KR100978289B1 - Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass - Google Patents

Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass Download PDF

Info

Publication number
KR100978289B1
KR100978289B1 KR20090132820A KR20090132820A KR100978289B1 KR 100978289 B1 KR100978289 B1 KR 100978289B1 KR 20090132820 A KR20090132820 A KR 20090132820A KR 20090132820 A KR20090132820 A KR 20090132820A KR 100978289 B1 KR100978289 B1 KR 100978289B1
Authority
KR
South Korea
Prior art keywords
weight
parts
mortar
waste glass
aggregate
Prior art date
Application number
KR20090132820A
Other languages
Korean (ko)
Inventor
이한백
Original Assignee
선일공업 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선일공업 (주) filed Critical 선일공업 (주)
Priority to KR20090132820A priority Critical patent/KR100978289B1/en
Application granted granted Critical
Publication of KR100978289B1 publication Critical patent/KR100978289B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00637Uses not provided for elsewhere in C04B2111/00 as glue or binder for uniting building or structural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PURPOSE: A manufacturing method of insulating mortar is provided to secure the low thermal conductivity, and to install a finishing material without additionally installing the mortar. CONSTITUTION: A manufacturing method of insulating mortar comprises the following steps: mixing bottom ash, waste glass, and a gas foaming agent; inserting a binder to the mixture and pelletizing to make a molded product; coating the surface of the molded product with waste glass powder; plasticizing the molded product inside a rotary kiln to make light weight aggregate; and mixing 5~80 parts of light weight aggregate by weight, and 20~95 parts of cement by weight.

Description

바텀애쉬와 폐유리로 제조된 저흡수 경량골재를 사용하여 만든 단열모르타르의 제조방법{Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass}Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass}

본 발명은 단열 모르타르의 제조방법에 관한 것으로, 특히 바텀애쉬와 폐유리를 사용하여 제조한 비중과 흡수율이 낮은 경량골재와 시멘트를 혼합한 건식 단열 모르타르의 제조방법에 관한 것이다.The present invention relates to a method for producing insulated mortar, and more particularly, to a method for manufacturing dry insulated mortar mixed with light weight aggregate and cement having low specific gravity and low water absorption produced using bottom ash and waste glass.

일반적인 단열모르타르는 펄라이트, 질석, 발포스티렌, 유리중공체 등의 단열재료, 시멘트, 석고, 수지류 등의 바인더와, 분산제, 증점제, 열방지제, 급결제, 팽창제, 섬유 등의 혼화제를 용도에 따라 적절하게 건식 혼합한 프리믹스 형태로 제조되고 있으며, 현장에서 물과 혼합하여 타설하고 있다. General insulation mortars include a mixture of pearlite, vermiculite, foamed styrene and glass hollow bodies, binders such as cement, gypsum and resins, and admixtures such as dispersants, thickeners, heat inhibitors, fasteners, swelling agents, and fibers, depending on the application. It is manufactured in the form of an appropriate dry mix premixed and poured in the field by mixing with water.

이러한 기존단열모르타르는 아래 표 1과 같이 단열성능은 비교적 우수하지만 압축강도가 매우 낮아 단열모르타르 상부에 직접 내부 마감재를 부착할 수 없다. The existing insulation mortar is relatively excellent in insulation performance as shown in Table 1 below, but the compressive strength is very low, it is not possible to attach the internal finishing material directly on top of the insulation mortar.

압축강도(MPa)Compressive strength (MPa) 열전도율(W/mk)Thermal Conductivity (W / mk) 비중(kg/cm2)Specific gravity (kg / cm 2 ) 0.5~150.5-15 0.04~0.200.04-0.20 0.3~1.50.3-1.5

따라서 마감재 타설을 위해서는 단열모르타르 타설 후 일반미장용모르타르, 석고보드 등의 내구성 및 강도발현이 가능한 소재의 타설이 추가적으로 필요하다. 이와 같은 단점을 보완하기 위해서는 일반미장용모르타르와 동등한 강도를 발현하고 열전도율이 낮은 단열 모르타르의 개발이 필요하다. Therefore, in order to pour the finishing material, it is necessary to add the material that can express durability and strength such as general mortar and gypsum board after insulated mortar. In order to make up for such drawbacks, it is necessary to develop an insulation mortar that exhibits the same strength as general mortar and has low thermal conductivity.

본 발명은 일반 미장용 모르타르와 동등한 강도를 발현하면서도 열전도율이 낮아 단열 모르타르의 타설 후 추가적으로 일반 미장용 모르타르나 석고보드와 같은 내구성 및 강도 발현이 가능한 소재의 타설이 필요없는 단열 모르타르의 제조방법을 제공함에 그 목적이 있다. The present invention provides a method of producing a thermal insulation mortar that does not need to be poured in the durability and strength, such as general plastering mortar or gypsum board additionally after pouring the insulation mortar, while expressing the same strength as the general plaster mortar, but low thermal conductivity Has its purpose.

본 발명의 단열 모르타르의 제조방법은 바텀애쉬와 폐유리 및 발포제를 혼합하고, 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시켜 성형체를 제조한 후, 상기 제조된 성형체 표면을 별도의 폐유리분말로 코팅하고, 상기 폐유리분말이 코팅된 성형체를 로터리 킬른에서 소성시켜 경량골재를 제조하고, 상기 제조된 경량골재 5 ~ 80 중량부와 시멘트 20 ~ 95 중량부를 혼합하는 것을 특징으로 한다.In the method of manufacturing the insulating mortar of the present invention, the bottom ash is mixed with waste glass and a blowing agent, and pelletized while adding a caking additive to the mixed raw material to prepare a molded body, and then the surface of the manufactured molded body is separated from the waste glass powder. Coated with, and the waste glass powder-coated molded body is baked in a rotary kiln to produce a lightweight aggregate, characterized in that for mixing 5 to 80 parts by weight of the prepared lightweight aggregate and 20 to 95 parts by weight of cement.

본 발명의 단열 모르타르의 제조방법에서 상기 경량골재는 비중 0.6 ~ 1.2이고, 흡수율 6% 이하인 것을 특징으로 한다.In the manufacturing method of the insulating mortar of the present invention, the light weight aggregate has a specific gravity of 0.6 to 1.2, and is characterized in that the water absorption is 6% or less.

본 발명의 단열 모르타르의 제조방법에서 상기 경량골재는 입자 크기가 0.1 ~ 30 mm인 것을 특징으로 한다.In the production method of the insulating mortar of the present invention, the lightweight aggregate is characterized in that the particle size of 0.1 ~ 30 mm.

본 발명의 단열 모르타르의 제조방법에서 상기 경량골재와 시멘트의 혼합물에 증점제 및 섬유 중에서 선택되는 어느 하나 이상의 혼화제를 더 포함하는 것을 특징으로 한다.In the production method of the insulating mortar of the present invention is characterized in that it further comprises at least one admixture selected from thickeners and fibers in the mixture of the light aggregate and cement.

삭제delete

본 발명의 방법으로 제조된 단열 모르타르는 단열성능이 우수할 뿐만 아니라, 압축강도 또한 일반미장용모르타르의 강도 수준과 유사하여 기존 단열모르타르의 단점인 저강도로 인하 일반모르타르의 추가 시공 없이 마감재(벽지, 타일, 건축내외장용 마감패널 등)를 설치할 수 있다. 또한 환경적으로는 폐기물인 바텀애쉬와 폐유리를 사용해 제조된 경량골재가 주원료 이므로 친환경적이며, 또한 암연, 석면 등 인체유해물질이 전혀 발생하지 않는다.The thermal insulation mortar prepared by the method of the present invention not only has excellent thermal insulation performance, but also compressive strength is similar to the strength level of general mortar for general plastering, so it is reduced to low strength, which is a disadvantage of conventional thermal mortar, without additional construction of general mortar (wall paper, Tiles, finishing panels for interior and exterior of buildings). In addition, environmentally friendly lightweight aggregates made of waste ash and bottom ash are environmentally friendly and do not generate any harmful substances such as dark lead or asbestos.

본 발명의 단열 모르타르의 제조방법은 바텀애쉬와 폐유리 및 발포제를 혼합하고, 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시켜 성형체를 제조한 후, 상기 제조된 성형체 표면을 별도의 폐유리분말로 코팅하고, 상기 폐유리분말이 코팅된 성형체를 로터리 킬른에서 소성시켜 경량골재를 제조하고, 상기 제조된 경량골재 5 ~ 80 중량부와 시멘트 20 ~ 95 중량부를 혼합하는 과정을 포함하여 이루어진다.In the method of manufacturing the insulating mortar of the present invention, the bottom ash is mixed with waste glass and a blowing agent, and pelletized while adding a caking additive to the mixed raw material to prepare a molded body, and then the surface of the manufactured molded body is separated from the waste glass powder. Coated with, and the waste glass powder-coated molded body is baked in a rotary kiln to produce a lightweight aggregate, and comprises the process of mixing 5 to 80 parts by weight of the prepared lightweight aggregate and 20 to 95 parts by weight of cement.

본 발명의 경량골재는 비중 0.6 ~ 1.2 이거나 또는 수분흡수율 6% 이하이고, 바람직하게는 상기 비중 및 수분흡수율 조건을 모두 충족하는 것이다. 또한 본 발명의 경량골재는 평균 입자 크기가 0.1 ~ 30 mm, 바람직하게는 1 ~ 10 mm이다.The light weight aggregate of the present invention has a specific gravity of 0.6 to 1.2 or less than 6% of a water absorption rate, and preferably satisfies both the specific gravity and the water absorption rate conditions. In addition, the lightweight aggregate of the present invention has an average particle size of 0.1 to 30 mm, preferably 1 to 10 mm.

본 발명의 경량골재는 다음의 과정을 통해 제조될 수 있다.Light weight aggregate of the present invention can be produced through the following process.

먼저 바텀애쉬와 폐유리 및 발포제를 혼합하는 단계에서 바텀애쉬와 폐유리는 0.1 : 99.9 내지 30 : 70 중량비, 바람직하게는 10 : 90 내지 25 : 75 중량비이다. 바텀애쉬가 상기 하한치 미만이면 경량골재의 수분흡수율이 너무 높고, 상기 상한치를 초과하면 비중이 1.2를 초과할 수 있다. 상기 바텀애쉬와 폐유리의 합 100 중량부에 대하여 발포제 0.1 ~ 10 중량부, 바람직하게는 0.2 ~ 4 중량부, 더욱 바람직하게는 0.25 ~ 2 중량부이다. 발포제 함량이 상기 하한치 미만이면 경량골재 내부의 기공생성이 충분하지 않아 비중이 너무 높아지고, 상기 상한치를 초과하면 폐유리로 경량골재를 코팅하더라도 파괴강도가 낮아져 파쇄되기 쉽고 파쇄로 인하여 폐기공이 열려 수분흡수율이 증대된다. 본 발명의 발포제는 탄산칼슘, 흑 연(graphite) 및 삼이산화철(Fe2O3 또는 헤마타이트) 등이 바람직하다.First, the bottom ash and waste glass in the step of mixing the bottom ash and waste glass and blowing agent is 0.1: 99.9 to 30: 70 by weight, preferably 10: 90 to 25: 75 by weight. If the bottom ash is less than the lower limit, the moisture absorption of the light weight aggregate is too high, and if the upper limit is exceeded, the specific gravity may exceed 1.2. The foaming agent is 0.1 to 10 parts by weight, preferably 0.2 to 4 parts by weight, more preferably 0.25 to 2 parts by weight based on 100 parts by weight of the bottom ash and the waste glass. If the foaming agent content is less than the lower limit, the specific gravity is too high due to insufficient porosity inside the lightweight aggregate, and if the upper limit is exceeded, even if the lightweight aggregate is coated with waste glass, the fracture strength is lowered and the waste is easily opened due to the crushing. Is increased. The blowing agent of the present invention is preferably calcium carbonate, graphite and iron trioxide (Fe 2 O 3 or hematite).

다음으로 바텀애쉬와 폐유리 및 발포제를 혼합한 후 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시켜 성형체를 제조한다. 성형체 제조단계는 상기 혼합단계의 혼합된 원료 100 중량부에 점결제 1 내지 40 중량부, 바람직하게는 20 ~ 35 중량부 첨가한다. 점결제로는 물유리 수용액을 사용하는 것이 바람직하다. 물유리 수용액은 물유리가 20 ~ 90 중량%, 바람직하게는 40 ~ 80 중량% 사용된 것을 사용한다. 본 발명의 성형체 제조단계는 펠렛타이저의 교반날개와 바닥면 사이 간격을 소정의 성형체의 입자크기에 따라 조정하고 상기 교반날개를 50 ~ 1000 rpm, 바람직하게는 200 ~ 500 rpm에서 1 ~ 100 분, 바람직하게는 5 ~ 20 분 회전시켜 제조할 수 있다. Next, the bottom ash is mixed with the waste glass and the blowing agent, and then pelletized while adding a binder to the mixed raw material to prepare a molded body. The molded article manufacturing step is added 1 to 40 parts by weight of the binder, preferably 20 to 35 parts by weight to 100 parts by weight of the mixed raw materials of the mixing step. It is preferable to use water glass aqueous solution as a caking additive. Water glass aqueous solution is used that 20 to 90% by weight, preferably 40 to 80% by weight of water glass. In the manufacturing method of the molded body of the present invention, the interval between the stirring blades and the bottom surface of the pelletizer is adjusted according to the particle size of the predetermined molded body, and the stirring blade is 1 to 100 minutes at 50 to 1000 rpm, preferably 200 to 500 rpm, Preferably it can be produced by rotating for 5 to 20 minutes.

다음으로 상기 성형체를 형성한 후 상기 성형체 표면을 별도의 폐유리분말로 코팅하고, 상기 폐유리분말이 코팅된 성형체를 로터리 킬른에서 소성시켜 경량골재를 제조한다. 본 발명의 코팅단계는 성형체 100 중량부에 폐유리분말 1 내지 60 중량부, 바람직하게는 10 ~ 50 중량부, 더욱 바람직하게는 25 ~ 45 중량부 포함한다. 코팅용 폐유리분말이 상기 하한치 미만이면 비중은 낮지만 수분흡수율이 높아지고, 상기 상한치를 초과하면 수분흡수율은 낮지만 비중이 높아진다. 본 발명의 소성단계는 로터리킬른에서 600 ~ 1200 ℃, 바람직하게는 800 ~ 1000 ℃에서 0.1 ~ 60분, 바람직하게는 1 ~ 30분 소성한다.Next, after forming the molded body, the surface of the molded body is coated with a separate waste glass powder, and the molded body coated with the waste glass powder is fired in a rotary kiln to produce a lightweight aggregate. The coating step of the present invention includes 1 to 60 parts by weight of waste glass powder, preferably 10 to 50 parts by weight, more preferably 25 to 45 parts by weight, in 100 parts by weight of the molded body. If the waste glass powder for coating is less than the lower limit, the specific gravity is low, but the water absorption rate is high. If the waste glass powder for coating is above the upper limit value, the moisture absorption rate is low, but the specific gravity is high. The firing step of the present invention is baked in a rotary kiln at 0.1 to 60 minutes, preferably 1 to 30 minutes at 600 to 1200 ° C, preferably at 800 to 1000 ° C.

상기 제조된 비중 0.6 ~ 1.2, 수분흡수율 5% 이하인 경량골재 5 ~ 80 중량부 와 시멘트 20 ~ 95 중량부를 혼합하여 건식 단열 모르타르를 제조한다. 바람직하게는 경량골재 10 ~ 50 중량부와 시멘트 50 ~ 90 중량부를 혼합하는 것이고, 그 경량골재와 시멘트의 혼합비율은 최종제품의 원하는 열전도율, 비중 및 압축강도에 따라 변경할 수 있다. 경량골재의 함량이 상기 하한치 미만인 경우에는 열전도율이 0.4 W/m·k 이하를 초과하여 단열 모르타르로서 기능을 충분히 발휘하기 어렵고 비중이 1.8을 초과하는 문제가 있다. 또한 상기 경량골재의 함량이 상기 상한치를 초과하는 경우에는 압축강도가 28일 동안 20±2℃의 수조에서 수중양생한 단열모르타르 20 MPa 미만이어서 충분한 강도와 내구성을 나타낼 수 없다. 본 발명의 단열 모르타르에서 바인더로 사용되는 시멘트로는 1종 보통 포틀랜트 시멘트가 사용될 수도 있지만, 용도에 따라 특수 시멘트가 사용되는 것도 관계없다.The dry specific gravity mortar is prepared by mixing 5 to 80 parts by weight and 20 to 95 parts by weight of the light weight aggregate having a specific gravity of 0.6 to 1.2 and a moisture absorption of 5% or less. Preferably, 10 to 50 parts by weight of light aggregate and 50 to 90 parts by weight of cement are mixed, and the mixing ratio of the light aggregate and cement may be changed according to desired thermal conductivity, specific gravity and compressive strength of the final product. If the content of the light weight aggregate is less than the lower limit, the thermal conductivity is more than 0.4 W / m · k or less, there is a problem that it is difficult to fully exhibit the function as a thermal insulation mortar and specific gravity exceeds 1.8. In addition, when the content of the light weight aggregate exceeds the upper limit, the compressive strength is less than 20 MPa of adiabatic mortar cured in a water bath at 20 ± 2 ℃ for 28 days, it can not exhibit sufficient strength and durability. As the cement used as the binder in the insulating mortar of the present invention, one kind of ordinary portland cement may be used, but a special cement may be used depending on the purpose.

본 발명의 단열 모르타르의 부착특성을 향상시키기 위한 증점제, 또는 휨강도향상 및 크랙방지를 위해 섬유 등이 혼화제로 사용될 수 있다. 혼화제의 사용량은 경량골재 및 시멘트의 합 100 중량부에 대하여 0.1 ~ 20 중량부, 바람직하게는 0.5 ~ 10 중량부이다.Thickening agents for improving the adhesion properties of the insulating mortar of the present invention, or fibers and the like may be used as admixtures to improve the bending strength and prevent cracking. The amount of the admixture is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total aggregate of light weight aggregate and cement.

상기 제조된 건식 단열 모르타르에는 적용 현장의 특성, 예를 들어 실내 또는 실외 여부, 주차장이나 옥상인지 여부에 따라 물의 혼합 중량비를 조정할 수 있고, 또한 혼화제의 종류 및 함량에 따라 건식 단열 모르타르 100 중량부에 대하여 1 ~ 100 중량부, 바람직하게는 5 ~ 50 중량부 혼합하여 사용할 수 있다. 이때 물의 양이 적어질수록 내구성 및 강도는 증가하고 작업성은 저하되는 일반적인 경향을 나타낸다.In the manufactured dry insulation mortar, the mixing weight ratio of water can be adjusted according to the characteristics of the application site, for example, whether it is indoors or outdoors, whether it is a parking lot or a roof, and also, according to the type and content of the admixture, 100 parts by weight of the dry insulation mortar. 1 to 100 parts by weight, preferably 5 to 50 parts by weight of the mixture can be used. At this time, as the amount of water decreases, durability and strength increase, and workability shows a general tendency to decrease.

상기 방법으로 제조된 본 발명의 단열 모르타르의 물성은 상기 제조된 건식 단열 모르타르와 물을 4 : 1 중량비로 혼합하여 제조한 시편의 KS L 9016 방법으로 측정한 열전도율이 0.4 W/m·k 이하, 바람직하게는 0.03 ~ 0.3 W/m·k 이고, KS L ISO 679 : 2006 방법으로 측정한 압축강도(28일째)가 20 MPa 이상, 바람직하게는 20 ~ 80 MPa이다.The thermal conductivity of the thermal insulation mortar of the present invention prepared by the above method was measured by KS L 9016 method of the specimen prepared by mixing the dry thermal insulation mortar with water in a 4: 1 weight ratio of 0.4 W / m · k or less, Preferably it is 0.03-0.3 W / m * k, and the compressive strength (day 28) measured by KSL ISO 679: 2006 method is 20 MPa or more, Preferably it is 20-80 MPa.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the present invention, but the content of the present invention is not limited thereto.

제조예: 경량골재의 제조Preparation Example: Production of Lightweight Aggregate

본 실험에서 사용한 바텀애쉬는 당진 화력발전소에서 발생되는 것을 사용하였고, 판유리 가공시 발생하는 폐유리을 사용하였으며, 화학성분은 아래 표 2에 나타난 바와 같이 바텀애쉬는 SiO2 43.5 중량%, Al2O3 22.4 중량%, Fe2O3 5.15 중량%, 폐유리는 SiO2 71.1 중량%, Na2O 13.1 중량%, CaO 8.79 중량% 등으로 구성된 것을 확인하였다. The bottom ash used in this experiment was generated from Dangjin Coal Fired Power Plant, and used waste glass generated from sheet glass processing.The chemical composition of bottom ash was SiO 2 as shown in Table 2 below. 43.5 wt%, Al 2 O 3 22.4 wt%, Fe 2 O 3 5.15% by weight, the waste glass was confirmed to be composed of 71.1% by weight of SiO 2 , 13.1% by weight of Na 2 O, 8.79% by weight of CaO.

Figure 112009081209991-pat00001
Figure 112009081209991-pat00001

주원료인 바텀애쉬와 폐유리 100 중량부에 각각 발포제로 탄산칼슘 1 중량부를 첨가하여 표 3에서와 같은 배합으로 각각 혼합된 원료 100 중량부에 대하여 펠렛타이저에서 교반날개 회전속도를 300 rpm에서 10분간 점결제로 물유리 수용액(물유리:증류수=70:30, 중량비)을 30 중량부를 첨가하여 5 mm의 구형 성형체를 제조하였다. 제조된 성형체는 로터리킬른에서 900 ℃, 10 분 소성하여 경량골재를 제조하였다.Add 100 parts by weight of calcium carbonate as a blowing agent to 100 parts by weight of bottom ash and main glass, which are the main raw materials, and rotate the stirring blade rotation speed at 300 rpm in a pelletizer with respect to 100 parts by weight of the mixed raw materials. A 5 mm spherical shaped body was prepared by adding 30 parts by weight of an aqueous glass solution of water (water glass: distilled water = 70:30, weight ratio) as a caking agent. The molded product was baked at 900 ° C. for 10 minutes in a rotary kiln to produce lightweight aggregate.

Figure 112009081209991-pat00002
Figure 112009081209991-pat00002

제조예1~4는 바텀애쉬와 폐유리를 각 함량별로 치환하여 발포제로 탄산칼슘을 첨가한 것으로, 제조예3과 같이 바텀애쉬와 폐유리의 합 100 중량부에서 바텀애쉬를 30 중량부 첨가한 경량골재가 비중이 1이하인 것을 확인하였고 수분흡수율은 7.21%에서 점점 감소하는 것을 확인하였다.Preparation Examples 1 to 4 were used to replace the bottom ash and waste glass by each content to add calcium carbonate as a blowing agent, and 30 parts by weight of the bottom ash was added to 100 parts by weight of the bottom ash and the waste glass as in Preparation Example 3. It was confirmed that the light weight aggregate was less than 1, and the water absorption gradually decreased from 7.21%.

표 4는 바텀애쉬와 폐유리를 각각 20 중량부 및 80 중량부 혼합하고, 펠렛타이저에서 교반날개 회전속도를 300 rpm에서 10분간 점결제로 물유리 수용액(물유리:증류수=70:30, 중량비)을 30 중량부를 첨가하여 5 mm의 구형 성형체를 제조한 후, 상기 성형체 100 중량부에 대하여 폐유리분말을 1 내지 50 중량부 첨가하여 코팅하면서 각각 로터리킬른에서 900 ℃, 10 분 소성하여 제조한 경량골재의 물성을 나타낸 것이다.Table 4 mixes 20 parts by weight and 80 parts by weight of bottom ash and waste glass, respectively, and a water glass aqueous solution (water glass: distilled water = 70: 30, weight ratio) as a binder for stirring blade rotation speed at 300 rpm for 10 minutes in a pelletizer. Was prepared by adding 30 parts by weight of a 5 mm spherical molded body, and then coated by adding 1 to 50 parts by weight of waste glass powder with respect to 100 parts by weight of the molded body, respectively. It shows the physical properties of the aggregate.

Figure 112010037366909-pat00019
Figure 112010037366909-pat00019

폐유리분말을 성형체 중량 100 중량부에 대하여 40 중량부까지 코팅했을 때 비중과 수분흡수율이 현저히 저감되었고, 50 중량부 이상에서는 40 중량부와 유사한 결과를 나타내었다. When the waste glass powder was coated up to 40 parts by weight with respect to 100 parts by weight of the molded body, the specific gravity and water absorption were remarkably reduced, and at 50 parts by weight or more, the result was similar to 40 parts by weight.

제조예 : 단열 모르타르의 제조Preparation Example: Preparation of Insulation Mortar

상기 제조예 7의 경량골재를 사용하여 단열 모르타르를 제조하였다. 도 1은 제조예 7의 경량골재의 외관을 나타낸 사진이고, 도 2는 경량골재의 내부 기공과 외부 코팅층을 보여주는 확대사진이다.Insulating mortar was prepared using the lightweight aggregate of Preparation Example 7. Figure 1 is a photograph showing the appearance of the lightweight aggregate of Preparation Example 7, Figure 2 is an enlarged photograph showing the inner pores and outer coating layer of the lightweight aggregate.

제조예 7의 경량골재와 1종 보통포틀랜트 시멘트를 표 5의 배합비율로 혼합하여 비교예 1, 실시예 1 내지 4의 단열 모르타르를 제조하였다.The light weight aggregate of Preparation Example 7 and one type of ordinary portland cement were mixed in the mixing ratios of Table 5 to prepare the insulation mortars of Comparative Examples 1 and 1 to 4.

Figure 112009081209991-pat00004
Figure 112009081209991-pat00004

비교예 1은 경량골재를 사용하지 않은 것이고, 비교예 2는 비중 1.3이고 수분흡수율이 25%인 시판 경량골재 사용하여 제조한 것이며, 비교예 3은 펄라이트 단열재를 사용한 것으로 현재 시판중인 단열 모르타르이다. Comparative Example 1 is not using a lightweight aggregate, Comparative Example 2 is prepared by using a commercial lightweight aggregate having a specific gravity of 1.3 and a water absorption of 25%, Comparative Example 3 is a thermal insulation mortar currently on the market using a pearlite insulating material.

실험예 1: 압축강도의 측정Experimental Example 1 Measurement of Compressive Strength

압축강도는 표 5의 건식 모르타르와 물을 4 : 1 중량비로 혼합한 후 KS L ISO 679 : 2006 방법으로 성형 후 20±2℃의 수조에서 3일, 7일, 28일간 각각 수중양생하였다. 실시예 1 내지 3의 28일간 수중양생한 단열모르타르의 단면 사진을 도 3 내지 5에 각각 나타내었다. 상기 정해진 기간동안 양생한 단열모르타르를 KS L ISO 679 : 2006 방법으로 압축강도를 측정하여 그 결과를 표 6 및 도 6에 나타내었다.Compressive strength was mixed with dry mortar and water in the ratio of 4: 1 in a weight ratio of 4: 1, and then cured in water for 3 days, 7 days, 28 days in a 20 ± 2 ℃ water bath after molding by the KS L ISO 679: 2006 method. Sectional photographs of the thermal insulation mortar cured under water for 28 days of Examples 1 to 3 are shown in FIGS. 3 to 5, respectively. The thermal insulation mortar cured for the predetermined period was measured by the KS L ISO 679: 2006 method and the results are shown in Table 6 and FIG. 6.

Figure 112009081209991-pat00005
Figure 112009081209991-pat00005

실험예 2: 열전도도의 측정Experimental Example 2: Measurement of Thermal Conductivity

열전도도 측정을 위하여 실험예 1과 동일한 배합비와 혼합수량으로 20±2℃의 수조에서 28일간 수중양생시켜 열전도도 측정용 패널을 제조하였다. 실시예 1 내지 3의 수중양생시킨 후의 패널의 사진을 도 7 내지 9에 각각 나타내었다.In order to measure the thermal conductivity, a panel for measuring thermal conductivity was prepared by curing under water in a 20 ± 2 ° C. water bath at the same mixing ratio and mixing amount as in Experimental Example 1. 7 to 9 show photographs of the panels after the underwater curing of Examples 1 to 3, respectively.

상기 준비된 패널의 열전도도는 평판열류계법을 적용한 열전도도시험기(HC-074, EKO사, 일본)에 장착하여 측정하였다. 열전도도 측정방법은 다양하나, 이중 “KS L 9016-보온재의 열전도율 측정방법”에 규정된 평판열류계법에 따라 시험하였다. 평판열류계법은 시험체를 통과하는 열류량을 열류계로 측정하고, 그때의 시험체 온도차를 측정하여 열전도도를 구하는 방법으로, 도 10에 측정원리를 나타내었고, 도 11에는 본 측정에 사용한 열전도도 시험기를 사진으로 나타내었다.The thermal conductivity of the prepared panel was measured by mounting on a thermal conductivity tester (HC-074, EKO, Japan) applying the plate heat flow meter method. There are various methods of measuring thermal conductivity, but the test was conducted according to the flat plate heat flow meter method specified in "Measuring Thermal Conductivity of KS L 9016-Insulating Material". In the plate heat flow meter method, the heat flow rate passing through the test body is measured by a heat flow meter, and the thermal conductivity is obtained by measuring the temperature difference at that time. The measurement principle is shown in FIG. 10, and in FIG. 11, the thermal conductivity tester used for the measurement is photographed. As shown.

상기 패널의 열전도도 값과 비중을 표 7 도 12에 나타내었다.Thermal conductivity values and specific gravity of the panel are shown in Table 7 FIG.

Figure 112009081209991-pat00006
Figure 112009081209991-pat00006

도 1은 제조예 7의 경량골재의 외관을 나타낸 사진이다.1 is a photograph showing the appearance of the lightweight aggregate of Preparation Example 7.

도 2는 제조예 7의 경량골재의 내부 기공과 외부 코팅층을 보여주는 확대사진이다.Figure 2 is an enlarged photograph showing the inner pores and the outer coating layer of the lightweight aggregate of Preparation Example 7.

도 3은 실시예 1의 28일간 수중양생한 단열모르타르의 단면 사진이다.Figure 3 is a cross-sectional photograph of the thermal insulation mortar cured in 28 days of Example 1.

도 4은 실시예 2의 28일간 수중양생한 단열모르타르의 단면 사진이다.Figure 4 is a cross-sectional photograph of the thermal insulation mortar cured in 28 days of Example 2.

도 5는 실시예 3의 28일간 수중양생한 단열모르타르의 단면 사진이다.5 is a cross-sectional photograph of the thermal insulation mortar cured in 28 days of Example 3.

도 6은 비교예 및 실시예들의 압축강도를 나타낸 그래프이다.6 is a graph showing the compressive strength of Comparative Examples and Examples.

도 7은 실시예 1의 28일간 수중양생한 단열모르타르 패널의 사진이다.7 is a photograph of the thermal insulation mortar panel cured in 28 days of Example 1.

도 8은 실시예 2의 28일간 수중양생한 단열모르타르 패널의 사진이다.FIG. 8 is a photograph of an insulation mortar panel cured under water for 28 days in Example 2. FIG.

도 9은 실시예 3의 28일간 수중양생한 단열모르타르 패널의 사진이다.FIG. 9 is a photograph of an insulation mortar panel cured in water for 28 days in Example 3. FIG.

도 10는 열전도도 측정원리를 나타낸 설명도이다.10 is an explanatory diagram showing a principle of thermal conductivity measurement.

도 11은 실험예 2에 사용된 열전도도 측정장치를 나타낸 사진이다.11 is a photograph showing a thermal conductivity measuring apparatus used in Experimental Example 2.

도 12는 비교예 및 실시예들의 열전도도를 나타낸 그래프이다.12 is a graph showing thermal conductivity of Comparative Examples and Examples.

Claims (5)

바텀애쉬와 폐유리 및 발포제를 혼합하고, 상기 혼합된 원료에 점결제를 첨가하면서 펠렛화시켜 성형체를 제조한 후, 상기 제조된 성형체 표면을 별도의 폐유리분말로 코팅하고, 상기 폐유리분말이 코팅된 성형체를 로터리 킬른에서 소성시켜 경량골재를 제조하고, 상기 제조된 경량골재 5 ~ 80 중량부와 시멘트 20 ~ 95 중량부를 혼합하는 단열 모르타르의 제조방법.The bottom ash is mixed with the waste glass and the blowing agent, and pelletized while adding a binder to the mixed raw material to prepare a molded body, and then the surface of the manufactured molded body is coated with a separate waste glass powder, and the waste glass powder is The coated molded body is fired in a rotary kiln to produce a lightweight aggregate, and the method for producing an insulating mortar mixing 5 to 80 parts by weight of the prepared lightweight aggregate and 20 to 95 parts by weight of cement. 제 1 항에 있어서, 상기 경량골재는 비중 0.6 ~ 1.2이고, 흡수율 6% 이하인 것을 특징으로 하는 단열 모르타르의 제조방법.The method of claim 1, wherein the light weight aggregate has a specific gravity of 0.6 to 1.2, the absorption method of 6% or less, characterized in that the manufacturing method of the mortar. 제 1 항에 있어서, 상기 경량골재는 입자 크기가 0.1 ~ 30 mm인 것을 특징으로 하는 단열 모르타르의 제조방법.The method of claim 1, wherein the lightweight aggregate is a method of producing a thermal insulation mortar, characterized in that the particle size of 0.1 ~ 30 mm. 제 1 항에 있어서, 상기 경량골재와 시멘트의 혼합물에 증점제 및 섬유 중에서 선택되는 어느 하나 이상의 혼화제를 더 포함하는 것을 특징으로 하는 단열 모르타르의 제조방법.The method of claim 1, wherein the mixture of lightweight aggregate and cement further comprises at least one admixture selected from thickeners and fibers. 삭제delete
KR20090132820A 2009-12-29 2009-12-29 Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass KR100978289B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090132820A KR100978289B1 (en) 2009-12-29 2009-12-29 Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090132820A KR100978289B1 (en) 2009-12-29 2009-12-29 Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass

Publications (1)

Publication Number Publication Date
KR100978289B1 true KR100978289B1 (en) 2010-08-27

Family

ID=42760074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090132820A KR100978289B1 (en) 2009-12-29 2009-12-29 Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass

Country Status (1)

Country Link
KR (1) KR100978289B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165666B1 (en) * 2011-12-02 2012-07-16 선일공업 (주) Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass
KR101175710B1 (en) 2011-09-16 2012-08-21 선일공업 (주) Preparation method for adiabatic mortar using waste alc
WO2016133463A1 (en) * 2015-02-17 2016-08-25 Nanyang Technological University Method of manufacturing a lightweight material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119952A (en) * 1990-09-11 1992-04-21 Nippon Jiryoku Senko Kk Production of artificial light aggregate
JPH11335146A (en) * 1998-03-23 1999-12-07 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
KR100616454B1 (en) * 2005-03-24 2006-08-29 한재명 Composition for concrete using industrial waste, concrete composition comprising the same and concrete structure
KR20090068092A (en) * 2007-12-21 2009-06-25 한국산업기술평가원(관리부서:요업기술원) Ultra light weight inorganic fine-grained aggregate and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119952A (en) * 1990-09-11 1992-04-21 Nippon Jiryoku Senko Kk Production of artificial light aggregate
JPH11335146A (en) * 1998-03-23 1999-12-07 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
KR100616454B1 (en) * 2005-03-24 2006-08-29 한재명 Composition for concrete using industrial waste, concrete composition comprising the same and concrete structure
KR20090068092A (en) * 2007-12-21 2009-06-25 한국산업기술평가원(관리부서:요업기술원) Ultra light weight inorganic fine-grained aggregate and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175710B1 (en) 2011-09-16 2012-08-21 선일공업 (주) Preparation method for adiabatic mortar using waste alc
KR101165666B1 (en) * 2011-12-02 2012-07-16 선일공업 (주) Heat insulating material for building used the lightweight aggregates that is produced by bottom ash and waste glass
WO2016133463A1 (en) * 2015-02-17 2016-08-25 Nanyang Technological University Method of manufacturing a lightweight material

Similar Documents

Publication Publication Date Title
CN103992091B (en) A kind of light-high-strength aerated bricks and preparation method thereof
CN104098344B (en) A kind of ceramic fiber aerated bricks and preparation method thereof
CN100345791C (en) Heat insulating glue powder material for wall and its prepn and usage
CN104446295A (en) Humid-environment-resistance autoclaved aerated concrete block and preparation method thereof
CN104119097B (en) A kind of light anticorrosive aerated bricks and preparation method thereof
CN106007613B (en) A kind of self heat insulation wall gypsum based composite and preparation method thereof
CN101139188A (en) Energy-saving heat-insulating masonry mortar and method for making same
CN104193389B (en) A kind of high-strength temperature-resistant aerated bricks and preparation method thereof
CN105541386B (en) A kind of concrete aerated insulating brick and preparation method thereof
CN102765905B (en) EPS light aggregate concrete composite wall and its construction method
CN103992066B (en) A kind of antistripping aerated bricks and preparation method thereof
CN104193386B (en) A kind of ageing-resistant aerated bricks and preparation method thereof
CN107805028B (en) Preparation method of high-strength waterproof cementing material
CN103992086A (en) Fire and water resistant aerated brick and making method thereo f
CN103755256A (en) Inorganic porous high-strength thermal insulation material
CN104193387B (en) A kind of suction ripple aerated bricks and preparation method thereof
CN105439628A (en) Refractory thermal-insulation aerated brick and preparation method thereof
CN104609817A (en) High temperature-resistant and high-toughness aerated brick and preparation method thereof
CN103979910B (en) A kind of waterproof anti-corrosion aerated bricks and preparation method thereof
CN104829179B (en) White glass bead modification heat-insulating masonry mortar and using method
CN107793088A (en) Lightweight anti-cracking heat insulation mortar
CN104446610B (en) A kind of water-fast high intensity aerated bricks and preparation method thereof
CN104193240B (en) Corrosion-resistant aerated bricks of a kind of cracking resistance and preparation method thereof
CN103992083B (en) A kind of grain slag high strength aerated bricks and preparation method thereof
KR100978289B1 (en) Preparation method for adiabatic mortar using low absorption lightweight aggregates made from bottom ash and waste glass

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150810

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160627

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190211

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190722

Year of fee payment: 10