JP2007083717A - Multilayer foam molded body and its manufacturing method - Google Patents

Multilayer foam molded body and its manufacturing method Download PDF

Info

Publication number
JP2007083717A
JP2007083717A JP2006227308A JP2006227308A JP2007083717A JP 2007083717 A JP2007083717 A JP 2007083717A JP 2006227308 A JP2006227308 A JP 2006227308A JP 2006227308 A JP2006227308 A JP 2006227308A JP 2007083717 A JP2007083717 A JP 2007083717A
Authority
JP
Japan
Prior art keywords
layer
cavity
foam
supercritical fluid
foam layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227308A
Other languages
Japanese (ja)
Inventor
Masayoshi Tokihisa
昌吉 時久
Yukio Mende
幸雄 免出
Masahiro Takatsuka
雅弘 高塚
Yasushi Miyano
靖 宮野
Minoru Shinpo
實 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Kanazawa Institute of Technology (KIT)
Original Assignee
Japan Steel Works Ltd
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Kanazawa Institute of Technology (KIT) filed Critical Japan Steel Works Ltd
Priority to JP2006227308A priority Critical patent/JP2007083717A/en
Publication of JP2007083717A publication Critical patent/JP2007083717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a multilayer foam molded body wherein an outer layer is a foam layer in which micro foaming cells are dispersed uniformly, and an inner layer is an unfoam layer. <P>SOLUTION: An unfoam molded body P<SB>1</SB>is arranged in a cavity of both divided dies 1a, 1b and a mold bundle is carried out. The dies are heated by a heater 2a and a heater 2b, and at the same time, a valve for supply 11a is opened to charge a supercritical fluid generated at a supercritical fluid generating device 10 into the cavity through a supply port 7. By maintaining a pressure inside the cavity at a supercritical pressure or more, the desired region forming the foam layer of the unfoam molded body P<SB>1</SB>is impregnated with the supercritical fluid (gas for foaming). Then, the pressure inside the cavity is relieved, and the rapid pressure reduction makes foam cell nuclei caused by the impregnated supercritical fluid grow up, and forms the foam layer wherein the micro foam cells are dispersed to expand to a shape copied after the cavity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐衝撃性に優れた多層発泡成形体およびその製造方法に関するものである。   The present invention relates to a multilayer foam molded article excellent in impact resistance and a method for producing the same.

熱可塑性樹脂製の発泡成形体は、軽量化、断熱特性向上、吸音特性向上、耐衝撃性向上等が図れるため、建材、自動車用部品、包装材等の様々な分野において用いられる。   A foamed molded body made of a thermoplastic resin can be used in various fields such as building materials, automotive parts, and packaging materials because it can reduce weight, improve heat insulation properties, improve sound absorption properties, and improve impact resistance.

発泡成形体の耐衝撃性向上を図る場合には、大量の発泡剤を必要とし、発泡成形サイクルも長時間になる全体を発泡させるかわりに、発泡体層と非発泡体層とを有する多層発泡成形体が用いられている。以下に多層発泡成形体の製造方法の従来例について説明する。   In order to improve the impact resistance of foam molded products, a large amount of foaming agent is required, and instead of foaming the entire foam molding cycle, it is a multilayer foam having a foam layer and a non-foam layer. A molded body is used. Below, the prior art example of the manufacturing method of a multilayer foaming molding is demonstrated.

(イ)発泡性樹脂と非発泡性樹脂とを共押出することによって、発泡体層と非発泡体層とが積層された多層発泡シートを製造する方法(特許文献1、特許文献2参照)。   (A) A method for producing a multilayer foam sheet in which a foam layer and a non-foam layer are laminated by co-extrusion of a foam resin and a non-foam resin (see Patent Document 1 and Patent Document 2).

(ロ)非発泡性樹脂と未発泡の発泡性樹脂とを金型内に充填したのち、発泡性樹脂を発泡させて、発泡体層および非発泡体層を有する多層発泡成形体を製造する方法(特許文献3、特許文献4参照)。
特開2003−94504号公報 特開2000−263576号公報 特開平11−349719号公報 特開平11−188823号公報
(B) A method for producing a multilayer foamed molded article having a foam layer and a non-foamed layer by filling the mold with a non-foamable resin and an unfoamed foamable resin and then foaming the foamable resin. (See Patent Document 3 and Patent Document 4).
JP 2003-94504 A JP 2000-263576 A JP-A-11-349719 Japanese Patent Laid-Open No. 11-188823

しかし、上記(イ)および(ロ)の方法では、種類の異なる成形材料を必要とするとともに、非発泡性樹脂用の押出機と発泡性樹脂用の押出機とを備えた高価な共押出装置を必要とするために製造コストが高くなる。また、非発泡性樹脂層と発泡性樹脂層との接合部分の強度が低く剥離するおそれがある。   However, in the above methods (a) and (b), different types of molding materials are required, and an expensive coextrusion apparatus equipped with an extruder for non-foamable resin and an extruder for foamable resin Manufacturing cost is increased. Moreover, there exists a possibility that the intensity | strength of the junction part of a non-foaming resin layer and a foaming resin layer may be low, and may peel.

また、物理発泡剤として使用されている代替フロン、ブタン、ペンタン等の可燃性ガスは、地球温暖化係数が比較的大きく、成形装置を防爆仕様とする必要があったり、発泡体からのガス抜けに時間がかかる。また、化学発泡剤として使用されている重炭酸ソーダ、アゾ化合物、ニトロソ化合物等は、熱安定性が低く、分解残渣が樹脂の物性を低下させたり、高発泡倍率の発泡成形品の製造が難しい。加えて、化学発泡剤では、同一材料から構成される未発泡成形体における発泡領域または発泡層を的確に選択して、発泡セル径をコントロールしながら発泡させることが難しいという問題点があった。   In addition, combustible gases such as chlorofluorocarbons, butane, and pentane used as physical foaming agents have a relatively large global warming potential, and it is necessary to make the molding equipment explosion-proof, or gas escape from the foam. Takes time. In addition, sodium bicarbonate, azo compounds, nitroso compounds and the like used as chemical foaming agents have low thermal stability, and degradation residues reduce the physical properties of the resin, and it is difficult to produce foamed molded products with a high expansion ratio. In addition, the chemical foaming agent has a problem that it is difficult to perform foaming while accurately controlling a foamed cell diameter by accurately selecting a foamed region or a foamed layer in an unfoamed molded body made of the same material.

本発明は、上記問題点に鑑みてなされたものであって、微細発泡セルが均一に分散された発泡体層を外層とし、未発泡体層を内層とする多層発泡成形体およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a multilayer foamed molded article having a foam layer in which fine foam cells are uniformly dispersed as an outer layer and an unfoamed layer as an inner layer, and a method for producing the same. The purpose is to provide.

上記未解決の課題を解決するため、本発明の多層発泡成形体は、超臨界流体を発泡剤とする発泡体層からなる外層と非発泡体層からなる内層とを有しており、前記発泡体層および前記非発泡体層が同一の熱可塑性樹脂からなること、を特徴とするものである。   In order to solve the above unsolved problems, the multilayer foamed molded article of the present invention has an outer layer composed of a foam layer using a supercritical fluid as a foaming agent and an inner layer composed of a non-foamed layer, and the foam The body layer and the non-foamed layer are made of the same thermoplastic resin.

また、超臨界流体が、二酸化炭素または窒素からなるものとする。   In addition, the supercritical fluid is made of carbon dioxide or nitrogen.

さらに、発泡体層は、発泡セルの形状が多面体もしくは略球体であるとよい。   Further, in the foam layer, the shape of the foam cell is preferably a polyhedron or a substantially spherical body.

また、発泡体層は、発泡セルのセル径が50μm以下であるとよい。   In the foam layer, the cell diameter of the foam cell is preferably 50 μm or less.

本発明の多層発泡成形体の製造方法は、超臨界流体を発泡剤とする発泡体層からなる外層と非発泡体層からなる内層とを有しており、前記発泡体層および前記非発泡体層が同一の熱可塑性樹脂からなる多層発泡成形体を製造する方法において、前記多層発泡成形体の外面を規制するキャビティを有する分割形式の金型を用い、前記金型の前記キャビティ内に前記熱可塑性樹脂からなる未発泡成形体を収容した状態で型締めする型締め工程と、前記型締め工程ののち、前記キャビティ内に前記超臨界流体を注入して前記未発泡成形体の前記発泡体層を形成する領域に前記超臨界流体を含浸させる含浸工程と、前記含浸工程ののち、前記キャビティ内の超臨界流体を排出して圧力を解放することによって、含浸された前記超臨界流体による気泡核を成長させ、微細発泡セルが分散された発泡体層を形成して前記キャビティにならう形状に膨脹させる発泡工程と、を有することを特徴とするものである。   The method for producing a multilayer foamed molded article of the present invention has an outer layer composed of a foam layer using a supercritical fluid as a foaming agent and an inner layer composed of a non-foamed layer, and the foam layer and the non-foamed body In a method for producing a multilayer foamed molded body having the same layer of thermoplastic resin, a split mold having a cavity for regulating the outer surface of the multilayer foamed molded body is used, and the heat is placed in the cavity of the mold. A mold clamping step in which a non-foamed molded body made of a plastic resin is accommodated, and after the mold clamping step, the supercritical fluid is injected into the cavity and the foam layer of the unfoamed molded body Impregnation step of impregnating the supercritical fluid in the region forming the gas, and after the impregnation step, discharging the supercritical fluid in the cavity and releasing the pressure to thereby release the bubble nuclei by the impregnated supercritical fluid Grown, is characterized in that it has a, a foaming process of expanding into a shape to follow said cavity to form a finely foamed cells are distributed foam layer.

本発明は上述のとおり構成されているので、次に記載するような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

本発明に係る多層発泡成形体は、外層の発泡体層で外部からの衝撃を吸収し、内層の非発泡体層で引張り強度、圧縮強度などを保持することが可能である。   The multilayer foamed molded product according to the present invention can absorb impact from the outside with the foam layer as the outer layer, and can maintain tensile strength, compressive strength, etc. with the non-foam layer as the inner layer.

また、発泡体層と非発泡体層との境界部の接合強度が高く剥離するおそれもなくなる。   Further, the bonding strength at the boundary between the foam layer and the non-foam layer is high, and there is no possibility of peeling.

本発明に係る多層発泡成形体の製造方法は、未発泡成形体の外面から所定の深さまで、含浸された超臨界流体によるセル径の小さい微細発泡セル(気泡)が均一に分散された高発泡倍率の発泡体層を確実に形成することができる。   The method for producing a multilayer foamed molded product according to the present invention is a high foaming method in which fine foamed cells (bubbles) having a small cell diameter are uniformly dispersed from the outer surface of the unfoamed molded product to a predetermined depth by the impregnated supercritical fluid. A foam layer having a magnification can be reliably formed.

さらに、多層発泡成形装置が安価であり、成形サイクルが短時間で済むため、製造コストを低減することができる。   Furthermore, since the multilayer foam molding apparatus is inexpensive and the molding cycle is short, the manufacturing cost can be reduced.

本発明の実施の形態を図面に基いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、一実施の形態による多層発泡成形体の製造方法に用いる装置の一例を示す説明図である。   Drawing 1 is an explanatory view showing an example of an apparatus used for a manufacturing method of a multilayer foaming fabrication object by one embodiment.

図1に示すように、一方の分割金型1aは外面に配設されたヒータ2aと内設された冷却用ジャケット3aを有し、他方の分割金型1bは外面に配設されたヒータ2bと内設された冷却用ジャケット3bを有しており、型締め時に一方の分割金型1aのキャビティ面4aと他方の分割金型1bのキャビティ面4bとにより、最終成形品である板状の多層発泡成形品の外面を規制する形状のキャビティが形成される。   As shown in FIG. 1, one split mold 1a has a heater 2a disposed on the outer surface and an internal cooling jacket 3a, and the other split mold 1b is a heater 2b disposed on the outer surface. And a cooling jacket 3b installed therein, and at the time of mold clamping, the cavity surface 4a of one split mold 1a and the cavity surface 4b of the other split mold 1b are formed into a plate-like shape that is the final molded product. A cavity having a shape that regulates the outer surface of the multilayer foamed molded article is formed.

一方の分割金型1aには、外壁からキャビティ面4aへ貫通する排出口6と外壁からキャビティ面4aに貫通する供給口7とが設けられている。そして、排出口6には排出用バルブ8aが介在された排出用管路8が接続されており、供給口7には、供給用バルブ11aが介在された供給用管路11を介して超臨界流体発生装置10が接続されている。   One split mold 1a is provided with a discharge port 6 penetrating from the outer wall to the cavity surface 4a and a supply port 7 penetrating from the outer wall to the cavity surface 4a. The discharge port 6 is connected to a discharge pipe 8 having a discharge valve 8a interposed therein. The supply port 7 is supercritical via a supply pipe 11 having a supply valve 11a interposed. A fluid generator 10 is connected.

また、他方の分割金型1bには外壁からキャビティ面4bへ貫通する排出口5が設けられており、排出口5には排出用バルブ9bが介在された排出用管路9が接続されている。   The other split mold 1b is provided with a discharge port 5 penetrating from the outer wall to the cavity surface 4b. The discharge port 5 is connected to a discharge conduit 9 having a discharge valve 9b interposed therebetween. .

続いて、本発明の一実施の形態による多層発泡成形体の製造方法の工程について説明する。   Then, the process of the manufacturing method of the multilayer foaming molded object by one embodiment of this invention is demonstrated.

(1)多層発泡成形体の外面を規制するキャビティを有する分割形式の金型である両分割金型1a、1bを型開きし、一方の分割金型1aのキャビティ面4aと他方の分割金型1bのキャビティ面4bとの間に未発泡成形体P1 を配置して型締めする。 (1) Open both split molds 1a and 1b, which are split molds having cavities that regulate the outer surface of the multilayer foamed molded article, and open the cavity surface 4a of one split mold 1a and the other split mold. to mold clamping by placing the unfoamed molded article P 1 between the cavity surface 4b of 1b.

本工程において、未発泡成形体P1 の温度は、室温でもよいが、後工程の加熱時間を短縮するために、結晶性樹脂では結晶化温度近傍、非結晶性樹脂ではガラス遷移点(Tg )近傍の温度にしておくことが望ましい。 In this step, the temperature of the unfoamed molded article P 1 may or even at room temperature, in order to shorten the heating time in the subsequent step, the crystallization temperature near a crystalline resin, the glass transition point in the non-crystalline resin (Tg) It is desirable to keep the temperature in the vicinity.

なお、未発泡成形体P1 は、熱可塑性樹脂よりなり、射出成形、押出成形、圧縮成形等によって製造する。 Incidentally, non-expanded molded article P 1 is made of a thermoplastic resin, injection molding, extrusion molding, prepared by compression molding.

(2)上記(1)の工程ののち、一方の分割金型1aのヒータ2aおよび他方の分割金型1bのヒータ2bによって加熱して未発泡成形体P1 の温度を所定の温度に上昇させる。 (2) After the step (1), raising the temperature by heating by a heater 2b unfoamed molded article P 1 of the heater 2a and the other split mold blocks 1b of one of the split molds 1a to a predetermined temperature .

本工程において所定の温度とは、ポリプロピレン、ポリエチレンなどの結晶性樹脂の場合は、溶融を開始する融点(Tm )よりも1〜10℃、好ましくは1〜3℃低い温度に上昇させる。その理由は融点以上では結晶性樹脂の溶融が始まり、所定形状を保持できなくなるためである。   In this step, in the case of a crystalline resin such as polypropylene and polyethylene, the predetermined temperature is raised to 1 to 10 ° C, preferably 1 to 3 ° C lower than the melting point (Tm) at which melting starts. The reason is that the melting of the crystalline resin starts at a melting point or higher and the predetermined shape cannot be maintained.

また、非結晶性樹脂の場合は、ガラス遷移点(Tg )近傍の温度であることが好ましい。ガラス遷移点(Tg )よりも著しく温度が高くなる場合は、非結晶性樹脂が軟化を開始し、所定形状が保持できなくなるためである。   In the case of an amorphous resin, the temperature is preferably near the glass transition point (Tg). This is because when the temperature is significantly higher than the glass transition point (Tg), the amorphous resin starts to soften and the predetermined shape cannot be maintained.

(3)上記(2)の工程の各ヒータ2a、2bによる加熱と同時に、供給用バルブ11aを開き、超臨界流体発生装置10から超臨界流体を供給口7を介してしてキャビティ内へ注入する。   (3) Simultaneously with the heating by the heaters 2a and 2b in the step (2), the supply valve 11a is opened, and the supercritical fluid is injected from the supercritical fluid generator 10 into the cavity through the supply port 7. To do.

本工程における超臨界流体は、コストおよび地球環境の保全の見地から、超臨界流体状態の窒素ガスまたは二酸化炭素とすることが望ましい。また、発泡セルを微細化する観点から、キャビティ内の圧力は臨界圧力以上であることが望ましい。因みに、窒素ガスでは−147.1℃以上かつ3.35MPa以上、二酸化炭素では33.1℃以上かつ7.30MPaで超臨界流体の状態となる。   The supercritical fluid in this step is preferably nitrogen gas or carbon dioxide in a supercritical fluid state from the viewpoint of cost and global environment conservation. Further, from the viewpoint of miniaturizing the foam cell, the pressure in the cavity is preferably equal to or higher than the critical pressure. Incidentally, it becomes a supercritical fluid state at −147.1 ° C. or more and 3.35 MPa or more with nitrogen gas, and at 33.1 ° C. or more and 7.30 MPa with carbon dioxide.

(4)上記(2)、(3)の工程ののち、キャビティ内を臨界圧力以上に維持することにより、超臨界流体(以下、「発泡用ガス」という。)を未発泡成形体P1 の外壁面から徐々に含浸させて行く。 (4) After the steps (2) and (3), the supercritical fluid (hereinafter referred to as “foaming gas”) is maintained in the unfoamed molded product P 1 by maintaining the inside of the cavity at a critical pressure or higher. Gradually impregnate from the outer wall.

この含浸時間は、熱可塑性樹脂の種類および未発泡成形体P1 の厚みにもよるが、例えば、厚み5mmのポリプロピレンの場合は3分未満、好ましくは1分未満で十分である。含浸時間をあまり長くすると成形サイクルが長時間になるばかりではなく、発泡体層の厚みが増大して衝撃強度以外の機械的特性、例えば、引張り強度や曲げ強度が低下するので好ましくない。 The impregnation time depends on the kind of the thermoplastic resin and the thickness of the unfoamed molded product P 1. For example, in the case of 5 mm thick polypropylene, less than 3 minutes, preferably less than 1 minute is sufficient. If the impregnation time is too long, not only will the molding cycle be prolonged, but the thickness of the foam layer will increase, and mechanical properties other than impact strength, such as tensile strength and bending strength, will be unfavorable.

(5)上記(4)の工程ののち、両分割金型1a、1bのそれぞれのヒータ2a、2bによる加熱を止めて排出用バルブ8a、9bを開き、キャビティ内の発泡用ガスを排出口5、6を介して排出させてキャビティ内の圧力解放を行い、同時に冷却用ジャケット3a、3bに冷却媒体(冷却水)を流して冷却する。   (5) After the step (4), heating by the heaters 2a and 2b of the two split molds 1a and 1b is stopped, the discharge valves 8a and 9b are opened, and the foaming gas in the cavity is discharged to the discharge port 5 , 6 to release the pressure in the cavity, and at the same time, cooling medium (cooling water) is allowed to flow through the cooling jackets 3a and 3b for cooling.

本工程において、発泡用ガスの排出により急激にキャビティ内の圧力が低下し、未発泡成形体P1 の特定領域に含浸した発泡用ガスによる微細な気泡核が生成し、この気泡核を起点にその近傍の気泡核に向かって拡散・移動が開始し、気泡核から気泡への成長を開始する。 In this step, the pressure in the cavity suddenly decreases due to the discharge of the foaming gas, and fine bubble nuclei are generated by the foaming gas impregnated in a specific region of the unfoamed molded product P 1. Diffusion / movement starts toward the bubble nuclei in the vicinity, and growth from the bubble nuclei to the bubbles begins.

所定の時間の経過とともに、未発泡成形体P1 の特定領域(外層)の発泡と同時に、未発泡成形体P1 が体積膨脹してキャビティにならう形状の多層発泡成形体が形成される。そして、冷却媒体による冷却に加えて、発泡用ガスの気化による冷却により気泡核の成長が停止する。 Over a predetermined period of time, simultaneously with the foaming of a specific region of the unfoamed molded article P 1 (outer layer), the unfoamed molded article P 1 is a multilayer foamed molded article shaped to follow the cavity by the volume expansion is formed. Then, in addition to the cooling by the cooling medium, the growth of bubble nuclei is stopped by the cooling by the vaporization of the foaming gas.

本発明に係る多層発泡成形体は、超臨界流体を発泡剤とする発泡体層からなる外層と非発泡体層からなる内層とを有しており、前記発泡体層および前記非発泡体層が同一の熱可塑性樹脂からなる。このため、外側の発泡体層で外部からの衝撃を吸収し、内側の未発泡体層で引張り強度、圧縮強度などを保持することが可能になる。   The multilayer foam molded article according to the present invention has an outer layer composed of a foam layer using a supercritical fluid as a foaming agent and an inner layer composed of a non-foam layer, and the foam layer and the non-foam layer are It consists of the same thermoplastic resin. For this reason, it becomes possible to absorb the impact from the outside with an outer foam layer, and to hold | maintain tensile strength, compressive strength, etc. with an inner non-foam layer.

次に、一参考例について説明する。   Next, a reference example will be described.

本参考例は、上述した一実施の形態における(1)〜(5)の工程の一部を下記のように変更することで、一方の分割金型1aと他方の分割金型1bとに温度差を設けることにより、片面にのみ発泡体層を有する多層発泡成形体を製造することができる。   In this reference example, by changing a part of the steps (1) to (5) in the embodiment described above as follows, the temperature is changed to one split mold 1a and the other split mold 1b. By providing the difference, it is possible to produce a multilayer foam molded article having a foam layer only on one side.

例えば、未発泡成形体P1 を他方の分割金型1bに接触させた状態で型締めする。また、他方の分割金型1bの温度を、未発泡成形体P1 を構成する非結晶性樹脂の場合には、ガラス遷移温度(Tg )、結晶性樹脂の場合には結晶化温度よりもかなり低い温度とし、一方の分割金型1aのガラス遷移温度または結晶化温度の近傍温度とする。 For example, the mold is clamped in a state where the unfoamed molded product P 1 is in contact with the other split mold 1b. Further, the temperature of the other split mold 1b, in the case of non-crystalline resin forming the unfoamed molded article P 1, the glass transition temperature (Tg), in the case of crystalline resin is considerably than the crystallization temperature The temperature is set to a low temperature and is set to a temperature near the glass transition temperature or the crystallization temperature of one split mold 1a.

これにより、未発泡成形体P1 の右側部分のみが発泡し、左側部分は温度が低いので、発泡しない。その結果、右側半分が発泡体層で左側半分が未発泡体層の多層発泡成形体を製造することができる。 Thus, only the right portion of the unfoamed molded article P 1 is foamed, since the left part temperature is low, does not foam. As a result, it is possible to produce a multilayer foamed molded article in which the right half is a foam layer and the left half is an unfoamed layer.

次に、本発明の他の実施の形態による多層発泡成形体の製造方法について説明する。   Next, the manufacturing method of the multilayer foaming molding by other embodiment of this invention is demonstrated.

図2は、本実施の形態による多層発泡成形体の製造方法に用いる装置の一例を示す説明図である。   FIG. 2 is an explanatory view showing an example of an apparatus used in the method for producing a multilayer foam molded article according to the present embodiment.

図2に示すように、一方の分割金型21aは、ボトル状の多層発泡成形体の略半分の外面を規制するキャビティ面24aと、外壁面に配設されたヒータ22aと、金型に内設された、冷却用ジャケット23aを具備している。他方の分割金型21bは、ボトル状の多層発泡成形体の残りの部分の外面を規制するキャビティ面24bと、外壁面に配設されたヒータ22bと、内設された冷却用ジャケット23bを具備している。   As shown in FIG. 2, one split mold 21a includes a cavity surface 24a that regulates the outer surface of a substantially half of the bottle-shaped multilayer foamed molded article, a heater 22a disposed on the outer wall surface, and an inner mold. A cooling jacket 23a is provided. The other split mold 21b includes a cavity surface 24b that regulates the outer surface of the remaining portion of the bottle-shaped multilayer foamed molded article, a heater 22b disposed on the outer wall surface, and an internal cooling jacket 23b. is doing.

また、一方の分割金型21aには、キャビティ面24aに一端側が開口し、他端側が供給用管路41を介して超臨界流体発生装置40に接続された供給口27が設けられている。また、供給口27から離間した部位に外壁からキャビティ面24aへ貫通する排出口26が設けられており、この排出口26には排出用バルブ29aが介在された排出用管路29が設けられている。   Further, one split mold 21a is provided with a supply port 27 having one end opened on the cavity surface 24a and the other end connected to the supercritical fluid generator 40 via a supply pipe 41. In addition, a discharge port 26 penetrating from the outer wall to the cavity surface 24a is provided at a portion spaced from the supply port 27, and a discharge conduit 29 having a discharge valve 29a interposed is provided in the discharge port 26. Yes.

続いて、本実施の形態による多層発泡成形体の製造方法の工程について説明する。   Then, the process of the manufacturing method of the multilayer foaming molding by this Embodiment is demonstrated.

(1)一方の分割金型21aのキャビティ面24aと他方の分割金型21bのキャビティ面24bとで形成されるキャビティ内にボトル状の未発泡成形体P2 を配置して型締めを行う。 Performing mold clamping by placing the bottle-like unfoamed molded article P 2 into the cavity formed by the cavity surface 24b of the cavity surface 24a and the other split mold 21b (1) one of the split molds 21a.

(2)上記(1)の工程ののち、一方の分割金型21aのヒータ22aおよび他方の分割金型21bのヒータ22bによって加熱し、未発泡成形体P2 の温度を所定の温度に上昇させる。 (2) After the step (1) is heated by the heater 22b of the heater 22a and the other split mold 21b of one of the split molds 21a, to raise the temperature of the unfoamed molded article P 2 to a predetermined temperature .

本工程において所定の温度とは、ポリプロピレン、ポリエチレンなどの結晶性樹脂の場合は、溶融を開始する融点(Tm )よりも1〜10℃低い温度、好ましくは1〜3℃低い温度に保持する。その理由は、融点以上では結晶性樹脂の溶融が始まり、所定形状を保持できなくなるからである。非結晶性樹脂の場合は、ガラス遷移点(Tg )近傍の温度であることが好ましい。ガラス遷移点よりも著しく温度が高くなると非結晶性樹脂の軟化が開始し、所定形状が保持できなくなるためである。   In this step, in the case of crystalline resins such as polypropylene and polyethylene, the predetermined temperature is maintained at a temperature lower by 1 to 10 ° C., preferably lower by 1 to 3 ° C. than the melting point (Tm) at which melting starts. The reason is that the melting of the crystalline resin starts above the melting point and the predetermined shape cannot be maintained. In the case of an amorphous resin, the temperature is preferably near the glass transition point (Tg). This is because when the temperature is significantly higher than the glass transition point, the amorphous resin starts to soften and the predetermined shape cannot be maintained.

(3)上記(2)の工程の両ヒータ22a、22bによる加熱と同時に、供給用バルブ41aを開いて供給口27を介して超臨界流体をキャビティ内へ注入する。   (3) Simultaneously with the heating by the heaters 22a and 22b in the step (2), the supply valve 41a is opened and the supercritical fluid is injected into the cavity through the supply port 27.

なお、本工程において、超臨界流体は、コストおよび地球環境の保全の見地から超臨界流体状態の窒素ガスまたは二酸化炭素が好ましい。また、発泡セル(気泡)を微細化するためには、キャビティ内の圧力は注入した超臨界流体の臨界圧力以上の圧力にすることが望ましい。   In this step, the supercritical fluid is preferably nitrogen gas or carbon dioxide in a supercritical fluid state from the viewpoint of cost and preservation of the global environment. In order to make the foam cell (bubble) finer, it is desirable that the pressure in the cavity be a pressure equal to or higher than the critical pressure of the injected supercritical fluid.

(4)上記(3)の工程ののち、キャビティ内を臨界圧力以上に維持することにより、超臨界流体(以下、「発泡用ガス」という。)をボトル状の未発泡成形体P2 の外面および内面から徐々に含浸させて行く。 (4) After the step (3), by maintaining the inside of the cavity at a critical pressure or higher, the supercritical fluid (hereinafter referred to as “foaming gas”) is allowed to flow outside the bottle-shaped unfoamed molded product P 2 . And gradually impregnate from the inner surface.

この含浸時間は、熱可塑性樹脂の種類にもよるが、例えば、厚み5mmのポリプロピレンの場合は3分未満好ましくは1分未満で十分である。含浸時間を長くすると成形サイクルが長時間になるばかりでなく、発泡体層が厚くなり、衝撃強度以外の剛性等の機械的特性が低下する。   Although this impregnation time depends on the type of thermoplastic resin, for example, in the case of 5 mm thick polypropylene, less than 3 minutes, preferably less than 1 minute is sufficient. When the impregnation time is increased, not only the molding cycle becomes longer, but also the foam layer becomes thicker, and mechanical properties such as rigidity other than impact strength are lowered.

(5)上記(4)の工程ののち、両分割金型21a、21bのそれぞれのヒータ22a、22bによる加熱を止めて排出用バルブ29aを開き、キャビティ内の発泡用ガスを排出口26を介して排出させて、キャビティ内の圧力解放を行うと同時に、冷却用ジャケット23a、23bに冷却媒体を流して冷却する。   (5) After the step (4), heating by the heaters 22a and 22b of the two split molds 21a and 21b is stopped, the discharge valve 29a is opened, and the foaming gas in the cavity is passed through the discharge port 26. At the same time as releasing the pressure in the cavity, the cooling jackets 23a and 23b are cooled by flowing a cooling medium.

本工程において、発泡用ガスの排出により急激にキャビティ内の圧力が低下し、未発泡成形体P2 の特定領域または層に含浸された超臨界流体の気泡核が成長し、この気泡核を起点としてその近傍の気泡核に向かっての拡散・移動が開始されて気泡が成長する。 Origin in this step, the pressure rapidly cavity is reduced by the discharge of the foaming gas, bubble nuclei of supercritical fluids impregnated in a particular region or layer of unfoamed molded article P 2 grows, the bubble nuclei As a result, diffusion and movement toward the bubble nuclei in the vicinity thereof are started and the bubbles grow.

さらに、口部に挿入されたノズル25を介してボトル状の未発泡成形体P2 の内部に冷却媒体を供給する。この冷却媒体としては、冷却媒体をボトル状の多層発泡成形体から分離するための後工程のことを考慮すると、常温でガス状の媒体が好ましい。 Furthermore, a cooling medium is supplied into the inside of the bottle-shaped unfoamed molded product P 2 through the nozzle 25 inserted in the mouth. The cooling medium is preferably a gaseous medium at room temperature in consideration of a post-process for separating the cooling medium from the bottle-shaped multilayer foamed article.

一方、ボトル状の未発泡成形体P2 は、外面側が発泡すると同時にキャビティ面24a、24bに向かって体積が膨脹し、キャビティ面24a、24bにならう形状に到達すると、両分割金型21a、21bによる冷却およびボトル状の多層発泡成形体の温度低下に加え、発泡用ガスの気化による冷却により発泡が停止する。 On the other hand, the bottle-like unfoamed molded article P 2, when the outer surface side simultaneously cavity surface 24a when foaming, volume expanded toward 24b, reaches a shape to follow the cavity surface 24a, to 24b, both split molds 21a, In addition to the cooling by 21b and the temperature decrease of the bottle-shaped multilayer foamed molded article, the foaming is stopped by the cooling by the vaporization of the foaming gas.

本実施の形態の場合でも、工程の一部を変更することにより、未発泡成形体に発泡用ガスが含浸した領域または層のみを選択的に発泡させることが可能になる。かかる方法により成形したボトル状の多層発泡成形体は、発泡体層で外部からの衝撃を吸収し、未発泡体層で剛性の保持または液漏れの抑制が可能になる。   Even in the case of the present embodiment, it is possible to selectively foam only the region or layer in which the foaming gas is impregnated in the unfoamed molded article by changing a part of the process. The bottle-shaped multilayer foam molded article formed by such a method can absorb impact from the outside with the foam layer, and can retain rigidity or suppress liquid leakage with the non-foam layer.

ところで、発泡によって衝撃強度が向上するのは、気泡が衝撃に対して一種のクッションとしての役割を果たするからであるが、セル径が小さいほど衝撃強度は向上する。この理由は、同一気泡体積では、セル径が小さくなるほどセル数が多くなり、衝撃吸収に直接寄与できる気泡の数が多くなるからである。また、衝撃を吸収できない未発泡領域に直接衝撃が加わる確率が低くなるためである。さらに、熱可塑性樹脂の種類によっては、気泡の成長によって気泡内壁の分子鎖が延伸を受けて強度が向上する。このため、セル径が小さいほどセル数が多くなり、その分だけ延伸を受ける気泡内壁の表面積が大きくなるからである。ここで、同一気泡体積の場合、セル径が1/2になればセル数は8倍になり、気泡内壁の表面積は2倍になる。同様にセル径が1/10になればセル数は1000倍になり、気泡内壁の表面積は10倍になる。   By the way, the impact strength is improved by foaming because the bubbles play a role as a kind of cushion against the impact, but the impact strength improves as the cell diameter decreases. This is because, in the same bubble volume, the number of cells increases as the cell diameter decreases, and the number of bubbles that can directly contribute to shock absorption increases. Moreover, it is because the probability that an impact is directly applied to an unfoamed region that cannot absorb the impact is reduced. Further, depending on the type of thermoplastic resin, the molecular chain on the inner wall of the bubble is stretched by the growth of the bubble, and the strength is improved. For this reason, the smaller the cell diameter, the greater the number of cells, and the corresponding increase in the surface area of the bubble inner wall that undergoes stretching. Here, in the case of the same bubble volume, if the cell diameter is halved, the number of cells becomes 8 times, and the surface area of the bubble inner wall becomes 2 times. Similarly, if the cell diameter becomes 1/10, the number of cells becomes 1000 times, and the surface area of the bubble inner wall becomes 10 times.

セル径が小さくなることによる衝撃強度の向上の度合いは、熱可塑性樹脂の種類にもよるが、セル径50μm以下の発泡成形体では未発泡成形体の1.5倍以上、セル径10μm以下では、2倍以上、セル径5μm以下では2.5倍以上、セル径1μm以下では3倍以上向上する。   The degree of improvement in impact strength due to the decrease in cell diameter depends on the type of thermoplastic resin, but for foamed molded products having a cell diameter of 50 μm or less, 1.5 times or more of the unfoamed molded product, and for cell diameters of 10 μm or less. When the cell diameter is 2 μm or more, the cell diameter is 5 μm or less, and the cell diameter is 2.5 times or more.

さらに、当該方法によって製造したボトル状の多層発泡成形体のセル形状は、球状に近い多面体の気泡となる。特定方向に変形した気泡の場合は力の作用する方向によって強度に違いが出てくるため用途が限られることと、気泡の形状によっては応力集中が起こりクラック発生の起点となる。この点、気泡の形状が多面体もしくは略球体であれば多層発泡成形体の強度に異方性が生じることはなく、また、クラックの起点となることもない。   Furthermore, the cell shape of the bottle-shaped multilayer foamed article produced by the method is a polyhedral air bubble that is nearly spherical. In the case of a bubble deformed in a specific direction, the strength is different depending on the direction in which the force acts, so that the application is limited, and depending on the shape of the bubble, stress concentration occurs and becomes a starting point of crack generation. In this respect, if the shape of the bubbles is a polyhedron or a substantially spherical body, anisotropy does not occur in the strength of the multilayer foamed molded article, and it does not become a starting point of cracks.

熱可塑性樹脂としてエチレン・プロピレン共重合体結晶性樹脂(出光石油化学社製ポリプロピレン、グレード:E−233GV)を用い、射出成形により幅10mm、長さ80mm、厚み2mmの短冊状の未発泡成形品を成形した。これを、分割形式の金型のキャビティ内に収容した状態で型締めした後、140℃に加熱し、圧力20MPaの超臨界状態の二酸化炭素を注入し、1分間の含浸を行った。1分間含浸した後、10MPa/秒の減圧速度で圧力を開放することにより、表層のみが発泡した実施例1による多層発泡成形品を得た。   A strip-shaped unfoamed molded article having a width of 10 mm, a length of 80 mm, and a thickness of 2 mm by injection molding using an ethylene / propylene copolymer crystalline resin (polypropylene manufactured by Idemitsu Petrochemical Co., Ltd., grade: E-233GV) as a thermoplastic resin. Was molded. This was clamped in a state of being accommodated in a cavity of a divided mold, heated to 140 ° C., carbon dioxide in a supercritical state at a pressure of 20 MPa was injected, and impregnation was performed for 1 minute. After impregnation for 1 minute, the pressure was released at a reduced pressure rate of 10 MPa / second to obtain a multilayer foam molded article according to Example 1 in which only the surface layer was foamed.

含浸時間を2分とした以外は実施例1と同様にして実施例2による多層発泡成形品を得た。   A multilayer foam molded article according to Example 2 was obtained in the same manner as in Example 1 except that the impregnation time was 2 minutes.

実施例1および実施例2による多層発泡成形品について、IZOD衝撃試験(JIS
K 7110)を行うと共に、表層の発泡状態を走査型電子顕微鏡で観察し、セル径、セル数および発泡層の厚さを計測した。なお、衝撃試験による発泡領域と未発泡領域の剥離は起こらなかった。これらの結果を表1に示す。
For the multilayer foamed molded products according to Example 1 and Example 2, the IZOD impact test (JIS
K 7110) and the foamed state of the surface layer were observed with a scanning electron microscope, and the cell diameter, the number of cells, and the thickness of the foamed layer were measured. In addition, peeling of the foaming area | region and the non-foaming area | region by the impact test did not occur. These results are shown in Table 1.

Figure 2007083717
Figure 2007083717

表1に示すように、本発明に係る実施例1および実施例2による多層発泡成形品は、未発泡成形品(比較例)に比べて約3.3倍の高い衝撃強度を示した。   As shown in Table 1, the multilayer foamed molded products according to Examples 1 and 2 according to the present invention exhibited a high impact strength about 3.3 times that of the unfoamed molded product (Comparative Example).

一実施の形態による多層発泡成形体の製造方法に用いる装置の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus used for the manufacturing method of the multilayer foaming molding by one Embodiment. 他の実施の形態による多層発泡成形体の製造方法に用いる装置の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus used for the manufacturing method of the multilayer foaming molding by other embodiment.

符号の説明Explanation of symbols

1a、1b、21a、21b 分割金型
2a、2b、22a、22b ヒータ
3a、3b、23a、23b 冷却用ジャケット
4a、4b、24a、24b キャビティ面
5、6、26 排出口
7、27 供給口
8、29 排出用管路
10、40 超臨界流体発生装置
11、41 供給用管路
1a, 1b, 21a, 21b Split mold 2a, 2b, 22a, 22b Heater 3a, 3b, 23a, 23b Cooling jacket 4a, 4b, 24a, 24b Cavity surface 5, 6, 26 Discharge port 7, 27 Supply port 8 29 Discharge pipe 10, 40 Supercritical fluid generator 11, 41 Supply pipe

Claims (5)

超臨界流体を発泡剤とする発泡体層からなる外層と非発泡体層からなる内層とを有しており、前記発泡体層および前記非発泡体層が同一の熱可塑性樹脂からなること、を特徴とする多層発泡成形体。   It has an outer layer composed of a foam layer using a supercritical fluid as a foaming agent and an inner layer composed of a non-foam layer, and the foam layer and the non-foam layer are made of the same thermoplastic resin. A multilayer foamed molded product. 超臨界流体が、二酸化炭素または窒素からなること、を特徴とする請求項1記載の多層発泡成形体。   2. The multilayer foamed molded article according to claim 1, wherein the supercritical fluid comprises carbon dioxide or nitrogen. 発泡体層は、発泡セルの形状が多面体もしくは略球体であること、を特徴とする請求項1または2記載の多層発泡成形体。   The multilayer foamed molded article according to claim 1 or 2, wherein the foam layer has a foamed cell shape of a polyhedron or a substantially spherical body. 発泡体層は、発泡セルのセル径が50μm以下であること、を特徴とする請求項1ないし3いずれか1項記載の多層発泡成形体。   The multilayer foamed molded article according to any one of claims 1 to 3, wherein the foam layer has a cell diameter of the foamed cell of 50 µm or less. 超臨界流体を発泡剤とする発泡体層からなる外層と非発泡体層からなる内層とを有しており、前記発泡体層および前記非発泡体層が同一の熱可塑性樹脂からなる多層発泡成形体を製造する方法において、
前記多層発泡成形体の外面を規制するキャビティを有する分割形式の金型を用い、前記金型の前記キャビティ内に前記熱可塑性樹脂からなる未発泡成形体を収容した状態で型締めする型締め工程と、
前記型締め工程ののち、前記キャビティ内に前記超臨界流体を注入して前記未発泡成形体の前記発泡体層を形成する領域に前記超臨界流体を含浸させる含浸工程と、
前記含浸工程ののち、前記キャビティ内の超臨界流体を排出して圧力を解放することによって、含浸された前記超臨界流体による気泡核を成長させ、微細発泡セルが分散された発泡体層を形成して前記キャビティにならう形状に膨脹させる発泡工程と、を有することを特徴とする多層発泡成形体の製造方法。
Multilayer foam molding having an outer layer made of a foam layer using a supercritical fluid as a foaming agent and an inner layer made of a non-foamed layer, and the foam layer and the non-foamed layer made of the same thermoplastic resin In a method of manufacturing a body,
A mold clamping step in which a mold of a split type having a cavity for regulating the outer surface of the multilayer foamed molded body is used, and the mold is clamped in a state where the unfoamed molded body made of the thermoplastic resin is accommodated in the cavity of the mold. When,
After the mold clamping step, an impregnation step of injecting the supercritical fluid into the cavity to impregnate the supercritical fluid in a region where the foam layer of the unfoamed molded body is formed;
After the impregnation step, the supercritical fluid in the cavity is discharged to release the pressure, thereby growing bubble nuclei by the impregnated supercritical fluid and forming a foam layer in which fine foam cells are dispersed. And a foaming step of expanding into a shape following the cavity.
JP2006227308A 2005-08-25 2006-08-24 Multilayer foam molded body and its manufacturing method Pending JP2007083717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227308A JP2007083717A (en) 2005-08-25 2006-08-24 Multilayer foam molded body and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005243549 2005-08-25
JP2006227308A JP2007083717A (en) 2005-08-25 2006-08-24 Multilayer foam molded body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007083717A true JP2007083717A (en) 2007-04-05

Family

ID=37971183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227308A Pending JP2007083717A (en) 2005-08-25 2006-08-24 Multilayer foam molded body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007083717A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095868A (en) * 2010-11-02 2012-05-24 Kao Corp Interdental cleaning tool
CN103350510A (en) * 2013-07-04 2013-10-16 浙江海虹控股集团有限公司 Equipment and method for preparing polymer supercritical foaming material
CN108215044A (en) * 2018-03-07 2018-06-29 泉州师范学院 A kind of polymer foaming device and the method that polymer foaming is carried out using the device
CN108372619A (en) * 2018-02-10 2018-08-07 郑州大学 A kind of preparation process of injection moulding high density microcellular foam material
CN108372620A (en) * 2018-03-07 2018-08-07 泉州师范学院 A kind of macromolecule polymer material supercritical fluid foam device and foaming method
CN111516197A (en) * 2020-04-30 2020-08-11 贵州省材料产业技术研究院 Soft mold opening foaming method and molding system with soft mold opening function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012095868A (en) * 2010-11-02 2012-05-24 Kao Corp Interdental cleaning tool
CN103350510A (en) * 2013-07-04 2013-10-16 浙江海虹控股集团有限公司 Equipment and method for preparing polymer supercritical foaming material
CN108372619A (en) * 2018-02-10 2018-08-07 郑州大学 A kind of preparation process of injection moulding high density microcellular foam material
CN108372619B (en) * 2018-02-10 2020-06-09 郑州大学 Preparation process of injection molding high-density microcellular foam material
CN108215044A (en) * 2018-03-07 2018-06-29 泉州师范学院 A kind of polymer foaming device and the method that polymer foaming is carried out using the device
CN108372620A (en) * 2018-03-07 2018-08-07 泉州师范学院 A kind of macromolecule polymer material supercritical fluid foam device and foaming method
CN111516197A (en) * 2020-04-30 2020-08-11 贵州省材料产业技术研究院 Soft mold opening foaming method and molding system with soft mold opening function

Similar Documents

Publication Publication Date Title
JP5371094B2 (en) Hollow foam blow molding
TW537973B (en) Multi-layer expansion-molded article of polypropylene resin and the production process thereof
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
JP6654626B2 (en) Subatmospheric morphology control process used for extrusion of extruded polymer foam and parts formed therefrom
TWI814895B (en) System and method for preparing a three-dimensional object made at least partially of an expanded polymer, and three-dimensional object
JP2009137306A (en) Hollow foamed blow molding
US20110001256A1 (en) Methods for blow molding solid-state cellular thermoplastic articles
JP2007106021A (en) Resin foamed molding and its manufacturing process
TW202021774A (en) 3d printing system for preparing a three-dimensional object with an autoclave
JP2009248413A (en) Foamed plastic molding and its manufacturing method
JP2006205376A (en) Manufacturing method of thermoplastic resin molded product
JP2010158866A (en) Molded body and method of manufacturing molded body
JP2005246822A (en) Multi-layer foamed resin molding and its production method
JP2006068919A (en) Vacuum forming method of thermoplastic resin foamed sheet
JP4256536B2 (en) Method for producing hollow foam blow molded article
JP4569238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
US20180250891A1 (en) Sub-ambient pressure morphology control process for use in molding extruded polymer foams, and parts produced therefrom
JP4507784B2 (en) Vacuum forming method for thermoplastic resin foam sheet
JP2010208091A (en) Method of manufacturing polylactic acid-based resin foamed molding
JP4278088B2 (en) Foam molded body with skin and method for producing the same
JP2005328297A (en) Diaphragm of speaker and method for manufacturing diaphragm of speaker
JP7164660B2 (en) Core material
Taskin Polymeric Foams: Materials, Technology, and Applications
US20190152099A1 (en) Sub-ambient pressure morphology control process for use in molding extruded polymer foams, and parts produced therefrom
EP1149680B1 (en) Method for producing a low density, flexible thermoplastic foam, and foam thus produced

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061220