 건축비의 절감효과를 얻을 수 있게 된다.
As the outer heat insulating material for building of the present invention, as shown in Figure 2, by using the light aggregate aggregated from the bottom ash and waste glass in the fine aggregate and coarse aggregate constituting the heat insulating material, flame retardancy, heat resistance and sound-absorbing sound resistance of the used lightweight aggregate It will have the physical properties, such as in the existing thermal insulation method, after laying concrete, and then insulated, and not treated with a finishing material on it, after pouring the outer heat insulating material of the present invention, immediately after finishing treatment by shortening the construction time Excellent workability, and the construction cost can be reduced.
이상에서 설명되는 본 발명의 바텀애시와 폐유리로 제조된 경량골재를 사용한 건축용 외단열재를 준비하고, 종래 사용되는 골재를 포함하는 시멘트콘크리트와 그 성능과 물성을 비교하여 보았다. The outer insulation for building using light weight aggregates made of the bottom ash and waste glass of the present invention described above was prepared, and compared with the cement concrete containing aggregates used conventionally and its performance and physical properties.
[실험방법 및 물리특성]Experimental Method and Physical Characteristics
본 발명에서 사용하는 저흡수 인공경량골재(L1, L2)와 현재 시판하고 있는 외국산 인공경량골재 제품들(중국산 H사, 일본산 T사)과의 콘크리트 물리특성을 비교하기 위해 콘크리트 단위질량, 압축강도, 인장강도(쪼갬), 열전도율, 상대동탄성계수 및 동결융해 저항성 등의 실험을 하였다.In order to compare the concrete physical properties of the low-absorption artificial light weight aggregate (L1, L2) used in the present invention and foreign commercial light weight aggregate products (H company made in China, T company made in Japan), the concrete unit mass, compression Strength, tensile strength (splitting), thermal conductivity, relative dynamic modulus and freeze thaw resistance were tested.
동일한 입도(粒度) 조건에서 경량골재 콘크리트의 특성을 알아 보기위해 골재의 입자크기별 함량을 -9.5mm + 4.75mm ; 0.75wt(%), -4.75mm + 2.8mm ; 82.25wt(%); -2.8mm + 1.18mm ; 16.1wt(%), -1.18mm ; 0.9wt(%)가 되도록 조정하였으며 24시간 동안 침수시킨 후 6시간 동안 자연탈수를 하였다. 혼합은 60L용량의 강제식 믹서(WJ-226, Woo Jin, Korea)를 사용하였으며 혼합방법은 건비빔(경량골재+잔골재; 60초) → 시멘트 투입 후 비빔(60초) → 물 투입 후 비빔(120초) 순으로 재료를 투입혼합 하였다. To find out the characteristics of lightweight aggregate concrete under the same particle size conditions, the content of aggregate by particle size was -9.5mm + 4.75mm; 0.75 wt (%), -4.75 mm + 2.8 mm; 82.25 wt (%); -2.8 mm + 1.18 mm; 16.1 wt (%), -1.18 mm; 0.9wt (%) was adjusted to immersion for 24 hours and then naturally dehydrated for 6 hours. For mixing, a 60L forced mixer (WJ-226, Woo Jin, Korea) was used, and the mixing method was dry bibim (light aggregate + fine aggregate; 60 sec) → bibim after cement input (60 sec) → bibim after
L1은 폐유리와 바텀애시 성형체를 소성하여 제조한 인공경량골재이며 L2는 성형체 표면에 폐유리분말을 코팅하여 제조한 저흡수 인공경량골재이다. 제조조건은 하기 표 1과 같다.L1 is an artificial light weight aggregate produced by firing waste glass and bottom ash molded body, and L2 is a low absorption artificial light weight aggregate manufactured by coating waste glass powder on the surface of the molded body. Manufacturing conditions are shown in Table 1 below.
< 실험방법 ><Experiment Method>
1. 사용재료1. Material used
가. 시멘트 및 혼화재료end. Cement and Admixtures
본 발명에 사용한 시멘트는 H사의 1종보통 포틀랜드시멘트이며 품질특성은 하기 표 2와 같이 분말도 3,442cm2/g, 비중 3.15이고 주성분은 CaO(62.2%), SiO2(20.5%), Al2O3(6.88%)으로 분석되었으며 강열감량은 0.28% 발생하였다.The cement used in the present invention is
나. 골재I. aggregate
기존 경량골재(H사, T사)를 혼합한 콘크리트에는 기존 콘크리트에 사용되는 잔골재를 사용하였고, 본 발명의 외단열재에는 비중 1.12, 조립율 2.04(입도범위 0.6~5mm), 흡수율 2.88%, 단위질량 806kg/m3의 잔골재를 사용하였으며, 물리적 특성은 하기 <표 3>과 같다. Residual aggregate used for existing concrete was used for concrete mixed with existing lightweight aggregate (H company, T company), specific gravity 1.12, granulation rate 2.04 (particle size range 0.6 ~ 5mm), absorption rate 2.88%, unit mass 806kg / m 3 fine aggregate was used, the physical properties are as shown in Table 3 below.
굵은골재로 사용한 인공경량골재의 물리적 특성은 하기 <표 4>와 같다. 본 연구에서 개발한 인공경량골재(L)의 열전도율은 각각 0.071W/m?k, 0.079W/m?k 였고, 절건 밀도는 각각 0.56g/cm3, 0.78g/cm3 이었으며, 흡수율은 각각 3.15%, 18.39%로 수입산 인공경량골재(H사, T사) 보다 낮았으며 파괴하중은 각각 575.0N, 695.0N으로 유사하거나 높았으며, 기공율은 64.87%, 77.33%로 수입산 인공경량골재(H사, T사) 보다 높았다.Physical properties of artificial lightweight aggregate used as coarse aggregate are shown in Table 4 below. The thermal conductivity of artificial lightweight aggregate (L) developed in this study was 0.071W / m? K and 0.079W / m? K, respectively, and the dry density was 0.56g / cm 3 and 0.78g / cm 3 , respectively. 3.15% and 18.39% were lower than imported artificial lightweight aggregates (H and T), and the fracture loads were similar or higher with 575.0N and 695.0N, respectively, and the porosity was 64.87% and 77.33%, respectively. , T company).
* L1, L2 : 바텀애시와 폐유리로 제조된 경량골재* L1, L2: lightweight aggregate made of bottom ash and waste glass
다. 혼화제All. Admixture
작업 성능 개선을 위해 사용한 혼화제는 pH 5.82, 감수율 30.4%, 블리딩비 41.2%의 H사 폴리카본산 고성능 감수제를 사용하였다. 혼화제의 품질특성을 하기 <표 5>에 나타내었다. As the admixture used to improve working performance, H company polycarboxylic acid high performance water reducing agent having a pH of 5.82, a reduction ratio of 30.4%, and a bleeding ratio of 41.2% was used. The quality characteristics of the admixtures are shown in Table 5 below.
2. 배합2. Formulation
본 실험에서의 물과 결합재비(W/B)는 39.0%, 잔골재율(s/a)은 45.0%, 단위수량(W)은 160kg/m3, 시멘트는 410kg/m3, L1 잔골재 172kg/m3, L2 잔골재 239kg/m3, H사와 T사 잔골재 789kg/m3, 혼화제 2.46kg/m3으로 고정하였으며 인공경량골재는 절건 밀도에 따라 동일한 부피의 배합을 설정하였다.In this experiment, water and binder ratio (W / B) was 39.0%, fine aggregate ratio (s / a) was 45.0%, unit quantity (W) was 160kg / m 3 , cement was 410kg / m 3 , L1 fine aggregate 172kg / m 3, L2 fine aggregate 239kg / m 3, H T Co. Corp. fine aggregate 789kg / m 3, admixture was fixed to 2.46kg / m 3 artificial lightweight aggregate was set to the same volume of the formulation according to jeolgeon density.
* L1, L2 : 바텀애시와 폐유리로 제조된 경량골재* L1, L2: lightweight aggregate made of bottom ash and waste glass
< 실험방법 ><Experiment Method>
1. 슬럼프 및 공기량1. Slump and air volume
콘크리트의 슬럼프 측정은 KS F 2402 "콘크리트의 슬럼프 시험방법", 공기량 측정은 KS F 2421 "압력법에 의한 굳지 않은 콘크리트의 공기량 시험 방법"에 따라 시험하였으며, 각각에 대한 목표값은 콘크리트 표준시방서에 준하여 슬럼프는 180±25mm, 공기량은 4.5±1.5%로 설정하여 실험을 진행하였다. 또한 경과시간에 따른 슬럼프 변화를 파악하기 위해 믹서에서 콘크리트 배출 직후, 30분후, 60분후의 슬럼프를 측정하였다.
The slump measurement of concrete was tested according to KS F 2402 "Test method of concrete slump", and the air volume measurement was conducted according to KS F 2421 "Testing method of air volume of concrete not hardened by pressure method". The slump was set to 180 ± 25mm and the air volume was set to 4.5 ± 1.5%. In addition, the slump was measured after 30 minutes and 60 minutes immediately after the concrete was discharged from the mixer to determine the slump change with the elapsed time.
2. 단위질량2. Unit mass
굳은 콘크리트의 단위질량은 KS F 2462 "구조용 경량 콘크리트의 단위질량 시험 방법"에 따라 공시체를 제작하고 16~27℃ 온도 하에서 수분의 증발이나 흡수가 없이 양생을 실시한다. 6일째 되는 날 양생 중의 공시체를 옮겨서 24시간 동안 23±1.0℃의 수중양생을 실시한 후 공시체의 수중 질량을 측정하고 표면건조 포화상태 질량을 측정하였다. 이후 상대 습도 50±5%, 온도 23±1.0℃ 하에서 21일간 공시체를 건조시키고, 건조된 공시체의 질량을 측정하여 식 1로 콘크리트의 1m3 당 기건 질량을 계산하였다. 여기서 A는 재령 28일 콘크리트 공시체의 건조 질량(kg), B는 공시체의 표면건조 포화상태 질량, C는 공시체의 수중질량이다.(하기 식 1 참조)The unit mass of hardened concrete shall be prepared in accordance with KS F 2462 "Unit Mass Test Method for Structural Lightweight Concrete" and cured without evaporation or absorption of moisture at 16 ~ 27 ℃. On the 6th day, the specimens in the curing were transferred and subjected to underwater curing at 23 ± 1.0 ° C. for 24 hours, and then the specimens were measured in water and the surface-dried saturated mass was measured. Thereafter, the specimens were dried for 21 days under a relative humidity of 50 ± 5% and a temperature of 23 ± 1.0 ° C., and the air mass per 1 m 3 of concrete was calculated by
3. 열전도율 3. Thermal conductivity
콘크리트의 열전도율을 측정하기 위해 지름 15mm, 두께 30mm의 원형 시험편을 제작하였으며, KS L 9016 "보온재의 열전도율 측정방법"에 규정된 평판열류계법에 따라 열전도율 시험기(HC-074, EKO社, Japan)에 장착하여 측정하였다.
In order to measure the thermal conductivity of concrete, circular test specimens of 15 mm diameter and 30 mm thickness were manufactured, and the thermal conductivity tester (HC-074, EKO, Japan) was used in accordance with the plate heat flow meter method specified in KS L 9016 "Method of measuring thermal conductivity of thermal insulation materials". Measured by mounting.
4. 압축강도 및 인장강도4. Compressive strength and tensile strength
콘크리트 공시체는 KS F 2403 "콘크리트의 강도 시험용 공시체 제작 방법"에 따라 제작하고, 압축강도는 KS F 2405 "콘크리트의 압축 강도 시험 방법"에 의해 측정하였으며, 인장강도는 KS F 2423 "콘크리트의 쪼갬 인장강도 시험방법"에 의해 측정하였다. 또한 압축강도 및 인장강도는 3일, 7일, 28일 재령에 대해서 측정하였다.
Concrete specimens were prepared in accordance with KS F 2403 "Method for Testing Concrete Strength Test", and compressive strength was measured by KS F 2405 "Compressive Strength Test Method for Concrete" and tensile strength of KS F 2423 Strength test method ". In addition, compressive strength and tensile strength were measured for 3 days, 7 days, 28 days of age.
5. 동결융해 저항성5. Freeze thawing resistance
동결융해시험은 동결융해의 급속 반복에 대한 콘크리트 공시체의 저항을 구하기 위한 것으로, KS F 2456의 급속 동결 융해에 대한 콘크리트의 저항 시험 방법"에 준하여 14일 표준양생 후 시험을 개시하였으며, 동결융해시험기를 사용하였다. 상대동탄성계수는 일본 MARUI社의 Digital Type Young's Modulus Rigidity Meter"를 사용하여 KS F 2437의 "공명 진동에 의한 콘크리트의 동탄성 계수동 전단 탄성 계수 및 동 푸아송비 시험방법에 의해 측정하였다.
The freeze thaw test was conducted to find the resistance of concrete specimens to the rapid repetition of freeze thaw, and the test was started after 14 days of standard curing according to KS F 2456's test method for the resistance to rapid freeze thaw. Relative dynamic modulus was measured by KS F 2437 "Dynamic elastic modulus dynamic shear modulus and dynamic Poisson's ratio test method" of KS F 2437.
< 실험결과 ><Experimental Results>
1. 슬럼프 및 공기량1. Slump and air volume
인공경량골재 콘크리트의 최초슬럼프 및 공기량과 경과시간에 따른 슬럼프 변화값을 <도 4>과 <도 5>에 나타내었다.The initial slump, the air volume, and the slump change value according to the elapsed time of the artificial lightweight aggregate concrete are shown in FIGS. 4 and 5.
경과시간에 따른 슬럼프 변화 시험결과, L2 < T사 < L1 < H사 골재를 사용한 콘크리트 순으로 슬럼프 저하가 크게 발생하였다. 로터리 킬른 내에서 소성시킨 성형체를 대기 중에서 냉각시켜 경량골재를 제조하는 방식인 L2, L1, H사 골재는 흡수율이 각각 3.15%, 18.39%, 19.73%와 같이 높은 흡수율을 갖는 골재를 사용한 콘크리트일수록 배합 시 다량의 배합수가 골재 내부로 흡수되어 유동성 저하가 발생하였다. 그러나 T사 골재의 경우 흡수율이 28.94%로 높음에도 불구하고 상대적으로 경과시간에 따른 유동성 저하가 크지 않았는데 이것은 고온에서 제조된 성형체를 수중침지방법(pre-soaked 방식)으로 급속 냉각하여 성형체의 응축과 동시에 내부 폐기공 및 투과기공에 수분이 상당량 포집(entrapped water)된 상태로 경량골재가 제조되기 때문이다.As a result of the slump change test according to the elapsed time, the slump drop occurred in the order of concrete using L2 <T <L1 <H aggregate. The aggregates of L2, L1, and H companies, which produce lightweight aggregates by cooling the molded bodies fired in the rotary kiln, are mixed with concrete using aggregates having high absorption rates such as 3.15%, 18.39%, and 19.73%, respectively. When a large amount of compound water was absorbed into the aggregate, fluidity deterioration occurred. However, despite the high absorption rate of 28.94% in the T company aggregate, the fluidity decrease with the elapsed time was not large. This is because the molded product manufactured at high temperature was rapidly cooled by the pre-soaked method, At the same time, the light aggregate is manufactured in a state in which a considerable amount of water is entrapped in the internal waste and perforated pores.
2. 콘크리트 단위질량2. Unit mass of concrete
인공경량골재 종류에 따른 콘크리트의 단위질량 측정값을 <도 6>에 나타내었다. L1을 사용한 콘크리트의 단위질량이 1.630t/m3으로 가장 낮았으며 L2를 사용한 콘크리트의 단위질량은 1.660t/m3, H사를 사용한 콘크리트의 단위질량은 1.835t/m3, T사를 골재로 사용한 콘크리트의 단위질량은 1.854t/m3으로 가장 크게 나타났다. 이것은 경량골재 콘크리트에 사용된 골재들의 절대건조밀도 크기(L1; 0.56g/cm3, L2; 0.78g/cm3, H사; 1.14g/cm3, T사; 1.32g/cm3) 와 유사한 경향을 나타내었다.The unit mass measurement value of concrete according to the artificial lightweight aggregate is shown in FIG. 6. The lowest unit mass of concrete using L1 was 1.630 t / m 3 , the unit mass of concrete using L2 was 1.660 t / m 3 , and the unit mass of concrete using H yarn was 1.835 t / m 3 , and T yarn was aggregated. The unit mass of concrete used in the furnace was 1.854 t / m 3, which was the largest. This is similar to the absolute dry density size (L1; 0.56g / cm 3 , L2; 0.78g / cm 3 , H company; 1.14g / cm 3 , T company; 1.32g / cm 3 ) of aggregates used in lightweight aggregate concrete. The trend was shown.
3. 열전도율3. Thermal conductivity
경량골재 콘크리트의 배합수준이 일정할 경우, 경량골재 콘크리트를 구성하는 골재의 특성에 따라 열전도율이 크게 좌우되는데 골재내부에 형성되어 있는 적정크기의 독립기포와 수 등이 많을수록 열의 흐름을 방해하여 열전도율이 감소하게 된다. 일반적으로 경량골재 콘크리트의 단위질량이 작을수록 열전도율이 감소하는 경향을 나타낸다.If the mixing level of lightweight aggregate concrete is constant, the thermal conductivity depends largely on the characteristics of the aggregate constituting the lightweight aggregate concrete.The higher the number of independent bubbles and the number of appropriate size formed inside the aggregate, the more the thermal conductivity interferes with the flow of heat. Will decrease. In general, the smaller the unit mass of lightweight aggregate concrete, the lower the thermal conductivity tends to be.
인공경량골재 종류에 따른 콘크리트의 열전도율 측정값을 <도 7>에 나타내었다. L1 < L2 < H사 < T사 골재를 사용하여 제조한 경량골재 콘크리트 순으로 열전도율이 증가하였다. 이것은 기공율이 높은 골재(L1; 77.33%, L2; 64.87%, H사; 48.36%, T사; 40.09%)를 사용할수록 골재 내부에 존재하는 기공이 열의 흐름을 방해하여 전체적인 경량골재 콘크리트의 열전도율을 저감시키기 때문이다.The measured thermal conductivity of concrete according to the artificial lightweight aggregate is shown in <7>. Thermal conductivity increased in the order of lightweight aggregate concrete prepared using L1 <L2 <H <T aggregate. This means that the higher porosity aggregate (L1; 77.33%, L2; 64.87%, H company; 48.36%, T company; 40.09%) is used, the pores in the aggregate interfere with the flow of heat, reducing the thermal conductivity of the overall lightweight aggregate concrete. It is because it reduces.
4. 압축강도 및 인장강도4. Compressive strength and tensile strength
인공경량골재의 종류에 따른 콘크리트의 압축강도와 인장강도(쪼갬) 특성을 알아보기 위해 단위결합재량을 410kg/m3(시멘트; 369kg/m3, 플라이애시; 41kg/m3), 물결합재(W/B) 비를 39%, 잔골재율(s/a)을 45%로 고정하여 실험을 하였다. 그 결과를 <표 7>, <도 8> 및 <도 9>에 나타내었다. H사 < L1 < T사 L2 골재를 사용하여 제조한 인공경량골재 콘크리트 순으로 28일 압축강도 및 인장강도가 크게 나타났는데 이것은 경량골재의 파괴하중값 크기(H사; 421.8N, L1; 575.3N, A사; 685.9N, L2; 695.0N) 와 유사한 경향을 나타내었다.To determine the compressive strength and tensile strength (splitting) characteristics of concrete according to the type of artificial lightweight aggregate, the unit binder content was 410kg / m 3 (cement; 369kg / m 3 , fly ash; 41kg / m 3 ), water binder ( The experiment was performed by fixing the W / B) ratio to 39% and the fine aggregate fraction (s / a) to 45%. The results are shown in <Table 7>, <Figure 8> and <Figure 9>. The compressive strength and tensile strength of 28 days were the highest in the order of artificial lightweight aggregate concrete manufactured using H <L1 <T L2 aggregates. This is the fracture load value of light aggregate (H H; 421.8N, L1; 575.3N). , Company A; 685.9N, L2; 695.0N).
5. 동결융해 저항성5. Freeze thawing resistance
인공경량골재의 종류에 따른 콘크리트의 내구성을 검토하고자 동결융해 저항성 실험(KS F 2456, B-type)과 상대동탄성계수 실험(KS F 2437)을 하였으며 그 결과를 <도 10>에 나타내었다.In order to examine the durability of concrete according to the type of artificial lightweight aggregate, freeze-thaw resistance test (KS F 2456, B-type) and relative dynamic modulus test (KS F 2437) were performed and the results are shown in FIG.
인공경량골재 콘크리트의 상대동탄성계수가 60% 이하로 떨어질 때의 동결융해 사이클수는 L1은 201cycle, L2는 216cycle, H사는 135cycle, T사는 29cycle 로 나타났다. L2를 골재로 사용한 경량골재 콘크리트의 동결융해 저항성이 상대적으로 크게 나타났는데, 이것은 다른 경량골재(L1;H사;T사 18.39%;19.73%;28.94%)에 비해 흡수율이 적어(3.15%) 골재 공극 중에 있는 물의 결빙에 의한 팽창압이 상대적으로 적게 발생되어 나타난 결과로 판단된다.
The freeze-thawing cycles when the relative dynamic modulus of artificial lightweight aggregate concrete fell below 60% were 201 cycles for L1, 216cycles for L2, 135cycles for H, and 29cycles for T. The freeze-thawing resistance of lightweight aggregate concrete using L2 aggregates was relatively high, which is less absorbent than other lightweight aggregates (L1; H; T. 18.39%; 19.73%; 28.94%) (3.15%). The expansion pressure caused by the freezing of water in the voids is relatively low.
Claims (7)
상기 잔골재로 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 성형한 골재로 비중 1.12, 흡수율 2.88%의 물리적 특성을 가지며, 0.6 ~ 5㎜의 크기를 가지는 경량골재를 사용하고,
상기 굵은골재로 바텀애시와 폐유리 및 발포제를 혼합한 혼합물을 성형한 골재로 열전도율(W/m?K) 0.071~0.079, 절건 밀도(g/cm3) 0.56 ~ 0.78, 흡수율(%) 3.15 ~ 18.39, 파괴하중(N) 575.0~695.0, 기공율(%) 64.87~77.33의 물리적 특성을 가지며, 5 ~ 20㎜의 크기를 가지는 경량골재를 사용하여 혼합한 것으로,
상기 시멘트 20~60중량%, 잔골재 1~40중량%, 굵은골재 1~40중량%, 폴리카본산 0.01~2중량% 및 잔량의 물을 포함하도록 혼합하여 이루어지는 것을 특징으로 하는 바텀애시와 폐유리로 제조된 경량골재를 사용한 건축용 외단열재.
Insulation material composed of cement, fine aggregate, coarse aggregate, admixture and water,
As the aggregate, the aggregate is a mixture of bottom ash, waste glass, and foaming agent, which is a mixture of 1.12, water absorptive rate of 2.88%, and a lightweight aggregate having a size of 0.6-5 mm.
The thermal aggregate (W / m? K) 0.071 ~ 0.079, the dry density (g / cm 3 ) 0.56 ~ 0.78, the absorption rate (%) 3.15 ~ 18.39, fracture load (N) 575.0 ~ 695.0, porosity (%) of 64.87 ~ 77.33 physical properties, mixed with a lightweight aggregate having a size of 5 ~ 20㎜,
The bottom ash and waste glass, characterized in that the mixture comprises 20 to 60% by weight, fine aggregate 1 to 40% by weight, coarse aggregate 1 to 40% by weight, polycarboxylic acid 0.01 to 2% by weight and the remaining amount of water. Exterior heat insulation for construction using lightweight aggregate manufactured.
상기 잔골재와 굵은골재로 사용되는 경량골재는 바텀애시와 폐유리 및 발포제를 혼합한 혼합물에 점결제를 첨가하면서 펠렛상으로 성형하고, 그 성형물의 표면을 폐유리분말로 코팅한 다음, 로터리 킬른에서 소성시켜 된 내부에 기공이 형성된 경량골재인 것을 특징으로 하는 바텀애시와 폐유리로 제조된 경량골재를 사용한 건축용 외단열재.
The method of claim 1,
The light aggregate used as coarse aggregate and coarse aggregate is formed into pellets by adding a caking additive to a mixture of bottom ash, waste glass and blowing agent, and coated the surface of the molded product with waste glass powder, and then in a rotary kiln. Exterior heat insulating material for construction using light weight aggregates made of bottom ash and waste glass, characterized in that the light weight aggregate formed with pores inside the fired.
상기 잔골재와 굵은골재는 중량비로 80:20 ~ 20:80의 비율이 되도록 혼합하는 것을 특징으로 하는 바텀애시와 폐유리로 제조된 경량골재를 사용한 건축용 외단열재.The method of claim 1,
The fine aggregate and coarse aggregate is a building exterior heat insulating material using a light weight aggregate made of bottom ash and waste glass, characterized in that the ratio of 80:20 to 20:80 by weight ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110128539A KR101165666B1 (en) | 2011-12-02 | 2011-12-02 | Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110128539A KR101165666B1 (en) | 2011-12-02 | 2011-12-02 | Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101165666B1 true KR101165666B1 (en) | 2012-07-16 |
Family
ID=46716822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20110128539A KR101165666B1 (en) | 2011-12-02 | 2011-12-02 | Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101165666B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101466916B1 (en) * | 2014-02-18 | 2014-12-04 | (주)중앙J.S.K건설 | Adiabatic Mortar |
KR101928007B1 (en) * | 2017-12-14 | 2018-12-12 | (주)하이콘코리아 | A Method for Producing a Light Carbon Type a Constructing Material Using a Adsorbent of a Purification Plant |
KR20190071578A (en) * | 2017-12-14 | 2019-06-24 | (주)하이콘코리아 | A Method for Producing a Light Carbon Type a Constructing Material Using a Adsorbent of a Purification Plant |
KR20190104006A (en) * | 2019-07-08 | 2019-09-05 | 경복대학교 산학협력단 | High strength lightweight concrete composition using sludge |
KR102326873B1 (en) * | 2021-06-09 | 2021-11-16 | 이휘범 | Porous ceramic insulation material using waste aluminum dross powder and method for manufacturing same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100978289B1 (en) * | 2009-12-29 | 2010-08-27 | 선일공업 (주) | Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass |
-
2011
- 2011-12-02 KR KR20110128539A patent/KR101165666B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100978289B1 (en) * | 2009-12-29 | 2010-08-27 | 선일공업 (주) | Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101466916B1 (en) * | 2014-02-18 | 2014-12-04 | (주)중앙J.S.K건설 | Adiabatic Mortar |
KR101928007B1 (en) * | 2017-12-14 | 2018-12-12 | (주)하이콘코리아 | A Method for Producing a Light Carbon Type a Constructing Material Using a Adsorbent of a Purification Plant |
KR20190071578A (en) * | 2017-12-14 | 2019-06-24 | (주)하이콘코리아 | A Method for Producing a Light Carbon Type a Constructing Material Using a Adsorbent of a Purification Plant |
KR102315844B1 (en) | 2017-12-14 | 2021-10-21 | (주)하이콘코리아 | A Method for Producing a Light Carbon Type a Constructing Material Using a Adsorbent of a Purification Plant |
KR20190104006A (en) * | 2019-07-08 | 2019-09-05 | 경복대학교 산학협력단 | High strength lightweight concrete composition using sludge |
KR102028612B1 (en) | 2019-07-08 | 2019-10-04 | 경복대학교 산학협력단 | High strength lightweight concrete composition using sludge |
KR102326873B1 (en) * | 2021-06-09 | 2021-11-16 | 이휘범 | Porous ceramic insulation material using waste aluminum dross powder and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete | |
Hanif et al. | Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres–Mechanical and thermal insulating properties | |
Ramujee et al. | Mechanical properties of geopolymer concrete composites | |
Atyia et al. | Production and properties of lightweight concrete incorporating recycled waste crushed clay bricks | |
Thokchom et al. | Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars | |
Thokchom et al. | Acid resistance of fly ash based geopolymer mortars | |
Richard et al. | Experimental production of sustainable lightweight foamed concrete | |
Reiterman et al. | Freeze-thaw resistance of cement screed with various supplementary cementitious materials | |
Aliabdo et al. | Utilization of crushed clay brick in cellular concrete production | |
RU2705646C1 (en) | Cement-free binder and use thereof | |
Muhammad et al. | Effect of heat curing temperatures on fly ash-based geopolymer concrete | |
Kockal | Investigation about the effect of different fine aggregates on physical, mechanical and thermal properties of mortars | |
So et al. | Properties of Strength and Pore Structure of Reactive Powder Concrete Exposed to High Temperature. | |
KR101165666B1 (en) | Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass | |
Türkmen et al. | Several properties of mineral admixtured lightweight mortars at elevated temperatures | |
Stoleriu et al. | Alkali activated materials based on glass waste and slag for thermal and acoustic insulation | |
Hwang et al. | Physical–microstructural evaluation and sulfate resistance of no‐cement mortar developed from a ternary binder of industrial by‐products | |
Rahman et al. | Light weight concrete from rice husk ash and glass powder | |
Abdellatief et al. | Physico-mechanical, thermal insulation properties, and microstructure of geopolymer foam concrete containing sawdust ash and egg shell | |
Ouda et al. | An investigation on the performance of lightweight mortar-based geopolymer containing high-volume LECA aggregate against high temperatures | |
Fifinatasha et al. | Reviews on the different sources materials to the geopolymer performance | |
Rashad et al. | Aluminum dross for thermal insulation and acoustic absorption of alkali-activated slag mortars | |
Abdulkareem et al. | Strength and porosity characterizations of blended biomass wood ash-fly ash-based geopolymer mortar | |
Cadersa et al. | Assessing the durability of coal bottom ash as aggregate replacement in low strength concrete | |
Singh et al. | Lightweight geopolymer concrete with EPS beads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150529 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160808 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170524 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180521 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190722 Year of fee payment: 8 |