JP3806492B2 - Rubber composition for seismic isolation laminate - Google Patents

Rubber composition for seismic isolation laminate Download PDF

Info

Publication number
JP3806492B2
JP3806492B2 JP21093797A JP21093797A JP3806492B2 JP 3806492 B2 JP3806492 B2 JP 3806492B2 JP 21093797 A JP21093797 A JP 21093797A JP 21093797 A JP21093797 A JP 21093797A JP 3806492 B2 JP3806492 B2 JP 3806492B2
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber
parts
weight
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21093797A
Other languages
Japanese (ja)
Other versions
JPH10110064A (en
Inventor
英之 大石
昭夫 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP21093797A priority Critical patent/JP3806492B2/en
Publication of JPH10110064A publication Critical patent/JPH10110064A/en
Application granted granted Critical
Publication of JP3806492B2 publication Critical patent/JP3806492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高弾性率で振動エネルギーを効率良く吸収することが出来、且つ長期耐久性にすぐれたゴム組成物に関する。
【0002】
【従来の技術】
近年、振動エネルギーの吸収装置、即ち、防振、除震、免震装置などが急速に普及しつつある。そして、この装置においては、高減衰性を有するゴム組成物が使用されている。
従来、ゴム材料に高減衰特性を持たせるために、すなわち、高減衰特性を持ったゴム組成物を得るためには、カーボンブラックや石油樹脂を多量に配合している。
【0003】
しかしながら、カーボンブラックの多量配合では減衰性能は向上するが(高ヒステリシスロス)、精練加工性が劣るとともに、免震装置のせん断破壊特性が低下する欠点がある。一方、石油樹脂の多量配合でも、減衰特性は向上するが、クリープ特性が低下し、長期耐久性に劣るという欠点があった。
【0004】
【発明が解決しようとする課題】
本発明は、装置のコンパクト化を目的に高弾性率でかつ振動エネルギー吸収性及び長期耐久性に優れた免震積層体用ゴム組成物を提供することである。
【0005】
【課題を解決するための手段】
本発明の免震積層体用ゴム組成物は、天然ゴムを主成分とするゴム100重量部に対し、超高分子量ポリエチレン5〜30重量部、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を含んでなることを特徴とする。
【0006】
このように天然ゴム(NR)、超高分子量ポリエチレン、石油樹脂、および微粒子カーボンブラックを組み合わせて用いるため、高弾性率、振動エネルギー吸収性及び長期耐久性を向上させることが可能となる。
【0007】
【発明の実施の形態】
図1は、免震積層体の一例を示す断面説明図である。図1において、免震積層体1はゴム組成物2が鋼板等の剛性を有する硬質板3を介して複数層積層した構造となっている。
本発明では、図1におけるゴム組成物2として、天然ゴム(NR)、超高分子量ポリエチレン、石油樹脂、および微粒子カーボンブラックからなるゴム組成物を用いるのである。
【0008】
天然ゴム(NR)としては、市販されているいずれのものを用いてもよい。NRの他に、イソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、ブタジエンゴム(BR)等のゴムを配合してもよい。
超高分子量ポリエチレンは、分子量(粘度法)100万以上、平均粒径15〜50μm 好ましくは20〜35μm の粉末状のものである。この超高分子量ポリエチレンとしては、例えば、三井石油化学製「ミペロン」、旭化成製「サンテック」として市販されている。
【0009】
石油樹脂は、ソルベントナフサ中に含まれているクマロン、インデン、スチレンなどを共重合させたクマロンプラスチック、石油類のスチームクラッキングによりエチレン、プロピレンなどを製造するエチレンプラントから副生する分解油留分に含まれるジオレフィンおよびモノオレフィン類を単離せずに重合した樹脂等が挙げられ、エクスロン(新日鐡化学(株)製)、ハイレジン(東邦化学工業(株)製)、FTR(三井石油化学工業(株)製)などとして市販されているものである。
【0010】
本発明で使用する微粒子カーボンブラックは窒素比表面積が通常60〜150 m2 /g、特には80〜150 m2 /gであり、DBP吸油量が通常60〜160cm3 / 100g、特には90〜160cm3 / 100gのものが好ましい。このようなものはASTMで示されるHAF、ISAF、SAFタイプのカーボンブラックとして市販されており、使用することができる。
【0011】
本発明では、NRを主成分とするゴム100重量部に対し、超高分子量ポリエチレン5〜30重量部、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を配合する。
超高分子量ポリエチレンが5重量部未満では得られるゴム組成物の弾性率の向上効果が不足し、30重量部超ではゴムが硬くなりすぎ、振動エネルギーの吸収能が劣り、かつ伸びが低下し、クリープ大のもとになる。石油樹脂が15重量部未満では振動エネルギーの吸収能が不足し、60重量超ではクリープ大となる。微粒子カーボンブラックが50重量部未満では振動エネルギーの吸収能に劣り、90重量部超では本発明のゴム組成物の製造の際に加工性が低下し製造上好ましくなく、又強度も低下する。
【0012】
本発明のゴム組成物を製造するに当っては、未加硫ゴムの加硫の目的でN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−t−ブチル−2−ベンゾチアゾリルスルフェンアミドなどの加硫促進剤および亜鉛華、ステアリン酸などの加硫助剤が未加硫ゴムに適切量配合される。
本発明のゴム組成物を免震積層体に適用した場合の一例を図1に示したが、本発明のゴム組成物2と例えば一般構造用鋼板、冷間圧延鋼板などからなる硬質板3とが交互に積層されて免震積層体が構成される。この積層体を製造するには、成形・加硫して、シート状のゴム組成物を得た後、接着剤により硬質板と接着してもよいし、またあらかじめ未加硫のゴム配合物をシート状に成形し、硬質板と積層した後に加熱して加硫・接着を同時に行って製造することもできる。
【0013】
このような免震積層体は、例えば、道路橋の支承や、ビルの基礎支承の用途に用いることができる。
【0014】
【実施例】
表2に示す配合内容(重量部)でゴム組成物を作製した(実施例1〜3、比較例1〜2)。これらのゴム組成物につき、下記により引張強度(TB )、破断伸び(EB )、JIS A 硬度(Hs)を評価した。また、ゴムと鉄板を交互に積層した図1の免震積層体(サイズ135mm×135mm×74mm)を作製し、せん断弾性係数(G) 、等価減衰定数(heq)、およびクリープ性(橋の設計供用年数に相当するクリープ量)をそれぞれ評価した。ここで、Gはせん断弾性係数を、heqは等価減衰定数を表わす。この結果を表2に示す。
【0015】
引張強さ(T B kgf/cm 2 ):
JIS K 6301 によって測定した。数値の大きい方が強度が大きく、破断しにくい。
破断伸び(E B 、%):
JIS K 6301 によって測定した。
【0016】
せん断弾性係数(G) :
2軸せん断試験機により、0.5 Hz 、175 %歪時の条件にて求めた。12kgf/cm2 以上あればよい。
等価減衰定数(h eq ):
2軸せん断試験機により、0.5 Hz 、175 %歪時の条件にて求めた。
【0017】
橋梁の免震装置として用いられる高減衰ゴム支承は、設計で期待する橋の減衰定数が得られるような地震時エネルギー吸収能力を有する必要がある。免震設計の基本となる「道路橋の免震設計法マニュアル(建設省(財)土木研究センター)」では、橋の減衰定数に基づく設計水平震度の補正係数は下記の表1のとおりとなっており、橋として地震時の震動を8割程度にすること(地震時のエネルギーを2割ほど吸収すること)が望まれている。
【0018】
【表1】

Figure 0003806492
【0019】
また、高減衰ゴム支承の等価減衰定数はせん断ひずみの増加に伴って減少する傾向にあり、保有水平耐力法レベルで期待できる橋の減衰定数は0.12〜0.15が妥当である。それ故、これを満足する対象ひずみレベルでの高減衰ゴム支承に要求される等価減衰定数は0.13程度以上となる。
【0020】
クリープ性(%):
温度+20℃で、設計支圧応力度(60kgf/cm2 )に相当する鉛直荷重を1000時間作用させた場合に免震装置に生じる鉛直変位をもとに、式(1)から橋の設計供用年数に相当するクリープを求める。
δCR=atb (1)
ここに、
δCR:免震装置のクリープ変形量(mm)
t :橋の設計供用年数(時間)
a,b :クリープ定数で、式(2)および式(3)より算出する。
【0021】
a =(δ100 2 /(δ10002 (2)
b = log(δ1000/δ100 ) (3)
δ100 :100時間後に生じる免震装置の鉛直変位(mm)
δ1000:1000時間後に生じる免震装置の鉛直変位(mm)
式(1)で算出した橋の設計供用年数に相当するクリープ量は、ゴム総厚の5%以下でなければならない。
【0022】
【表2】
Figure 0003806492
【0023】
表2から明らかなように、本発明ゴム組成物(実施例1〜3)は、比較例のゴム組成物に比して高弾性率でかつ振動エネルギー吸収性に優れていることが判る。
【0024】
【発明の効果】
以上説明したように本発明の免震積層体用ゴム組成物は、天然ゴムを主成分とするゴム100重量部に対し、超高分子量ポリエチレン5〜30重量部、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を含んでなるため、振動エネルギー吸収性、長期耐久性に優れるものである。
【図面の簡単な説明】
【図1】免震積層体の一例を示す断面説明図である。
【符号の説明】
1 免震積層体 2 ゴム組成物 3 硬質板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber composition capable of efficiently absorbing vibration energy with a high elastic modulus and excellent in long-term durability.
[0002]
[Prior art]
In recent years, vibration energy absorbing devices, that is, anti-vibration, seismic isolation, seismic isolation devices, and the like are rapidly spreading. In this apparatus, a rubber composition having a high damping property is used.
Conventionally, a large amount of carbon black or petroleum resin is blended in order to give a rubber material high damping characteristics, that is, to obtain a rubber composition having high damping characteristics.
[0003]
However, when carbon black is mixed in a large amount, the damping performance is improved (high hysteresis loss), but the scouring processability is inferior and the shear fracture characteristics of the seismic isolation device are lowered. On the other hand, even when a large amount of petroleum resin is blended, the damping characteristics are improved, but the creep characteristics are lowered and the long-term durability is inferior.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a rubber composition for a seismic isolation laminate having a high elastic modulus, excellent vibration energy absorption and long-term durability for the purpose of downsizing the apparatus.
[0005]
[Means for Solving the Problems]
The rubber composition for a seismic isolation laminate of the present invention comprises 5 to 30 parts by weight of ultra high molecular weight polyethylene, 15 to 60 parts by weight of petroleum resin, and 50 fine carbon blacks with respect to 100 parts by weight of rubber mainly composed of natural rubber. It is characterized by comprising -90 parts by weight.
[0006]
Thus, since natural rubber (NR), ultrahigh molecular weight polyethylene, petroleum resin, and fine particle carbon black are used in combination, high elastic modulus, vibration energy absorption and long-term durability can be improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory cross-sectional view showing an example of a seismic isolation laminate. In FIG. 1, the seismic isolation laminate 1 has a structure in which a rubber composition 2 is laminated in a plurality of layers via a rigid plate 3 having rigidity such as a steel plate.
In the present invention, as the rubber composition 2 in FIG. 1, a rubber composition comprising natural rubber (NR), ultrahigh molecular weight polyethylene, petroleum resin, and fine carbon black is used.
[0008]
As the natural rubber (NR), any commercially available rubber may be used. In addition to NR, rubbers such as isoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), and butadiene rubber (BR) may be blended.
The ultra high molecular weight polyethylene is a powder having a molecular weight (viscosity method) of 1 million or more and an average particle diameter of 15 to 50 μm, preferably 20 to 35 μm. As this ultra high molecular weight polyethylene, for example, “Mipperon” manufactured by Mitsui Petrochemical Co., Ltd. and “Suntech” manufactured by Asahi Kasei are commercially available.
[0009]
Petroleum resins include coumarone, indene, styrene, and other coumarone plastics contained in solvent naphtha, and cracked oil fractions by-produced from ethylene plants that produce ethylene, propylene, etc. by steam cracking of petroleum. Resins obtained by polymerizing the diolefins and monoolefins contained in the product without isolation, such as Exlon (manufactured by Nippon Steel Chemical Co., Ltd.), High Resin (manufactured by Toho Chemical Co., Ltd.), FTR (Mitsui Petrochemical Co., Ltd.) (Manufactured by Kogyo Co., Ltd.).
[0010]
Particulate carbon black used in the present invention are nitrogen specific surface area of usually 60~150 m 2 / g, especially is 80~150 m 2 / g, DBP oil absorption amount normally 60~160cm 3 / 100g, particularly 90 to The thing of 160cm < 3 > / 100g is preferable. Such products are commercially available as HAF, ISAF, and SAF type carbon blacks represented by ASTM, and can be used.
[0011]
In the present invention, 5 to 30 parts by weight of ultrahigh molecular weight polyethylene, 15 to 60 parts by weight of petroleum resin, and 50 to 90 parts by weight of fine carbon black are blended with 100 parts by weight of rubber mainly composed of NR.
If the ultrahigh molecular weight polyethylene is less than 5 parts by weight, the effect of improving the elastic modulus of the resulting rubber composition is insufficient, and if it exceeds 30 parts by weight, the rubber becomes too hard, the ability to absorb vibration energy is inferior, and the elongation decreases. Become a source of creep. If the amount of petroleum resin is less than 15 parts by weight, the ability to absorb vibration energy is insufficient, and if it exceeds 60 parts by weight, creep becomes large. If the fine particle carbon black is less than 50 parts by weight, the ability to absorb vibration energy is inferior, and if it exceeds 90 parts by weight, the processability is lowered during the production of the rubber composition of the present invention.
[0012]
In producing the rubber composition of the present invention, N-cyclohexyl-2-benzothiazolylsulfenamide, Nt-butyl-2-benzothiazolylsulfene is used for the purpose of vulcanizing unvulcanized rubber. An appropriate amount of a vulcanization accelerator such as amide and a vulcanization aid such as zinc white or stearic acid is blended in the unvulcanized rubber.
An example in which the rubber composition of the present invention is applied to a seismic isolation laminate is shown in FIG. 1, but the rubber composition 2 of the present invention and a hard plate 3 made of, for example, a general structural steel plate, a cold rolled steel plate, and the like Are stacked alternately to form a seismic isolation stack. In order to produce this laminate, after molding and vulcanizing to obtain a sheet-like rubber composition, it may be adhered to a hard plate with an adhesive, or an unvulcanized rubber compound may be preliminarily bonded. It can also be produced by forming into a sheet shape, laminating with a hard plate, and then heating to vulcanize and bond simultaneously.
[0013]
Such a seismic isolation laminate can be used, for example, for road bridges and building foundations.
[0014]
【Example】
Rubber compositions were prepared with the blending contents (parts by weight) shown in Table 2 (Examples 1 to 3, Comparative Examples 1 and 2). These rubber compositions were evaluated for tensile strength (T B ), elongation at break (E B ), and JIS A hardness (Hs) as follows. In addition, the seismic isolation laminate (size 135 mm x 135 mm x 74 mm) in which rubber and iron plates are alternately laminated is prepared, and the shear elastic modulus (G), equivalent damping constant (h eq ), and creep properties (bridge The creep amount corresponding to the design service years) was evaluated. Here, G represents a shear elastic modulus, and h eq represents an equivalent damping constant. The results are shown in Table 2.
[0015]
Tensile strength (T B , kgf / cm 2 ):
Measured according to JIS K 6301. The larger the value, the greater the strength and the harder it is to break.
Elongation at break (E B ,% ):
Measured according to JIS K 6301.
[0016]
Shear elastic modulus (G ):
It calculated | required on the conditions at the time of 0.5 Hz and 175% distortion with the biaxial shear tester. It is sufficient 12kgf / cm 2 or more.
Equivalent damping constant (h eq ):
It calculated | required on the conditions at the time of 0.5 Hz and 175% distortion with the biaxial shear tester.
[0017]
High-damping rubber bearings used as bridge seismic isolation devices must have an energy absorption capacity during earthquakes so that the damping constant expected for the design can be obtained. In the “Seismic Isolation Design Manual for Road Bridges (Ministry of Construction (Civil Engineering) Research Center)), which is the basis for seismic isolation design, the correction coefficient for the design horizontal seismic intensity based on the bridge damping constant is as shown in Table 1 below. As a bridge, it is desired that the vibration during an earthquake be about 80% (absorbing about 20% of the energy during an earthquake).
[0018]
[Table 1]
Figure 0003806492
[0019]
In addition, the equivalent damping constant of high-damping rubber bearings tends to decrease with increasing shear strain, and 0.12-0.15 is a reasonable bridge damping constant that can be expected at the possessed horizontal strength method level. Therefore, the equivalent damping constant required for the high damping rubber bearing at the target strain level that satisfies this is about 0.13 or more.
[0020]
Creep property (% ):
Based on the vertical displacement generated in the seismic isolation device when a vertical load corresponding to the design bearing stress (60kgf / cm 2 ) is applied for 1000 hours at a temperature of + 20 ° C, the bridge is used for design from Equation (1). Find the creep equivalent to the number of years.
δ CR = at b (1)
here,
δ CR : Creep deformation of seismic isolation device (mm)
t: Design life of bridge (hours)
a, b: Creep constant, calculated from Equation (2) and Equation (3).
[0021]
a = (δ 100 ) 2 / (δ 1000 ) 2 (2)
b = log (δ 1000 / δ 100 ) (3)
δ 100 : Vertical displacement of the seismic isolation device after 100 hours (mm)
δ 1000 : Vertical displacement of the seismic isolation device after 1000 hours (mm)
The amount of creep corresponding to the bridge design service life calculated by equation (1) must be 5% or less of the total rubber thickness.
[0022]
[Table 2]
Figure 0003806492
[0023]
As is clear from Table 2, the rubber compositions of the present invention (Examples 1 to 3) are found to have a higher elastic modulus and excellent vibration energy absorption than the rubber compositions of the comparative examples.
[0024]
【The invention's effect】
As described above, the rubber composition for a seismic isolation laminate of the present invention has 5 to 30 parts by weight of ultrahigh molecular weight polyethylene, 15 to 60 parts by weight of petroleum resin, based on 100 parts by weight of rubber mainly composed of natural rubber. And 50 to 90 parts by weight of fine carbon black, it is excellent in vibration energy absorption and long-term durability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing an example of a seismic isolation laminate.
[Explanation of symbols]
1 Seismic isolation laminate 2 Rubber composition 3 Hard plate

Claims (2)

天然ゴムを主成分とするゴム100重量部に対し、超高分子量ポリエチレン5〜30重量部、石油樹脂15〜60重量部、および微粒子カーボンブラック50〜90重量部を含んでなる免震積層体用ゴム組成物。For seismic isolation laminate comprising 5 to 30 parts by weight of ultrahigh molecular weight polyethylene, 15 to 60 parts by weight of petroleum resin, and 50 to 90 parts by weight of fine carbon black with respect to 100 parts by weight of rubber mainly composed of natural rubber Rubber composition. 前記微粒子カーボンブラックが窒素比表面積60〜150m 2 /g、DBP吸油量60〜160cm3 /100gを有する請求項1記載の免震積層体用ゴム組成物。The particulate carbon black is nitrogen specific surface area 60~150m 2 / g, the seismic isolation laminate-body rubber composition of claim 1 having a DBP oil absorption of 60~160cm 3 / 100g.
JP21093797A 1996-08-13 1997-08-05 Rubber composition for seismic isolation laminate Expired - Fee Related JP3806492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21093797A JP3806492B2 (en) 1996-08-13 1997-08-05 Rubber composition for seismic isolation laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21364796 1996-08-13
JP8-213647 1996-08-13
JP21093797A JP3806492B2 (en) 1996-08-13 1997-08-05 Rubber composition for seismic isolation laminate

Publications (2)

Publication Number Publication Date
JPH10110064A JPH10110064A (en) 1998-04-28
JP3806492B2 true JP3806492B2 (en) 2006-08-09

Family

ID=26518345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21093797A Expired - Fee Related JP3806492B2 (en) 1996-08-13 1997-08-05 Rubber composition for seismic isolation laminate

Country Status (1)

Country Link
JP (1) JP3806492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955335A4 (en) * 1997-01-22 2003-02-26 Yokohama Rubber Co Ltd Rubber composition for seismic isolation laminates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615639B2 (en) * 1987-07-27 1997-06-04 株式会社ブリヂストン Seismic isolation structure
JP2762407B2 (en) * 1989-12-05 1998-06-04 横浜ゴム株式会社 High damping rubber composition
JPH05239267A (en) * 1992-03-02 1993-09-17 Yokohama Rubber Co Ltd:The Rubber composition
JPH06207051A (en) * 1993-01-12 1994-07-26 Bridgestone Corp Vibrationproof rubber composition

Also Published As

Publication number Publication date
JPH10110064A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP3125103B2 (en) Rubber composition for seismic isolation laminate
JP2013216781A (en) Highly damping composition, and viscoelastic damper
JP2010260933A (en) Rubber composition for seismic isolation structure
JP2570340B2 (en) Seismic isolation structure
US6180711B1 (en) Rubber composition for seismic isolation laminates
JP5714828B2 (en) Rubber composition for high damping bearing and high damping bearing
WO1998016580A1 (en) Highly damping rubber composition
JP3806492B2 (en) Rubber composition for seismic isolation laminate
JP4595171B2 (en) Rubber composition for high damping bearing
JP3845499B2 (en) Rubber composition for seismic isolation laminate
JP3845500B2 (en) Rubber composition for seismic isolation laminate
JP2570341B2 (en) Seismic isolation structure
JP3754530B2 (en) Rubber composition for seismic isolation laminate
EP0481810B1 (en) Rubber composition for laminated vibrationproofing structure
JP4618027B2 (en) Damping device
JPH10110062A (en) Rubber composition for earthquake-proof laminate
JP2949671B2 (en) High damping rubber composition
JP2001200103A (en) Vibration damping vtscoelastic material for building
JP2004307594A (en) Highly attenuating rubber composition and quake-free structure using the same
JP4331003B2 (en) Rubber composition for high damping bearing and high damping bearing
JP5038608B2 (en) High damping rubber composition
JP3124097B2 (en) Seismic isolation device
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same
JPH0893845A (en) Base isolation structural body for light load
JP2004307593A (en) Highly attenuating rubber composition and quake-free structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees