JP2005260118A - Photo detector and its manufacturing method - Google Patents

Photo detector and its manufacturing method Download PDF

Info

Publication number
JP2005260118A
JP2005260118A JP2004072221A JP2004072221A JP2005260118A JP 2005260118 A JP2005260118 A JP 2005260118A JP 2004072221 A JP2004072221 A JP 2004072221A JP 2004072221 A JP2004072221 A JP 2004072221A JP 2005260118 A JP2005260118 A JP 2005260118A
Authority
JP
Japan
Prior art keywords
type
light
light receiving
layer
receiving layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004072221A
Other languages
Japanese (ja)
Inventor
Yasuhiro Inoguchi
康博 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004072221A priority Critical patent/JP2005260118A/en
Publication of JP2005260118A publication Critical patent/JP2005260118A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photo detector having rapid responsibility, excellent sensitivity, and little dark current by solving the problem that, in the most prevailing photo detector having such a structure that an p-type light receiving layer is grown on an n-type substrate and then an n-type dopant is selectively diffused via a mask to form a p-type region in the light receiving layer, diffusion is difficult to be controlled and hence the depth of a pn junction varies, causing a variation in sensitivity and dark current, and electrostatic capacitance increases by reverse bias, causing slow responsibility, and in a mesa-type photo detector having such a structure that an n-type light receiving layer and a p-type light receiving layer are epitaxially grown on an n-type substrate and then the periphery is mesa-etched and covered with an SiN and InP films, the dark current increases due to the leakage, causing a poor yield. <P>SOLUTION: On top of an n-type substrate, an n-type buffer layer, an n-type light receiving layer, and a p-type light receiving layer are epitaxially grown. Then, an n-type dopant is heavily introduced into the periphery by diffusion or ion implantation to form an n-type shielding region from the top face to a buffer layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は暗電流が小さく高速応答性に優れたpin構造を有する光通信用受光素子および歩留まりの高い受光素子の製造方法に関する。   The present invention relates to a light receiving element for optical communication having a pin structure with low dark current and excellent high-speed response, and a method for manufacturing a light receiving element with high yield.

唐内一郎、藤村康、岩崎孝、寺内均、山林直之、「大受光面積InGaAs PIN−PD」、住友電気、第141号、1992年9月号、p21−26Ichiro Karauchi, Yasushi Fujimura, Takashi Iwasaki, Hitoshi Terauchi, Naoyuki Yamabayashi, “Large Intensity Area InGaAs PIN-PD”, Sumitomo Electric, 141, September 1992, p21-26

Ichiro Tonai, TakashiYano and Hiroshi Okuda,"InGaAs PIN Photodiodes for Monitoring the OpticalOutput Power of Semiconductor Laser Diodes, IEEE Tokyo Section, Denshi TokyoNo. 28 (1989), p78-81Ichiro Tonai, TakashiYano and Hiroshi Okuda, "InGaAs PIN Photodiodes for Monitoring the OpticalOutput Power of Semiconductor Laser Diodes, IEEE Tokyo Section, Denshi Tokyo No. 28 (1989), p78-81

道口健太郎、矢野浩、澤田宗作、関口剛、神山博幸、黒田正孝「InPパッシベーション構造pinPDとその応用」SEIテクニカルレビュー第151号、1997年9月号、p18−22Kentaro Michiguchi, Hiroshi Yano, Sosaku Sawada, Go Sekiguchi, Hiroyuki Kamiyama, Masataka Kuroda “InP Passivation Structure pinPD and its Applications” SEI Technical Review 151, September 1997, p18-22

従来、半導体受光素子(Photodiode)は、n型半導体基板の上にアンドープまたはn型不純物を微量ドープしたn型受光層をエピタキシャル成長によって作製し、マスク開口部を通して受光領域となる部分にZnなどのp型不純物を選択的に拡散させp領域を作り受光層内部にpn接合を設け、n型基板にn電極を、p領域にp電極を形成して製造していた。   2. Description of the Related Art Conventionally, a semiconductor light-receiving element (Photodiode) is formed by epitaxial growth of an n-type light-receiving layer on an n-type semiconductor substrate that is undoped or doped with a small amount of n-type impurities, and a p-type material such as Zn is formed in a portion serving as a light-receiving region through a mask opening. A p-type region is formed by selectively diffusing type impurities, a pn junction is provided in the light receiving layer, an n-electrode is formed on the n-type substrate, and a p-electrode is formed on the p-region.

p型不純物をドープする前のn型受光層のキャリヤ(電子)濃度は、1×1016cm−3以下である。選択拡散というのはマスクを通して局所的に不純物を熱拡散するという意味である。選択というのは単に場所を選ぶということである。拡散係数などの相違を利用した拡散という意味ではない。 The carrier (electron) concentration of the n-type light-receiving layer before doping with the p-type impurity is 1 × 10 16 cm −3 or less. Selective diffusion means that impurities are thermally diffused locally through a mask. Selection means simply choosing a place. It does not mean diffusion using differences such as diffusion coefficients.

図1によって従来例にかかる選択拡散による受光素子の一般的な製造工程を説明する。これは上面入射型の受光素子であるが、裏面入射型の受光素子も拡散工程は同様である。   A general manufacturing process of a light receiving element by selective diffusion according to a conventional example will be described with reference to FIG. This is a top-incident light receiving element, but the back-illuminated light receiving element has the same diffusion process.

図1の(1)のように高濃度ドープn型基板結晶(InP、GaAs、Siなど)2の上にn型バッファ層3、n型受光層4をエピタキシャル成長する。受光層4はアンドープか低濃度ドープである。アンドープでもn型になる。受光層4の上にn型窓層を付けることもあるが、ここでは窓層がないものを示す。それがエピウエハである。図1(2)のように拡散マスクとなるべきSiN膜5をP−CVD法などで受光層4の上を被覆する。   As shown in FIG. 1A, an n-type buffer layer 3 and an n-type light-receiving layer 4 are epitaxially grown on a heavily doped n-type substrate crystal (InP, GaAs, Si, etc.) 2. The light receiving layer 4 is undoped or lightly doped. Even undoped becomes n-type. An n-type window layer may be provided on the light-receiving layer 4, but here, a window layer without a window layer is shown. That is an epi-wafer. As shown in FIG. 1B, a SiN film 5 to be a diffusion mask is coated on the light receiving layer 4 by a P-CVD method or the like.

図1(3)に示すようにフォトリソグラフィによってパターニングしSiN膜5の素子中央部に当たる部分に穴を開ける。気相状態から穴を通してZnを拡散してn型受光層4の内部中央にp領域6を作る。p領域6とn型受光層4の境界線に皿型のpn接合26、25ができる(図1(4))。表面側に透明の反射防止膜(SiONなど)7をP−CVD法などで成膜する(図1(5))。ついで反射防止膜7の一部を除去して、そこへp電極8を蒸着し加熱し合金化する(図1(6))。それでオーミック接合できる。n型基板2の裏面にn電極9を蒸着し合金化してオーミック接合する。それが普通の受光素子の製造方法である。これは上面入射である。   As shown in FIG. 1 (3), patterning is performed by photolithography, and a hole is made in a portion corresponding to the central portion of the SiN film 5. Zn is diffused from the gas phase through the hole to form a p region 6 in the center of the inside of the n-type light receiving layer 4. Dish-shaped pn junctions 26 and 25 are formed at the boundary between the p region 6 and the n-type light receiving layer 4 (FIG. 1 (4)). A transparent antireflection film (SiON or the like) 7 is formed on the surface side by a P-CVD method or the like (FIG. 1 (5)). Next, a part of the antireflection film 7 is removed, and a p-electrode 8 is deposited thereon and heated to be alloyed (FIG. 1 (6)). It can be ohmic joined. An n-electrode 9 is vapor-deposited on the back surface of the n-type substrate 2 and alloyed to make ohmic contact. That is an ordinary method for manufacturing a light receiving element. This is top incidence.

p電極を広くし裏面のn電極の一部に穴を開けて反射防止膜で覆い裏面から光が入射するようにしたものが裏面入射型である。上面入射型でも裏面入射型でもp領域の生成方法は同様である。   The back-illuminated type is one in which the p-electrode is widened and a hole is formed in a part of the n-electrode on the back surface and covered with an antireflection film so that light can enter from the back surface. The p region generation method is the same for both the top-incident type and the back-side incident type.

上に述べたような不純物選択拡散によって皿型のp領域、pn接合を作製して受光素子とするのは一般的な手法である。そのため現在もなお拡散による受光素子が主流である。   It is a general technique to produce a dish-shaped p region and pn junction by selective impurity diffusion as described above to obtain a light receiving element. For this reason, light-receiving elements using diffusion are still mainstream.

ところがZn拡散による受光素子には、なお難点がある。pn接合が受光層の間に形成されなければならないが、受光層は薄くて2μm程度である。厚くても6μmまでである。pn接合というのは電子濃度nと正孔濃度pが等しい点(p=n)を繋いだ面であるが拡散による正孔濃度の傾斜は大きくて正確にその位置(深さ)を与えるのは難しい。その難しさが製品歩留まりを下げる。
一般に、受光素子の高速応答性を高めるためにはpn接合は階段状の急峻な接合にする必要がある。Znなどp型不純物を熱拡散することによって得られたpn接合は緩やかな傾斜をもっている。だから熱拡散によって作ったpn接合は高速応答性において劣る。
However, the light receiving element by Zn diffusion still has a drawback. Although a pn junction must be formed between the light receiving layers, the light receiving layer is thin and about 2 μm. Even if it is thick, it is up to 6 μm. The pn junction is a plane connecting points (p = n) where the electron concentration n and the hole concentration p are equal, but the gradient of the hole concentration due to diffusion is large, and its position (depth) is given accurately. difficult. That difficulty reduces product yield.
In general, in order to improve the high-speed response of the light receiving element, the pn junction needs to be a stair-like steep junction. A pn junction obtained by thermally diffusing a p-type impurity such as Zn has a gentle slope. Therefore, a pn junction made by thermal diffusion is inferior in high-speed response.

さらにマスク開口を通しZnを熱拡散し皿型のp領域6、pn接合26、25を作るので、横方向pn接合26だけでなく縦方向に伸びるpn接合25もできる。pn接合の周囲にはアンドープまたはn型不純物を微量ドープした1×1016cm−3以下のn型の結晶層が存在するから、逆バイアスを印加したとき、空乏層がpn接合から縦方向だけでなく横方向にも広がる。横方向に空乏層が広がることによって実効的な受光面積が広がり静電容量が大きくなり遅延時間が増え応答速度を下げる、という欠点がある。 Furthermore, since Zn is thermally diffused through the mask opening to form the dish-shaped p region 6 and pn junctions 26 and 25, not only the lateral pn junction 26 but also the pn junction 25 extending in the vertical direction can be formed. Since there is an n-type crystal layer of 1 × 10 16 cm −3 or less in which the undoped or n-type impurity is slightly doped around the pn junction, when a reverse bias is applied, the depletion layer is only in the vertical direction from the pn junction. It spreads in the horizontal direction as well. As the depletion layer spreads in the lateral direction, the effective light receiving area increases, the capacitance increases, the delay time increases, and the response speed decreases.

図3の(1)にpn接合の横方向の肥大を示す。逆バイアスをかけるとpn接合から両側へ空乏層が広がる。濃度の低いn型受光層4の内部へ特に空乏層の広がりが大きくなる。水平のpn接合26から下向きに広がる空乏層32は感度を増強して有益であるが、縦型のpn接合25から横向きに広がる横空乏層33は実効的な接合容量を肥大させる。接合容量が大きいと遅延時間(τ=CR)が長くなるので好ましい事ではない。   FIG. 3 (1) shows lateral enlargement of the pn junction. When a reverse bias is applied, a depletion layer spreads from the pn junction to both sides. In particular, the depletion layer expands inside the n-type light receiving layer 4 having a low concentration. The depletion layer 32 extending downward from the horizontal pn junction 26 is beneficial to increase sensitivity, but the lateral depletion layer 33 extending laterally from the vertical pn junction 25 enlarges the effective junction capacitance. A large junction capacitance is not preferable because the delay time (τ = CR) becomes long.

また、熱拡散によってZnをドープする場合、ドーパント原料の量と温度を一定にして時間でpn接合深さを制御する。しかし実際には深さ制御は難しく、選択拡散の深さ(pn接合の深さ)がばらつく。ウエハの面内でもpn接合深さdがばらつくし、異なるウエハ間でもpn接合深さdが異なる。同じようなマスクを通して同じ濃度のドーパントを気相、液相、固相拡散するのであるが、ウエハの部位によってZnがうまく入って行くところもあるがなかなか入らない部位もある。ウエハの表面状態が部位によって異なるからである。一部に酸化膜があったりしてZnの拡散の速さが大きく異なる。そのため受光層の中でのpn接合の深さがばらつきpn接合位置が安定しない。そのため感度や容量がばらつき受光素子製造歩留まりを下げる。   Further, when Zn is doped by thermal diffusion, the pn junction depth is controlled with time while keeping the amount and temperature of the dopant raw material constant. However, in practice, depth control is difficult, and the depth of selective diffusion (depth of the pn junction) varies. The pn junction depth d varies even within the plane of the wafer, and the pn junction depth d varies between different wafers. The same concentration of dopant is diffused in the gas phase, liquid phase, and solid phase through the same mask, but there are places where Zn can enter well depending on the portion of the wafer, but there are also portions where it does not readily enter. This is because the surface state of the wafer differs depending on the part. There is an oxide film in part, and the diffusion speed of Zn is greatly different. For this reason, the pn junction depth in the light receiving layer varies and the pn junction position is not stable. For this reason, sensitivity and capacity vary, and the yield of light receiving elements is reduced.

そのようなことはマスクを通したp型ドーパントの熱拡散でp領域を作る限り避けることができない。熱拡散を使わずにpn接合を形成する手法もある。それは受光層のpn接合をエピタキシャル成長によって作製する方法である。n型半導体基板の上に、アンドープまたはn型不純物をドープした受光層とp型不純物をドープした受光層を順にエピタキシャル成長してpn接合をエピ層の境界面に生成する。その場合は、n型受光層とp型受光層の境界面が全部pn接合になるからpn接合は急峻な階段型接合になる。境界が急峻になるから高速応答性に優れる。何よりも、n型層とp型層の境界がpn接合なのでpn接合の高さが確実に決まり深さがばらつくというようなことはない。pn接合の位置が決まり特性のばらつきも減る筈である。   Such is unavoidable as long as the p region is formed by thermal diffusion of the p-type dopant through the mask. There is also a method of forming a pn junction without using thermal diffusion. It is a method for producing a pn junction of a light receiving layer by epitaxial growth. On the n-type semiconductor substrate, a light-receiving layer doped with undoped or n-type impurities and a light-receiving layer doped with p-type impurities are epitaxially grown in order to form a pn junction at the interface of the epilayer. In that case, since the boundary surface between the n-type light receiving layer and the p-type light receiving layer is entirely a pn junction, the pn junction becomes a steep stepped junction. High-speed response is excellent because the boundary becomes steep. Above all, since the boundary between the n-type layer and the p-type layer is a pn junction, the height of the pn junction is surely determined and the depth does not vary. The position of the pn junction is determined and the variation in characteristics should be reduced.

図2にそのようなエピタキシャル成長型の受光素子の製造方法を説明する。これも上面入射型のものであるが裏面入射型でも同様の問題がある。n型基板(InP、GaAs、Siなど)の上に、n型バッファ層3、n型受光層22、p型受光層23をエピタキシャル成長させる(図2(1))。不純物を拡散するのではなくp型の受光層23をエピ成長で作ってしまう。だからn型、p型受光層22、23の境界がpn接合26となる。水平のpn接合26であり縦型の部分を持たない。   FIG. 2 illustrates a method of manufacturing such an epitaxial growth type light receiving element. This is also a top-illuminated type, but the back-illuminated type has the same problem. An n-type buffer layer 3, an n-type light-receiving layer 22, and a p-type light-receiving layer 23 are epitaxially grown on an n-type substrate (InP, GaAs, Si, etc.) (FIG. 2 (1)). Instead of diffusing impurities, the p-type light-receiving layer 23 is formed by epi growth. Therefore, the boundary between the n-type and p-type light receiving layers 22 and 23 becomes a pn junction 26. It is a horizontal pn junction 26 and does not have a vertical portion.

図2(2)のように、P−CVD法などでSiNマスク27を形成し、これは反射防止膜としての機能を兼ねることが可能である。図2(3)のように、フォトリソグラフィでレジストパターンを作り素子の両側の部分をメサエッチングする。これはpn接合の面積を減らすためである。のこされた隆起部がメサ型だからメサエッチングという。n型バッファ層3、n型受光層22、p型受光層23の側面29、29が露出し、バッファ層3の中間部上面28、28も一部露呈するようになる。pn接合が空間に露呈すると、そこから短絡し漏れ電流が流れるので、InP膜などのパッシベーション膜30で周囲壁面29とバッファ層上面28を被覆する(図2(4))。SiN膜27の一部を除去して、そこへp電極8を蒸着し加熱合金化する。n型基板2の裏面にn電極材料を蒸着し合金化処理してn電極9とする。   As shown in FIG. 2B, the SiN mask 27 is formed by a P-CVD method or the like, and this can also function as an antireflection film. As shown in FIG. 2C, a resist pattern is formed by photolithography, and the portions on both sides of the element are mesa-etched. This is to reduce the area of the pn junction. This is called mesa etching because the raised part is mesa type. The side surfaces 29 and 29 of the n-type buffer layer 3, the n-type light receiving layer 22 and the p-type light receiving layer 23 are exposed, and the intermediate portion upper surfaces 28 and 28 of the buffer layer 3 are also partially exposed. When the pn junction is exposed to the space, a short circuit occurs and a leakage current flows, so that the peripheral wall surface 29 and the buffer layer upper surface 28 are covered with a passivation film 30 such as an InP film (FIG. 2 (4)). A part of the SiN film 27 is removed, and a p-electrode 8 is deposited thereon to form a heat alloy. An n-electrode material is deposited on the back surface of the n-type substrate 2 and alloyed to form an n-electrode 9.

以上の工程で作った受光素子もある。メサエッチングする理由は次のようである。n型層の上にp型層を形成して間にpn接合を作るが、そのままではpn接合面積がチップ面積に等しくなり広すぎる。pn接合が広いと静電容量が増加して遅延時間が増え高速応答性がないので、受光層の周囲4辺をメサエッチングしてpn接合を狭くするようにする。pn接合が側方に露呈されると多数の接合準位のため逆バイアスを掛けた時そこで漏れ電流(リーク電流)が流れる。漏れ電流は光信号がない時も流れるので暗電流と呼ばれる。これはノイズであるが温度変化も大きいので信号による光電流を的確に取り出すことができない。   There is also a light receiving element made by the above process. The reason for mesa etching is as follows. A pn junction is formed by forming a p-type layer on the n-type layer. However, if it is left as it is, the pn junction area is equal to the chip area and is too wide. If the pn junction is wide, the capacitance increases, the delay time increases, and there is no high-speed response. Therefore, the four sides around the light receiving layer are mesa-etched to narrow the pn junction. When the pn junction is exposed to the side, when a reverse bias is applied due to a large number of junction levels, a leakage current (leakage current) flows there. Since the leakage current flows even when there is no optical signal, it is called dark current. This is noise but the temperature change is large, so that the photocurrent generated by the signal cannot be extracted accurately.

それは側面にpn接合の端が露出するからいけないので、メサエッチングで露出したpn接合の端を、InP膜、SiN膜などで覆い隠すようにするものもある。それをパッシベーション膜というがpn接合を覆って漏れ電流を減らす作用がある。それで暗電流が減少する。   Since the end of the pn junction cannot be exposed on the side surface, the end of the pn junction exposed by mesa etching may be covered with an InP film, SiN film, or the like. This is called a passivation film, but has the effect of covering the pn junction and reducing the leakage current. This reduces the dark current.

しかし、そのようにpn接合の露出端をInPやSiNで覆った構造であっても、メサエッチング後の端面が汚染されていたり被覆したInP膜の結晶品質のばらつきなどのため電流が漏れる。必ずしも暗電流は改善されず歩留まりは悪い。選択拡散法によるものと同じように逆バイアスを掛けると空乏層が側方へも広がるという欠点もある。それを図3の(2)に示す。pn接合26から下方向と下斜め方向に空乏層32、33が広がっている。空乏層面積が増えるので静電容量が大きくなり遅延時間が増える。   However, even in such a structure in which the exposed end of the pn junction is covered with InP or SiN, current leaks because the end face after mesa etching is contaminated or the crystal quality of the covered InP film varies. The dark current is not necessarily improved and the yield is poor. As with the selective diffusion method, when a reverse bias is applied, the depletion layer also spreads to the side. This is shown in (2) of FIG. Depletion layers 32 and 33 spread from the pn junction 26 downward and diagonally downward. As the depletion layer area increases, the capacitance increases and the delay time increases.

メサエッチングにも問題がある。エッチングにはドライエッチングとウエットエッチングがある。受光層の側辺を削るためのエッチングはどちらでも行うことができる。もしもウエットエッチングによって受光層の周辺部を除去すると、残った部分は台形になりメサという呼び名にふさわしい形になる。エッチング面が傾斜面となるからエッチング量のばらつきによってpn接合面積がばらつくことになる。それが静電容量、光電流のばらつきをもたらす。それは好ましくないことである。   There are also problems with mesa etching. Etching includes dry etching and wet etching. Either etching can be performed to cut the side of the light receiving layer. If the peripheral part of the light receiving layer is removed by wet etching, the remaining part becomes a trapezoid and becomes a shape suitable for the name of mesa. Since the etched surface becomes an inclined surface, the pn junction area varies due to variations in the etching amount. This causes variations in capacitance and photocurrent. That is undesirable.

もしもドライエッチングによって受光層の周辺部を除去すると、エッチング面はきれいに底面に垂直になる。pn接合面積は一定になる。しかし深さ方向にプラズマが飛んで側面が削られるのだから結晶に与えるダメージが大きい。それによって暗電流が増加するということもある。そのようにエピタキシャル成長で作ったn型およびp型受光層をメサエッチングしてInP、SiN膜で覆うという構造にはなお難点がある。そういう訳もあってなお受光素子のp領域はZnなどの熱拡散によって形成されることが多い訳である。   If the periphery of the light-receiving layer is removed by dry etching, the etched surface is cleanly perpendicular to the bottom surface. The pn junction area is constant. However, the plasma is blown in the depth direction and the sides are shaved, so the damage to the crystal is great. As a result, the dark current may increase. There is still a difficulty in the structure in which the n-type and p-type light-receiving layers thus formed by epitaxial growth are mesa-etched and covered with InP and SiN films. For this reason, the p region of the light receiving element is often formed by thermal diffusion of Zn or the like.

本発明は、n型基板の上にn型受光層、p型受光層をエピ成長させて、中央部のp型領域を残して両側の部分にn型不純物を選択拡散して両側部分をn型領域として、ここへ電流が通らないようにした。エッチングして両側部分を落としてしまうのではなくて両側部分にn型不純物を拡散またはイオン注入して両側部分をn型領域としpn接合を中央部の狭い範囲に限局する。それによってpn接合の端からの漏れ電流発生、暗電流を防ぎ、空乏層の肥大を抑制し高速応答性を得るようにした。   In the present invention, an n-type light-receiving layer and a p-type light-receiving layer are epitaxially grown on an n-type substrate, and a n-type impurity is selectively diffused on both sides while leaving a central p-type region. As a mold area, no current was passed here. Rather than etching off both sides, n-type impurities are diffused or ion-implanted into both sides to make both sides n-type regions and the pn junction is limited to a narrow range in the center. As a result, generation of leakage current from the end of the pn junction and dark current are prevented, and enlargement of the depletion layer is suppressed and high-speed response is obtained.

n型基板やn型受光層のn型と区別するために、中央部の受光領域の周辺に拡散、イオン注入で設けたn型領域を「n型遮蔽領域」と呼ぶことにする。n型遮蔽領域は、エピタキシャル成長したものに事後的にn型不純物をドープするものだから層組成は一様でない。p型窓層をn型遮蔽領域にしたものは窓層と同じ組成をもつn型となる。p型受光層、n型受光層をn型遮蔽領域としたものは受光層と同じ組成をもつn型である。n型バッファ層をn型遮蔽領域にしたものはバッファ層の組成をもつn型である。   In order to distinguish from the n-type substrate and the n-type of the n-type light-receiving layer, the n-type region provided by diffusion and ion implantation around the light-receiving region at the center is referred to as an “n-type shielding region”. Since the n-type shielding region is obtained by subsequently doping an epitaxially grown n-type impurity, the layer composition is not uniform. A p-type window layer having an n-type shielding region is an n-type having the same composition as the window layer. The p-type light-receiving layer and the n-type light-receiving layer used as the n-type shielding region are n-type having the same composition as the light-receiving layer. An n-type buffer layer that is an n-type shielding region is an n-type having a buffer layer composition.

もちろんドーパント濃度も一様でない。p型窓層、p型受光層をn型遮蔽領域にした部分は、n型不純物のドナー濃度(N)から元のp型不純物のアクセプタ濃度(N)を差し引いたものが実効的なn型不純物濃度(N’=N−N)となる。p型受光層のアクセプタ濃度Nはかなり大きいので、それを上回る高濃度のn型ドーピング(N>N)をする必要がある。だからn型遮蔽領域のドーピング濃度は1018cm−3以上(N≧1018cm−3)である。n型受光層、n型バッファ層の両側のn型遮蔽層は、元のドナー濃度ND0と遮蔽領域のドーピング量の和になる(N’=N+ND0)。だからn型遮蔽領域のドナー濃度は不均一であるが、遮蔽領域をキャリヤが走るのではないし、それは差し支えないことである。 Of course, the dopant concentration is not uniform. The portion in which the p-type window layer and the p-type light-receiving layer are n-type shielding regions is effectively obtained by subtracting the acceptor concentration (N A ) of the original p-type impurity from the donor concentration (N D ) of the n-type impurity. n-type impurity concentration becomes (n D '= n D -N a). Since p-type acceptor concentration N A of the light receiving layer is significant, it is necessary that the high-concentration n-type doping (N D> N A) above it. Therefore, the doping concentration of the n-type shielding region is 10 18 cm −3 or more (N D ≧ 10 18 cm −3 ). The n-type light shielding layer and the n-type shielding layer on both sides of the n-type buffer layer have the sum of the original donor concentration N D0 and the doping amount of the shielding region (N D ′ = N D + N D0 ). Therefore, the donor concentration in the n-type shield region is non-uniform, but carriers do not run through the shield region, which is acceptable.

pn接合の両側をいったんエッチング除去してからパッシベーション膜を付けるのではない。だから不規則な結晶構造によって境界準位がたくさんできて、それが漏れ電流を引き起こすというようなことはない。同じようにp領域の両側にn型遮蔽領域があるが、それはn型拡散、イオン注入で形成したもので、pn接合の両側を一旦除去してからn型層をエピ成長させる埋め込み型レーザとはまた違う。埋め込み型レーザは発光部を極めて狭いストライプにする必要があるから両側をエッチング除去してn型層をエピ成長させるが本発明はそのような必要はないので埋め込んでいるのではない。n型遮蔽領域は拡散やイオン注入で作るからpn接合の両側が露呈する瞬間はない。だから結晶性が劣化するということはないのである。   The passivation film is not attached after removing both sides of the pn junction once by etching. Therefore, an irregular crystal structure creates a lot of boundary levels, which does not cause leakage current. Similarly, there are n-type shielding regions on both sides of the p-region, which are formed by n-type diffusion and ion implantation, and a buried laser for epi-growing an n-type layer after removing both sides of the pn junction. Is different. Since the buried laser needs to make the light emitting portion have a very narrow stripe, both sides are removed by etching and the n-type layer is epitaxially grown. However, the present invention is not buried because it is not necessary. Since the n-type shielding region is formed by diffusion or ion implantation, there is no moment when both sides of the pn junction are exposed. Therefore, crystallinity does not deteriorate.

本発明は、マスクを通した選択拡散ではなくて、エピタキシャル成長法でpn接合を形成する。だからpn接合の深さにばらつきはなく正確に深さを決めることができる。ウエハ内、ウエハ間でのpn接合の位置のばらつきは少なくなる。そのため従来の不純物選択拡散法の受光素子で問題となっていた感度、容量のばらつきによる低歩留まりを改善することができる。pn接合の側面は高濃度n型の遮蔽領域だから空乏層が伸びない。空乏層厚みはドーパント濃度の逆数の平方根に比例するからである。だから、横方向に空乏層が伸びて静電容量が余分に増大するということはない。pn接合を急峻な階段型にできるため高速応答性に優れる。それは熱拡散法の受光素子に比較しての長所である。   In the present invention, a pn junction is formed by an epitaxial growth method, not by selective diffusion through a mask. Therefore, there is no variation in the depth of the pn junction, and the depth can be determined accurately. The variation in the position of the pn junction within the wafer and between the wafers is reduced. Therefore, it is possible to improve the low yield due to variations in sensitivity and capacitance, which have been a problem with conventional light-receiving elements using the impurity selective diffusion method. Since the side surface of the pn junction is a high-concentration n-type shielding region, the depletion layer does not extend. This is because the thickness of the depletion layer is proportional to the square root of the reciprocal of the dopant concentration. Therefore, the depletion layer extends in the lateral direction and the capacitance does not increase excessively. Since the pn junction can be made into a steep step type, it has excellent high-speed response. This is an advantage over the light diffusion element of the thermal diffusion method.

本発明は、受光領域の周囲を一旦除去するのではなくて、n型不純物の拡散、イオン注入によって周辺n型遮蔽領域を生成する。エピタキシャル成長でpn接合を作りメサエッチングしパッシベーション膜を付ける従来法に比較して、n型遮蔽領域でpn接合を囲むようにした本発明はメサエッチングが不要で、メサエッチングに起因していたpn接合の端からの電流リークの問題がなくなる。そのため暗電流が小さく安定し温度特性も安定する。そのため歩留まりが上昇する。   In the present invention, the periphery of the light receiving region is not temporarily removed, but the peripheral n type shielding region is generated by diffusion of n type impurities and ion implantation. Compared to the conventional method in which a pn junction is formed by epitaxial growth and mesa etching is performed to form a passivation film, the present invention in which the pn junction is surrounded by an n-type shielding region does not require mesa etching, and the pn junction caused by mesa etching This eliminates the problem of current leakage from the end of the. Therefore, the dark current is small and stable, and the temperature characteristics are also stable. Therefore, the yield increases.

受光領域が高濃度のn型不純物を含むn型遮蔽領域によって囲まれるので、バイアス電圧を印加した際に、空乏層が横に広がることを防止することができる。空乏層が横に広がると容量が増えるが本発明では空乏層は横方向へ伸びないので静電容量が増えない。受光素子の高速応答性を上げるためには、受光径を小さくし容量を減らす必要がある。例えば10Gbpsの高速応答を得るためには、従来法では受光径を20μm〜30μmにする必要がある。それでも逆バイアス印加によりpn接合が横方向へ10μm径分ほど伸びるから、実効的に30μm〜40μmの直径になっている。   Since the light receiving region is surrounded by the n-type shielding region containing a high concentration of n-type impurities, it is possible to prevent the depletion layer from spreading laterally when a bias voltage is applied. When the depletion layer spreads laterally, the capacity increases. However, in the present invention, the depletion layer does not extend in the lateral direction, so that the capacitance does not increase. In order to increase the high-speed response of the light receiving element, it is necessary to reduce the light receiving diameter and the capacity. For example, in order to obtain a high-speed response of 10 Gbps, the light receiving diameter needs to be 20 μm to 30 μm in the conventional method. Still, since the pn junction extends about 10 μm in the lateral direction by applying a reverse bias, the diameter is effectively 30 μm to 40 μm.

本発明は逆バイアスを印加しても空乏層が横へ広がらないため受光径を従来の素子よりも10μm程度大きくする(30μm〜40μmφ)ことが可能となる。だから従来法に比べ電極形成(p電極)のプロセスが容易になる。   In the present invention, since the depletion layer does not spread laterally even when a reverse bias is applied, the light receiving diameter can be increased by about 10 μm (30 μm to 40 μmφ) as compared with the conventional device. Therefore, the electrode formation (p-electrode) process becomes easier as compared with the conventional method.

本発明の方法によってInP系、GaAs系、Si系の受光素子を作製できる。
層構造を上から記述する。
InP-based, GaAs-based, and Si-based light-receiving elements can be manufactured by the method of the present invention.
Describe the layer structure from above.

(ア) InP系の場合
p電極: 反射防止膜(上面入射型)
p型InP窓層 :n型InP遮蔽領域
p型InGaAs受光層 :n型InGaAs遮蔽領域
n型InGaAs受光層 :n型InGaAs遮蔽領域
n型InPバッファ層 :n型InP遮蔽領域
n型InP基板
n電極: 反射防止膜(裏面入射型)
上面入射型の場合、反射防止膜は上面に、裏面入射型の場合、反射防止膜は下側にある。
(A) InP system
p-electrode: Anti-reflection film (top-incident type)
p-type InP window layer: n-type InP shielding region
p-type InGaAs absorption layer: n-type InGaAs shielding region
n-type InGaAs light receiving layer: n-type InGaAs shielding region
n-type InP buffer layer: n-type InP shielding region
n-type InP substrate
n-electrode: Antireflection film (back-illuminated type)
In the case of the top incidence type, the antireflection film is on the upper surface, and in the case of the back side incidence type, the antireflection film is on the lower side.

(イ) GaAs系の場合(図9)
p電極: 反射防止膜(上面入射型)
p型GaAs窓層 :n型GaAs遮蔽領域
p型GaInNAs受光層 :n型GaInNAs遮蔽領域
n型GaInNAs受光層 :n型GaInNAs遮蔽領域
n型GaAsバッファ層 :n型GaAs遮蔽領域
n型GaAs基板
n電極: 反射防止膜(裏面入射型)
上面入射型の場合、反射防止膜は上面に、裏面入射型の場合、反射防止膜は下側にある。
(A) In the case of GaAs (FIG. 9)
p-electrode: Anti-reflection film (top-incident type)
p-type GaAs window layer: n-type GaAs shielding region
p-type GaInNAs light-receiving layer: n-type GaInNAs shielding region
n-type GaInNAs light-receiving layer: n-type GaInNAs shielding region
n-type GaAs buffer layer: n-type GaAs shielding region
n-type GaAs substrate
n-electrode: Antireflection film (back-illuminated type)
In the case of the top incidence type, the antireflection film is on the upper surface, and in the case of the back side incidence type, the antireflection film is on the lower side.

本発明によって上面入射型、裏面入射型の受光素子を製造することができる。   According to the present invention, a top-incident type and a back-incident type light receiving element can be manufactured.

[(A).上面入射型の受光素子の製造方法(図4)]
上面入射型の受光素子に本発明を適用した場合の製造工程を図4によって述べる。高濃度ドープn型基板2の上に、n型バッファ層3、n型受光層22、p型受光層23をエピ成長させる(図4(1))。それがエピウエハである。受光層がn型受光層22とp型受光層23に分かれている。境界がpn接合26である。p型は高濃度ドープであるが、n型は低濃度ドープあるいはアンドープとする。n型の方へ特に空乏層を広く伸ばす必要があるからである。図4(2)に示すようにエピ層の上に、拡散マスクとなるSiN膜27をP−CVD法などで形成する。SiNは中央部を残し周辺部をエッチング除去する。素子の中心に開けるのではなくて周辺部に窓を開けるようにする。
[(A). Manufacturing method of top-illuminated light receiving element (FIG. 4)]
A manufacturing process when the present invention is applied to a top-illuminated type light receiving element will be described with reference to FIG. An n-type buffer layer 3, an n-type light-receiving layer 22, and a p-type light-receiving layer 23 are epitaxially grown on the heavily doped n-type substrate 2 (FIG. 4 (1)). That is an epi-wafer. The light receiving layer is divided into an n-type light receiving layer 22 and a p-type light receiving layer 23. The boundary is a pn junction 26. The p-type is heavily doped, while the n-type is lightly doped or undoped. This is because it is necessary to extend the depletion layer widely toward the n-type. As shown in FIG. 4B, a SiN film 27 serving as a diffusion mask is formed on the epi layer by a P-CVD method or the like. SiN etches away the peripheral portion while leaving the central portion. Instead of opening at the center of the element, a window is opened at the periphery.

図4(3)のように周辺部の窓を通し上からn型不純物を熱拡散またはイオン注入する。両側の受光層23、22、バッファ層3の部分がn型遮蔽領域38となる。n型領域はバッファ層3に一部が掛かるようにする。バッファ層3の上境界より下までn型遮蔽領域38があれば良く、基板2の一部にめり込んでいても良い。深さの限定が緩やかでn型ドーパントの制御が容易である。そうして両側がn型になるのでpn接合26が狭くなる。pn接合26の大きさはマスク27で決まるから一定である。その上に反射防止膜(AR膜;Anti-reflection film)として例えばSiON膜を成膜する(図4(4))。これは入射光が反射されず全部入射するための膜である。図4(5)に示すように反射防止膜7の一部をエッチング除去してp電極材料を蒸着し合金化処理しオーミック接合させる。それがp電極8となる。図4(6)のようにn型基板2の裏面にn電極材料を蒸着し加熱し合金化する。これによってオーミック接合したn電極9ができる。   As shown in FIG. 4 (3), n-type impurities are thermally diffused or ion-implanted from above through the peripheral window. The portions of the light receiving layers 23 and 22 and the buffer layer 3 on both sides serve as the n-type shielding region 38. A part of the n-type region is applied to the buffer layer 3. The n-type shielding region 38 may be provided below the upper boundary of the buffer layer 3, and may be recessed into a part of the substrate 2. The limitation of the depth is gentle and the control of the n-type dopant is easy. Thus, since both sides are n-type, the pn junction 26 is narrowed. The size of the pn junction 26 is fixed because it is determined by the mask 27. An SiON film, for example, is formed thereon as an antireflection film (AR film; Anti-reflection film) (FIG. 4 (4)). This is a film for all incident light to be incident without being reflected. As shown in FIG. 4 (5), a part of the antireflection film 7 is removed by etching, a p-electrode material is deposited, alloyed, and ohmic-bonded. That is the p-electrode 8. As shown in FIG. 4 (6), an n-electrode material is deposited on the back surface of the n-type substrate 2 and heated to be alloyed. As a result, an n-electrode 9 in ohmic contact is formed.

上面入射型受光素子の具体的な例を図7に示す。これはn型InP基板2の上に、n型InPバッファ層、n型InGaAs受光層、p型InGaAs受光層をエピタキシャル成長し、SiN膜で中央部を覆い、Snを拡散してn型遮蔽領域38を周囲に作ってp電極8をp型InGaAs受光層に、n電極9をn型InP基板2の裏面に付けたものである。   A specific example of a top-illuminated light receiving element is shown in FIG. This is because an n-type InP buffer layer, an n-type InGaAs light-receiving layer, and a p-type InGaAs light-receiving layer are epitaxially grown on the n-type InP substrate 2, cover the center with an SiN film, and diffuse Sn to form an n-type shielding region 38. The p electrode 8 is attached to the p-type InGaAs light-receiving layer, and the n-electrode 9 is attached to the back surface of the n-type InP substrate 2.

[(B).裏面入射型の受光素子の製造方法(図5)]
裏面入射型の受光素子に本発明を適用した場合の製造工程を図5によって述べる。途中までは上面入射型と同じである。高濃度ドープn型基板2の上に、n型バッファ層3、n型受光層22、p型受光層23をエピ成長させる(図5(1))。それがエピウエハである。受光層がn型受光層22とp型受光層23に分かれている。境界がpn接合26である。p型受光層23は高濃度ドープであるが、n型受光層22は低濃度ドープあるいはアンドープとする。n型の方へ特に空乏層を広く伸ばす必要があるからである。図5(2)に示すようにエピ層の上に、拡散マスクとなるSiN膜27をP−CVD法などで形成する。SiNは中央部を残し周辺部をエッチング除去する。
[(B). Manufacturing method of back-illuminated light receiving element (FIG. 5)]
A manufacturing process when the present invention is applied to a back-illuminated type light receiving element will be described with reference to FIG. It is the same as the top incidence type until halfway. An n-type buffer layer 3, an n-type light-receiving layer 22, and a p-type light-receiving layer 23 are epitaxially grown on the heavily doped n-type substrate 2 (FIG. 5 (1)). That is an epi-wafer. The light receiving layer is divided into an n-type light receiving layer 22 and a p-type light receiving layer 23. The boundary is a pn junction 26. The p-type light receiving layer 23 is highly doped, while the n-type light receiving layer 22 is lightly doped or undoped. This is because it is necessary to extend the depletion layer widely toward the n-type. As shown in FIG. 5B, a SiN film 27 serving as a diffusion mask is formed on the epi layer by a P-CVD method or the like. SiN etches away the peripheral portion while leaving the central portion.

開口部(窓)を素子の中心に開けるのではなくて周辺部に開けるようにする。図5(3)のように、上からn型不純物を熱拡散またはイオン注入する。両側の受光層23、22、バッファ層3の部分がn型遮蔽領域38となる。n型遮蔽領域38はバッファ層3に一部が掛かるようにする。バッファ層3の上境界より下までn型遮蔽領域38があっても良く、基板2に一部にめり込んでいても良い。深さの限定が緩やかでn型ドーパントの制御が容易である。そうして両側がn型になるのでpn接合26が狭くなる。pn接合26の大きさはマスク27で決まるから一定である。マスク27の一部を除去してp型受光層23の上にp電極材料を蒸着し合金化しp電極8とする(図5(4))。n型基板2の裏面にP−CVD法などによって反射防止膜39(AR膜)を形成する(図5(5))。反射防止膜39の周辺部を除去して露呈した基板2面にn電極材料を蒸着する。加熱合金化処理してn電極9とする。基板裏面中央部が入射光が入る開口部となる。   The opening (window) is not opened at the center of the element but at the periphery. As shown in FIG. 5C, n-type impurities are thermally diffused or ion-implanted from above. The portions of the light receiving layers 23 and 22 and the buffer layer 3 on both sides serve as the n-type shielding region 38. The n-type shielding region 38 is partially covered with the buffer layer 3. There may be an n-type shielding region 38 below the upper boundary of the buffer layer 3, or it may be partially embedded in the substrate 2. The limitation of the depth is gentle and the control of the n-type dopant is easy. Thus, since both sides are n-type, the pn junction 26 is narrowed. The size of the pn junction 26 is fixed because it is determined by the mask 27. A part of the mask 27 is removed, and a p-electrode material is deposited on the p-type light-receiving layer 23 and alloyed to form the p-electrode 8 (FIG. 5 (4)). An antireflection film 39 (AR film) is formed on the back surface of the n-type substrate 2 by P-CVD or the like (FIG. 5 (5)). An n-electrode material is deposited on the exposed surface of the substrate 2 by removing the peripheral portion of the antireflection film 39. The n-electrode 9 is formed by heat alloying. The central portion of the back surface of the substrate is an opening for receiving incident light.

図1の受光素子はp型不純物を中央部に熱拡散するものであるが、本発明の受光素子(図4、5)は両側部にn型不純物を拡散するものである。拡散の代わりにイオン注入をしても良い。マスクとしてSiNなどを使うが、それは中央部にn型不純物が入るのを防ぎ中央部は除去しないので、その下のp領域の保護にも有用である。   The light receiving element of FIG. 1 is one that thermally diffuses p-type impurities in the center, but the light receiving element of the present invention (FIGS. 4 and 5) diffuses n-type impurities on both sides. Ion implantation may be performed instead of diffusion. SiN or the like is used as a mask, but it prevents n-type impurities from entering the central portion and does not remove the central portion, and is also useful for protecting the p region under it.

こうしてできたpn接合は両方のn型遮蔽領域38に仕切られる。n型遮蔽領域38は高濃度のn型領域だから逆バイアスしても空乏層が横方向へは伸びない。だから逆バイアスを大きくしても容量が増えない。n型不純物はS、SiまたはSnであり、n型不純物を導入するのはイオン注入でも拡散でもどちらでも良い。拡散であると、高濃度p領域であるp型受光層23のp濃度を上回る高濃度のn型不純物拡散をすることは容易である。イオン注入の場合は加速エネルギーを何段階にも変えて受光層、バッファ層、基板までにいたるn型領域を形成する必要がある。   The pn junction thus formed is partitioned into both n-type shielding regions 38. Since the n-type shielding region 38 is a high-concentration n-type region, the depletion layer does not extend in the lateral direction even if reverse bias is applied. Therefore, increasing the reverse bias does not increase the capacity. The n-type impurity is S, Si, or Sn, and the n-type impurity may be introduced by ion implantation or diffusion. In the case of diffusion, it is easy to perform high-concentration n-type impurity diffusion exceeding the p-concentration of the p-type light-receiving layer 23 that is a high-concentration p region. In the case of ion implantation, it is necessary to change the acceleration energy in several steps to form an n-type region extending from the light receiving layer, the buffer layer, and the substrate.

本発明の実施例(図8)を説明する。
硫黄(S)ドープn型InP基板2の上に、Siドープn型InPバッファ層3(厚み2μm、キャリヤ濃度n=1×1018cm−3)、アンドープInGaAs受光層22(厚み2.5μm、n型、キャリヤ濃度n=1×1015cm−3)、亜鉛(Zn)ドープInGaAs受光層23(厚み1μm、p型、キャリヤ濃度p=5×1018cm−3)、Znドープp型InP窓層(厚み1.5μm、p型、キャリヤ濃度p=5×1018cm−3)をMOVPE法(有機金属気相エピタキシー法)によって順次形成した。これがエピウエハである。層構造を上から書くと次のようになる。
An embodiment of the present invention (FIG. 8) will be described.
On the sulfur (S) -doped n-type InP substrate 2, an Si-doped n-type InP buffer layer 3 (thickness 2 μm, carrier concentration n = 1 × 10 18 cm −3 ), an undoped InGaAs light receiving layer 22 (thickness 2.5 μm, n-type, carrier concentration n = 1 × 10 15 cm −3 ), zinc (Zn) -doped InGaAs light receiving layer 23 (thickness 1 μm, p-type, carrier concentration p = 5 × 10 18 cm −3 ), Zn-doped p-type InP Window layers (thickness 1.5 μm, p-type, carrier concentration p = 5 × 10 18 cm −3 ) were sequentially formed by the MOVPE method (metal organic vapor phase epitaxy method). This is an epi-wafer. The layer structure is written from the top as follows.

p型InP窓層 (1.5μm p=5×1018cm−3
p型InGaAs受光層(1μm p=5×1018cm−3
n型InGaAs受光層(2.5μm n=1×1015cm−3
n型InPバッファ層 (2μm n=1×1018cm−3
p-type InP window layer (1.5 μm p = 5 × 10 18 cm −3 )
p-type InGaAs absorption layer (1 μm p = 5 × 10 18 cm −3 )
n-type InGaAs light-receiving layer (2.5 μm n = 1 × 10 15 cm −3 )
n-type InP buffer layer (2 μm n = 1 × 10 18 cm −3 )

OMVPE法の原料はTMIn(トリメチルインジウム(CHIn)、TEGa(トリエチルガリウム(CGa)、アルシン(AsH)、ホスフィン(PH)、DEZn(ジエチル亜鉛)、モノシラン(SiH)を用いた。成長温度は650℃である。成長圧力は40Torr(5320Pa)であった。 The raw materials of the OMVPE method are TMIn (trimethylindium (CH 3 ) 3 In), TEGa (triethylgallium (C 2 H 5 ) 3 Ga), arsine (AsH 3 ), phosphine (PH 3 ), DEZn (diethyl zinc), monosilane (SiH 4 ) was used. The growth temperature is 650 ° C. The growth pressure was 40 Torr (5320 Pa).

受光領域となる部分は素子の中央直径40μmの部分である。SiN膜で被覆し周囲をエッチング除去し直径40μmの円形のSiNマスクで受光領域の部分だけ覆い、円形受光領域の周囲にn型不純物(例えばSn)を選択拡散させた。これは円形受光領域の周囲をn型にするためである。ここでSnの選択拡散にはSnにInPを600℃で飽和する量の2倍を加えたもの(InP/Sn溶液と呼ぶ)を用いた。受光領域となる部分以外の非受光領域部をSiNマスクで覆ったエピウエハと、InP/Sn溶液を同じ石英管の中に入れ、真空排気し封止する。   The portion that becomes the light receiving region is a portion having a center diameter of 40 μm. Covering with a SiN film, the periphery was removed by etching, and only the light receiving region was covered with a circular SiN mask having a diameter of 40 μm, and n-type impurities (for example, Sn) were selectively diffused around the circular light receiving region. This is to make the periphery of the circular light receiving region n-type. Here, for Sn selective diffusion, Sn added with twice the amount of InP saturated at 600 ° C. (referred to as InP / Sn solution) was used. An epi-wafer whose non-light-receiving region other than the light-receiving region is covered with a SiN mask and an InP / Sn solution are placed in the same quartz tube, and evacuated and sealed.

その石英管を電気炉に入れ600℃に加熱してSnを非受光領域へ拡散させる。拡散は、上面から入ったSnがp型窓層、p型およびn型受光層を経てバッファ層へ至るまで行う。拡散深さは、p型窓層、p型およびn型受光層の厚みの合計より深く、窓層、受光層、バッファ層、基板厚みの合計より浅いということになる。基板は300μm〜600μm程度あり、拡散がそのような長さまで行くことはない。だから拡散深さの上限は殆どないということである。   The quartz tube is put in an electric furnace and heated to 600 ° C. to diffuse Sn into the non-light-receiving region. The diffusion is performed until Sn entering from the upper surface reaches the buffer layer through the p-type window layer, the p-type and the n-type light receiving layer. The diffusion depth is deeper than the sum of the thicknesses of the p-type window layer, the p-type and the n-type light receiving layer, and is shallower than the sum of the thickness of the window layer, the light receiving layer, the buffer layer, and the substrate. The substrate is about 300 μm to 600 μm, and the diffusion does not go to such a length. Therefore, there is almost no upper limit of the diffusion depth.

上の例ではp型窓層、p型およびn型受光層の合計が5.0μmであるから、拡散深さは5.0μm以上であれば良い。バッファ層を越えてInP基板まで到達しても差し支えない。つまり不感受領域を作るためのSnの拡散は5.0μm以上あれば良いので、Sn拡散の厳密な制御は不要である。拡散が容易に行えるということである。従来法のようにZn拡散でp型領域を作ったものはpn接合の深さが受光層の内部のある一定深さになければならず、それが難しく特性がばらついていたのである。本発明は不感受領域(n型遮蔽層)を作るためにn型不純物の拡散をするが、それは拡散深さの下限が決まっているだけで上限は決まっていないから、より容易である。   In the above example, since the total of the p-type window layer, the p-type and the n-type light receiving layer is 5.0 μm, the diffusion depth may be 5.0 μm or more. There is no problem even if it reaches the InP substrate beyond the buffer layer. In other words, Sn diffusion for creating a dead area may be 5.0 μm or more, so that strict control of Sn diffusion is unnecessary. The diffusion is easy. In the case where the p-type region is formed by Zn diffusion as in the conventional method, the depth of the pn junction has to be a certain depth inside the light receiving layer, which is difficult and has varied characteristics. In the present invention, n-type impurities are diffused in order to form a non-sensitive region (n-type shielding layer), but this is easier because only the lower limit of the diffusion depth is determined and the upper limit is not determined.

その後、受光領域上部のSiN膜を除去して、反射防止膜(AR膜)7を形成する。さらに、AR膜の一部をエッチングで除去してp電極8を形成した。AR膜7はSiONからなる。p電極はAuZnからなる。さらにInP基板2の裏面にAuGeNiからなるn電極9を形成した。   Thereafter, the SiN film on the light receiving region is removed, and an antireflection film (AR film) 7 is formed. Further, a part of the AR film was removed by etching to form a p-electrode 8. The AR film 7 is made of SiON. The p electrode is made of AuZn. Further, an n electrode 9 made of AuGeNi was formed on the back surface of the InP substrate 2.

デバイスの構造ができたので、InPウエハを素子単位の多数のチップに切り出した。図8に示すのはチップの状態である。そのチップをパッケージに取り付けリードとp電極をワイヤボンディングによって接続しシールして素子とした。逆バイアスを掛け光を照射せず、暗電流や暗電流の温度特性を測定した。光を照射して感度も測定した。感度は良好であり、容量は小さくばらつきは小さい。また暗電流自体は小さく、そのばらつきも少ない。逆バイアスを強く掛けても空乏層が側方へ広がらず、静電容量の増大もわずかであった。そのため高速応答性に優れる。10Gbps以上の高速動作が可能であった。   Since the device structure was completed, the InP wafer was cut into a large number of chips in element units. FIG. 8 shows the state of the chip. The chip was attached to a package, and a lead and a p-electrode were connected by wire bonding and sealed to form an element. The temperature characteristics of dark current and dark current were measured without applying a reverse bias and irradiating light. The sensitivity was also measured by irradiating light. Sensitivity is good, capacity is small and variation is small. Also, the dark current itself is small and its variation is small. Even when a strong reverse bias was applied, the depletion layer did not spread laterally and the increase in capacitance was slight. Therefore, it has excellent high-speed response. High-speed operation of 10 Gbps or more was possible.

図6に、従来方法(エピ成長によるpn接合をメサエッチングで除去しInP膜で被覆したもの:図2)で製造した受光素子と、本発明の方法(エピ成長によるpn接合をn型不純物の拡散、イオン注入で限定したもの:図4)で製造した受光素子についてウエハについての製品歩留まりを調べた結果を示す。1枚のウエハから多数のチップを切り出すことができるが、その内ある基準を満たす良品の割合を歩留まりという。縦軸は感度、暗電流、静電容量などの基準による製品総合歩留まり(%)を示す。   FIG. 6 shows a light-receiving element manufactured by a conventional method (in which a pn junction formed by epi growth is removed by mesa etching and covered with an InP film: FIG. 2), and a pn junction formed by epi growth using an n-type impurity. What is limited by diffusion and ion implantation: FIG. 4 shows the result of examining the product yield of the wafer for the light receiving element manufactured in FIG. A large number of chips can be cut out from a single wafer, and the ratio of non-defective products that satisfy certain standards is called yield. The vertical axis represents the total product yield (%) based on criteria such as sensitivity, dark current, and capacitance.

左側が従来法によるものである。80%程度のウエハも7枚あったが、50%以下のものが4枚ある。残りは60%〜70%程度の歩留まりである。平均で70%程度の歩留まりである。   The left side is based on the conventional method. There were 7 wafers of about 80%, but there are 4 wafers of 50% or less. The remainder is about 60% to 70% yield. The average yield is about 70%.

右側が本発明によるものである。80%〜90%の間にあるものが5枚あり90%以上のものが8枚ある。平均の歩留まりは約90%である。両者を比較すると本発明の製造方法の方が歩留まりが高いということが分かる。   The right side is according to the present invention. There are 5 sheets between 80% and 90% and 8 sheets over 90%. The average yield is about 90%. When both are compared, it can be seen that the production method of the present invention has a higher yield.

マスクを用いたZnの選択拡散によって皿型のp領域を作製する従来例にかかる受光素子の製造方法を示す工程図。Process drawing which shows the manufacturing method of the light receiving element concerning the prior art example which produces a dish-shaped p area | region by selective diffusion of Zn using a mask. n型受光層の上にp型受光層を成長させて境界面をpn接合としp領域の両側をメサエッチング除去しInP、SiNなどのパッシベーション膜で露呈したpn接合端、受光層側面やバッファ層の上を被覆する従来例にかかる受光素子の製造方法を示す工程図。A p-type light-receiving layer is grown on the n-type light-receiving layer, a boundary surface is formed as a pn junction, both sides of the p region are removed by mesa etching, and a pn junction end exposed by a passivation film such as InP or SiN, a side surface of the light-receiving layer, and a buffer layer Process drawing which shows the manufacturing method of the light receiving element concerning the prior art example which coat | covers the top. 従来例の方法で製造した受光素子に逆バイアスを加えると、空乏層が側方へも広がり容量が増えるということを説明するための受光素子断面図。図3(1)が選択拡散による受光素子の場合を示し、図3(2)がエピ成長とパッシベーション膜による場合を示す。FIG. 6 is a light-receiving element cross-sectional view for explaining that when a reverse bias is applied to a light-receiving element manufactured by a conventional method, a depletion layer spreads sideways and a capacitance increases. FIG. 3A shows the case of a light receiving element by selective diffusion, and FIG. 3B shows the case of epi growth and a passivation film. 本発明の方法を用いて上面入射型の受光素子を作製する場合の工程図。FIG. 6 is a process diagram in the case of manufacturing a top-illuminated light receiving element using the method of the present invention. 本発明の方法を用いて裏面入射型の受光素子を作製する場合の工程図。Process drawing in the case of manufacturing a back-illuminated light receiving element using the method of the present invention. 従来例の方法(エピ成長pn接合、メサエッチング、パッシベーション膜)によって受光素子を作った場合の感度、暗電流、容量を基準とした製品歩留まりと、本発明の方法で受光素子を作った場合の感度、暗電流、容量を基準とした製品歩留まりを測定した結果を示すグラフ。Product yield based on sensitivity, dark current, and capacitance when a light receiving element is made by the conventional method (epi-grown pn junction, mesa etching, passivation film), and when the light receiving element is made by the method of the present invention The graph which shows the result of measuring the product yield based on sensitivity, dark current, and capacity. 本発明の一つの具体的なInP系受光素子構造を示す層構造図。FIG. 2 is a layer structure diagram showing one specific InP-based light receiving element structure of the present invention. 本発明の実施例にかかるInP系上面入射型受光素子の層構造図。FIG. 3 is a layer structure diagram of an InP-based top-incident light receiving element according to an example of the present invention. 本発明の一つの具体的なGaAs系受光素子構造を示す層構造図。FIG. 2 is a layer structure diagram showing one specific GaAs-based light receiving element structure of the present invention.

符号の説明Explanation of symbols

2 高濃度ドープn型基板
3 n型バッファ層
4 n型受光層
5 SiN膜
6 p領域
7 反射防止膜(AR膜)
8 p電極
9 n電極
20 窓
22 n型受光層
23 p型受光層
25 縦型pn接合
26 横型pn接合
27 SiN膜
28 バッファ層の中間部上面
29 側面
30 パッシベーション膜
32 下空乏層
33 横空乏層
38 n型遮蔽領域(例えばSnを拡散させる)
39 反射防止膜(AR膜)
2 Highly doped n-type substrate
3 n-type buffer layer
4 n-type absorption layer
5 SiN film
6 p region
7 Antireflection film (AR film)
8 p-electrode
9 n electrode
20 windows
22 n-type absorption layer
23 p-type absorption layer
25 Vertical pn junction
26 Horizontal pn junction
27 SiN film 28 Upper surface 29 in the middle of the buffer layer Side surface
30 Passivation film
32 Lower depletion layer
33 Horizontal depletion layer
38 n-type shielding region (for example, Sn is diffused)
39 Antireflection film (AR film)

Claims (13)

中央部は受光領域であってn型半導体基板の上に、n型バッファ層と、n型受光層と、p型受光層がエピタキシャル成長法によって形成され、受光領域の周囲は、拡散またはイオン注入で形成された受光層内のp型不純物濃度以上のn型不純物濃度をもつn型遮蔽領域によって取り囲まれており、n型半導体基板の底面にn電極を形成し、p型受光層にはp電極を形成してある事を特徴とする受光素子。 The central portion is a light receiving region, and an n-type buffer layer, an n-type light receiving layer, and a p-type light receiving layer are formed on the n-type semiconductor substrate by epitaxial growth, and the periphery of the light receiving region is formed by diffusion or ion implantation. The formed light receiving layer is surrounded by an n type shielding region having an n type impurity concentration equal to or higher than the p type impurity concentration, an n electrode is formed on the bottom surface of the n type semiconductor substrate, and the p type light receiving layer has a p electrode. A light receiving element characterized by being formed. 周辺部のn型遮蔽領域のn型不純物濃度が1×1018cm−3以上である事を特徴とする請求項1に記載の受光素子。 2. The light receiving element according to claim 1, wherein the n-type impurity concentration of the peripheral n-type shielding region is 1 × 10 18 cm −3 or more. p電極はp型受光層の上面の一部に形成され残りのp型受光層は透明な反射防止膜で被覆され、検出すべき光信号は反射防止膜の側から入射する上面入射型である事を特徴とする請求項1又は2に記載の受光素子。 The p-electrode is formed on a part of the upper surface of the p-type light-receiving layer, the remaining p-type light-receiving layer is covered with a transparent anti-reflection film, and the optical signal to be detected is a top-incident type that enters from the anti-reflection film side. The light receiving element according to claim 1, wherein: p型受光層とp電極の間にp型、n型受光層よりもバンドギャップの広い半導体からなるp型窓層があることを特徴とする請求項3に記載の受光素子。 4. The light receiving element according to claim 3, wherein a p type window layer made of a semiconductor having a wider band gap than the p type and n type light receiving layers is provided between the p type light receiving layer and the p electrode. n電極はn型基板の裏面の一部に形成され残りの基板裏面には透明の反射防止膜が形成され検出すべき光信号は基板の裏面の反射防止膜を通って入射する裏面入射型であることを特徴とする請求項1又は2に記載の受光素子。 The n-electrode is formed on a part of the back surface of the n-type substrate, and a transparent antireflection film is formed on the back surface of the remaining substrate. The optical signal to be detected is a back-illuminated type in which the light signal to be detected enters through the antireflection film on the back surface of the substrate. The light receiving element according to claim 1, wherein the light receiving element is provided. 基板はn型InPで、バッファ層はn型InPで、受光層はn型InGaAsとp型InGaAsである事を特徴とする請求項1〜5の何れかに記載の受光素子。 6. The light receiving element according to claim 1, wherein the substrate is n-type InP, the buffer layer is n-type InP, and the light-receiving layer is n-type InGaAs and p-type InGaAs. 基板はn型GaAsで、バッファ層はn型GaAsで、受光層はn型GaInNAsとp型GaInNAsである事を特徴とする請求項1〜5の何れかに記載の受光素子。 6. The light receiving element according to claim 1, wherein the substrate is n-type GaAs, the buffer layer is n-type GaAs, and the light-receiving layer is n-type GaInNAs and p-type GaInNAs. p型受光層のp型不純物はZnであり、n型基板とn型遮蔽領域のn型不純物はS、SiまたはSnであることを特徴とする請求項1〜7の何れかに記載の受光素子。 8. The light receiving device according to claim 1, wherein the p type impurity of the p type light receiving layer is Zn, and the n type impurity of the n type substrate and the n type shielding region is S, Si or Sn. element. n型半導体基板上に、n型バッファ層、アンドープまたは低濃度ドープn型受光層、p型受光層をエピタキシャル成長させ、中央部は受光領域として、n型、p型受光層、n型バッファ層を残しておき、中央の受光領域を取り囲む周辺部にp型受光層のp型不純物濃度より高濃度のn型不純物を選択拡散またはイオン注入法によって導入し、p型受光層の上にはp電極を、n型半導体基板の裏面にはn電極を形成することを特徴とする受光素子の製造方法。 An n-type buffer layer, an undoped or lightly doped n-type light-receiving layer, and a p-type light-receiving layer are epitaxially grown on an n-type semiconductor substrate, and an n-type, p-type light-receiving layer, and n-type buffer layer are formed as a light-receiving region at the center. The n-type impurity having a concentration higher than the p-type impurity concentration of the p-type light-receiving layer is introduced into the peripheral portion surrounding the central light-receiving region by selective diffusion or ion implantation, and a p-electrode is formed on the p-type light-receiving layer. A method for manufacturing a light receiving element, comprising forming an n-electrode on the back surface of the n-type semiconductor substrate. 半導体基板はn型InPで、受光層はn型InGaAs、p型InGaAsであり、受光層のうちn型受光層はアンドープまたはSi或いはSをドーパントとしてエピタキシャル成長したn型InGaAsで、p型受光層はZnをドーパントとしてエピタキシャル成長したp型InGaAsである事を特徴とする請求項9に記載の受光素子の製造方法。 The semiconductor substrate is n-type InP, the light-receiving layer is n-type InGaAs, and p-type InGaAs. Of the light-receiving layers, the n-type light-receiving layer is undoped or n-type InGaAs epitaxially grown using Si or S as a dopant, and the p-type light-receiving layer is The method for manufacturing a light receiving element according to claim 9, wherein the light receiving element is p-type InGaAs epitaxially grown using Zn as a dopant. 半導体基板はn型GaAsで、受光層はn型GaInNAs、p型GaInNAsであり、受光層のうちn型受光層はアンドープまたはSiあるいはSをドーパントとしてエピタキシャル成長したn型GaInNAsで、p型受光層はZnをドーパントとしてエピタキシャル成長したp型GaInNAsである事を特徴とする請求項9に記載の受光素子の製造方法。 The semiconductor substrate is n-type GaAs, the light-receiving layer is n-type GaInNAs, and p-type GaInNAs. Of the light-receiving layers, the n-type light-receiving layer is undoped or epitaxially grown using Si or S as a dopant, and the p-type light-receiving layer is The method of manufacturing a light receiving element according to claim 9, wherein the light receiving element is p-type GaInNAs epitaxially grown using Zn as a dopant. 受光領域の周囲を取り囲む周辺部のn型遮蔽領域は、SnにInP結晶を拡散する温度での飽和量以上に加えたものを500℃以上に加熱した際に生じる気体からのSnの拡散によって作製することを特徴とする請求項10に記載の受光素子の製造方法。 The peripheral n-type shielding region surrounding the light-receiving region is produced by diffusion of Sn from a gas generated when heating to 500 ° C. or higher is added to Sn in excess of the saturation amount at the temperature at which the InP crystal is diffused. The method of manufacturing a light receiving element according to claim 10. 受光領域の周囲を取り囲むn型遮蔽領域は、SnまたはSi又はSをイオン注入によって作製することを特徴とする請求項10又は11に記載の受光素子の製造方法。

12. The method for manufacturing a light receiving element according to claim 10, wherein the n-type shielding region surrounding the periphery of the light receiving region is formed by ion implantation of Sn, Si, or S.

JP2004072221A 2004-03-15 2004-03-15 Photo detector and its manufacturing method Pending JP2005260118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072221A JP2005260118A (en) 2004-03-15 2004-03-15 Photo detector and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072221A JP2005260118A (en) 2004-03-15 2004-03-15 Photo detector and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005260118A true JP2005260118A (en) 2005-09-22

Family

ID=35085529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072221A Pending JP2005260118A (en) 2004-03-15 2004-03-15 Photo detector and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005260118A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047587A (en) * 2006-08-11 2008-02-28 Sumitomo Electric Ind Ltd Optical detector
WO2008026536A1 (en) * 2006-08-29 2008-03-06 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
WO2009014076A1 (en) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. Light-receiving device
WO2011027624A1 (en) * 2009-09-07 2011-03-10 住友電気工業株式会社 Group iii-v compound semiconductor light receiving element, method for manufacturing group iii-v compound semiconductor light receiving element, light receiving element, and epitaxial wafer
JP2011060853A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Group iii-v compound semiconductor light receiving element and method of manufacturing the same
JP2011060855A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Light receiving element and epitaxial wafer
JP2011109146A (en) * 2011-03-01 2011-06-02 Sumitomo Electric Ind Ltd Semiconductor light-receiving element of group iii-v compound
JP2014064009A (en) * 2013-10-15 2014-04-10 Sumitomo Electric Ind Ltd Light-receiving element and epitaxial wafer
JP2015043466A (en) * 2014-12-01 2015-03-05 住友電気工業株式会社 Semiconductor light receiving element of group iii-v compound
WO2017199501A1 (en) * 2016-05-16 2017-11-23 ソニー株式会社 Light receiving element, optical communication device, and method for manufacturing light receiving element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047587A (en) * 2006-08-11 2008-02-28 Sumitomo Electric Ind Ltd Optical detector
WO2008026536A1 (en) * 2006-08-29 2008-03-06 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
JP2008060161A (en) * 2006-08-29 2008-03-13 Hamamatsu Photonics Kk Optical detector, and method of manufacturing optical detector
US8263966B2 (en) 2006-08-29 2012-09-11 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
CN101506998B (en) * 2006-08-29 2012-06-27 浜松光子学株式会社 Photodetector and method for manufacturing photodetector
US8101940B2 (en) 2006-08-29 2012-01-24 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
US8058642B2 (en) 2007-07-23 2011-11-15 Sumitomo Electric Industries, Ltd. Light-receiving device
WO2009014076A1 (en) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. Light-receiving device
JP2011060853A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Group iii-v compound semiconductor light receiving element and method of manufacturing the same
JP2011060855A (en) * 2009-09-07 2011-03-24 Sumitomo Electric Ind Ltd Light receiving element and epitaxial wafer
WO2011027624A1 (en) * 2009-09-07 2011-03-10 住友電気工業株式会社 Group iii-v compound semiconductor light receiving element, method for manufacturing group iii-v compound semiconductor light receiving element, light receiving element, and epitaxial wafer
US8866199B2 (en) 2009-09-07 2014-10-21 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
US9159853B2 (en) 2009-09-07 2015-10-13 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
JP2011109146A (en) * 2011-03-01 2011-06-02 Sumitomo Electric Ind Ltd Semiconductor light-receiving element of group iii-v compound
JP2014064009A (en) * 2013-10-15 2014-04-10 Sumitomo Electric Ind Ltd Light-receiving element and epitaxial wafer
JP2015043466A (en) * 2014-12-01 2015-03-05 住友電気工業株式会社 Semiconductor light receiving element of group iii-v compound
WO2017199501A1 (en) * 2016-05-16 2017-11-23 ソニー株式会社 Light receiving element, optical communication device, and method for manufacturing light receiving element
JPWO2017199501A1 (en) * 2016-05-16 2019-03-14 ソニー株式会社 Light receiving element, optical communication device, and method for manufacturing light receiving element
US10937919B2 (en) 2016-05-16 2021-03-02 Sony Corporation Light receiving element, optical communication device, and method for manufacturing a light receiving element
JP7006588B2 (en) 2016-05-16 2022-01-24 ソニーグループ株式会社 Manufacturing method of light receiving element, optical communication device, and light receiving element

Similar Documents

Publication Publication Date Title
CA2050362C (en) Photo-sensing device
US4442444A (en) Avalanche photodiodes
US7345325B2 (en) Avalanche photodiode
US6489635B1 (en) Epitaxially grown p-type diffusion source for photodiode fabrication
US4840916A (en) Process for fabricating an avalanche photodiode
US7855400B2 (en) Semiconductor light detecting element and method for manufacturing the semiconductor light detecting element
US4794439A (en) Rear entry photodiode with three contacts
US8105866B2 (en) Method of making PIN-type photo detecting element with a controlled thickness of window semiconductor layer
US5304824A (en) Photo-sensing device
JP2005260118A (en) Photo detector and its manufacturing method
US5942771A (en) Semiconductor photodetector
US5315148A (en) Photo-sensing device
US6756613B2 (en) Shallow-mesa structure for planar PIN and APD photodiodes
JPH0582829A (en) Semiconductor light receiving element
JP2004319684A (en) Semiconductor light receiving device and its manufacturing method
JPH05291605A (en) Semiconductor photodetector
KR970009732B1 (en) Fabrication method of planar pin photodiode
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
JPH05102517A (en) Avalanche photodiode and its manufacturing method
JPH0722641A (en) Photodetector
JPS6248079A (en) Semiconductor light receiving element
JPH0758309A (en) Photo-electronic integrated circuit
KR940009594B1 (en) Fabricating method of pin diode for optic-communication
KR940007592B1 (en) Manufacturing method of plane-typed pin photo-diode
KR20000025908A (en) Method for manufacturing planar pin photodiode using ion implanting