JP3845499B2 - Rubber composition for seismic isolation laminate - Google Patents

Rubber composition for seismic isolation laminate Download PDF

Info

Publication number
JP3845499B2
JP3845499B2 JP21093397A JP21093397A JP3845499B2 JP 3845499 B2 JP3845499 B2 JP 3845499B2 JP 21093397 A JP21093397 A JP 21093397A JP 21093397 A JP21093397 A JP 21093397A JP 3845499 B2 JP3845499 B2 JP 3845499B2
Authority
JP
Japan
Prior art keywords
rubber
seismic isolation
weight
parts
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21093397A
Other languages
Japanese (ja)
Other versions
JPH10237221A (en
Inventor
英之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP21093397A priority Critical patent/JP3845499B2/en
Publication of JPH10237221A publication Critical patent/JPH10237221A/en
Application granted granted Critical
Publication of JP3845499B2 publication Critical patent/JP3845499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高弾性率で振動エネルギーを効率良く吸収することができ、かつ長期耐久性に優れたゴム組成物に関する。
【0002】
【従来の技術】
近年、振動エネルギーの吸収装置、即ち、防振、除震、免震装置などが急速に普及しつつある。そして、この装置においては、高減衰性を有するゴム組成物が使用されている。
従来、ゴム材料に高減衰特性を持たせるために、すなわち、高減衰特性を持ったゴム組成物を得るためには、カーボンブラックや石油樹脂を多量に配合している。
【0003】
しかしながら、カーボンブラックの多量配合では減衰性能は向上するが(高ヒステリシスロス)、精練加工性が劣るとともに、免震装置のせん断破壊特性が低下する欠点がある。一方、石油樹脂の多量配合でも、減衰特性は向上するが、クリープ特性が低下し、長期耐久性に劣るという欠点があった。
【0004】
【発明が解決しようとする課題】
本発明は、免震装置のコンパクト化のために高弾性率を有し、かつ振動エネルギー吸収性及び長期耐久性に優れた免震積層体用ゴム組成物を提供することである。
【0005】
【課題を解決するための手段】
本発明の免震積層体用ゴム組成物は、天然ゴム又はポリイソプレンゴムを50重量部〜95重量部含有し、残ゴム成分がポリアミドエラストマー(A)と天然ゴムおよびポリイソプレンゴム以外のジエン系ゴム(B)からなり、重量比A/Bが15/85〜75/25であるゴム100重量部に対し、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を含んでなることを特徴とする。
【0006】
このように天然ゴム(NR)又はポリイソプレンゴム(IR)、ポリアミドエラストマー、天然ゴムおよびポリイソプレンゴム以外のジエン系ゴム、石油樹脂、および微粒子カーボンブラックを組み合わせて用いるため、高弾性率、振動エネルギー吸収性、及び長期耐久性を向上させることが可能となる。
【0007】
【発明の実施の形態】
図1は、免震積層体の一例を示す断面説明図である。図1において、免震積層体1はゴム組成物2が鋼板等の剛性を有する硬質板3を介して複数層積層した構造となっている。
本発明では、図1におけるゴム組成物2として、天然ゴム(NR)又はポリイソプレンゴム(IR)、ポリアミドエラストマー、天然ゴムおよびポリイソプレンゴム以外のジエン系ゴム、石油樹脂、および微粒子カーボンブラックからなるゴム組成物を用いるのである。
【0008】
天然ゴム(NR)としては、市販されているいずれのものを用いてもよい。ポリイソプレンゴム(IR)もまた同様である。
ポリアミドエラストマーとしては、例えば、富士化成工業(株)製のTPAE12を用いることができる。このTPAE12は、ハードセグメントとソフトセグメントからなり、ハードセグメントが重合脂肪酸系共重合ポリアミド骨格を示し、ソフトセグメントがポリエーテルエステル骨格を示すものである。
【0009】
天然ゴムおよびポリイソプレンゴム以外のジエン系ゴムは、例えば、ポリブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)などである。
石油樹脂は、ソルベントナフサ中に含まれているクマロン、インデン、スチレンなどを共重合させたクマロンプラスチック、石油類のスチームクラッキングによりエチレン、プロピレンなどを製造するエチレンプラントから副生する分解油留分に含まれるジオレフィンおよびモノオレフィン類を単離せずに重合した樹脂等であり、例えば、エスクロン(新日鐡化学(株)製)、ハイレジン(東邦化学工業(株)製)、FTR(三井石油化学工業(株)製)などとして市販されているものである。
【0010】
微粒子カーボンブラックは、窒素比表面積が60〜150 m2 /g、特には80〜150 m2 /gであり、DBP吸油量が60〜160cm3 / 100g、特には90〜160cm3 / 100gのものが好ましい。このようなものはASTMで示されるHAF、ISAF、SAFタイプのカーボンブラックとして市販されており、これらを使用することができる。
【0011】
本発明では、ゴム100重量部に対し、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を配合する。
このゴム100重量部は、NR又はIRを50重量部〜95重量部含有し、残ゴム成分がポリアミドエラストマー(A)とNRおよびIR以外のジエン系ゴム(B)からなり、重量比A/Bが15/85〜75/25である。NR又はIRが50重量部未満では、減衰性が不足してしまうまた、重量比A/Bが15/85未満ではポリアミドエラストマーの量が少な過ぎて弾性率の向上をはかることができなくなり、一方、重量比A/Bが75/25を超えるとポリアミドエラストマーの量が多くなるので破断伸びが低下してしまう。
【0012】
石油樹脂が15重量部未満では振動エネルギーの吸収能が不足して減衰性がわるくなり、60重量超ではクリープ大となる。微粒子カーボンブラックが50重量部未満では減衰性が不足し、90重量部超では本発明のゴム組成物の製造の際に加工性が低下し製造上好ましくなく、又強度も低下する。
本発明のゴム組成物を製造するに当っては、未加硫ゴムの加硫の目的でN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−t−ブチル−2−ベンゾチアゾリルスルフェンアミドなどの加硫促進剤、および亜鉛華、ステアリン酸などの加硫助剤が未加硫ゴムに適切量配合される。
【0013】
本発明のゴム組成物を免震積層体に適用した場合の一例を図1に示したが、本発明のゴム組成物2と例えば一般構造用鋼板、冷間圧延鋼板などからなる硬質板3とが交互に積層されて免震積層体が構成される。この積層体を製造するには、成形・加硫して、シート状のゴム組成物を得た後、接着剤により硬質板と接着してもよいし、またあらかじめ未加硫のゴム配合物をシート状に成形し、硬質板と積層した後に加熱して加硫・接着を同時に行って製造することもできる。
【0014】
このような免震積層体は、例えば、道路橋の支承や、ビルの基礎支承の用途に用いることができる。
【0015】
【実施例】
表2および表3に示す配合内容(重量部)でゴム組成物を作製した(実施例1〜3、比較例1〜4)。これらのゴム組成物につき、下記により引張強度(TB )、破断伸び(EB )、JIS A 硬度(Hs)を評価した。また、ゴムと鉄板を交互に積層した図1の免震積層体(サイズ135mm×135mm×74mm)を作製し、せん断弾性係数(G) 、等価減衰定数(heq)、およびクリープ性(橋の設計供用年数に相当するクリープ量)をそれぞれ評価した。この結果を表3に示す。
【0016】
引張強さ(T B kgf/cm 2 ):
JIS K 6301 によって測定した。数値の大きい方が強度が大きく、破断しにくい。
破断伸び(E B 、%):
JIS K 6301 によって測定した。
【0017】
せん断弾性係数(G) :
2軸せん断試験機により、0.5 Hz 、175 %歪時の条件にて求めた。12kgf/cm2 以上あればよい。
等価減衰定数(h eq ):
2軸せん断試験機により、0.5 Hz 、175 %歪時の条件にて求めた。
【0018】
橋梁の免震装置として用いられる高減衰ゴム支承は、設計で期待する橋の減衰定数が得られるような地震時エネルギー吸収能力を有する必要がある。免震設計の基本となる「道路橋の免震設計法マニュアル(建設省(財)土木研究センター)」では、橋の減衰定数に基づく設計水平震度の補正係数は下記の表1のとおりとなっており、橋として地震時の震動を8割程度にすること(地震時のエネルギーを2割ほど吸収すること)が望まれている。
【0019】
【表1】

Figure 0003845499
【0020】
また、高減衰ゴム支承の等価減衰定数はせん断ひずみの増加に伴って減少する傾向にあり、保有水平耐力法レベルで期待できる橋の減衰定数は0.12〜0.15が妥当である。それ故、これを満足する対象ひずみレベルでの高減衰ゴム支承に要求される等価減衰定数は0.13程度以上となる。
【0021】
クリープ性(%):
温度+20℃で、設計支圧応力度(60kgf/cm2 )に相当する鉛直荷重を1000時間作用させた場合に免震装置に生じる鉛直変位をもとに、式(1)から橋の設計供用年数に相当するクリープを求める。
δCR=atb (1)
ここに、
δCR:免震装置のクリープ変形量(mm)
t :橋の設計供用年数(時間)
a,b :クリープ定数で、式(2)および式(3)より算出する。
【0022】
a =(δ100 2 /(δ10002 (2)
b = log(δ1000/δ100 ) (3)
δ100 :100時間後に生じる免震装置の鉛直変位(mm)
δ1000:1000時間後に生じる免震装置の鉛直変位(mm)
式(1)で算出した橋の設計供用年数に相当するクリープ量は、ゴム総厚の5%以下でなければならない。
【0023】
【表2】
Figure 0003845499
【0024】
【表3】
Figure 0003845499
【0025】
表3から明らかなように、本発明ゴム組成物(実施例1〜3)は、比較例のゴム組成物に比して高弾性率でかつ振動エネルギー吸収性および長期耐久性に優れていることが判る。
【0026】
【発明の効果】
以上説明したように本発明の免震積層体用ゴム組成物は、天然ゴム又はポリイソプレンゴムを50重量部〜95重量部含有し、残ゴム成分がポリアミドエラストマー(A)と天然ゴムおよびポリイソプレンゴム以外のジエン系ゴム(B)からなり、重量比A/Bが15/85〜75/25であるゴム100重量部に対し、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を含んでなるため、高弾性率でかつ振動エネルギー吸収性、長期耐久性に優れるものである。
【図面の簡単な説明】
【図1】免震積層体の一例を示す断面説明図である。
【符号の説明】
1 免震積層体 2 ゴム組成物 3 硬質板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition capable of efficiently absorbing vibration energy with a high elastic modulus and excellent in long-term durability.
[0002]
[Prior art]
In recent years, vibration energy absorbing devices, that is, anti-vibration, seismic isolation, seismic isolation devices, and the like are rapidly spreading. In this apparatus, a rubber composition having a high damping property is used.
Conventionally, a large amount of carbon black or petroleum resin is blended in order to give a rubber material high damping characteristics, that is, to obtain a rubber composition having high damping characteristics.
[0003]
However, when carbon black is mixed in a large amount, the damping performance is improved (high hysteresis loss), but the scouring processability is inferior and the shear fracture characteristics of the seismic isolation device are lowered. On the other hand, even when a large amount of petroleum resin is blended, the damping characteristics are improved, but the creep characteristics are lowered and the long-term durability is inferior.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a rubber composition for a seismic isolation laminate having a high elastic modulus and excellent vibration energy absorption and long-term durability in order to make the seismic isolation device compact.
[0005]
[Means for Solving the Problems]
The rubber composition for a seismic isolation laminate of the present invention contains 50 to 95 parts by weight of natural rubber or polyisoprene rubber, and the residual rubber component is a diene system other than polyamide elastomer (A), natural rubber and polyisoprene rubber The rubber (B) is composed of 15 to 60 parts by weight of petroleum resin and 50 to 90 parts by weight of fine carbon black with respect to 100 parts by weight of rubber having a weight ratio A / B of 15/85 to 75/25. It is characterized by that.
[0006]
In this way, natural rubber (NR) or polyisoprene rubber (IR), polyamide elastomer, diene rubber other than natural rubber and polyisoprene rubber, petroleum resin, and fine particle carbon black are used in combination, resulting in high elastic modulus and vibration energy. Absorbability and long-term durability can be improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory cross-sectional view showing an example of a seismic isolation laminate. In FIG. 1, the seismic isolation laminate 1 has a structure in which a rubber composition 2 is laminated in a plurality of layers via a rigid plate 3 having rigidity such as a steel plate.
In the present invention, the rubber composition 2 in FIG. 1 comprises natural rubber (NR) or polyisoprene rubber (IR), polyamide elastomer, diene rubber other than natural rubber and polyisoprene rubber, petroleum resin, and fine carbon black. A rubber composition is used.
[0008]
As the natural rubber (NR), any commercially available rubber may be used. The same applies to polyisoprene rubber (IR).
As the polyamide elastomer, for example, TPAE12 manufactured by Fuji Chemical Industry Co., Ltd. can be used. The TPAE 12 is composed of a hard segment and a soft segment. The hard segment shows a polymerized fatty acid copolymer polyamide skeleton, and the soft segment shows a polyether ester skeleton.
[0009]
Examples of diene rubbers other than natural rubber and polyisoprene rubber include polybutadiene rubber (BR) and styrene-butadiene copolymer rubber (SBR).
Petroleum resins include coumarone, indene, styrene, and other coumarone plastics contained in solvent naphtha, and cracked oil fractions by-produced from ethylene plants that produce ethylene, propylene, etc. by steam cracking of petroleum. Resins obtained by polymerization without isolating diolefins and monoolefins contained in the resin, such as Escron (manufactured by Nippon Steel Chemical Co., Ltd.), High Resin (manufactured by Toho Chemical Industry Co., Ltd.), FTR (Mitsui Sekiyu) Chemical Industry Co., Ltd.) and the like.
[0010]
Particulate carbon black, the nitrogen specific surface area of 60 to 150 m 2 / g, especially is 80~150 m 2 / g, DBP oil absorption amount 60~160cm 3 / 100g, particularly those 90~160cm 3 / 100g Is preferred. Such products are commercially available as HAF, ISAF, and SAF type carbon blacks represented by ASTM, and these can be used.
[0011]
In the present invention, 15 to 60 parts by weight of petroleum resin and 50 to 90 parts by weight of fine carbon black are blended with 100 parts by weight of rubber.
100 parts by weight of this rubber contains 50 parts by weight to 95 parts by weight of NR or IR, the remaining rubber component is composed of a polyamide elastomer (A) and a diene rubber (B) other than NR and IR, and a weight ratio A / B Is 15/85 to 75/25. If the NR or IR is less than 50 parts by weight, the attenuation will be insufficient . On the other hand, if the weight ratio A / B is less than 15/85, the amount of the polyamide elastomer is too small to improve the elastic modulus, while if the weight ratio A / B exceeds 75/25, the amount of the polyamide elastomer Will increase the elongation at break.
[0012]
When the amount of petroleum resin is less than 15 parts by weight, the vibrational energy is not sufficiently absorbed, resulting in a poor damping property. If the amount of fine particle carbon black is less than 50 parts by weight, the damping property is insufficient.
In producing the rubber composition of the present invention, N-cyclohexyl-2-benzothiazolylsulfenamide, Nt-butyl-2-benzothiazolylsulfene is used for the purpose of vulcanizing unvulcanized rubber. An appropriate amount of a vulcanization accelerator such as amide and a vulcanization aid such as zinc white and stearic acid is blended in the unvulcanized rubber.
[0013]
An example in which the rubber composition of the present invention is applied to a seismic isolation laminate is shown in FIG. 1, but the rubber composition 2 of the present invention and a hard plate 3 made of, for example, a general structural steel plate, a cold rolled steel plate, and the like Are stacked alternately to form a seismic isolation stack. In order to produce this laminate, after molding and vulcanizing to obtain a sheet-like rubber composition, it may be adhered to a hard plate with an adhesive, or an unvulcanized rubber compound may be preliminarily bonded. It can also be produced by forming into a sheet shape, laminating with a hard plate, and then heating to vulcanize and bond simultaneously.
[0014]
Such a seismic isolation laminate can be used, for example, for road bridges and building foundations.
[0015]
【Example】
Rubber compositions were prepared with the blending contents (parts by weight) shown in Tables 2 and 3 (Examples 1 to 3, Comparative Examples 1 to 4). These rubber compositions were evaluated for tensile strength (T B ), elongation at break (E B ), and JIS A hardness (Hs) as follows. In addition, the seismic isolation laminate (size 135 mm x 135 mm x 74 mm) in which rubber and iron plates are alternately laminated is prepared, and the shear elastic modulus (G), equivalent damping constant (h eq ), and creep properties (bridge The creep amount corresponding to the design service years) was evaluated. The results are shown in Table 3.
[0016]
Tensile strength (T B , kgf / cm 2 ):
Measured according to JIS K 6301. The larger the value, the greater the strength and the harder it is to break.
Elongation at break (E B ,% ):
Measured according to JIS K 6301.
[0017]
Shear elastic modulus (G ):
It calculated | required on the conditions at the time of 0.5 Hz and 175% distortion with the biaxial shear tester. It is sufficient 12kgf / cm 2 or more.
Equivalent damping constant (h eq ):
It calculated | required on the conditions at the time of 0.5 Hz and 175% distortion with the biaxial shear tester.
[0018]
High-damping rubber bearings used as bridge seismic isolation devices must have an energy absorption capacity during earthquakes so that the damping constant expected for the design can be obtained. In the “Seismic Isolation Design Manual for Road Bridges (Ministry of Construction (Civil Engineering) Research Center)), which is the basis for seismic isolation design, the correction coefficient for the design horizontal seismic intensity based on the bridge damping constant is as shown in Table 1 below. As a bridge, it is desired that the vibration during an earthquake be about 80% (absorbing about 20% of the energy during an earthquake).
[0019]
[Table 1]
Figure 0003845499
[0020]
In addition, the equivalent damping constant of high-damping rubber bearings tends to decrease with increasing shear strain, and 0.12-0.15 is a reasonable bridge damping constant that can be expected at the possessed horizontal strength method level. Therefore, the equivalent damping constant required for the high damping rubber bearing at the target strain level that satisfies this is about 0.13 or more.
[0021]
Creep property (% ):
Based on the vertical displacement generated in the seismic isolation device when a vertical load corresponding to the design bearing stress (60kgf / cm 2 ) is applied for 1000 hours at a temperature of + 20 ° C, the bridge is used for design from Equation (1). Find the creep equivalent to the number of years.
δ CR = at b (1)
here,
δ CR : Creep deformation of seismic isolation device (mm)
t: Design life of bridge (hours)
a, b: Creep constant, calculated from Equation (2) and Equation (3).
[0022]
a = (δ 100 ) 2 / (δ 1000 ) 2 (2)
b = log (δ 1000 / δ 100 ) (3)
δ 100 : Vertical displacement of the seismic isolation device after 100 hours (mm)
δ 1000 : Vertical displacement of the seismic isolation device after 1000 hours (mm)
The amount of creep corresponding to the bridge design service life calculated by equation (1) must be 5% or less of the total rubber thickness.
[0023]
[Table 2]
Figure 0003845499
[0024]
[Table 3]
Figure 0003845499
[0025]
As is apparent from Table 3, the rubber compositions of the present invention (Examples 1 to 3) have a higher elastic modulus and excellent vibration energy absorption and long-term durability than the rubber compositions of Comparative Examples. I understand.
[0026]
【The invention's effect】
As described above, the rubber composition for a seismic isolation laminate of the present invention contains 50 to 95 parts by weight of natural rubber or polyisoprene rubber, and the remaining rubber component is polyamide elastomer (A), natural rubber and polyisoprene. 15 to 60 parts by weight of petroleum resin and 50 to 90 parts by weight of fine carbon black with respect to 100 parts by weight of rubber having a diene rubber (B) other than rubber and having a weight ratio A / B of 15/85 to 75/25 Since it comprises a part, it has a high elastic modulus, excellent vibration energy absorption and long-term durability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing an example of a seismic isolation laminate.
[Explanation of symbols]
1 Seismic isolation laminate 2 Rubber composition 3 Hard plate

Claims (2)

天然ゴム又はポリイソプレンゴムを50重量部〜95重量部含有し、残ゴム成分がポリアミドエラストマー(A)と天然ゴムおよびポリイソプレンゴム以外のジエン系ゴム(B)からなり、重量比A/Bが15/85〜75/25であるゴム100重量部に対し、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を含んでなる免震積層体用ゴム組成物。Natural rubber or polyisoprene rubber is contained in an amount of 50 to 95 parts by weight , and the remaining rubber component is composed of polyamide elastomer (A) and diene rubber (B) other than natural rubber and polyisoprene rubber, and the weight ratio A / B is A rubber composition for a seismic isolation laminate, comprising 15 to 60 parts by weight of a petroleum resin and 50 to 90 parts by weight of fine carbon black with respect to 100 parts by weight of rubber of 15/85 to 75/25. 前記微粒子カーボンブラックが窒素比表面積60〜150m 2 /g、DBP吸油量60〜160cm3 /100gを有する請求項1記載の免震積層体用ゴム組成物。The particulate carbon black is nitrogen specific surface area 60~150m 2 / g, the seismic isolation laminate-body rubber composition of claim 1 having a DBP oil absorption of 60~160cm 3 / 100g.
JP21093397A 1996-12-26 1997-08-05 Rubber composition for seismic isolation laminate Expired - Fee Related JP3845499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21093397A JP3845499B2 (en) 1996-12-26 1997-08-05 Rubber composition for seismic isolation laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34817996 1996-12-26
JP8-348179 1996-12-26
JP21093397A JP3845499B2 (en) 1996-12-26 1997-08-05 Rubber composition for seismic isolation laminate

Publications (2)

Publication Number Publication Date
JPH10237221A JPH10237221A (en) 1998-09-08
JP3845499B2 true JP3845499B2 (en) 2006-11-15

Family

ID=26518342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21093397A Expired - Fee Related JP3845499B2 (en) 1996-12-26 1997-08-05 Rubber composition for seismic isolation laminate

Country Status (1)

Country Link
JP (1) JP3845499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001008903A1 (en) * 1999-08-02 2001-02-08 Bridgestone Corporation Elastic wheel
JPWO2002030684A1 (en) * 2000-10-06 2004-02-19 株式会社ブリヂストン Elastic wheel

Also Published As

Publication number Publication date
JPH10237221A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
JP6261131B2 (en) High damping composition, seismic damper and seismic isolation bearing
JP5648014B2 (en) High damping composition and viscoelastic damper
JP3125103B2 (en) Rubber composition for seismic isolation laminate
US6180711B1 (en) Rubber composition for seismic isolation laminates
JP3845499B2 (en) Rubber composition for seismic isolation laminate
KR20000049079A (en) Highly damping rubber composition
JP3754530B2 (en) Rubber composition for seismic isolation laminate
JP3845500B2 (en) Rubber composition for seismic isolation laminate
JP2570341B2 (en) Seismic isolation structure
JP3806492B2 (en) Rubber composition for seismic isolation laminate
JP4595171B2 (en) Rubber composition for high damping bearing
EP0481810B1 (en) Rubber composition for laminated vibrationproofing structure
JP2011179594A (en) Rubber composition for high damping supports, and high damping support body
JP4010680B2 (en) Brace damper
JP4618027B2 (en) Damping device
Wang et al. Engine isolate mount elastomers
JP2949671B2 (en) High damping rubber composition
JP2001200103A (en) Vibration damping vtscoelastic material for building
JPH10110062A (en) Rubber composition for earthquake-proof laminate
JP4331003B2 (en) Rubber composition for high damping bearing and high damping bearing
JP3124097B2 (en) Seismic isolation device
JP2004307594A (en) Highly attenuating rubber composition and quake-free structure using the same
JP5038608B2 (en) High damping rubber composition
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same
JPH0893845A (en) Base isolation structural body for light load

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040603

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060419

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060815

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060821

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110825

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110825

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120825

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees