JP2005246822A - Multi-layer foamed resin molding and its production method - Google Patents

Multi-layer foamed resin molding and its production method Download PDF

Info

Publication number
JP2005246822A
JP2005246822A JP2004061766A JP2004061766A JP2005246822A JP 2005246822 A JP2005246822 A JP 2005246822A JP 2004061766 A JP2004061766 A JP 2004061766A JP 2004061766 A JP2004061766 A JP 2004061766A JP 2005246822 A JP2005246822 A JP 2005246822A
Authority
JP
Japan
Prior art keywords
resin
molded product
multilayer structure
layer
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061766A
Other languages
Japanese (ja)
Inventor
Takeshi Ishikawa
健 石川
Eiryo Ouchi
英良 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004061766A priority Critical patent/JP2005246822A/en
Publication of JP2005246822A publication Critical patent/JP2005246822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-layer foamed resin molding which is light in weight, reduced in strength lowering, and excellent in shading properties, thermal insulation properties, etc., and a method for producing the molding. <P>SOLUTION: In the multi-layer foamed resin molding, inside and outside outer layers (a and e) and the thick-walled middle part (c) of the molding are non-foamed layers. Parts held between the outer layers (a and e) and the middle part (c) are formed from foamed layers (b and d). In at least one of the foamed layers (b and d), the middle part (c) side and the outer layers (a and e) are changed in the average diameter of bubbles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多層構造を有する樹脂製発泡成形品、およびその製造方法に関する。   The present invention relates to a resin foam molded article having a multilayer structure and a method for producing the same.

熱可塑性樹脂製発泡成形品は、製品の軽量化、断熱性の向上、防音性付与などを目的として、原料樹脂の種類に関係なく、各種用途において広く実用化されている。この熱可塑性樹脂製発泡成形品にあって、上記軽量化などの機能性向上の観点からは、成形品の発泡倍率を高くし、比重を小さくすることが望ましいが、発泡倍率が高くなるに伴って強度は低下するため、工業的用途においては、強度の観点から発泡倍率には制約があった。 Thermoplastic resin foam-molded products are widely used in various applications regardless of the type of raw resin for the purpose of reducing the weight of the product, improving heat insulation, and imparting soundproofing. In this foamed molded product made of thermoplastic resin, it is desirable to increase the foaming ratio of the molded product and reduce the specific gravity from the viewpoint of improving the functionality such as weight reduction, but as the foaming ratio increases, Since the strength is reduced, the expansion ratio is restricted from the viewpoint of strength in industrial applications.

これに対して、発泡成形品の気泡を微細化することにより、発泡倍率を高めることに伴う強度低下が少ないか、または強度向上を図る技術が提案されている。この技術はマイクロセルラープラスチックと呼称され、米国特許第4,473,665号明細書、特表平6−506724号公報などにその詳細が記載されている。この方法は、具体的には、(1)高圧容器内で、熱可塑性樹脂に高圧下で窒素や二酸化炭素など不活性ガスを高圧、または超臨界状態で含浸させ、次いで、(2)ガスを含浸させた熱可塑性樹脂を高圧容器より取り出し、オイルバス等で熱可塑性樹脂のガラス転移温度(Tg)以上の温度まで昇温し、(3)核生成を誘発して気泡成長させることにより、微細気泡を有する発泡成形品を得るものである。   On the other hand, there has been proposed a technique for reducing the strength caused by increasing the foaming ratio or improving the strength by miniaturizing the bubbles of the foam molded product. This technique is called microcellular plastic, and its details are described in US Pat. No. 4,473,665 and JP-A-6-506724. Specifically, in this method, (1) in a high-pressure vessel, a thermoplastic resin is impregnated with an inert gas such as nitrogen or carbon dioxide under a high pressure or in a supercritical state, and then (2) the gas is introduced. The impregnated thermoplastic resin is taken out from the high-pressure vessel, heated to a temperature equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin with an oil bath or the like, and (3) nucleation is induced to cause bubble growth. A foamed molded product having bubbles is obtained.

さらに、射出成形法や押出成形法によって、多層構造発泡成形品または気泡径を傾斜的に変化させた、いわゆる傾斜発泡成形品を製造することは良く知られている。例えば、特開平10−119078号公報には、化学発泡剤を含んだポリフェニレンエーテルをキャビティに流し込み、キャビティの大きさを多段に変化させて得られる、発泡体内部と表面で気泡径の比が2以上である発泡成形品の製造方法が記載されている。また、特開平11−291374号公報には、多層シートを構成するある層にのみ熱分解型の化学発泡剤を含ませて、発泡剤を発泡させることにより、シート中心では厚み方向に長い紡錘形を呈し、シート表面では気泡が球形に近い形状を呈する成形品の製造方法が記載されている。   Furthermore, it is well known to produce a multilayer structure foam molded product or a so-called tilted foam molded product in which the cell diameter is changed in a slanted manner by an injection molding method or an extrusion molding method. For example, Japanese Patent Laid-Open No. 10-119078 discloses that the ratio of the bubble diameter between the inside and the surface of the foam obtained by pouring polyphenylene ether containing a chemical foaming agent into the cavity and changing the size of the cavity in multiple stages is 2. The manufacturing method of the foam-molded article which is the above is described. Japanese Patent Application Laid-Open No. 11-291374 discloses a spindle shape that is long in the thickness direction at the center of the sheet by containing a pyrolytic chemical foaming agent only in a certain layer constituting the multilayer sheet and foaming the foaming agent. Presented is a method for producing a molded product in which bubbles are formed in a nearly spherical shape on the sheet surface.

さらに、特開2001−113653号公報には、シートの真空成形性を改良する目的として、発泡層を含む3層のポリオレフィン押出シートにおいて、表面無発泡層に長鎖分岐を持つポリプロピレンを配置する技術が記載されている。2枚のシートを張り合わせることにより五層の多層シートの製作も可能であると記載されている。特開2002−363324号公報には、ガスを混入したプラスチックを押出シート成形してシート各面をそれぞれ異なる温度に曝すことにより、シート断面内で気泡径が傾斜的に変化する気泡を有するシートの製造方法が記載されている。   Furthermore, Japanese Patent Laid-Open No. 2001-113653 discloses a technique for disposing polypropylene having a long chain branch in a non-foamed surface layer in a three-layer polyolefin extruded sheet including a foamed layer for the purpose of improving the vacuum formability of the sheet. Is described. It is described that a multi-layer sheet of five layers can be manufactured by bonding two sheets. Japanese Patent Laid-Open No. 2002-363324 discloses a sheet having bubbles in which the bubble diameter changes in an inclined manner within the sheet cross-section by extruding a plastic mixed with gas and exposing each surface of the sheet to different temperatures. A manufacturing method is described.

しかしながら、上記米国特許明細書に記載の方法では、発泡成形品の強度低下の改善は見られるものの、工業的レベルでは不十分であり、かつ、断熱性は発泡倍率で比例するため、優れた断熱性を付与する目的で、発泡倍率を高めると、強度が低下するという従来と同様の問題があった。工業的に実用化可能な多層成形品または傾斜発泡成形品の製造法として、特開2001−113653号公報に記載されているような共押出成形法がある。しかしながら、三層構造の多層発泡成形品は一般的であるが、五層以上の多層発泡成形品とするには、従来法によれば、溶着法または接着剤を使用した張り合わせが必要である。溶着法による場合は、加熱による発泡体の変形や、二次発泡などの問題がある。接着剤による場合は、接着剤と接触した部分で、強度が低下するおそれがある。五層以上の多層発泡成形品では、各層を均一な厚さに調整・維持することや、発泡層の気泡平均径を制御することなどが困難で、さらに発泡層を高発泡層と低発泡層を作り分けることは不可能である。気泡の制御などをすると、発泡成形品を製造する際の生産性が高められない、多額の設備投資が必要である、などの問題がある。   However, in the method described in the above-mentioned U.S. Patent Specification, although an improvement in strength reduction of the foamed molded article is seen, it is insufficient on an industrial level, and since the heat insulation is proportional to the expansion ratio, excellent heat insulation is achieved. For the purpose of imparting the property, there is a problem similar to the conventional one that the strength decreases when the expansion ratio is increased. As a method for producing a multilayer molded product or an inclined foam molded product that can be industrially used, there is a coextrusion molding method as described in JP-A-2001-113653. However, a multi-layer foam molded article having a three-layer structure is common, but in order to obtain a multi-layer foam molded article having five or more layers, according to the conventional method, bonding using a welding method or an adhesive is required. In the case of the welding method, there are problems such as deformation of the foam by heating and secondary foaming. In the case of using an adhesive, the strength may be reduced at a portion in contact with the adhesive. It is difficult to adjust and maintain each layer to a uniform thickness and to control the average cell diameter of the foam layer in multi-layer foam molded products of five layers or more. In addition, the foam layer is divided into a high foam layer and a low foam layer. It is impossible to make different. When air bubbles are controlled, there is a problem that productivity at the time of producing a foam molded product cannot be increased, and a large amount of capital investment is required.

また、多層発泡成形品を共押出成形法で製造する場合は、原料樹脂が溶融性に優れ熱収縮性の低いポリオレフィン系樹脂には好適であるが、芳香族ポリエステルや脂肪族ポリエステルなどのポリエステル系樹脂であると、加熱溶着時に熱収縮する恐れがあり、張り合わせるのは困難である。そしてこれらの公知文献に記載されている技術は、いずれも発泡による強度低下の抑制と断熱性向上の双方を目的としたものではなく、また、多層発泡成形品の強度低下の抑制法や、断熱性向上法については記載も示唆もされていない。
米国特許第4,473,665号明細書 特表平6−506724号公報 特開平10−119078号公報 特開平11−291374号公報 特開2001−113653号公報 特開2002−363324号公報
Also, when producing multi-layer foam molded products by co-extrusion molding method, the raw material resin is suitable for polyolefin resin with excellent meltability and low heat shrinkage, but polyester type such as aromatic polyester and aliphatic polyester. If it is a resin, there is a risk of thermal shrinkage during heat welding, and it is difficult to bond them together. None of the techniques described in these known documents are intended to suppress strength reduction due to foaming and to improve heat insulation. There is no description or suggestion of a method for improving the sexiness.
US Pat. No. 4,473,665 JP-T 6-506724 Japanese Patent Laid-Open No. 10-119078 JP-A-11-291374 JP 2001-113653 A JP 2002-363324 A

本発明は、上記従来の問題点を解決し、樹脂製発泡成形品の内部に、発泡層と非発泡層からなる多層構造を形成することにより、強度低下が極めて少なく、遮光性、遮音性、断熱性、ガスバリヤ性などにも優れた樹脂製発泡成形品を提供することを目的として、鋭意検討した結果本発明を完成するに至った。本発明の目的は、次のとおりである。
1.樹脂製発泡成形品の壁面を高発泡倍率層と低発泡層とによって多層とすることにより、強度を低下させることなく、遮光性、遮音性、断熱性、ガスバリヤ性などにも優れた、多層構造の樹脂製発泡成形品を提供すること。
2.軽量で強度低下が極めて少なく、遮光性、遮音性、断熱性、ガスバリヤ性などにも優れた、多層構造を有する樹脂製発泡成形品の製造方法を提供すること。
The present invention solves the above-mentioned conventional problems, and by forming a multilayer structure composed of a foam layer and a non-foam layer inside the resin foam molded product, the strength is hardly reduced, and the light shielding property, sound insulation property, The present invention has been completed as a result of intensive studies aimed at providing a resin foam-molded product having excellent heat insulation and gas barrier properties. The object of the present invention is as follows.
1. Multi-layer structure with excellent light-shielding properties, sound-insulating properties, heat insulation properties, gas barrier properties, etc. To provide a resin foam molded product.
2. To provide a method for producing a resin foam-molded article having a multilayer structure that is lightweight, has a very low strength reduction, and has excellent light shielding properties, sound insulation properties, heat insulation properties, gas barrier properties, and the like.

上記課題を解決するため、第一発明では、多層構造を有する樹脂製発泡成形品において、表裏の外層(a、e)と成形品の肉厚中央部分(c)が非発泡層であり、外層(a、e)と中央部分(c)に挟まれた部分に発泡層(b、d)で構成され、発泡層(b、d)の少なくとも一方の発泡層が、肉厚中央部分(c)側と外層(a、e)との間での気泡平均径が変化されてなることを特徴とする、多層構造を有する樹脂製発泡成形品を提供する。   In order to solve the above-described problems, in the first invention, in the resin foam molded product having a multilayer structure, the outer layers (a, e) on the front and back sides and the central thickness portion (c) of the molded product are non-foamed layers, A portion sandwiched between (a, e) and the central portion (c) is composed of a foam layer (b, d), and at least one foam layer of the foam layer (b, d) has a thick central portion (c). Provided is a resin foam-molded article having a multilayer structure characterized in that the average cell diameter is changed between the side and the outer layer (a, e).

また、第二発明では、多層構造を有する樹脂製発泡成形品を製造するにあたり、熱可塑性樹脂の不活性ガスを溶解した未発泡中間成形品を製造する工程、この未発泡中間成形品を加熱下延伸する工程とよりなることを特徴とする、多層構造を有する樹脂製発泡成形品の製造方法を提供する。   In the second invention, in manufacturing a resin foam molded product having a multilayer structure, a step of manufacturing an unfoamed intermediate molded product in which an inert gas of a thermoplastic resin is dissolved, the unfoamed intermediate molded product is heated. The present invention provides a method for producing a resin foam molded article having a multilayer structure, characterized by comprising a step of stretching.

さらに、第三発明では、多層構造を有する樹脂製発泡成形品を製造するにあたり、まず熱可塑性樹脂を原料として中間成形品を製造する工程、この中間成形品を原料樹脂の軟化点以下の温度条件下、加圧不活性ガスと接触させて中間成形品の壁面に溶解させる工程、原料樹脂の軟化点以下の温度条件下で常圧に戻す工程、および、上記中間成形品を加熱延伸する工程よりなることを特徴とする、多層構造を有する樹脂製発泡成形品の製造方法を提供する。   Furthermore, in the third invention, in producing a resin foam molded article having a multilayer structure, first, a process of producing an intermediate molded article using a thermoplastic resin as a raw material, the intermediate molded article is subjected to a temperature condition below the softening point of the raw resin. From the step of contacting with a pressurized inert gas and dissolving on the wall surface of the intermediate molded product, the step of returning to normal pressure under a temperature condition below the softening point of the raw material resin, and the step of heating and stretching the intermediate molded product There is provided a method for producing a resin foam-molded article having a multilayer structure.

本発明は、次のような特別に有利な効果を奏し、その産業上の利用価値は極めて大である。
1.本発明に係る多層構造を有する樹脂製発泡成形品は、樹脂製発泡成形品の壁面を高発泡倍率層と低発泡層とによって多層とされているので、軽量性である。
2.本発明に係る多層構造を有する樹脂製発泡成形品は、樹脂製発泡成形品の壁面を高発泡倍率層と低発泡層とによって多層とされているので、強度に優れている。
3.本発明に係る多層構造を有する樹脂製発泡成形品は、樹脂製発泡成形品の壁面を高発泡倍率層と低発泡層とによって多層とされているので、断熱性に優れている。
4.本発明に係る製造方法によれば、高発泡倍率層と低発泡層とによって多層とされ、軽量で、強度低下が極めて少ない多層構造を有する樹脂製発泡成形品を、比較的容易に製造することができる。
The present invention has the following particularly advantageous effects, and its industrial utility value is extremely great.
1. The resin foam-molded product having a multilayer structure according to the present invention is lightweight because the wall surface of the resin foam-molded product is formed into a multilayer by a high foam ratio layer and a low foam layer.
2. The resin foam molded product having a multilayer structure according to the present invention is excellent in strength because the wall surface of the resin foam molded product is formed into a multilayer by a high foam ratio layer and a low foam layer.
3. The resin foam molded article having a multilayer structure according to the present invention is excellent in heat insulating property because the wall surface of the resin foam molded article is formed into a multilayer by a high foam ratio layer and a low foam layer.
4). According to the manufacturing method according to the present invention, it is relatively easy to manufacture a resin foam-molded article having a multilayer structure that is made of a high-foaming ratio layer and a low-foaming layer, is lightweight, and has very little strength reduction. Can do.

以下、本発明を詳細に説明する。本発明に係る多層構造を有する樹脂製発泡成形品の原料樹脂は、熱可塑性樹脂である。熱可塑性樹脂としては、ポリスチレン、ゴム強化ポリスチレン、ABS樹脂、AS樹脂などのスチレン系樹脂、ポリメチルメタクリレートなどのアクリル系樹脂、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリビニルアルコール系樹脂、芳香族ポリエステル、脂肪族ポリエステル、脂環式ポリエステルなどのポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ノルボルネン系樹脂、フッ素系樹脂、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアリレート、トリアセチルセルロース、ポリ―4メチルペンテン―1、ポリウレタン、ポリブテン、ポリアセタール、ポリフェニレンオキシド、天然ゴム、合成ゴム、熱可塑性エラストマーなどが挙げられる。これらは、単独でも混合物であってもよい。   Hereinafter, the present invention will be described in detail. The raw material resin of the resin foam molded article having a multilayer structure according to the present invention is a thermoplastic resin. Thermoplastic resins include polystyrene, rubber-reinforced polystyrene, styrene resins such as ABS resin and AS resin, acrylic resins such as polymethyl methacrylate, olefin resins such as polyethylene and polypropylene, polyvinyl chloride resins, and polyvinylidene chloride. Resin, polyvinyl alcohol resin, polyester resin such as aromatic polyester, aliphatic polyester, alicyclic polyester, polyamide resin, polycarbonate resin, norbornene resin, fluorine resin, polyethersulfone, polysulfone, polyimide, Polyetherimide, polyetherketone, polyetheretherketone, polyarylate, triacetylcellulose, poly-4 methylpentene-1, polyurethane, polybutene, polyacetal, polyph Niren'okishido, natural rubber, synthetic rubbers, and thermoplastic elastomers. These may be used alone or as a mixture.

上記原料熱可塑性樹脂には、本発明の効果を損なわない種類の各種樹脂添加剤を配合することができる。樹脂添加剤としては、例えば、発泡核剤、顔料・染料などの着色剤、熱安定剤、光安定剤、離型剤、防腐剤、紫外線吸収剤、可塑剤、滑剤、難燃剤、導電性付与剤、帯電防止剤、結晶核剤などが挙げられる。これら樹脂添加剤は、一種でも二種以上であってもよい。   Various kinds of resin additives that do not impair the effects of the present invention can be blended with the raw material thermoplastic resin. Examples of resin additives include foam nucleating agents, colorants such as pigments and dyes, heat stabilizers, light stabilizers, mold release agents, preservatives, ultraviolet absorbers, plasticizers, lubricants, flame retardants, and conductivity imparting. Agents, antistatic agents, crystal nucleating agents and the like. These resin additives may be one kind or two or more kinds.

本発明に係る多層構造を有する樹脂製発泡成形品を製造する方法としては、以下に記載するA法、B法およびC法の三法が挙げられる。A法は、まず、第一工程(以下、A1工程と略称する)で、熱可塑性樹脂の不活性ガスを溶解した(または染み込ませた)未発泡中間成形品を製造する。ついで、第二(以下、A2工程と略称する)で未発泡中間成形品を加熱下延伸する。   Examples of the method for producing a resin foam molded article having a multilayer structure according to the present invention include the following three methods: Method A, Method B and Method C. In Method A, first, an unfoamed intermediate molded product in which an inert gas of a thermoplastic resin is dissolved (or impregnated) is manufactured in a first step (hereinafter abbreviated as A1 step). Then, in the second (hereinafter abbreviated as A2 step), the unfoamed intermediate molded product is stretched under heating.

不活性ガスを溶解した未発泡中間成形品を製造するには、不活性ガスを充填した密閉空間に溶融樹脂を中間成形品として押込み、不活性ガスに中間成形品の表面を接触させ、不活性ガスを溶解させる。このA1工程では、未発泡中間成形品は表面に不活性ガスを溶解しているが、未発泡の状態にある。密閉した空間とは、射出成形金型キャビテイ、中空成形用金型キャビテイなどの密閉空間を意味する。   In order to produce an unfoamed intermediate molded product in which an inert gas is dissolved, the molten resin is pushed into the sealed space filled with the inert gas as an intermediate molded product, and the surface of the intermediate molded product is brought into contact with the inert gas to be inert. Dissolve the gas. In the step A1, the unfoamed intermediate molded product has an inert gas dissolved on the surface thereof, but is in an unfoamed state. The sealed space means a sealed space such as an injection mold cavity or a hollow mold cavity.

本発明において中間成形品とは、シート、箱状型容器、瓶状容器、チューブまたは管である。中間成形品としてのシートは射出成形金型、押出成形用Tダイなどにより、中間成形品としての容器は射出成形金型、中間成形品としてのチューブまたは管は、中空成形金型や押出成形用によって成形することができる。本発明において発泡成形品としてのシートとしては、遮光シート、遮熱シート、遮音シートなどが挙げられる。箱状容器としては、電子レンジで加熱処理される食品の容器が挙げられ、瓶状容器としては、飲料水用、健康飲料用の用途のほか、遮光性が要求される化粧品、香粧品、医薬品などの分野に使用される。チューブまたは管としては、OA機器のロール、医療機器用チューブなどが挙げられる。最終的に得られる発泡成形品がシート、箱状型容器、チューブまたは管の場合には、上記中間成形品は、シート、箱状型容器、チューブまたは管であり、瓶状容器の場合には、パリソンである。なお、以下の説明では、便宜上、瓶状容器を製造する例に基づいて詳細に説明する。   In the present invention, the intermediate molded product is a sheet, a box-shaped container, a bottle-shaped container, a tube or a tube. Sheets as intermediate molded products are injection molding dies, extrusion T dies, etc., containers as intermediate molded products are injection molding dies, tubes or tubes as intermediate molded products are for hollow molding dies and extrusion molding Can be molded by. Examples of the sheet as the foamed molded product in the present invention include a light shielding sheet, a heat shielding sheet, and a sound insulating sheet. Box-shaped containers include food containers that are heat-treated in a microwave oven, and bottle-shaped containers include cosmetics, cosmetics, and pharmaceuticals that require light-shielding in addition to uses for drinking water and health drinks. Used in such fields. Examples of the tube or tube include a roll of OA equipment and a tube for medical equipment. When the final foamed molded product is a sheet, a box-shaped container, a tube or a tube, the intermediate molded product is a sheet, a box-shaped container, a tube or a tube. , A parison. In addition, in the following description, it demonstrates in detail based on the example which manufactures a bottle-shaped container for convenience.

密閉空間に充填する不活性ガスとしては、無機系ガスおよび有機系ガスが挙げられる。これら不活性ガスは、常温・常圧で気体状態を呈し、中間成形品の壁面に溶解する(染み込む)ものであれば特に制限されない。無機系ガスの具体例としては、二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、酸素などが挙げられる。有機系ガスの具体例としては、フロンガス、低分子量の炭化水素ガスなどが挙げられる。これら不活性ガスは、一種でも二種以上の混合物であってもよい。上記不活性ガスの中では無機系ガスが好ましく、中間中間成形品の壁面に対する含浸性の観点から、二酸化炭素および窒素が特に好ましい。   Examples of the inert gas filled in the sealed space include inorganic gases and organic gases. These inert gases are not particularly limited as long as they are in a gaseous state at normal temperature and normal pressure and can be dissolved (infiltrated) into the wall surface of the intermediate molded product. Specific examples of the inorganic gas include carbon dioxide, nitrogen, argon, neon, helium, oxygen and the like. Specific examples of the organic gas include chlorofluorocarbon gas and low molecular weight hydrocarbon gas. These inert gases may be one kind or a mixture of two or more kinds. Among the above inert gases, inorganic gases are preferable, and carbon dioxide and nitrogen are particularly preferable from the viewpoint of impregnation with respect to the wall surface of the intermediate intermediate molded product.

上記A1工程において、密閉空間に充填する不活性ガスの圧力は、高いほど不活性ガスが溶融状態にある中間成形品に溶解するが、高圧になると密閉(シール)が困難となるので、15MPa以下が実用的であり、好ましくは10MPa以下である。密閉空間は、金属性パッキングによってシール可能とするのが好ましい。密閉空間に残る空気は、中間成形品としてのパリソンを押込む前に、使用する不活性ガスによって置換すると不活性ガスの濃度が高くなり、溶融状態にある中間成形品への溶解が速くなり好ましい。不活性ガスは、パリソンの表面に均一に接触させ溶解させるのが好ましいが、表面に均一に溶解させることが困難な製品にあっては、一個の製品の中で発泡倍率が低くてもよい箇所に、ゲートを設けるなどで対応することができる。表面に溶解させる不活性ガスの量は、不活性ガスの種類、圧力、温度、樹脂の種類、溶融状態にある中間成形品の温度、両者の接触時間などによって調節することができる。   In step A1, the higher the pressure of the inert gas that fills the sealed space, the more the inert gas dissolves in the intermediate molded product in the molten state. Is practical, preferably 10 MPa or less. The sealed space is preferably sealable with a metallic packing. If the air remaining in the sealed space is replaced with the inert gas used before pushing the parison as the intermediate molded product, the concentration of the inert gas becomes high, and dissolution in the intermediate molded product in the molten state becomes faster, which is preferable. . It is preferable that the inert gas is uniformly contacted with the surface of the parison and dissolved, but for products that are difficult to uniformly dissolve on the surface, the location where the expansion ratio may be low in one product. This can be dealt with by providing a gate. The amount of inert gas dissolved on the surface can be adjusted by the type of inert gas, pressure, temperature, type of resin, temperature of the intermediate molded product in a molten state, contact time between the two, and the like.

A法によるときは、A1工程のあとのA2工程でこの未発泡パリソンを加熱下延伸する。パリソンを加熱延伸することによって、発泡成形品の強度を向上させ、同時にパリソン表面に形成された発泡層の構造を変化させる。発泡層は、発泡成形品の重量を軽くし、かつ、発泡成形品の断熱性を向上させる。すなわち、壁面中心層の非発泡層は延伸されて分子配向が生じ、発泡成形品の強度向上に寄与する。また、延伸時の加熱と、加熱後の延伸によって表面の発泡層は押しつぶされて非発泡層のように平滑に変化する。平滑な非発泡層の下層(内側)には気泡が残り、気泡は表面層ほど気泡平均径が小さくなり、中心層ほど気泡平均径が大きくなる。   When using the A method, the unfoamed parison is stretched under heating in the step A2 after the step A1. By heating and stretching the parison, the strength of the foamed molded product is improved, and at the same time, the structure of the foamed layer formed on the parison surface is changed. The foamed layer reduces the weight of the foam molded product and improves the heat insulating property of the foam molded product. That is, the non-foamed layer of the wall surface center layer is stretched to cause molecular orientation, which contributes to improving the strength of the foam molded product. Moreover, the foam layer on the surface is crushed by the heating at the time of stretching and the stretching after the heating, and changes smoothly like a non-foamed layer. Bubbles remain in the lower layer (inside) of the smooth non-foamed layer, and the bubbles have a smaller average bubble diameter in the surface layer and a larger average bubble diameter in the central layer.

このA2工程で加熱する温度は、未発泡パリソンの原料樹脂の軟化点以上とする。加熱時間は、未発泡中間成形品を延伸できる程度とするのが好ましい。未発泡パリソンを延伸するには、加熱されたパリソンの内部に空気を吹き込むことによって可能である。未発泡パリソンには、不活性ガスを溶解しているので加熱下延伸するA2工程で、壁面が発泡する。壁面に溶解した不活性ガスは、壁面に独立気泡を形成して発泡するが、溶解した不活性ガスは表面側ほど多いので表面側ほど気泡の直径は大きくなり、壁面内部ほど気泡は小さくなり、表面の気泡は延伸により破壊されるので、非発泡層を形成する。なお、本発明において軟化点とは、結晶性樹脂の場合はJISK7121に準拠し、示差走査熱量測定器(DSC)によって測定される融解ピーク温度(Tpm)を意味し、非結晶性樹脂の場合は、JISK7121に準拠し測定されるガラス転移温度(Tmg)を意味する。   The temperature heated in this A2 process shall be more than the softening point of the raw resin of unfoamed parison. The heating time is preferably set to such an extent that the unfoamed intermediate molded product can be stretched. To stretch the unfoamed parison, it is possible to blow air into the heated parison. Since the inert gas is dissolved in the unfoamed parison, the wall surface is foamed in the A2 step of stretching under heating. The inert gas dissolved on the wall forms foam by forming closed cells on the wall, but since the dissolved inert gas is more on the surface side, the bubble diameter is larger on the surface side, and the bubble is smaller on the inside of the wall surface, Since bubbles on the surface are destroyed by stretching, a non-foamed layer is formed. In the present invention, the softening point means a melting peak temperature (Tpm) measured by a differential scanning calorimeter (DSC) in accordance with JISK7121 in the case of a crystalline resin, and in the case of an amorphous resin. , And means a glass transition temperature (Tmg) measured according to JISK7121.

延伸倍率は、1.1〜10倍の範囲で選ぶことができる。延伸倍率が1.1未満であると、発泡成形品の強度向上、軽量化、断熱性向上などの目的が達成されず、延伸倍率が10倍以上であると、発泡成形品の強度が低下し、製造装置が複雑となり、製造工程が繁雑となるので、いずれも好ましくない。   The draw ratio can be selected in the range of 1.1 to 10 times. If the draw ratio is less than 1.1, the purpose of improving the strength, weight reduction and heat insulation of the foam molded product is not achieved, and if the draw ratio is 10 times or more, the strength of the foam molded product is reduced. Since the manufacturing apparatus becomes complicated and the manufacturing process becomes complicated, neither is preferable.

本発明に係る多層構造を有する発泡成形品を製造するB法は、上記A法におけるA1とA2工程との間に、加圧不活性ガスと接触させて未発泡パリソンの壁面に不活性ガスを溶解させる工程(以下、B3工程と略称する)、原料樹脂の軟化点以下の温度条件下で常圧に戻す工程(以下、B4工程と略称する)を付加することができる。B3工程を付加することにより、未発泡パリソンの壁面への不活性ガスの溶解量を多くすることができる。このB3工程では、上記A1工程を経由して壁面に不活性ガスを溶解した未発泡パリソンを、耐圧容器に中間成形品を入れ、この耐圧容器に不活性ガスを注入・加圧して、中間成形品の壁面と不活性ガスとを接触させることを意味する。   In the method B for producing a foamed molded article having a multilayer structure according to the present invention, the inert gas is brought into contact with a pressurized inert gas on the wall surface of the unfoamed parison between the steps A1 and A2 in the method A. A step of dissolving (hereinafter abbreviated as B3 step) and a step of returning to normal pressure under a temperature condition below the softening point of the raw material resin (hereinafter abbreviated as B4 step) can be added. By adding the B3 step, the amount of inert gas dissolved in the wall surface of the unfoamed parison can be increased. In this B3 process, an unfoamed parison in which an inert gas is dissolved on the wall surface through the above-mentioned A1 process, an intermediate molded product is put in a pressure vessel, and an inert gas is injected into the pressure vessel and pressurized to perform intermediate molding. This means that the wall surface of the product is brought into contact with an inert gas.

不活性ガスを未発泡パリソンの壁面に溶解させるB3工程での温度は、常温から原料樹脂の軟化点(TmgまたはTpm)以下の温度範囲で選ぶものとする。常温以下であると、不活性ガスがパリソン壁面に溶解し難く、温度が高すぎるとパリソンの形が崩れるので好ましくない。B3工程で、不活性ガスを加圧するのは、不活性ガスのパリソン壁面への溶解量を多くするためである。不活性ガスの圧力は、高いほどパリソン壁面への含浸量を多くすることができるが、装置が大掛かりになるので好ましくない。不活性ガスの圧力は、常圧以上で40MPa以下の範囲で選ぶのが好ましい。パリソン壁面と不活性ガスとの接触時間は、パリソンの大きさ、壁面の厚さ、不活性ガスの種類、接触させる際の圧力、接触させる際の温度、最終的に得ようとする発泡成形品の発泡層の形態(発泡倍率、気泡の密度、気泡の大きさ)などに応じて、数分間〜数時間の範囲で選ぶことができる。   The temperature in the step B3 for dissolving the inert gas on the wall surface of the unfoamed parison is selected in the temperature range from room temperature to the softening point (Tmg or Tpm) of the raw material resin. When the temperature is below room temperature, the inert gas is difficult to dissolve on the parison wall surface, and when the temperature is too high, the shape of the parison is destroyed, which is not preferable. The reason why the inert gas is pressurized in the step B3 is to increase the amount of the inert gas dissolved in the parison wall. The higher the pressure of the inert gas, the larger the amount of impregnation on the parison wall surface, but this is not preferable because the apparatus becomes large. The pressure of the inert gas is preferably selected in the range of normal pressure to 40 MPa. The contact time between the parison wall and the inert gas is the size of the parison, the thickness of the wall, the type of inert gas, the pressure when contacting, the temperature when contacting, and the foam molded product to be finally obtained. The foam layer can be selected in the range of several minutes to several hours depending on the form (foaming ratio, bubble density, bubble size) and the like.

このB3工程でパリソン壁面に溶解させる不活性ガスの溶解量が多いほど、発泡倍率を高くし、気泡の密度を大きくし、平均径の小さな気泡を多く形成することができる。パリソン壁面へ溶解する不活性ガスは、壁面表面ほど溶解量が多く、壁面内部ほど溶解量が少なく、溶解量に傾斜ができる。不活性ガスは、壁面の厚さ方向の中心層に達しないように調節するのが好ましい。これは、壁面中央部に非発泡層を形成し、発泡成形品の強度を維持するためである。不活性ガスが壁面の中心層に達しないようにするには、不活性ガスの含浸距離をx、壁面での不活性ガスの拡散係数をD、溶解時間をtとするとき、x=sqrt(Dt)と表されるので、xを壁面中心部に達する寸法よりも小さくなるようにtを設定すればよい。   As the amount of the inert gas dissolved in the parison wall in Step B3 increases, the expansion ratio can be increased, the bubble density can be increased, and more bubbles with a small average diameter can be formed. The inert gas that dissolves on the parison wall surface has a larger amount of dissolution toward the wall surface and a smaller amount of dissolution toward the inside of the wall surface. It is preferable to adjust the inert gas so that it does not reach the center layer in the thickness direction of the wall surface. This is because a non-foamed layer is formed at the center of the wall surface to maintain the strength of the foamed molded product. In order to prevent the inert gas from reaching the center layer of the wall surface, when the impregnation distance of the inert gas is x, the diffusion coefficient of the inert gas on the wall surface is D, and the dissolution time is t, x = sqrt ( Dt), t may be set so that x is smaller than the dimension reaching the center of the wall surface.

不活性ガスは、通常の気体状態であってもよいが、超臨界状態で接触させるのが好ましい。超臨界状態とは、臨界温度、臨界圧力以上の状態を意味する。たとえば二酸化炭素の場合、超臨界状態とは、温度は30℃以上で圧力は7.3MPa以上の状態である。超臨界状態の不活性ガスは、液体状態のものよりも粘性が低く、かつ、樹脂壁面への拡散性が高いという特性を有し、また通常の気体状態よりも密度が大きいことから、大量にかつ速やかに不活性ガスをパリソン壁面に含浸させることができるので好ましい。壁面に溶解させる不活性ガスの量は、発泡成形品の発泡層の形態(発泡倍率、気泡の密度、気泡の大きさ)などに影響するので、発泡成形品を商業的に製造する際には、あらかじめ実験によって最適条件を確認し、製造条件を設定するのが好ましい。   The inert gas may be in a normal gas state, but is preferably contacted in a supercritical state. The supercritical state means a state above the critical temperature and critical pressure. For example, in the case of carbon dioxide, the supercritical state is a state where the temperature is 30 ° C. or higher and the pressure is 7.3 MPa or higher. Inert gas in the supercritical state has characteristics that it has a lower viscosity than that in the liquid state and has high diffusibility to the resin wall surface, and has a higher density than the normal gas state. In addition, it is preferable because the parison wall surface can be impregnated with an inert gas quickly. The amount of inert gas dissolved in the wall surface affects the foam layer shape (foaming ratio, bubble density, bubble size) of the foam molded product. It is preferable to confirm the optimum conditions by experiments in advance and set the manufacturing conditions.

B法に従って、多層構造を有する樹脂製発泡成形品を製造するには、つぎのB4工程で、原料樹脂の軟化点以下の温度条件下で常圧に戻す。このB4工程では、B3工程でパリソン壁面に溶解した不活性ガスを、加圧状態から常圧に戻す際に、パリソン壁面に溶解した不活性ガスが、泡状になって壁面外に飛散する性質を利用する。パリソン壁面に形成される発泡層の形態(発泡倍率、気泡の密度、気泡の大きさ)は、壁面温度、不活性ガスの圧力、不活性ガスの溶解量、常圧に戻す時間(速度)などに依存する。   In order to produce a resin foam-molded article having a multilayer structure according to the B method, the pressure is returned to normal pressure under the temperature condition below the softening point of the raw material resin in the next step B4. In this B4 process, when the inert gas dissolved in the parison wall surface in the B3 process is returned from the pressurized state to the normal pressure, the inert gas dissolved in the parison wall surface is foamed and scattered outside the wall surface. Is used. The form of the foamed layer formed on the parison wall surface (foaming ratio, bubble density, bubble size) is the wall temperature, inert gas pressure, dissolved amount of inert gas, time to return to normal pressure (speed), etc. Depends on.

このB4工程の温度は、常温から原料樹脂の軟化点以下の温度範囲で選ぶものとする。原料樹脂が非晶性熱可塑性樹脂の場合は、ガラス転移温度Tg以下が好ましく、結晶性熱可塑性樹脂の場合は、融点Tm以下が好ましい。B3工程における不活性ガスの圧力が高く、常圧に戻す時間が短いときは、壁面に溶解した不活性ガスが急激に壁面外に飛散しようとするので、径の大きい気泡が形成される。B3工程における不活性ガスの圧力が高くても、常圧に戻す時間が長いときは、壁面に浸透した不活性ガスが急激に壁面外に飛散しないので、径の小さい気泡が形成される。   The temperature of this B4 process shall be chosen in the temperature range below the softening point of raw material resin from normal temperature. When the raw material resin is an amorphous thermoplastic resin, the glass transition temperature Tg or lower is preferable, and when the raw material resin is a crystalline thermoplastic resin, the melting point Tm or lower is preferable. When the pressure of the inert gas in step B3 is high and the time for returning to normal pressure is short, the inert gas dissolved in the wall surface suddenly scatters out of the wall surface, so that bubbles having a large diameter are formed. Even if the pressure of the inert gas in the step B3 is high, if the time for returning to the normal pressure is long, the inert gas that has permeated the wall surface does not abruptly splash outside the wall surface, so that bubbles having a small diameter are formed.

つぎに、多層構造を有する樹脂製発泡成形品をC法によって製造する手順を説明する。このC法は、熱可塑性樹脂を原料として中間成形品を製造する工程(以下、C1工程と略称する)、この中間成形品を原料樹脂の軟化点以下の温度条件下、加圧不活性ガスと接触させて中間成形品の壁面に溶解させる工程(以下、C2工程と略称する)、原料樹脂の軟化点以下の温度条件下で常圧に戻す工程(以下、C3工程と略称する)、および、上記中間成形品を加熱延伸する工程(以下、C4工程と略称する)よりなる。   Next, a procedure for producing a resin foam molded article having a multilayer structure by the C method will be described. This method C is a step of producing an intermediate molded product from a thermoplastic resin as a raw material (hereinafter abbreviated as C1 step), and this intermediate molded product is subjected to a pressurized inert gas under a temperature condition below the softening point of the raw material resin. A step of contacting and dissolving on the wall surface of the intermediate molded product (hereinafter abbreviated as C2 step), a step of returning to normal pressure under a temperature condition below the softening point of the raw material resin (hereinafter abbreviated as C3 step), and It consists of the process (henceforth C4 process) of heat-drawing the said intermediate molded product.

C法におけるC1工程は、射出成形機によって、中間成形品としてのパリソンを製造する。C法によるときは、射出成形金型にキャビテイに不活性ガスを充填せずにパリソンを成形するので、得られるパリソンにはA法によって得られるパリソンと異なり、不活性ガスは溶解していない。C法におけるC2工程は、B法におけるB3工程と同じ手法で遂行することができ、また、C法におけるC3工程は、B法におけるB4工程と同じ手法で遂行することができるので、繰り返しの記載を省略する。   In the C1 process in the method C, a parison as an intermediate molded product is manufactured by an injection molding machine. When the C method is used, since the parison is formed without filling the injection mold with the inert gas in the cavity, the obtained parison is different from the parison obtained by the A method in that the inert gas is not dissolved. The C2 step in the C method can be performed by the same method as the B3 step in the B method, and the C3 step in the C method can be performed by the same method as the B4 step in the B method. Is omitted.

上記方法によって得られる多層構造を有する樹脂製発泡成形品は、最外層が非発泡層であり、厚さ方向に非発泡層と発泡層を交互に有する5層構造からなる多層樹脂発泡成形品である。5層構造からなる発泡成形品は、外層(a、e)側およびの中央層(c)が非発泡層によって構成されて、発泡成形品の強度、耐熱性保持、ガスバリアヤ性向上などに寄与し、発泡層(b、d)が発泡成形品の遮光性、断熱性、軽量化などに寄与する。   The resin foam molded article having a multilayer structure obtained by the above method is a multilayer resin foam molded article having a five-layer structure in which the outermost layer is a non-foamed layer and the non-foamed layer and the foamed layer are alternately arranged in the thickness direction. is there. The foamed molded product having a five-layer structure has the outer layer (a, e) side and the central layer (c) formed of a non-foamed layer, and contributes to improving the strength, heat resistance, and gas barrier properties of the foamed molded product. The foamed layers (b, d) contribute to the light shielding property, heat insulating property, weight reduction and the like of the foam molded product.

上記方法によって得られる多層構造を有する樹脂製発泡成形品は、表裏の外層(a、e)と成形品の肉厚中央部分(c)が非発泡層であり、発泡層(b、d)の少なくとも一方が、気泡平均径の異なる気泡によって構成されるものが好ましく、さらに、中でも、発泡層(b、d)の双方の気泡平均径が、肉厚中央部分(c)側が大きく、外層(a、e)側が小さくされたものが好適である。中でも、発泡層(b、d)に含まれる気泡が、大きい気泡の平均径が小さい気泡のそれの2倍以上として発泡倍率に傾斜を設けたものが、強度向上、軽量化、断熱性などの観点から好適である。断熱性を顕著に向上させるには、大きい気泡の平均径が小さい気泡のそれの3倍以上とし、50倍まで傾斜を設けたものが好ましい。   In the resin foam molded article having a multilayer structure obtained by the above method, the outer layers (a, e) of the front and back and the thickness center part (c) of the molded article are non-foamed layers, and the foamed layers (b, d) It is preferable that at least one of the bubbles is composed of bubbles having different average bubble diameters. In particular, both of the bubble average diameters of the foam layers (b, d) are large on the thick central portion (c) side, and the outer layer (a E) The side is preferably small. Among them, the bubbles contained in the foamed layer (b, d) are provided with a gradient in the foaming ratio as the average diameter of the large bubbles is more than twice that of the small bubbles, which improves strength, weight reduction, heat insulation, etc. It is preferable from the viewpoint. In order to remarkably improve the heat insulation, it is preferable that the average diameter of the large bubbles is at least three times that of the small bubbles, and the inclination is provided up to 50 times.

なお、本発明において非発泡層とは、発泡成形品断面(SEM)を走査型電子顕微鏡によって60倍に拡大して観察した際、気泡平均径が0.1μm未満の気泡しか観察されない層を言い、発泡層とは、発泡成形品断面を走査型電子顕微鏡によって60倍に拡大して観察した際、気泡平均径が0.1μm以上の気泡が観察される層を言う。また、本発明において、気泡平均径とは、成形品の壁面の延伸方法とy、延伸方向に直交する方向をx、壁面の厚さ方向をzとするとき、xz断面において個々の気泡の長軸と短軸の平均を気泡単位の直径とした場合、単位面積中に少なくとも一部分が含まれる気泡総ての直径の平均値をいう。気泡平均径は、具体的には、発泡成形品断面を写真撮影したあと、この写真を市販されている画像処理ソフトウエア(例えば、三谷商事社製、商品名:Win Roof)によって統計処理して算出することができる。   In the present invention, the non-foamed layer refers to a layer in which only bubbles having an average bubble diameter of less than 0.1 μm are observed when a cross section (SEM) of the foamed molded product is observed with a scanning electron microscope magnified 60 times. The foam layer refers to a layer in which bubbles having an average bubble diameter of 0.1 μm or more are observed when a cross section of the foam molded product is observed with a scanning electron microscope magnified 60 times. In the present invention, the average bubble diameter is the length of the individual bubbles in the xz cross section, where y is the method of stretching the wall surface of the molded product, x is the direction orthogonal to the stretching direction, and z is the thickness direction of the wall surface. When the average of the axis and the short axis is taken as the diameter of the bubble unit, it means the average value of the diameters of all the bubbles including at least a part in the unit area. Specifically, after taking a photograph of the cross section of the foam molded product, the average cell diameter is statistically processed by a commercially available image processing software (for example, trade name: Win Roof, manufactured by Mitani Corporation). Can be calculated.

多層構造を有する樹脂製発泡成形品の各層の厚さは、発泡成形品に付与する物性により異なる。例えば、中心層の非発泡層(c)を厚くすることによって、強度、耐熱性、遮光性を高めることができる。さらに、中心層の非発泡層(c)を薄くすることにより、軽量化を図り、断熱性を向上することができる。断熱性を大幅に向上させた発泡成形品を得るには、壁面厚さ全体の30%以上を発泡層とするのが好ましい。耐熱性を向上させるには、原料樹脂が結晶性樹脂の場合は、発泡成形品の結晶化度が高いほうが好ましく、結晶化度は5%以上、さらに10%以上がより好ましい。また、耐熱性を向上させるには、中央の非発泡層(c)の厚さを壁面全体厚さの10%〜90%の範囲、より好ましいのは20%〜50%の範囲である。   The thickness of each layer of the resin foam molded product having a multilayer structure varies depending on the physical properties to be imparted to the foam molded product. For example, by increasing the thickness of the non-foamed layer (c) of the center layer, the strength, heat resistance, and light shielding properties can be improved. Furthermore, by reducing the thickness of the non-foamed layer (c) of the center layer, the weight can be reduced and the heat insulation can be improved. In order to obtain a foam-molded product with greatly improved heat insulation, it is preferable to use 30% or more of the entire wall thickness as the foam layer. In order to improve the heat resistance, when the raw material resin is a crystalline resin, it is preferable that the foamed molded product has a high crystallinity, and the crystallinity is preferably 5% or more, and more preferably 10% or more. Moreover, in order to improve heat resistance, the thickness of the center non-foamed layer (c) is in the range of 10% to 90%, more preferably in the range of 20% to 50% of the entire wall thickness.

以上、本発明方法に従って樹脂発泡成形品を、中空ブロー製品を製造する方法に基づいて説明したが、シート、チューブおよび管なども、上と同様の手順で発泡成形品とすることができる。中間成形品の延伸は、中間成形品がシートの場合はテンターなどにより、中間成形品がチューブまたは管の場合はこれらの内部に空気を吹き込むことによって、可能である。   As mentioned above, although the resin foam molded product was demonstrated based on the method of manufacturing a hollow blow product according to this invention method, a sheet | seat, a tube, a pipe | tube, etc. can also be made into a foam molded product in the procedure similar to the above. When the intermediate molded product is a sheet, the intermediate molded product can be stretched by a tenter or the like, and when the intermediate molded product is a tube or a tube, air is blown into these.

以下、本発明を実施例および比較例に基づいて、より詳細に説明するが、本発明は、その要旨を越えない限り、以下に記載例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to a description example below, unless the summary is exceeded.

[実施例1]
多層延伸ブロー機の射出成形機(日精エー・エス・ビー社製、型式:ASB−50TH)を使用し、ポリエチレンテレフタレート{日本ユニペット社製、ボトル用PET、軟化点(Tmg)80℃}を原料樹脂とし、シリンダー温度280℃とし、射出1.5秒、圧力保持16.5秒、冷却10秒、金型温度15℃の条件下、長さ100mm、外径25mm、壁面厚さ4mmのパリソン(内部容量30ml)を作成した。このパリソンの壁面には、気泡は全く認められなかった。次いで、この中間成形品を、容量1000mlの耐圧容器に収容し、雰囲気温度を25℃温度とし、25MPaに加圧した二酸化炭素を注入し、この温度・圧力下で2時間保持した。その後、常温下、加圧二酸化炭素を5分かけて常圧に戻し、壁面に二酸化炭素を溶解させたパリソンを得た。
[Example 1]
Using a multilayer stretch blow machine injection molding machine (manufactured by Nissei ASB Co., model: ASB-50TH), polyethylene terephthalate {manufactured by Nihon Unipet, PET for bottles, softening point (Tmg) 80 ° C} A parison with a length of 100 mm, an outer diameter of 25 mm, and a wall thickness of 4 mm under the conditions of a raw material resin, a cylinder temperature of 280 ° C., an injection of 1.5 seconds, a pressure holding of 16.5 seconds, a cooling of 10 seconds, and a mold temperature of 15 ° C. (Internal volume 30 ml) was prepared. No bubbles were observed on the parison wall. Next, this intermediate molded product was placed in a pressure-resistant container having a capacity of 1000 ml, the atmospheric temperature was set to 25 ° C., carbon dioxide pressurized to 25 MPa was injected, and this temperature and pressure were maintained for 2 hours. Thereafter, under normal temperature, pressurized carbon dioxide was returned to normal pressure over 5 minutes to obtain a parison having carbon dioxide dissolved on the wall surface.

次いで、延伸ブロー成形機の金型に上記パリソンをセットし、パリソン表面を赤外線ヒーターによって69秒加熱して表面温度を約110℃とし、ついで約23秒間放冷してパリソン表面温度を約100℃で均一化し、3MPaの圧空を注入して、長さ200mm、外形60mm、壁面平均厚さ1mmの内容量が500mlの五層構造の瓶状容器を得た。この瓶状容器の壁面を、長さ方向に対して直角方向に切断し、その断面を走査型電子顕微鏡によって60倍に拡大して写真撮影し、その模型図を図1に示した。   Next, the above parison is set in a mold of a stretch blow molding machine, the parison surface is heated by an infrared heater for 69 seconds to a surface temperature of about 110 ° C., and then allowed to cool for about 23 seconds to have a parison surface temperature of about 100 ° C. Then, 3 MPa of compressed air was injected to obtain a five-layered bottle-shaped container having a length of 200 mm, an outer diameter of 60 mm, and an average wall thickness of 1 mm and an internal volume of 500 ml. The wall surface of this bottle-shaped container was cut in a direction perpendicular to the length direction, and the cross-section was magnified 60 times with a scanning electron microscope, and a photograph was taken.

図1において、a、cおよびeは非発泡層であり、bおよびdは発泡層である。a層の厚さは20μm、b層の厚さは120μm、c層の厚さは1000μm、d層の厚さは350μm、e層の厚さは50μmであった。発泡層のb層およびd層は共に、非発泡層のa層およびe層に近いほど気泡の直径が小さく、中心の非発泡層(c層)に近いほど気泡の直径は大きく、壁面の発泡層は傾斜発泡している。走査型電子顕微鏡に撮影した写真を観察した結果、d層の大きい気泡の平均径は約200μm、b層の小さい気泡の平均径は70μmであった。   In FIG. 1, a, c and e are non-foamed layers, and b and d are foamed layers. The thickness of the a layer was 20 μm, the thickness of the b layer was 120 μm, the thickness of the c layer was 1000 μm, the thickness of the d layer was 350 μm, and the thickness of the e layer was 50 μm. In both the b layer and the d layer of the foam layer, the closer to the non-foam layer a and e layers, the smaller the bubble diameter, and the closer to the center non-foam layer (c layer), the larger the bubble diameter, and The layer is tilted. As a result of observing a photograph taken with a scanning electron microscope, the average diameter of the large bubbles in the d layer was about 200 μm, and the average diameter of the small bubbles in the b layer was 70 μm.

得られた瓶状容器に10℃の冷水を500ml充填し、60℃に保持した温水に容器の首部まで浸漬し、瓶状容器に充填した冷水の温度が40℃に達するまでの時間を測定したところ10分30秒であった。比較のため、ボトル用PETで製造され、壁面全体が非発泡層で構成された同じ容量の瓶状容器について、同様の試験を行ったところ、充填した水は5分で40℃に達した。この試験は、本発明に係る発泡成形品の断熱性は、非発泡層壁面を有する成形品に比較して、大幅に優れていることを示している。   The obtained bottle-shaped container was filled with 500 ml of 10 ° C. cold water, immersed in warm water held at 60 ° C. to the neck of the container, and the time until the temperature of the cold water filled in the bottle-shaped container reached 40 ° C. was measured. However, it was 10 minutes and 30 seconds. For comparison, when a similar test was performed on a bottle-shaped container of the same capacity, which was made of PET for bottles and the entire wall surface was composed of a non-foamed layer, the filled water reached 40 ° C. in 5 minutes. This test shows that the heat insulating property of the foamed molded product according to the present invention is significantly superior to the molded product having a non-foamed layer wall surface.

[実施例2]
実施例1に記載した例において、パリソンを高圧容器に収容した時間を5時間に変更したほかは、同例におけると同様の手順で、二酸化炭素を溶解させ、同様の手順で常圧に戻し、壁面に二酸化炭素を含浸させたパリソンを得た。得られたパリソンに、実施例1におけると同様の手順で、3MPaの圧空を注入して、内容量500mlの五層構造の瓶状容器を得た。実施例1におけると同様の手順で、発泡層につき観察した結果、d層の大きい気泡の平均径は約250μm、b層の小さい気泡の平均径は100μmであった。
[Example 2]
In the example described in Example 1, except that the time for storing the parison in the high-pressure vessel was changed to 5 hours, carbon dioxide was dissolved in the same procedure as in the same example, and returned to normal pressure in the same procedure, A parison whose wall surface was impregnated with carbon dioxide was obtained. A pressure of 3 MPa was injected into the obtained parison in the same procedure as in Example 1 to obtain a five-layered bottle-shaped container having an internal volume of 500 ml. As a result of observing the foamed layer in the same procedure as in Example 1, the average diameter of the large bubbles in the d layer was about 250 μm, and the average diameter of the small bubbles in the b layer was 100 μm.

[比較例1]
実施例1に記載した例において、パリソンを高圧容器に収容した時間を24時間に変更したほかは、同例におけると同様の手順で、二酸化炭素を溶解させ、同様の手順で常圧に戻し、壁面に二酸化炭素を含浸させたパリソンを得た。得られたパリソンに、実施例1におけると同様の手順で、3MPaの圧空を注入して、五層構造の瓶状容器を得ようとしたが、圧空注入中にパリソンが破裂した。破裂した瓶状容器の壁面は、中心層まで発泡していた。パリソン破裂の原因は、二酸化炭素の含浸時間が長かったので、二酸化炭素がパリソンの壁面中心層まで達していたことにあると推測される。
[Comparative Example 1]
In the example described in Example 1, except that the time for storing the parison in the high-pressure vessel was changed to 24 hours, carbon dioxide was dissolved in the same procedure as in the same example, and returned to normal pressure in the same procedure, A parison whose wall surface was impregnated with carbon dioxide was obtained. The obtained parison was injected with 3 MPa of compressed air in the same procedure as in Example 1 to obtain a five-layered bottle-shaped container, but the parison burst during the pressurized air injection. The wall surface of the ruptured bottle-like container was foamed to the center layer. The cause of the parison rupture is presumed to be that carbon dioxide had reached the central layer of the parison wall because the carbon dioxide impregnation time was long.

[比較例2]
実施例1に記載した例において、二酸化炭素を同例におけると同様の手順で、二酸化炭素を溶解させ、同様の手順で常圧に戻し、壁面に二酸化炭素を溶解させたパリソンを得た。このパリソンを、120℃に加熱したオイルバスに5分間浸して加熱した。続いて、実施例1におけると同様の手順で、3MPaの圧空を注入して、瓶状容器を得ようとしたが、圧空注入中にパリソンが破裂した。破裂した瓶状容器の壁面は、実施例1におけると同様に五層構造であるが、d層の大きい気泡の平均径は約1000μm、b層の小さい気泡の平均径は25μmであった。この例では、パリソンの加熱と延伸を別工程で行ったので、パリソンが破裂した。
[Comparative Example 2]
In the example described in Example 1, carbon dioxide was dissolved in the same procedure as in the same example, and the carbon dioxide was dissolved in the same procedure, and returned to normal pressure in the same procedure to obtain a parison in which carbon dioxide was dissolved in the wall surface. This parison was heated by being immersed in an oil bath heated to 120 ° C. for 5 minutes. Subsequently, a pressure of 3 MPa was injected in the same procedure as in Example 1 to obtain a bottle-like container, but the parison burst during the pressure injection. The wall surface of the ruptured bottle-shaped container has a five-layer structure as in Example 1, but the average diameter of large bubbles in the d layer was about 1000 μm, and the average diameter of small bubbles in the b layer was 25 μm. In this example, the parison was ruptured because the parison was heated and stretched in separate steps.

本発明に係る製造方法によって得られる多層構造を有する樹脂製発泡成形品は、シート、箱状容器、瓶状容器、チューブまたは管である。本発明方法で得られた、シート状成形品は、遮光性、断熱(遮熱)性、遮音性、光反射性、ガスバリア性などの機能を活用した広い用途がある。さらに、シート状成形品は、真空成形法などの二次加工によって、軽量で耐熱性に優れた箱状容器などを得ることができる。瓶状容器は、飲料水用、健康飲料、化粧品用容器、香粧品用容器、医薬品用容器として使用され、表面の平滑性や光沢などが優れ、配合された着色剤との組合せにより、外観の優れた成形品とすることができる。また、光で劣化しやすい収納物は、発泡層によって遮光性でき、断熱性より温度を適温に維持することができ、ガスバリア性にも優れているので、収納物の品質を長期間維持することができる。硬質熱可塑性樹脂を原料とした管は、OA機器のロールに使用可能であり、天然ゴム、合成ゴム、熱可塑性エラストマーなど原料としたチューブは、冷蔵庫、冷凍庫のガスケットとして使用可能である。   The resin foam molded article having a multilayer structure obtained by the production method according to the present invention is a sheet, a box-shaped container, a bottle-shaped container, a tube or a tube. The sheet-like molded product obtained by the method of the present invention has a wide range of applications utilizing functions such as light shielding properties, heat insulation (heat shielding properties), sound insulation properties, light reflection properties, and gas barrier properties. Furthermore, the sheet-like molded product can obtain a box-like container that is light and excellent in heat resistance by secondary processing such as vacuum forming. Bottled containers are used as drinking water, health drinks, cosmetic containers, cosmetic containers, and pharmaceutical containers, and have excellent surface smoothness and gloss. An excellent molded product can be obtained. In addition, stored items that are easily deteriorated by light can be shielded from light by the foam layer, can maintain the temperature at an appropriate temperature rather than heat insulation, and have excellent gas barrier properties. Can do. A tube made of a hard thermoplastic resin can be used as a roll for OA equipment, and a tube made of a raw material such as natural rubber, synthetic rubber, or thermoplastic elastomer can be used as a gasket for a refrigerator or a freezer.

本発明に係る発泡成形品の一例の壁面断面拡大図である。It is a wall surface cross-sectional enlarged view of an example of the foam-molded article which concerns on this invention.

符号の説明Explanation of symbols

a:非発泡層
b:発泡層
c:中央部の非発泡層
d:発泡層
e:非発泡層
a: non-foamed layer b: foamed layer c: non-foamed layer in the center d: foamed layer e: non-foamed layer

Claims (13)

多層構造を有する樹脂製発泡成形品において、表裏の外層(a、e)と成形品の肉厚中央部分(c)が非発泡層であり、外層(a、e)と中央部分(c)に挟まれた部分に発泡層(b、d)で構成され、発泡層(b、d)の少なくとも一方の発泡層が、肉厚中央部分(c)側と外層(a、e)との間での気泡平均径が変化されてなることを特徴とする、多層構造を有する樹脂製発泡成形品。   In the resin foam molded product having a multilayer structure, the outer layers (a, e) on the front and back sides and the central thickness portion (c) of the molded product are non-foamed layers, and the outer layers (a, e) and the central portion (c) The sandwiched portion is composed of a foam layer (b, d), and at least one foam layer of the foam layer (b, d) is between the thick central portion (c) side and the outer layer (a, e). A foamed product made of a resin having a multilayer structure, characterized in that the average bubble diameter is changed. 樹脂が、芳香族ポリエステル類、脂肪族ポリエステル類、脂環式ポリエステル、ポリカーボネート類、または、これら樹脂の混合物である、請求項1に記載の多層構造を有する樹脂製発泡成形品。   The resin foam-molded article having a multilayer structure according to claim 1, wherein the resin is an aromatic polyester, an aliphatic polyester, an alicyclic polyester, a polycarbonate, or a mixture of these resins. 発泡層(b、d)の少なくとも一方が、気泡平均径の異なる気泡によって構成されてなる、請求項1または請求項2に記載の多層構造を有する樹脂製発泡成形品。   The resin foam-molded article having a multilayer structure according to claim 1 or 2, wherein at least one of the foam layers (b, d) is composed of bubbles having different average cell diameters. 発泡層(b、d)の双方の気泡平均径が、肉厚中央部分(c)側が大きく、外層(a、e)側が小さくされてなる、請求項1ないし請求項3のいずれか一項に記載の多層構造を有する樹脂製発泡成形品。   The average cell diameter of both of the foamed layers (b, d) is such that the thickness central portion (c) side is large and the outer layer (a, e) side is small. A resin foam-molded article having the multilayer structure described. 発泡層(b、d)に含まれる気泡が、大きい気泡の平均径が小さい気泡の平均径の2倍以上である、請求項1ないし請求項4のいずれか一項に記載の多層構造を有する樹脂製発泡成形品。   5. The multi-layer structure according to claim 1, wherein the bubbles contained in the foamed layer (b, d) have a larger average diameter of the large bubbles than twice the average diameter of the small bubbles. Resin foam molding. 成形品が、シート、箱状容器、瓶状容器、チューブまたは管である、請求項1ないし請求項5のいずれか一項に記載の多層構造を有する樹脂製発泡成形品。   The resin foam molded article having a multilayer structure according to any one of claims 1 to 5, wherein the molded article is a sheet, a box-shaped container, a bottle-shaped container, a tube, or a tube. 多層構造を有する樹脂製発泡成形品を製造するにあたり、熱可塑性樹脂の不活性ガスを含む未発泡中間成形品を製造する工程、この未発泡中間成形品を加熱下延伸する工程とよりなることを特徴とする、多層構造を有する樹脂製発泡成形品の製造方法。   In producing a resin foam molded article having a multilayer structure, it comprises a step of producing an unfoamed intermediate molded product containing an inert gas of a thermoplastic resin, and a step of stretching the unfoamed intermediate molded product under heating. A method for producing a resin foam-molded article having a multilayer structure. 未発泡中間成形品を製造したあと、この中間成形品を原料樹脂の軟化点以下の温度条件下、加圧不活性ガスと接触させて中間成形品の壁面に不活性ガスを溶解させる工程、原料樹脂の軟化点以下の温度条件下で常圧に戻す工程、および、上記中間成形品を加熱延伸する工程からなる、請求項7に記載の多層構造を有する樹脂製発泡成形品の製造方法。   After producing an unfoamed intermediate molded product, the intermediate molded product is brought into contact with a pressurized inert gas under a temperature condition below the softening point of the raw material resin to dissolve the inert gas on the wall surface of the intermediate molded product, raw material The method for producing a resin foam-molded product having a multilayer structure according to claim 7, comprising a step of returning to normal pressure under a temperature condition equal to or lower than a softening point of the resin, and a step of heating and stretching the intermediate molded product. 多層構造を有する樹脂製発泡成形品を製造するにあたり、熱可塑性樹脂を原料として中間成形品を製造する工程、この中間成形品を原料樹脂の軟化点以下の温度条件下、加圧不活性ガスと接触させて中間成形品の壁面に不活性ガスを溶解させる工程、原料樹脂の軟化点以下の温度条件下で常圧に戻す工程、および、上記中間成形品を加熱延伸する工程よりなることを特徴とする、多層構造を有する樹脂製発泡成形品の製造方法。   In manufacturing a resin foam molded article having a multilayer structure, a process of producing an intermediate molded article using a thermoplastic resin as a raw material, and this intermediate molded article is treated with a pressurized inert gas under a temperature condition below the softening point of the raw resin. It comprises a step of contacting and dissolving an inert gas on the wall surface of the intermediate molded product, a step of returning to normal pressure under a temperature condition below the softening point of the raw resin, and a step of heating and stretching the intermediate molded product A method for producing a resin foam-molded product having a multilayer structure. 中間成形品と接触させる不活性ガスを、超臨界状態のものとする、請求項8または請求項9に記載の多層構造を有する樹脂製発泡成形品の製造方法。   The method for producing a resin foam molded article having a multilayer structure according to claim 8 or 9, wherein the inert gas brought into contact with the intermediate molded article is in a supercritical state. 樹脂が、芳香族ポリエステル類、脂肪族ポリエステル類、脂環式ポリエステル、ポリカーボネート類、または、これら樹脂の混合物である、請求項7ないし請求項10のいずれか一項に記載の多層構造を有する樹脂製発泡成形品の製造方法。   The resin having a multilayer structure according to any one of claims 7 to 10, wherein the resin is an aromatic polyester, an aliphatic polyester, an alicyclic polyester, a polycarbonate, or a mixture of these resins. A method for producing a foamed molded product. 延伸倍率を1.1〜10倍の範囲とする、請求項7ないし請求項11のいずれか一項に記載の多層構造を有する樹脂製発泡成形品の製造方法。   The method for producing a resin foam molded article having a multilayer structure according to any one of claims 7 to 11, wherein a draw ratio is in a range of 1.1 to 10 times. 成形品が、シート、箱状容器、瓶状容器、チューブまたは管である、請求項7ないし請求項12のいずれか一項に記載の多層構造を有する樹脂製発泡成形品の製造方法。   The method for producing a resin foam molded article having a multilayer structure according to any one of claims 7 to 12, wherein the molded article is a sheet, a box-shaped container, a bottle-shaped container, a tube or a tube.
JP2004061766A 2004-03-05 2004-03-05 Multi-layer foamed resin molding and its production method Pending JP2005246822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061766A JP2005246822A (en) 2004-03-05 2004-03-05 Multi-layer foamed resin molding and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061766A JP2005246822A (en) 2004-03-05 2004-03-05 Multi-layer foamed resin molding and its production method

Publications (1)

Publication Number Publication Date
JP2005246822A true JP2005246822A (en) 2005-09-15

Family

ID=35027774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061766A Pending JP2005246822A (en) 2004-03-05 2004-03-05 Multi-layer foamed resin molding and its production method

Country Status (1)

Country Link
JP (1) JP2005246822A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111066A (en) * 2005-10-17 2007-05-10 Terumo Corp Catheter and manufacturing method of catheter
WO2009119549A1 (en) 2008-03-27 2009-10-01 東洋製罐株式会社 Stretched foam plastic container and process for producing the stretched foam plastic container
JP2009262550A (en) * 2008-03-31 2009-11-12 Toyo Seikan Kaisha Ltd Molded product impregnated with non-foaming gas and foamed plastic container
JP2012210159A (en) * 2011-03-30 2012-11-01 Chugoku Electric Power Co Inc:The Method for specifying coryne pusilla planula larva
JP2013075465A (en) * 2011-09-30 2013-04-25 Toyo Seikan Kaisha Ltd Stretched foam plastic container and method for manufacturing the same
JP2013082119A (en) * 2011-10-07 2013-05-09 Toyo Seikan Kaisha Ltd Stretched foam plastic container and method for manufacturing the same
JP2013095050A (en) * 2011-10-31 2013-05-20 Toyo Seikan Kaisha Ltd Formed resin molded product
WO2013161813A1 (en) 2012-04-23 2013-10-31 東洋製罐グループホールディングス株式会社 Foamed stretched plastic bottle
JP2013241001A (en) * 2012-04-23 2013-12-05 Toyo Seikan Group Holdings Ltd Foamed stretched plastic bottle excellent in light-shielding properties and specular glossiness
JP2014138991A (en) * 2013-01-21 2014-07-31 Toyo Seikan Kaisha Ltd Polyolefin resin made foam oriented container
US9290287B2 (en) 2011-09-30 2016-03-22 Toyo Seikan Group Holdings, Ltd. Foamed and stretched plastic containers and method of producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241223A (en) * 1988-08-02 1990-02-09 Sekisui Plastics Co Ltd Porous sheet and manufacture thereof
JPH1180408A (en) * 1997-09-12 1999-03-26 Yamaha Corp Preparation of resin foam
JP2001113653A (en) * 1999-08-12 2001-04-24 Sumitomo Chem Co Ltd Multilayered polyolefin foamed sheet
JP2001162735A (en) * 1999-09-29 2001-06-19 Jsp Corp Thermoplastic resin laminated foamed sheet, polystyrene- based resin foamed sheet and container thereof
JP2001277277A (en) * 2000-03-30 2001-10-09 Sumitomo Chem Co Ltd Method for manufacturing resin foam, and resin foam obtained thereby
JP2001348454A (en) * 2000-04-03 2001-12-18 Sumitomo Chem Co Ltd Thermoplastic resin sheet and container
JP2002207487A (en) * 2000-08-30 2002-07-26 Nitto Denko Corp Microporous soundproofing material
JP2002363324A (en) * 2001-06-04 2002-12-18 Sumitomo Bakelite Co Ltd Plastic sheet foamed in gradient manner and manufacturing method therefor
JP2003176375A (en) * 2001-12-11 2003-06-24 Mitsubishi Chemicals Corp Light transmissible synthetic resin foam and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241223A (en) * 1988-08-02 1990-02-09 Sekisui Plastics Co Ltd Porous sheet and manufacture thereof
JPH1180408A (en) * 1997-09-12 1999-03-26 Yamaha Corp Preparation of resin foam
JP2001113653A (en) * 1999-08-12 2001-04-24 Sumitomo Chem Co Ltd Multilayered polyolefin foamed sheet
JP2001162735A (en) * 1999-09-29 2001-06-19 Jsp Corp Thermoplastic resin laminated foamed sheet, polystyrene- based resin foamed sheet and container thereof
JP2001277277A (en) * 2000-03-30 2001-10-09 Sumitomo Chem Co Ltd Method for manufacturing resin foam, and resin foam obtained thereby
JP2001348454A (en) * 2000-04-03 2001-12-18 Sumitomo Chem Co Ltd Thermoplastic resin sheet and container
JP2002207487A (en) * 2000-08-30 2002-07-26 Nitto Denko Corp Microporous soundproofing material
JP2002363324A (en) * 2001-06-04 2002-12-18 Sumitomo Bakelite Co Ltd Plastic sheet foamed in gradient manner and manufacturing method therefor
JP2003176375A (en) * 2001-12-11 2003-06-24 Mitsubishi Chemicals Corp Light transmissible synthetic resin foam and method for producing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111066A (en) * 2005-10-17 2007-05-10 Terumo Corp Catheter and manufacturing method of catheter
US9283697B2 (en) 2008-03-27 2016-03-15 Toyo Seikan Kaisha, Ltd. Stretched and foamed plastic container and method of producing the same
EP2258624A1 (en) * 2008-03-27 2010-12-08 Toyo Seikan Kaisha, Ltd. Stretched foam plastic container and process for producing the stretched foam plastic container
US8714401B2 (en) 2008-03-27 2014-05-06 Toyo Seikan Kaisha, Ltd. Stretched and foamed plastic container and method of producing the same
EP2258624A4 (en) * 2008-03-27 2012-08-08 Toyo Seikan Kaisha Ltd Stretched foam plastic container and process for producing the stretched foam plastic container
CN102700111A (en) * 2008-03-27 2012-10-03 东洋制罐株式会社 Stretched and foamed plastic container and method of producing the same
US9321198B2 (en) 2008-03-27 2016-04-26 Toyo Seikan Kaisha, Ltd. Stretched and foamed plastic container and method of producing the same
WO2009119549A1 (en) 2008-03-27 2009-10-01 東洋製罐株式会社 Stretched foam plastic container and process for producing the stretched foam plastic container
JP2009262550A (en) * 2008-03-31 2009-11-12 Toyo Seikan Kaisha Ltd Molded product impregnated with non-foaming gas and foamed plastic container
JP2012210159A (en) * 2011-03-30 2012-11-01 Chugoku Electric Power Co Inc:The Method for specifying coryne pusilla planula larva
JP2013075465A (en) * 2011-09-30 2013-04-25 Toyo Seikan Kaisha Ltd Stretched foam plastic container and method for manufacturing the same
US9290287B2 (en) 2011-09-30 2016-03-22 Toyo Seikan Group Holdings, Ltd. Foamed and stretched plastic containers and method of producing the same
JP2013082119A (en) * 2011-10-07 2013-05-09 Toyo Seikan Kaisha Ltd Stretched foam plastic container and method for manufacturing the same
JP2013095050A (en) * 2011-10-31 2013-05-20 Toyo Seikan Kaisha Ltd Formed resin molded product
US10414534B2 (en) 2012-04-23 2019-09-17 Toyo Seikan Group Holdings, Ltd. Foamed and stretched plastic bottle
WO2013161813A1 (en) 2012-04-23 2013-10-31 東洋製罐グループホールディングス株式会社 Foamed stretched plastic bottle
KR20140146169A (en) 2012-04-23 2014-12-24 도요세이칸 그룹 홀딩스 가부시키가이샤 Foamed stretched plastic bottle
CN105501598A (en) * 2012-04-23 2016-04-20 东洋制罐集团控股株式会社 A foamed and stretched plastic bottle
KR20160046921A (en) 2012-04-23 2016-04-29 도요세이칸 그룹 홀딩스 가부시키가이샤 Foamed stretched plastic bottle
US9694929B2 (en) 2012-04-23 2017-07-04 Toyo Seikan Group Holdings, Ltd. Foamed and stretched plastic bottle
CN105501598B (en) * 2012-04-23 2017-11-10 东洋制罐集团控股株式会社 Foam stretched plastic bottle
JP2013241001A (en) * 2012-04-23 2013-12-05 Toyo Seikan Group Holdings Ltd Foamed stretched plastic bottle excellent in light-shielding properties and specular glossiness
JP2014138991A (en) * 2013-01-21 2014-07-31 Toyo Seikan Kaisha Ltd Polyolefin resin made foam oriented container

Similar Documents

Publication Publication Date Title
EP2318208B1 (en) Multilayer thermoplastic sheet materials and thermoformed articles prepared therefrom
EP2910483B1 (en) Plastic container having pearl-like appearance and preform for producing the same
CN101223082B (en) Plastic container having pearl-like appearance and process for producing the same
JP5414162B2 (en) Light-shielding plastic container
US7588810B2 (en) Container having foam layer
US20100052201A1 (en) Foamed cellular panels and related methods
JP7049973B2 (en) Microcell foam sheet and fabrication process and use
JP2005246822A (en) Multi-layer foamed resin molding and its production method
JP5024166B2 (en) Foamed plastic molding and method for producing the same
JP4876385B2 (en) Resin hollow molded container and manufacturing method thereof
JP4853110B2 (en) Manufacturing method of resin integrated molded body
JP4784149B2 (en) Container preform and plastic container
JP2010241475A (en) Polyester-made oriented foamed vessel
JP5292593B2 (en) Method for producing stretched foam molded container and stretched foam container produced by the method
JP4853109B2 (en) Resin integrated molded body and manufacturing method thereof
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
JP2010158866A (en) Molded body and method of manufacturing molded body
JP2006068919A (en) Vacuum forming method of thermoplastic resin foamed sheet
JP5195950B2 (en) Method for manufacturing a plastic container having a pearly appearance
US20180250891A1 (en) Sub-ambient pressure morphology control process for use in molding extruded polymer foams, and parts produced therefrom
JP3256906B2 (en) Method for producing resin foam
JP2001018283A (en) Production of hollow foamed blow molded object
JP5725124B2 (en) Manufacturing method of light-shielding plastic container
JP2002179827A (en) Styrene-based resin foamed material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316