JP2005256365A - Rubber supporter for bridge - Google Patents

Rubber supporter for bridge Download PDF

Info

Publication number
JP2005256365A
JP2005256365A JP2004068150A JP2004068150A JP2005256365A JP 2005256365 A JP2005256365 A JP 2005256365A JP 2004068150 A JP2004068150 A JP 2004068150A JP 2004068150 A JP2004068150 A JP 2004068150A JP 2005256365 A JP2005256365 A JP 2005256365A
Authority
JP
Japan
Prior art keywords
rubber
range
carbon black
silica
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068150A
Other languages
Japanese (ja)
Inventor
Akihito Okamoto
明史 岡本
Yukihisa Ueda
恭久 上田
Hirobumi Tsujimoto
博文 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2004068150A priority Critical patent/JP2005256365A/en
Publication of JP2005256365A publication Critical patent/JP2005256365A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber supporter having the small temperature dependency of an equivalent stiffness without deteriorating damping characteristics within the range of -10°C to 40°C of an environmental temperature. <P>SOLUTION: In the rubber supporter for the bridge, hard boards having a stiffness and rubber layers are laminated alternately, a damping factor (heq) is kept within a range of 0.04≤heq≤0.1 within the range of -10°C to 40°C of an environmental temperature and the rate of change (R) of the equivalent stiffness shown by formula (1) is kept within the range of R≤0.25. It is preferable that carbon black and silica are blended with the rubber layer at a ratio of äthe quantity of silica blended (mass)/the quantity of carbon black blended (mass)}≥0.15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、橋梁を支承するのに好適な橋梁用ゴム支承体に関する。   The present invention relates to a rubber bearing for a bridge suitable for supporting a bridge.

一般に、橋梁を支承するゴム支承体としては、鋼板等の硬質板と粘弾性を有するゴム材料を主成分とするゴム層とを交互に積層した構造体が広く使用されている。この橋梁用のゴム支承体には、橋梁の振動を減衰させる優れた減衰特性が要求されるだけでなく、橋梁が氷点下の低温から30℃を超える高温に至る自然環境下に設置されることがあるため、等価剛性の温度依存性が小さいことが望まれている。   In general, a structure in which a hard plate such as a steel plate and a rubber layer mainly composed of a viscoelastic rubber material are alternately laminated is widely used as a rubber support for supporting a bridge. This rubber bearing body for bridges is not only required to have excellent damping characteristics to attenuate the vibration of the bridge, but also the bridge can be installed in a natural environment from low temperature below freezing to over 30 ° C. For this reason, it is desired that the temperature dependence of the equivalent rigidity is small.

従来から、この温度依存性を向上させるために、所定量のカーボンブラックを配合させたり(特許文献1)、所定量のシリカを配合させたり(特許文献2)、硫黄の配合量を増加させるなどの種々の手法が検討されている。しかしながら、これらの手法を用いて温度依存性を改良すると、一方で減衰特性が低下してしまうという問題がある。
特開2002−340088号公報 特開平7−126437号公報
Conventionally, in order to improve the temperature dependency, a predetermined amount of carbon black is blended (Patent Document 1), a predetermined amount of silica is blended (Patent Document 2), or the amount of sulfur is increased. Various methods have been studied. However, when these methods are used to improve the temperature dependence, there is a problem that the attenuation characteristic is lowered.
JP 2002-340088 A JP 7-126437 A

本発明の課題は、環境温度-10℃から40℃の範囲において、減衰特性を低下させることなく、等価剛性の温度依存性が小さいゴム支承体を提供することである。   An object of the present invention is to provide a rubber bearing body having a low temperature dependency of equivalent rigidity without deteriorating damping characteristics in an environmental temperature range of −10 ° C. to 40 ° C.

上記課題を解決するための本発明の橋梁用ゴム支承体は、以下の構成からなる。
(1) 剛性を有する硬質板とゴム層とが交互に積層されたゴム支承体であって、環境温度-10℃から40℃の範囲において、減衰定数(heq)が0.04≦heq≦0.1の範囲にあり、下記式で表される等価剛性の変化率(R)がR≦0.25の範囲にあることを特徴とする橋梁用ゴム支承体。

Figure 2005256365
(2) 前記ゴム層に、カーボンブラックおよびシリカが、{シリカの配合量(質量)/カーボンブラックの配合量(質量)}≧0.15の割合で配合されている(1)記載の橋梁用ゴム支承体。
(3) 前記ゴム層のゴム成分100質量部に対して、前記カーボンブラックが50質量部以下の割合で配合されている(2)記載の橋梁用ゴム支承体。 In order to solve the above problems, a rubber bearing body for a bridge according to the present invention has the following configuration.
(1) A rubber bearing in which rigid hard plates and rubber layers are alternately laminated, and the damping constant (heq) is in the range of 0.04 ≦ heq ≦ 0.1 in the environmental temperature range of -10 ° C to 40 ° C. A rubber bearing body for a bridge, characterized in that the rate of change (R) in equivalent stiffness represented by the following formula is in a range of R ≦ 0.25.
Figure 2005256365
(2) The rubber bearing for a bridge according to (1), wherein carbon black and silica are blended in the rubber layer in a ratio of {silica blending amount (mass) / carbon black blending amount (mass)} ≧ 0.15. body.
(3) The bridge rubber bearing body according to (2), wherein the carbon black is blended at a ratio of 50 parts by mass or less with respect to 100 parts by mass of the rubber component of the rubber layer.

上記のように、環境温度-10℃から40℃の範囲での減衰定数(heq)および等価剛性の変化率(R)が上記範囲にある本発明の橋梁用ゴム支承体は、減衰特性が低下することなく橋梁用ゴム支承体に要求される範囲内にあり、かつ等価剛性の温度依存性が小さいので、低温から高温までの広い温度範囲に晒される環境下において使用することができる。   As described above, the damping constant (heq) and the change rate of equivalent stiffness (R) in the range of ambient temperature -10 ° C to 40 ° C are in the above range, the rubber bearing body for bridges of the present invention has a reduced damping characteristic. Therefore, it can be used in an environment exposed to a wide temperature range from a low temperature to a high temperature because it is within the range required for the rubber bearing body for bridges and the temperature dependence of the equivalent rigidity is small.

上記のような広い温度範囲に晒される環境下で使用できる本発明のゴム支承体は、例えばゴム層に、カーボンブラックだけでなくシリカをも配合し、さらにカーボンブラックとシリカの配合比率を前記した所定の範囲に調節することにより得られる。したがって、比表面積の大きい特殊シリカやシリコーンゴム、シリコーン変性エチレン-プロピレンゴムなどの高価なポリマーを使用しなくても、橋梁用ゴム支承体に要求される減衰特性を有するとともに、温度変化の大きな環境下であっても橋梁用ゴム支承体に要求される等価剛性を発揮する橋梁用ゴム支承体を得ることができるので、コストアップを抑制することができる。   The rubber support of the present invention that can be used in an environment exposed to a wide temperature range as described above, for example, contains not only carbon black but also silica in the rubber layer, and further, the mixing ratio of carbon black and silica is described above. It is obtained by adjusting to a predetermined range. Therefore, it has the damping characteristics required for a rubber bearing body for bridges and has a large temperature change without using expensive polymers such as special silica, silicone rubber, and silicone-modified ethylene-propylene rubber with a large specific surface area. Even if it is below, since it is possible to obtain a bridge rubber bearing body that exhibits the equivalent rigidity required for the bridge rubber bearing body, an increase in cost can be suppressed.

以下、本発明の一実施形態にかかる橋梁用ゴム支承体について、図面を参照して詳細に説明する。図1は、本実施形態にかかるゴム支承体を示す断面図である。このゴム支承体11は、剛性を有する硬質板12と粘弾性を有するゴム層13とを交互に積層接着して形成した構造体である。   Hereinafter, a rubber bearing body for a bridge according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a rubber bearing body according to the present embodiment. The rubber support 11 is a structure formed by alternately laminating and bonding rigid hard plates 12 and viscoelastic rubber layers 13.

硬質板12は、ゴム支承体11の内部に配置された内部硬質板12a、上部に配置された上部硬質板12bおよび下部に配置された下部硬質板12cからなる。これらの硬質板12としては、例えば鋼板等の金属板、セラミックス、硬質プラスチック板等の材料を用いることができる。内部硬質板12aは、その厚さが1〜6mm程度であるのがよく、枚数が3〜10枚程度であるのがよい。また、上部硬質板12bおよび下部硬質板12cの厚さは20〜60mm程度であるのがよい。   The hard plate 12 includes an internal hard plate 12a disposed inside the rubber bearing 11, an upper hard plate 12b disposed at the upper portion, and a lower hard plate 12c disposed at the lower portion. As these hard boards 12, materials, such as metal plates, such as a steel plate, ceramics, a hard plastic board, can be used, for example. The internal hard plate 12a is preferably about 1 to 6 mm in thickness, and is preferably about 3 to 10 sheets. The upper hard plate 12b and the lower hard plate 12c may have a thickness of about 20 to 60 mm.

ゴム支承体11は、環境温度-10℃から40℃の範囲において、減衰定数(heq)が0.04≦heq≦0.1、好ましくは0.04≦heq≦0.08の範囲にあり、等価剛性の変化率(R)がR≦0.25、好ましくはR≦0.23の範囲にあるのがよい。ここで、変化率(R)とは、R=|K(40℃)−K(-10℃)|/K(40℃)から求められる値である。K(40℃)は40℃における等価剛性値を示し、K(-10℃)は-10℃における等価剛性値を示す。   The rubber support 11 has an attenuation constant (heq) in the range of 0.04 ≦ heq ≦ 0.1, preferably 0.04 ≦ heq ≦ 0.08, in the range of the environmental temperature from −10 ° C. to 40 ° C., and the rate of change in equivalent stiffness (R). Is in the range of R ≦ 0.25, preferably R ≦ 0.23. Here, the rate of change (R) is a value obtained from R = | K (40 ° C.) − K (−10 ° C.) | / K (40 ° C.). K (40 ° C) indicates an equivalent stiffness value at 40 ° C, and K (-10 ° C) indicates an equivalent stiffness value at -10 ° C.

ゴム層13は、主成分であるゴム成分に、加硫剤、加硫促進剤、加硫促進助剤、老化防止剤、補強剤、遅延剤、可塑剤、必要に応じて着色剤などの配合剤を配合したものである。特に、本発明では、ゴム層13に配合剤としてカーボンブラックとシリカを所定の配合比率で配合する。ゴム層13は、各層の厚さが1〜50mm程度であるのがよい。   The rubber layer 13 includes a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, an anti-aging agent, a reinforcing agent, a retarder, a plasticizer, and a colorant as necessary, in the rubber component as a main component. It is a combination of agents. In particular, in the present invention, carbon black and silica are blended in the rubber layer 13 as a blending agent at a predetermined blending ratio. As for the rubber layer 13, it is good that the thickness of each layer is about 1-50 mm.

カーボンブラックおよびシリカは、{シリカの配合量[A](質量)/カーボンブラックの配合量[B](質量)}≧0.15、好ましくは0.15≦([A]/[B])≦0.45の割合でゴム層13に配合される。特に、ゴム層13のゴム成分100質量部に対して、カーボンブラックが50質量部以下、好ましくは30〜50質量部の割合で配合され、シリカが4.5〜20質量部の割合で配合されるのがよい。このような配合条件でカーボンブラックおよびシリカを配合することによって、減衰特性を低下させることなく橋梁用ゴム支承体に要求される前記範囲内とし、しかも等価剛性の変化率を上記範囲内にして等価剛性の温度依存性を小さくすることができる。一方、カーボンブラックおよびシリカの配合量が上記範囲よりも多くなると、ゴム支承体11を作製する際の加工性が低下するおそれがある。また、これらの配合量が上記範囲よりも少なくなると、橋梁用ゴム支承体として必要な減衰特性が低下する、あるいは等価剛性の温度依存性が大きくなるおそれがある。   Carbon black and silica have a ratio of {silica compounding amount [A] (mass) / carbon black compounding amount [B] (mass)} ≧ 0.15, preferably 0.15 ≦ ([A] / [B]) ≦ 0.45 Is added to the rubber layer 13. In particular, carbon black is blended at 50 parts by weight or less, preferably 30-50 parts by weight, and silica is blended at 4.5-20 parts by weight with respect to 100 parts by weight of the rubber component of the rubber layer 13. Is good. By blending carbon black and silica under such blending conditions, it is within the above range required for the rubber bearing body for bridges without deteriorating the damping characteristics, and the equivalent stiffness change rate is within the above range. The temperature dependency of rigidity can be reduced. On the other hand, if the blending amount of carbon black and silica is larger than the above range, the processability when producing the rubber support 11 may be lowered. Moreover, when these compounding quantities are less than the said range, there exists a possibility that the damping characteristic required as a rubber bearing body for bridges may fall, or the temperature dependence of equivalent rigidity may become large.

ゴム成分としては、例えばジエン系ゴムを使用することができる。ジエン系ゴムとしては、天然ゴムの他、クロロプレンゴム、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、イソプレンゴム、ブチルゴム、ハロゲン化ブチルゴム等の合成ゴムが挙げられる。   As the rubber component, for example, a diene rubber can be used. Examples of the diene rubber include natural rubber and synthetic rubber such as chloroprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, butadiene rubber, isoprene rubber, butyl rubber, and halogenated butyl rubber.

加硫剤としては、硫黄、有機過酸化物、亜鉛華、マグネシア等が挙げられる。加硫促進助剤としては、亜鉛華、ステアリン酸等が挙げられる。老化防止剤としては、例えばフェニル−α−ナフチルアミン、N,N'−ジフェニル−p−フェニレンジアミン、N−フェニル−N’−イソプロピル−p−フェニレンジアミン等のアミン系化合物;2,6−ジ−t−ブチル−p−クレゾール、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等のフェノール系化合物;等が挙げられる。可塑剤としては、例えば石油系プロセス油、タール、ピッチ、天然油脂、動植物油脂、合成可塑剤等が挙げられる。補強剤としては、上記したカーボンブラックおよびシリカの他、ホワイトカーボン等が挙げられる。   Examples of the vulcanizing agent include sulfur, organic peroxide, zinc white, and magnesia. Examples of the vulcanization acceleration aid include zinc white and stearic acid. Examples of the antioxidant include amine compounds such as phenyl-α-naphthylamine, N, N′-diphenyl-p-phenylenediamine, and N-phenyl-N′-isopropyl-p-phenylenediamine; 2,6-di- and phenolic compounds such as t-butyl-p-cresol and 4,4′-butylidenebis (3-methyl-6-t-butylphenol). Examples of the plasticizer include petroleum-based process oil, tar, pitch, natural fats and oils, animal and vegetable fats and oils, and synthetic plasticizers. Examples of the reinforcing agent include carbon black and silica as well as white carbon.

このようなゴム支承体11は、例えば金型内に内部硬質板12a、上部硬質板12bおよび下部硬質板12cを所定の間隔で配置し、この金型内に、ゴム成分に対して各種配合剤を配合したゴム組成物を射出等により注入して加硫成形と同時に一体に接着することにより製造することができる。   In such a rubber support 11, for example, an internal hard plate 12a, an upper hard plate 12b, and a lower hard plate 12c are arranged at predetermined intervals in a mold, and various compounding agents are added to the rubber component in the mold. It can be produced by injecting a rubber composition blended with an injection or the like and bonding them together at the same time as vulcanization molding.

ゴム支承体11を製造する他の方法としては、ゴム成分に対して各種配合剤を配合したゴム組成物を押出成形等により成形して所定厚みの軟質板を複数枚作製し、ついで、これらの軟質板と、内部硬質板12a、上部硬質板12bおよび下部硬質板12cとを積層して接着剤等により接着する方法等が挙げられる。接着剤としては、例えば酢酸ビニル系、アクリル系、エチレン共重合体系、ドープセメント、モノマセメント、ポリアミド、ポリエステル、ポリウレタン等の熱可塑性接着剤;クロロプレンゴム系、ニトリルゴム系、再生ゴム系、スチレン−ブタジエンゴム(SBR)系、天然ゴム系等のゴム系接着剤等が挙げられる。   As another method for manufacturing the rubber support 11, a rubber composition in which various compounding agents are blended with a rubber component is molded by extrusion molding or the like to produce a plurality of soft plates having a predetermined thickness. Examples include a method of laminating a soft plate, an internal hard plate 12a, an upper hard plate 12b, and a lower hard plate 12c and bonding them with an adhesive or the like. Examples of the adhesive include thermoplastic adhesives such as vinyl acetate, acrylic, ethylene copolymer, dope cement, monomer cement, polyamide, polyester, and polyurethane; chloroprene rubber, nitrile rubber, recycled rubber, styrene- Examples thereof include rubber adhesives such as butadiene rubber (SBR) and natural rubber.

以上、本発明の一実施形態について説明したが、本発明の橋梁用ゴム支承体では、その形状、硬質板の積層数、ゴム層の積層数などは、使用状況に応じて適宜設定すればよく、上記実施形態に限定されるものではない。   As described above, the embodiment of the present invention has been described. However, in the rubber bearing body for a bridge according to the present invention, the shape, the number of laminated hard plates, the number of laminated rubber layers, and the like may be appropriately set according to the use situation. The invention is not limited to the above embodiment.

以下、実施例および比較例を挙げて、本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to a following example.

[実施例1〜3および比較例1,2]
ゴム成分(天然ゴム(NR))100質量部に対して、各配合剤を表1に示す配合比率で配合したゴム組成物を調製した。ついで、成形機の金型内に内部硬質板(5枚)、上部硬質板(1枚)および下部硬質板(1枚)を所定の間隔で配置し、この金型内に上記ゴム組成物を注入し、加硫成形すると同時に一体化して、図1に示すようなゴム支承体をそれぞれ得た。得られたゴム支承体の詳細を以下に示す。
ゴム支承体のサイズ:長さ420mm、幅420mm、高さ134mm
内部硬質板のサイズ:長さ400mm、幅400mm、厚み3.2mm
上部・下部硬質板のサイズ:長さ400mm、幅400mm、厚み32mm
ゴム層:厚み9mm×6層
図1における幅W1:10mm
(幅W1:上部・下部硬質板の端部からゴム支承体の側面までの寸法)
内部硬質板の材質:SS400(JIS G3101)
上部・下部硬質板の材質:SM490(JIS G3106)
[Examples 1 to 3 and Comparative Examples 1 and 2]
A rubber composition was prepared by blending each compounding agent at a compounding ratio shown in Table 1 with respect to 100 parts by mass of the rubber component (natural rubber (NR)). Next, an internal hard plate (5 sheets), an upper hard plate (1 sheet), and a lower hard plate (1 sheet) are arranged at predetermined intervals in the mold of the molding machine, and the rubber composition is placed in the mold. The rubber supports as shown in FIG. 1 were obtained by injecting and vulcanizing and integrating them at the same time. Details of the obtained rubber bearing are shown below.
Rubber bearing size: Length 420mm, width 420mm, height 134mm
Size of internal hard plate: length 400mm, width 400mm, thickness 3.2mm
Size of upper and lower hard plates: length 400mm, width 400mm, thickness 32mm
Rubber layer: Thickness 9 mm × 6 layers Width W1 in FIG. 1: 10 mm
(Width W1: Dimension from the end of the upper / lower hard plate to the side of the rubber bearing)
Material of internal hard plate: SS400 (JIS G3101)
Material of upper and lower hard plates: SM490 (JIS G3106)

<等価剛性,減衰定数>
上記で得られた各ゴム支承体の等価剛性および減衰定数を以下のようにして測定した。
すなわち、鉛直荷重6N/mm2の作用下で、試験温度を-10℃とし、剪断ひずみ振幅±175%で周波数0.5Hzの水平力をゴム支承体に11回繰り返し作用させた場合の等価剛性値K(-10℃)および減衰定数heq(-10℃)を下式(I),(II)によりそれぞれ求めた。
また、試験温度を40℃とした他は、上記と同様にして等価剛性値K(40℃)および減衰定数heq(40℃)を下式(I),(II)によりそれぞれ求めた。

Figure 2005256365
Figure 2005256365
<Equivalent stiffness, damping constant>
The equivalent stiffness and damping constant of each rubber bearing obtained as described above were measured as follows.
That is, the equivalent stiffness when the test temperature is −10 ° C. under the action of a vertical load of 6 N / mm 2 , and a horizontal force having a shear strain amplitude of ± 175% and a frequency of 0.5 Hz is repeatedly applied to the rubber bearing body 11 times. The value K (−10 ° C.) and the damping constant heq (−10 ° C.) were obtained by the following equations (I) and (II), respectively.
In addition, the equivalent stiffness value K (40 ° C.) and the damping constant heq (40 ° C.) were determined by the following equations (I) and (II) in the same manner as described above except that the test temperature was 40 ° C.
Figure 2005256365
Figure 2005256365

<等価剛性の変化率>
上記からもとめた等価剛性K(-10℃),K(40℃)を、下式(III)に代入して等価剛性の変化率(R)を求めた。結果を表1に示す。

Figure 2005256365
<Change rate of equivalent stiffness>
The change rate (R) of the equivalent stiffness was obtained by substituting the equivalent stiffness K (-10 ° C) and K (40 ° C) obtained from the above into the following formula (III). The results are shown in Table 1.
Figure 2005256365

次に、表1に示す配合比率で配合した各ゴム組成物を用いて、図2に示すような試験体21を作製した。この試験体21は、上部硬質板22b、内部硬質板22aおよび下部硬質板22cと、これらの間に積層接着されたゴム層23とからなる。この試験体21の詳細を以下に示す。
内部硬質板のサイズ:長さ101mm、幅25mm、厚み10mm
上部・下部硬質板のサイズ:長さ110mm、幅25mm、厚み10mm
ゴム層:長さ25mm、幅(W2)25mm、厚み(t)5.1mm
硬質板の材質:SS400(JIS G3101)
Next, using each rubber composition blended at a blending ratio shown in Table 1, a test body 21 as shown in FIG. 2 was produced. The test body 21 includes an upper hard plate 22b, an internal hard plate 22a and a lower hard plate 22c, and a rubber layer 23 laminated and bonded therebetween. Details of the test body 21 are shown below.
Internal hard plate size: Length 101mm, width 25mm, thickness 10mm
Size of upper and lower hard plates: length 110mm, width 25mm, thickness 10mm
Rubber layer: length 25mm, width (W2) 25mm, thickness (t) 5.1mm
Hard plate material: SS400 (JIS G3101)

作製した試験体21の等価剛性値K(-10℃),K(40℃)および減衰定数heq(-10℃),heq(40℃)を上記と同様の試験条件で前記式(I),(II)により求めた。また、これらの値を前記式(III)に代入して等価剛性の変化率(R)を求めた。結果を表1に示す。

Figure 2005256365
The equivalent stiffness values K (−10 ° C.), K (40 ° C.) and damping constants heq (−10 ° C.) and heq (40 ° C.) of the manufactured test body 21 are expressed by the above formula (I), Obtained by (II). Further, these values were substituted into the formula (III) to obtain the rate of change (R) of the equivalent stiffness. The results are shown in Table 1.
Figure 2005256365

表1から、シリカを配合していない比較例2のゴム支承体は、橋梁用ゴム支承体に必要な減衰特性が得られていないことがわかる。また、シリカとカーボンブラックの配合比[A]/[B]が0.15未満の比較例1では、等価剛性の変化率が大きく温度依存性が大きい。一方、シリカとカーボンブラックの配合比[A]/[B]が0.15以上である実施例1〜3は、橋梁用ゴム支承体に要求される減衰特性を有し、しかも等価剛性の変化率が小さく温度依存性が小さい。   From Table 1, it can be seen that the rubber bearing body of Comparative Example 2 containing no silica does not have the damping characteristics required for the rubber bearing body for bridges. Further, in Comparative Example 1 in which the mixing ratio [A] / [B] of silica and carbon black is less than 0.15, the change rate of the equivalent stiffness is large and the temperature dependency is large. On the other hand, Examples 1 to 3, in which the compounding ratio [A] / [B] of silica and carbon black is 0.15 or more, have the damping characteristics required for the rubber bearing body for bridges, and also change in equivalent rigidity. The rate is small and the temperature dependency is small.

本発明の一実施形態にかかるゴム支承体を示す断面図である。It is sectional drawing which shows the rubber bearing body concerning one Embodiment of this invention. 実施例における評価に用いた試験体を示す断面図である。It is sectional drawing which shows the test body used for evaluation in an Example.

符号の説明Explanation of symbols

11 ゴム支承体
12 硬質板
12a 内部硬質板
12b 上部硬質板
12c 下部硬質板
13 ゴム層
11 Rubber bearing body 12 Hard plate 12a Internal hard plate 12b Upper hard plate 12c Lower hard plate 13 Rubber layer

Claims (3)

剛性を有する硬質板とゴム層とが交互に積層されたゴム支承体であって、環境温度-10℃から40℃の範囲において、減衰定数(heq)が0.04≦heq≦0.1の範囲にあり、下記式で表される等価剛性の変化率(R)がR≦0.25の範囲にあることを特徴とする橋梁用ゴム支承体。
Figure 2005256365
It is a rubber bearing in which rigid hard plates and rubber layers are alternately laminated, and in the range of environmental temperature from -10 ° C to 40 ° C, the damping constant (heq) is in the range of 0.04 ≦ heq ≦ 0.1, A rubber bearing for a bridge characterized in that the rate of change (R) in equivalent stiffness represented by the following formula is in a range of R ≦ 0.25.
Figure 2005256365
前記ゴム層に、カーボンブラックおよびシリカが、{シリカの配合量(質量)/カーボンブラックの配合量(質量)}≧0.15の割合で配合されている請求項1記載の橋梁用ゴム支承体。   2. The rubber support for a bridge according to claim 1, wherein carbon black and silica are blended in the rubber layer in a ratio of {silica blending amount (mass) / carbon black blending amount (mass)} ≧ 0.15. 前記ゴム層のゴム成分100質量部に対して、前記カーボンブラックが50質量部以下の割合で配合されている請求項2記載の橋梁用ゴム支承体。
The rubber support for a bridge according to claim 2, wherein the carbon black is blended at a ratio of 50 parts by mass or less with respect to 100 parts by mass of the rubber component of the rubber layer.
JP2004068150A 2004-03-10 2004-03-10 Rubber supporter for bridge Pending JP2005256365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068150A JP2005256365A (en) 2004-03-10 2004-03-10 Rubber supporter for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068150A JP2005256365A (en) 2004-03-10 2004-03-10 Rubber supporter for bridge

Publications (1)

Publication Number Publication Date
JP2005256365A true JP2005256365A (en) 2005-09-22

Family

ID=35082368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068150A Pending JP2005256365A (en) 2004-03-10 2004-03-10 Rubber supporter for bridge

Country Status (1)

Country Link
JP (1) JP2005256365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145819A1 (en) * 2007-05-28 2008-12-04 Teknikum Oy Flexible support for the hatch cover of a vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145819A1 (en) * 2007-05-28 2008-12-04 Teknikum Oy Flexible support for the hatch cover of a vessel

Similar Documents

Publication Publication Date Title
US6858675B1 (en) Vibration damping rubber member and process of producing the same
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP2832983B2 (en) Damper
JPH1081787A (en) Vibration-damping member
JP2005256365A (en) Rubber supporter for bridge
JP2005320376A (en) Rubber composition for seismic isolation laminate and seismic isolation laminate using the same
JP2570341B2 (en) Seismic isolation structure
JP4030412B2 (en) Rubber composition for highly attenuated laminate and rubber laminate using the rubber composition
JP4595171B2 (en) Rubber composition for high damping bearing
JP4010680B2 (en) Brace damper
JP3753493B2 (en) Rubber composition for high damping rubber bearing
JP5385560B2 (en) Vibration isolator
JP3645469B2 (en) Rubber composition for laminates with improved fracture characteristics
JP4097223B2 (en) Vibration control structure
JPH10219033A (en) Rubber composition for high-attenuation support
JP2001158824A (en) Method for vulcanizing and bonding unvulcanized rubber, and rubber composition for vulcanization and bonding
JP2004124018A (en) Rubber composition for high damping laminate and high damping laminate using it
JP3754530B2 (en) Rubber composition for seismic isolation laminate
JP3132072B2 (en) Synthetic rubber composition
JP3845499B2 (en) Rubber composition for seismic isolation laminate
RU2285023C1 (en) Vibration-absorbing polymer composition and laminated vibration-absorbing material based thereon
JPH1134218A (en) Seismic isolation structure
JP2000145857A (en) Laminated rubber support
JP3666382B2 (en) Seismic isolation rubber laminate
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Effective date: 20090204

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707