JP2005257527A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2005257527A
JP2005257527A JP2004070667A JP2004070667A JP2005257527A JP 2005257527 A JP2005257527 A JP 2005257527A JP 2004070667 A JP2004070667 A JP 2004070667A JP 2004070667 A JP2004070667 A JP 2004070667A JP 2005257527 A JP2005257527 A JP 2005257527A
Authority
JP
Japan
Prior art keywords
circuit
chip
power supply
test
microcomputer chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004070667A
Other languages
English (en)
Inventor
Sei Yamamoto
聖 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004070667A priority Critical patent/JP2005257527A/ja
Priority to US11/059,667 priority patent/US7802141B2/en
Publication of JP2005257527A publication Critical patent/JP2005257527A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

【課題】 マイクロコンピュータチップを構成する素子に対してストレスを付加する試験を簡単に実施することができる半導体装置を提供する。
【解決手段】 同一の集積回路基板上に搭載されるマイコンチップ2に供給する動作用電源を生成する電源ICチップ3に、動作用電源電圧VDDを昇圧する過電圧印加回路4を備え、マイコンチップ2を構成する素子に過電圧ストレスを与えて試験を行う。
【選択図】 図1

Description

本発明は、マイクロコンピュータチップと、このマイクロコンピュータチップに動作用電源を供給する電源回路チップとを同一の集積回路基板上に搭載した半導体装置に関する。
ストレス付加試験の一種であるバーンインテストは、マイクロコンピュータのような半導体装置を製造した場合、出荷前に、通常の使用状態よりも高温となる環境下において、回路に通常よりも高い電源電圧を印加した状態で所定時間動作を行なわせ、その過程によって故障が発生した製品を除去することで(スクリーニング)、初期故障率を減少させることを目的とするものである。
例えば、特許文献1には、半導体装置としてのチップがウエハ上に形成された状態で各チップ毎にプロービング(針合わせ)を行い、高電圧を印加してバーンインテストを行う方式が開示されている。斯様な方式では、チップ上の微小な電極にプロービングする必要があるため操作性が悪く、ウエハプローバやその他の治具等に精度が要求されることから設備費が非常に高い。また、プロービングは、所定の本数以上になるとプローブの圧力が確保できなくなるため、一度に処理できるチップの数は限定されてしまう。そして、バーンインテストにはある程度の時間が必要であるから、総じて、その実施コストは非常に高いものとなっていた。
特開平9−17832号公報
本発明は上記事情に鑑みてなされたものであり、その目的は、マイクロコンピュータチップを構成する素子に対してストレスを付加する試験を簡単に実施することができる半導体装置を提供することにある。
請求項1記載の半導体装置によれば、同一の集積回路基板上に搭載されるマイクロコンピュータチップに供給する動作用電源を生成する電源回路に、前記マイクロコンピュータチップを構成する素子にストレスを付加した状態で機能テストを行うためのテスト用回路を備える。斯様に構成すれば、従来とは異なり、ベアチップ1つずつにプロービングして試験を行う必要がなくなるので、マイクロコンピュータチップのストレス付加試験をベアチップで容易に行うことができるようになる。従って、ストレス付加試験に要するコストを大きく抑制することができる。
請求項2記載の半導体装置によれば、テスト用回路として動作用電源電圧を昇圧する過電圧印加回路を備えるので、マイクロコンピュータチップを構成する素子に過電圧ストレスを与えて試験を行うことができる。
請求項3記載の半導体装置によれば、テスト用回路としてスタンバイリーク判定を行うための判定回路を備えるので、マイクロコンピュータチップを構成する素子にストレスを与えた結果、各素子の機能が正常であるか否かを、スタンバイリーク判定を行って確認することができる。
請求項4記載の半導体装置によれば、テスト用回路として、静止状態電源電流を測定するための測定回路を備えるので、マイクロコンピュータチップを構成する素子にストレスを与えた結果、各素子の機能が正常であるか否かを、静止状態電源電流量を測定して確認することができる。
(第1実施例)
以下、本発明を、車両用のECU(Electronic Control Unit)であるベアチップ実装ECUに適用した場合の第1実施例について図1及び図2を参照して説明する。図2は、ECUの全体構成を示すものである。ECU(半導体装置)1は、ECUの主要な演算処理を行なうマイクロコンピュータ(マイコン)チップ2と、そのマイコンチップ2に電源VDDを供給する電源ICチップ(電源回路チップ)3、及び特に図示していない入出力その他の処理を行なうチップ部品や印刷部品などにより構成されている。
電源ICチップ3は、外部より供給される電源VCCよりマイコンチップ2に供給するための電源VDD(例えば、5V)を生成して出力するようになっている。また、電源ICチップ3は、外部より与えられる制御信号に応じてマイコンチップ1にスタンバイ信号STBYを出力する。マイコンチップ1は、スタンバイ信号が与えられると回路動作を停止するように構成されている。
図1は、電源ICチップ3に内蔵されている過電圧印加回路(テスト用回路)4の構成を示すものである。基準電圧発生部5は、電源VCCを受けて基準電圧を生成出力するもので、その出力端子は抵抗6及び7の直列回路を介してグランドに接続されている。また、抵抗6及び7の共通接続点は、オペアンプ8の非反転入力端子に接続されている。抵抗6には、PチャネルMOSFET9が並列に接続されており、そのFET9のゲートは、制御ロジック部10を介して制御信号の入力端子に接続されている。
PNPトランジスタ11のエミッタは電源VCCに接続されていると共に、抵抗12を介してベースに接続されており、コレクタは、抵抗13及び14並びにNチャネルMOSFET28の直列回路を介してグランドに接続されている。また、トランジスタ11のベースは、NPNトランジスタ15のコレクタに接続されている。
抵抗13及び14の共通接続点は、オペアンプ8の反転入力端子に接続されており、オペアンプ8の出力端子はトランジスタ15のベースに接続されている。そして、トランジスタ15のエミッタはグランドに接続されている。そして、トランジスタ11のコレクタが、マイコンチップ2に対する電源VDDの出力端子VDDOUTとなっている。
次に、本実施例の作用について説明する。マイコンチップ2を通常モードで動作させる場合には、制御信号をロウレベル(インアクティブ)に設定する。この時、制御ロジック部10はFET9をOFFにするので、オペアンプ8の非反転入力端子には、抵抗6及び7による分圧電位が与えられる。また、FET28は、後述する第2実施例において使用されるものであり、本実施例において過電圧印加回路4を動作させる場合はONに設定される(故に、過電圧印加回路4のみを動作させる場合はFET28を削除しても良い)。従って、オペアンプ8は、前記分圧電位と反転入力端子における分圧電位との差に応じた信号を出力することで、トランジスタ15をON状態に維持している。
そして、トランジスタ15はベース電流に応じたコレクタ電流を流すので、トランジスタ11を介して電源VCCよりコレクタ側に供給される電流は、トランジスタ15のコレクタ電流で規定される。以上の状態におけるトランジスタ11のコレクタ電位が、5Vに定まるように調整されている。
ここで、ECU1についてバーンインテストを行う場合には、マイコンチップ1に通常よりも高い電源電圧を印加した状態で高温槽中における高温雰囲気下(例えば、125℃)に晒し、例えば20時間程度連続で動作を行なうようにする。その場合に応じて制御信号をハイレベル(アクティブ)に設定すると、制御ロジック部10はFET9のゲートをロウレベルにしてFET9をONにするので、抵抗6は短絡され、オペアンプ8の非反転入力端子には基準電圧発生回路5が出力する基準電圧がそのまま印加されることになる。
すると、非反転入力端子と反転入力端子との電位差が大きくなるのでオペアンプ8の出力信号レベルは上昇し、トランジスタ11はより多くの電流を流す。その結果、トランジスタ11のコレクタ電位は、6〜7Vに上昇するように設定されている。そして、マイコンチップ1に対して、6〜7Vの過電圧を印加した状態でバーンインテストを実施する。尚、バーンインテストの種類は、スタティック,ダイナミック,モニターの何れであっても良い。
以上のように本実施例によれば、同一の集積回路基板上に搭載されるマイコンチップ2に動作用電源を供給する電源ICチップ3に、動作用電源電圧VDDを昇圧する過電圧印加回路4を備えるので、マイコンチップ2を構成する素子に過電圧ストレスを与えて試験を行うことができる。そして、従来とは異なり、マイコンのベアチップ1つずつにプロービングして試験を行う必要がなくなるので、バーンインテストをベアチップで容易に行うことができるようになる。従って、テストに要するコスト及び時間を大きく抑制することができる。
(第2実施例)
図3は本発明の第2実施例であり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。第2実施例は、電源ICチップ3にスタンバイリーク判定回路を内蔵して構成したものである。図3は、そのスタンバイリーク判定回路の構成を示すものである。スタンバイリーク判定回路(以下、単にリーク判定回路と称す,テスト用回路)21は、カレントミラー回路22と、コンパレータ23とを中心として構成されている。
カレントミラー回路22は、PNPトランジスタ22a,22bによって構成され、それらのエミッタは、図示しない定電圧回路により生成された定電圧源に接続されている。そして、両者のベースは、トランジスタ22a側のコレクタに共通に接続されている。また、トランジスタ22aのコレクタは、スイッチ24及び電流源25を介してグランドに接続されている。一方、トランジスタ22bのコレクタは、抵抗26及び27並びにNチャネルFET28の直列回路を介してグランドに接続されていると共に、トランジスタ11のコレクタ及びコンパレータ23の反転入力端子にも接続されている。
また、定電圧源とグランドとの間には、抵抗29及び30の直列回路が接続されており、コンパレータ23の非反転入力端子はそれらの共通接続点に接続されている。そして、コンパレータ23の出力端子より、スタンバイリーク電流の判定結果を示す信号が出力されるようになっている。
また、マイコンチップ2には、電源供給端子にバイパスコンデンサ31が接続されているが、そのコンデンサ31のグランド側端子は、NチャネルFET32を介してグランドに接続されている。尚、コンデンサ31以外にも、グランドに電流を流す素子がマイコンチップ2に外付けされている場合は、同様にしてグランド側にFETを配置しておく。そして、リーク判定回路21は判定制御ロジック部33を備えている。判定制御ロジック部33は、外部より与えられる判定制御信号に応じてスイッチ24やFET28,32のON,OFFを制御するものである。
また、通常動作時においては、スイッチ24はOFF,FET28,32はONとなるように制御されている。ここで、スイッチ24は、電流源25をON/OFFさせるものとして概念的に示したものであり、例えば、アナログスイッチでも良い。また、スイッチ24と電流源25とを合わせた具体構成例として、グランド側にNPNトランジスタで構成したカレントミラー回路を設け、そのミラー対の一方側のベースを制御することでON/OFFさせても良い。
次に、第2実施例の作用について説明する。判定制御ロジック部33は、外部より与えられる判定制御信号がアクティブになると、各部を以下のように制御する。
(1)マイコン:スタンバイ
マイコンチップ2にSTBY信号を出力してスタンバイモードに設定する。
(2)トランジスタ11:OFF
マイコンチップ2に対する電源VDDの供給を停止する。尚、電源VDDの供給を停止するには、例えば、図1に示す過電圧印加回路4について以下のような構成を追加して制御を行えば良い。
(a)抵抗7にも並列にFETを接続してそのFETをONさせる。
(b)抵抗7とグランドとの間にFETを挿入してそのFETをOFFさせる。
この場合、(a)におけるリーク電流経路も断つことができるためより望ましい。
(c)オペアンプ8の出力端子とグランドとの間にNPNトランジスタを配置して、
そのトランジスタをONさせる。
(3)FET28,32:OFF
抵抗(出力帰還抵抗)13及び14,バイパスコンデンサ31等をグランドより切り離す。
(4)スイッチ24:ON
カレントミラー回路22を動作させ、トランジスタ22bを介してリーク判定値に相当する定電流をマイコンチップ2に供給する。
即ち、以上のように設定を行うと、マイコンチップ2におけるリーク電流がカレントミラー回路22によって供給される電流を上回ればVDDOUT端子の電位は低下して行く。従って、前記電位がコンパレータ23の非反転入力端子の電位を下回ると、コンパレータ23はハイレベルの信号を出力することで、判定結果を「NG」とする。
尚、以上のスタンバイリーク判定は、例えば、過電圧印加回路4によりマイコンチップ2に過電圧を印加してバーンインテストを行った後に実施する。また、バーンインテストの実行中に適当な間隔で実施しても良い。
以上のように第2実施例によれば、電源ICチップ3にスタンバイリーク判定回路21を備えたので、マイコンチップ2に過電圧ストレスを与えた結果、各素子の機能が正常であるか否かをスタンバイリーク電流の大小を判定して確認することができる。
(第3実施例)
図4は本発明の第3実施例である。第3実施例は、電源ICチップ3にIDDQ(静止状態電源電流)測定回路を内蔵して構成したものである。図4は、そのIDDQ測定回路(テスト用回路)41の構成を示すものである。基準電圧発生部42は、電源VCCを受けて基準電圧を生成出力するもので、その出力端子は抵抗43及び44の直列回路を介してグランドに接続されている。また、抵抗43及び44の共通接続点は、コンパレータ45の反転入力端子に接続されている。
コンパレータ45の非反転入力端子は、抵抗46を介してグランドに接続されていると共に、マイコンチップ2のグランド端子VSSに接続されている。そして、コンパレータ45の出力端子は判定ロジック部47の入力端子に接続されている。その判定ロジック部47には、測定制御ロジック部48より出力されるテスト信号が与えられている。判定ロジック部47は、入力される信号に基づいてIDDQ測定に対する判定結果を示す信号を外部に出力するものである。
測定制御ロジック部48は、外部より与えられる測定制御信号がアクティブになると、前記テスト信号をマイコンチップ2及び判定ロジック部47に出力する。また、マイコンチップ2のグランド端子VSSとグランドとの間にはNチャネルMOSFET49が接続されており、FET49のゲートには、測定制御ロジック部48によってゲート信号が出力される。尚、FET49は、マイコンチップ2の通常動作時にはONとなるように制御される。
次に、第3実施例の作用について説明する。測定制御ロジック48は、外部より与えられる測定制御信号がアクティブになると、FET49をOFFにする。そして、マイコンチップ2にテスト信号を出力して動作させ、その動作により消費される電流を抵抗46により電圧に変換する。
コンパレータ45は、抵抗43及び44による分圧電位と、抵抗46の端子電圧とを比較する。そして、マイコンチップ2の内部回路に欠陥などがあることにより、消費電流が異常に大きな値を示すと抵抗46の端子電圧は大きく上昇する。従って、その場合、コンパレータ45の出力信号レベルはロウからハイに反転する。
また、判定ロジック部47は、テスト信号の出力タイミングに同期してコンパレータ45の出力信号を参照し、テスト信号レベルが変化しない期間においてコンパレータ45の出力信号レベルがハイになっていれば、判定結果「NG」を示す信号を外部に出力する。尚、このIDDQ測定についても、第2実施例におけるスタンバイリーク判定と同様に、過電圧印加回路4によりマイコンチップ2に過電圧を印加してバーンインテストを行った後に実施しても良いし、バーンインテストの実行中に適当な間隔で実施しても良い。
以上のように第3実施例によれば、電源ICチップ3に、IDDQ測定回路41を備えたので、マイコンチップ2に過電圧ストレスを与えた結果、各素子の機能が正常であるか否かを静止状態電源電流を測定して確認することができる。
本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、次のような変形または拡張が可能である。
テスト用回路は、例示したものに限ることなく、マイコンチップを構成する素子にストレスを付加するための回路、そのストレスを付加した結果、素子の状態を判定するための回路であればどのようなものでも良い。
従って、過電圧印加回路4に限ることなく、その他例えば、温度ストレスや静電気ストレスを印加する回路などでも良い。
また、スタンバイリーク判定回路21やIDDQ測定回路41などを必ずしも設ける必要はなく、モニターバーンインテストを行うことで素子の状態判定を行っても良い。
実施例の半導体装置は,Bi−CMOS,又はBi−CDMOSプロセスで構成されているが、CMOS,バイポーラプロセスによって形成しても良い。
車両用のECUに限ることなく、マイクロコンピュータチップと同一の集積回路基板上に電源回路チップが搭載される半導体装置であれば適用が可能である。
本発明を、車両用のECUに適用した場合の第1実施例であり、ECUの全体構成を示す図 電源ICチップに内蔵される過電圧印加回路の構成を示す図 本発明の第2実施例であり、電源ICチップに内蔵されるスタンバイリーク判定回路の構成を示す図 本発明の第3実施例であり、電源ICチップに内蔵されるIDDQ測定回路の構成を示す図
符号の説明
図面中、1はECU(半導体装置)、2はマイクロコンピュータチップ、3は電源ICチップ(電源回路チップ)、4は過電圧印加回路(テスト用回路)、21はスタンバイリーク判定回路(テスト用回路)、41はIDDQ測定回路(テスト用回路)を示す。

Claims (4)

  1. マイクロコンピュータチップと、
    このマイクロコンピュータチップと同一の集積回路基板上に搭載され、当該マイクロコンピュータチップに供給する動作用電源を生成する電源回路チップとで構成され、
    前記電源回路チップは、前記マイクロコンピュータチップを構成する素子にストレスを付加した状態で機能テストを行うためのテスト用回路を備えてなることを特徴とする半導体装置。
  2. 前記テスト用回路は、前記動作用電源電圧を昇圧して過電圧をするための過電圧印加回路であることを特徴とする請求項1記載の半導体装置。
  3. 前記テスト用回路は、スタンバイリーク判定を行うための判定回路であることを特徴とする請求項1又は2記載の半導体装置。
  4. 前記テスト用回路は、静止状態電源電流を測定するための測定回路であることを特徴とする請求項1乃至3の何れかに記載の半導体装置。

JP2004070667A 2004-03-05 2004-03-12 半導体装置 Pending JP2005257527A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004070667A JP2005257527A (ja) 2004-03-12 2004-03-12 半導体装置
US11/059,667 US7802141B2 (en) 2004-03-05 2005-02-17 Semiconductor device having one-chip microcomputer and over-voltage application testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070667A JP2005257527A (ja) 2004-03-12 2004-03-12 半導体装置

Publications (1)

Publication Number Publication Date
JP2005257527A true JP2005257527A (ja) 2005-09-22

Family

ID=35083380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070667A Pending JP2005257527A (ja) 2004-03-05 2004-03-12 半導体装置

Country Status (1)

Country Link
JP (1) JP2005257527A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304481A (ja) * 1996-05-17 1997-11-28 Nissan Motor Co Ltd オンボードスクリーニング装置
JPH1145598A (ja) * 1997-07-25 1999-02-16 Nec Corp 半導体記憶装置
JP2000111607A (ja) * 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd 集積回路素子
JP2003156545A (ja) * 2001-11-22 2003-05-30 Denso Corp 半導体装置の検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304481A (ja) * 1996-05-17 1997-11-28 Nissan Motor Co Ltd オンボードスクリーニング装置
JPH1145598A (ja) * 1997-07-25 1999-02-16 Nec Corp 半導体記憶装置
JP2000111607A (ja) * 1998-10-02 2000-04-21 Matsushita Electric Ind Co Ltd 集積回路素子
JP2003156545A (ja) * 2001-11-22 2003-05-30 Denso Corp 半導体装置の検査方法

Similar Documents

Publication Publication Date Title
JPH02227670A (ja) 零入力電流測定装置
US20090122634A1 (en) Circuit and method for supplying a reference voltage in semiconductor memory apparatus
US20100045328A1 (en) Circuit for detecting bonding defect in multi-bonding wire
KR102275666B1 (ko) 전압 레귤레이터
JP2009251252A (ja) 表示装置用駆動回路、テスト回路、及びテスト方法
US7802141B2 (en) Semiconductor device having one-chip microcomputer and over-voltage application testing method
JP2007040771A (ja) ノイズ測定用半導体装置
JP2005257527A (ja) 半導体装置
US11808807B2 (en) Semiconductor integrated circuit device and inspection method for semiconductor integrated circuit device
US6249134B1 (en) Semiconductor integrated circuit device and testing method thereof
US20170122997A1 (en) Semiconductor device and method of inspecting a semiconductor device
JP2009193432A (ja) 定電流回路検査装置、集積回路および定電流回路検査方法
US8030958B2 (en) System for providing a reference voltage to a semiconductor integrated circuit
JP2008008714A (ja) 半導体測定装置
JP2003107135A (ja) バーンイン装置
JP2005249661A (ja) ワンチップマイクロコンピュータ及びワンチップマイクロコンピュータの過電圧印加試験方法
Siskos et al. A current conveyor based BIC sensor for current monitoring in mixed-signal circuits
JP2011232036A (ja) 半導体装置
JP2007093460A (ja) 半導体試験装置および半導体試験方法
KR101928016B1 (ko) 미세 전류 감지 기술을 적용한 가스 터빈 이산화탄소 소화 설비 시스템
JP2005249394A (ja) 半導体装置の検査方法、半導体検査システムおよび半導体装置
JP2004257921A (ja) 半導体装置の検査装置および半導体装置の検査方法
JP4042510B2 (ja) 半導体集積回路装置および半導体集積回路装置のスクリーニング方法
JP3194740B2 (ja) リーク電流測定可能な半導体集積回路
KR100343473B1 (ko) 온도범위 검출회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216