JP2006306030A - Molding - Google Patents

Molding Download PDF

Info

Publication number
JP2006306030A
JP2006306030A JP2006022400A JP2006022400A JP2006306030A JP 2006306030 A JP2006306030 A JP 2006306030A JP 2006022400 A JP2006022400 A JP 2006022400A JP 2006022400 A JP2006022400 A JP 2006022400A JP 2006306030 A JP2006306030 A JP 2006306030A
Authority
JP
Japan
Prior art keywords
rib
mold
molded body
molding
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006022400A
Other languages
Japanese (ja)
Inventor
Akira Hanada
暁 花田
Yoshinori Omura
吉典 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006022400A priority Critical patent/JP2006306030A/en
Publication of JP2006306030A publication Critical patent/JP2006306030A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding which is lightweight and has excellent flexural rigidity and compressive strength. <P>SOLUTION: The molding is formed by integrally molding a rib and a base. The rib and the base are composed of a thermoplastic resin foam. Bubbles in the center of a cross section of the rib satisfies formula (1): Xh>Xt (where Xh is a diameter of the bubble in a height direction of the rib and Xt is a diameter of the bubble in a thickness direction of the rib). Formula (2): Xb<Xa is also satisfied (where Xa is an expansion ratio of the center of the rib and Xb is an expansion ratio of the base). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は成形体に関する。   The present invention relates to a molded body.

熱可塑性樹脂発泡成形体は、軽量性、リサイクル性、断熱性などに優れることから、自動車部品材料、建築材料、包装材料等、種々の用途に用いられている。これらの用途において使用される熱可塑性樹脂発泡成形体には、その用途に応じた曲げ剛性も要求される。軽量性や断熱性と曲げ剛性のバランスに優れる熱可塑性樹脂発泡成形体として、厚みが異なる一般部と厚肉部とからなり、厚肉部の平均発泡倍率が一般部の平均発泡倍率の1.2倍以上、かつ厚肉部の最大厚みが一般部の厚みの1.5倍以上である熱可塑性樹脂発泡成形体が知られている(特許文献1参照)。   Thermoplastic resin foam molded articles are excellent in light weight, recyclability, heat insulation, and the like, and are therefore used in various applications such as automotive parts materials, building materials, and packaging materials. The thermoplastic resin foam molded article used in these applications is also required to have bending rigidity corresponding to the application. As a thermoplastic resin foam molded article excellent in the balance of light weight, heat insulation and bending rigidity, it consists of a general part and a thick part having different thicknesses, and the average foaming ratio of the thick part is 1. There is known a thermoplastic resin foam molded article having a thickness of 2 times or more and a maximum thickness of the thick part being 1.5 times or more of the thickness of the general part (see Patent Document 1).

特開2001−310380号公報JP 2001-310380 A

しかしながら前記したような熱可塑性樹脂発泡成形体においても、その曲げ剛性や厚肉部の圧縮強度は満足できるものではなかった。本発明は、軽量性、曲げ剛性および圧縮強度に優れるリブと基体とを有する成形体を提供するものである。   However, even in the thermoplastic resin foam molded body as described above, the bending rigidity and the compressive strength of the thick part were not satisfactory. The present invention provides a molded article having a rib and a substrate excellent in lightness, bending rigidity and compressive strength.

すなわち本発明は、リブと基体とが一体成形されてなる成形体であって、該リブおよび基体が熱可塑性樹脂発泡体からなり、当該リブ断面の中心部に位置する気泡が下記の式(1)を満たす成形体である。
Xh>Xt 式(1)
(ただしXhはリブの高さ方向の気泡径であり、Xtはリブの厚み方向の気泡径である)
That is, the present invention is a molded body in which a rib and a substrate are integrally molded, and the rib and the substrate are made of a thermoplastic resin foam, and a bubble located at the center of the rib cross section is expressed by the following formula (1). ).
Xh> Xt Formula (1)
(Where Xh is the bubble diameter in the height direction of the rib and Xt is the bubble diameter in the thickness direction of the rib)

本発明の成形体は、軽量性、曲げ剛性および圧縮強度に優れる成形体である。
The molded article of the present invention is a molded article excellent in lightness, bending rigidity and compressive strength.

本発明の成形体は、リブと基体とが一体成形されてなる成形体である。リブとは、基体を補強し成形体の曲げ剛性を向上させるものであり、通常成形体の反意匠面に、基体から突出して設けられる板状のものである。通常リブは、長さが厚みや高さの10〜100倍程度である。
本発明の成形体は、リブの中心部に位置する気泡が下記の式(1)を満たす。ただし式(1)において、Xhはリブの高さ方向の気泡径であり、Xtはリブの厚み方向の気泡径である。
Xh>Xt 式(1)
式(1)を満たす本発明の成形体は、軽量性や曲げ剛性に優れ、かつ圧縮強度にも優れるものである。リブ断面の中心部に位置する気泡の気泡径とは、以下の方法により求められる値である。
The molded body of the present invention is a molded body in which a rib and a substrate are integrally molded. The rib is used to reinforce the base body and improve the bending rigidity of the molded body, and is a plate-like thing that is provided on the counter-design surface of the molded body so as to protrude from the base body. Usually, the length of the rib is about 10 to 100 times the thickness or height.
In the molded body of the present invention, the bubbles located at the center of the rib satisfy the following formula (1). However, in Formula (1), Xh is a bubble diameter in the height direction of the rib, and Xt is a bubble diameter in the thickness direction of the rib.
Xh> Xt Formula (1)
The molded product of the present invention that satisfies the formula (1) is excellent in light weight and bending rigidity, and also excellent in compressive strength. The bubble diameter of the bubble located at the center of the rib cross section is a value determined by the following method.

本発明における、リブ断面の中心部に位置する気泡径の求め方の概略図を図6に示した。まず成形体のリブ部分を、基体およびリブの長さ方向に対して垂直方向に切断し断面を露出させる。該リブ断面全体が確認できるように断面写真を撮影し、リブの高さ方向の中心線と厚さ方向の中心線を引く。両中心線の交点を中心として、リブ高さ方向の辺の長さがリブ高さの30%、リブ厚み方向の辺の長さがリブ最大厚みの30%の長方形を写真上に描く。該長方形に含まれる気泡を、リブ断面の中心部に位置する気泡と定義する。断面の気泡構造が確認可能な大きさに断面写真を拡大し、該長方形内に外周全てが含まれる気泡それぞれについて、リブ高さ方向と厚み方向の気泡径を測定し、リブ高さ方向の気泡径の平均値をXh、リブ厚み方向の気泡径の平均値をXtとする。   FIG. 6 shows a schematic diagram of how to obtain the bubble diameter located at the center of the rib cross section in the present invention. First, the rib portion of the molded body is cut in a direction perpendicular to the length direction of the base body and the rib to expose the cross section. A cross-sectional photograph is taken so that the entire rib cross section can be confirmed, and a center line in the height direction and a center line in the thickness direction of the rib are drawn. A rectangle with a side in the rib height direction of 30% of the rib height and a side in the rib thickness direction of 30% of the rib maximum thickness is drawn on the photograph with the intersection of both center lines as the center. The bubble included in the rectangle is defined as a bubble located at the center of the rib cross section. Expand the cross-sectional photograph to a size where the bubble structure of the cross-section can be confirmed, measure the bubble diameter in the rib height direction and thickness direction for each bubble that includes the entire outer periphery in the rectangle, and bubble in the rib height direction. The average value of the diameter is Xh, and the average value of the bubble diameter in the rib thickness direction is Xt.

本発明の成形体は、リブ中心部の発泡倍率Xaと基体の発泡倍率Xbとが下記の式(2)を満たすことが好ましい。式(2)を満たす成形体は、より曲げ剛性に優れるものとなる
Xb<Xa 式(2)
リブ中心部および基体の発泡倍率は、以下の方法により求められる。
In the molded article of the present invention, it is preferable that the expansion ratio Xa of the rib center portion and the expansion ratio Xb of the substrate satisfy the following formula (2). A molded body satisfying the formula (2) is more excellent in bending rigidity. Xb <Xa Formula (2)
The expansion ratio of the rib center portion and the substrate is obtained by the following method.

前記したリブの中心部に位置する気泡の気泡径を測定する際のリブ断面を基に、リブの高さ方向の中心線と厚さ方向の中心線との交点を含むようにして、10mm角の試験片を作製する。該試験片について比重を測定し、リブを構成する材料の密度を用いて計算される値が、リブ中心部の発泡倍率Xaである。また基体の発泡倍率Xbとは、リブと接する部分を含むようにして、基体から10mm角の試験片を作製し、該試験片について比重を測定し、基体を構成する材料の密度を用いて計算される値である。ただし成形体の構造上、10mm角の試験片を作製できない場合は、可能な限り10mm角に近い形状の試験片を用いて測定すればよい。   Based on the rib cross section when measuring the bubble diameter of the bubble located at the center of the rib described above, a test of 10 mm square is included so as to include the intersection of the center line in the height direction of the rib and the center line in the thickness direction. Make a piece. The specific gravity of the test piece is measured, and the value calculated using the density of the material constituting the rib is the expansion ratio Xa of the rib center. The expansion ratio Xb of the substrate is calculated by using a density of the material constituting the substrate by preparing a 10 mm square test piece from the substrate so as to include a portion in contact with the rib and measuring the specific gravity of the test piece. Value. However, when a 10 mm square test piece cannot be produced due to the structure of the molded body, the measurement may be performed using a test piece having a shape as close to 10 mm square as possible.

本発明の成形体は、リブの最大厚みLとリブの高さHとが、下記の式(3)を満たすことが好ましい。HとLが式(3)の関係を満たす成形体は、曲げ剛性および圧縮強度により優れるものである。
0.5L≦H≦2.5L 式(3)
リブの最大厚みLおよびリブの高さHは、以下の方法により求められる。
In the molded article of the present invention, it is preferable that the maximum rib thickness L and the rib height H satisfy the following formula (3). A molded body in which H and L satisfy the relationship of formula (3) is superior in bending rigidity and compressive strength.
0.5L ≦ H ≦ 2.5L Formula (3)
The maximum rib thickness L and the rib height H are determined by the following method.

前記したリブ断面の中心部に位置する気泡の気泡径を測定する際のリブ断面において、最も厚みの厚い部分を最大厚みLとする。また同断面において、リブと基体との2つの接点を、リブを横切るようにして直線で結ぶ。該直線とリブの頂点との距離をリブの高さHとする。通常Lは、リブと基体との2つの接点を、リブを横切るようにして結んだ直線の長さとなる。   In the rib cross section when the bubble diameter of the bubble located at the center of the rib cross section is measured, the thickest portion is defined as the maximum thickness L. In the same cross section, two contact points of the rib and the base are connected by a straight line so as to cross the rib. The distance between the straight line and the apex of the rib is defined as the height H of the rib. Usually, L is the length of a straight line connecting the two contact points of the rib and the base so as to cross the rib.

本発明の成形体はリブと基体とが一体成形されてなり、リブおよび基体が熱可塑性樹脂発泡体からなる。本発明の成形体は、熱可塑性樹脂発泡シートを真空成形や両面真空成形等の方法により成形して得ることができる。前記熱可塑性樹脂発泡シートを構成する熱可塑性樹脂としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン等の炭素原子数が2〜6のオレフィンホモポリマーや、炭素原子数が2〜10のオレフィンから選択される2種類以上のモノマーを共重合して得られるオレフィン共重合体などのオレフィン系樹脂、エチレン−ビニルエステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エステル系樹脂、アミド系樹脂、スチレン系樹脂、アクリル系樹脂、アクリロニトリル系樹脂、アイオノマー樹脂などがあげられる。これらの樹脂は単独で使用してもよく、複数の樹脂を併用してもよい。成形性、耐油性、コストなどの観点からオレフィン系樹脂が好ましく用いられ、得られる成形体の曲げ剛性、耐熱性などの観点からプロピレン系樹脂が特に好ましく用いられる。   In the molded body of the present invention, the rib and the base are integrally formed, and the rib and the base are made of a thermoplastic resin foam. The molded body of the present invention can be obtained by molding a thermoplastic resin foam sheet by a method such as vacuum molding or double-sided vacuum molding. The thermoplastic resin constituting the thermoplastic resin foam sheet is selected from olefin homopolymers having 2 to 6 carbon atoms such as ethylene, propylene, butene, pentene, hexene, and olefins having 2 to 10 carbon atoms. Olefin resins such as olefin copolymers obtained by copolymerizing two or more types of monomers, ethylene-vinyl ester copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid Examples include ester copolymers, ester resins, amide resins, styrene resins, acrylic resins, acrylonitrile resins, and ionomer resins. These resins may be used alone or in combination with a plurality of resins. Olefin resins are preferably used from the viewpoints of moldability, oil resistance, cost, and the like, and propylene resins are particularly preferably used from the viewpoint of bending rigidity, heat resistance, and the like of the obtained molded body.

プロピレン系樹脂としては、プロピレンホモポリマーや、プロピレン由来のモノマー単位を50モル%以上含むプロピレン系共重合体をあげることができる。共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。好ましく用いられるプロピレン系共重合体の例としては、エチレンまたは炭素原子数4〜10のα−オレフィンとプロピレンとの共重合体を挙げることができる。炭素原子数4〜10のα−オレフィンとしては、例えば、1−ブテン、4−メチルペンテン−1、1−ヘキセンおよび1−オクテンが挙げられる。プロピレン系共重合体中のプロピレン以外のモノマー単位の含有量は、エチレンについては15モル%以下、炭素原子数4〜10のα−オレフィンについては30モル%以下であることが好ましい。プロピレン系樹脂は1種類でもよく、2種類以上を混合して用いてもよい。   Examples of the propylene resin include propylene homopolymers and propylene copolymers containing 50 mol% or more of monomer units derived from propylene. The copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. As an example of the propylene copolymer preferably used, a copolymer of ethylene or an α-olefin having 4 to 10 carbon atoms and propylene can be given. Examples of the α-olefin having 4 to 10 carbon atoms include 1-butene, 4-methylpentene-1, 1-hexene and 1-octene. The content of monomer units other than propylene in the propylene-based copolymer is preferably 15 mol% or less for ethylene and 30 mol% or less for α-olefins having 4 to 10 carbon atoms. One type of propylene resin may be used, or two or more types may be mixed and used.

長鎖分岐プロピレン系樹脂や重量平均分子量が1×105以上の高分子量プロピレン系樹脂を、発泡層を構成する熱可塑性樹脂の50重量%以上用いることにより、微細な気泡を有するプロピレン系樹脂発泡成形体を得ることができる。さらにこのようなプロピレン系樹脂の中でも、リサイクル時にゲルを生じにくいことから非架橋のプロピレン系樹脂が好ましく使用される。 By using 50% by weight or more of the thermoplastic resin constituting the foam layer of a long-chain branched propylene resin or a high molecular weight propylene resin having a weight average molecular weight of 1 × 10 5 or more, a propylene resin foam having fine bubbles is used. A molded body can be obtained. Furthermore, among such propylene resins, non-crosslinked propylene resins are preferably used because they are unlikely to form gels during recycling.

ここで長鎖分岐プロピレン系樹脂とは、分岐度指数[A]が0.20≦[A]≦0.98を満たすプロピレン系樹脂を指す。
分岐度指数[A]が0.20≦[A]≦0.98を満たす長鎖分岐プロピレン系樹脂の例としては、バゼル社製のプロピレンPF−814が挙げられる。
Here, the long-chain branched propylene-based resin refers to a propylene-based resin having a degree of branching index [A] satisfying 0.20 ≦ [A] ≦ 0.98.
An example of a long-chain branched propylene-based resin satisfying the branching index [A] of 0.20 ≦ [A] ≦ 0.98 is propylene PF-814 manufactured by Basel.

分岐度指数とは、重合体における長鎖分岐の程度を示すものであり、下記の式において定義される数値である。
分岐度指数 [A] =〔η〕Br/〔η〕Lin
ここで〔η〕Brは、長鎖分岐を有するプロピレン系樹脂の固有粘度であり、〔η〕Linは、該長鎖分岐を有するプロピレン系樹脂と同じモノマー単位および同じ重量平均分子量を有する、直鎖プロピレン系樹脂の固有粘度である。
固有粘度は極限粘度数とも呼ばれ、重合体の溶液粘度を増強する能力の尺度である。固有粘度は特にポリマー分子の分子量と、分岐度に依存する。したがって、長鎖分岐を有するポリマーの固有粘度と、該長鎖分岐を有するポリマーと同じ重量平均分子量の直鎖ポリマーの固有粘度とを比較することにより、該長鎖分岐を有するポリマーの分岐度の尺度とすることができる。プロピレン系樹脂の固有粘度の測定方法は、エリオット等[J.Appl.Polym.Sci.,14,2947−2963(1970)]により開示されているような従来知られている方法により測定することができ、例えば、プロピレン系樹脂をテトラリン又はオルトジクロロベンゼンに溶解し、135℃で固有粘度を測定することが可能である。
プロピレン系樹脂の重量平均分子量(Mw)は、通常用いられる種々の方法で測定できるが、M.L.McConnelによって、American Laboratory,May,63−75(1978)に発表されている方法、即ち、低角度レーザー光散乱強度測定法が特に好ましく用いられる。
重量平均分子量が1×105以上の高分子量プロピレン系樹脂を重合する方法の例としては、特開平11−228629号公報に記載されたように、まず高分子量成分を重合した後に続いて低分子量成分を重合する方法などがあげられる。
The degree of branching index indicates the degree of long chain branching in a polymer, and is a numerical value defined in the following formula.
Branch index [A] = [η] Br / [η] Lin
Here, [η] Br is the intrinsic viscosity of the propylene resin having a long chain branch, and [η] Lin is a straight chain having the same monomer unit and the same weight average molecular weight as the propylene resin having the long chain branch. It is an intrinsic viscosity of a chain propylene resin.
Intrinsic viscosity, also called intrinsic viscosity, is a measure of the ability of a polymer to enhance solution viscosity. Intrinsic viscosity depends in particular on the molecular weight of the polymer molecules and the degree of branching. Therefore, by comparing the intrinsic viscosity of a polymer having long chain branches with the intrinsic viscosity of a linear polymer having the same weight average molecular weight as that of the polymer having long chain branches, the degree of branching of the polymer having long chain branches can be determined. It can be a scale. The method for measuring the intrinsic viscosity of a propylene resin is described by Elliott et al. Appl. Polym. Sci. , 14, 2947-2963 (1970)], for example, a propylene resin is dissolved in tetralin or orthodichlorobenzene, and the intrinsic viscosity at 135 ° C. Can be measured.
The weight average molecular weight (Mw) of the propylene-based resin can be measured by various commonly used methods. L. The method disclosed by McConnel in American Laboratory, May, 63-75 (1978), that is, a low-angle laser light scattering intensity measurement method is particularly preferably used.
As an example of a method for polymerizing a high molecular weight propylene resin having a weight average molecular weight of 1 × 10 5 or more, as described in JP-A No. 11-228629, a high molecular weight component is first polymerized and subsequently a low molecular weight polymer is used. Examples thereof include a method of polymerizing components.

長鎖分岐プロピレン系樹脂または高分子量プロピレン系樹脂の中でも、該樹脂の(融点+30)℃付近において下記の条件で測定した一軸溶融伸張粘度比η5/η0.1が5以上であるプロピレン系樹脂が好ましく、より好ましくは10以上の樹脂である。一軸溶融伸張粘度比とは、伸張ひずみ速度1sec-1で、一軸伸張粘度測定装置(例としてレオメトリックス社製一軸伸張粘度測定装置などがあげられる)などの装置を用いて測定される値であり、歪み開始から0.1秒後の一軸溶融伸長粘度をη0.1とし、5秒後の一軸溶融伸張粘度をη5とする。このような一軸伸張粘度特性を有するプロピレン系樹脂を使用することによって、より微細な気泡を有する発泡シートを製造することができる。 Among long-chain branched propylene resins or high molecular weight propylene resins, propylene resins having a uniaxial melt-extension viscosity ratio η 5 / η 0.1 of 5 or more measured under the following conditions around (melting point + 30) ° C. of the resin are: The resin is preferably 10 or more. The uniaxial melt extensional viscosity ratio is a value measured using an apparatus such as a uniaxial extensional viscosity measurement apparatus (for example, a uniaxial extensional viscosity measurement apparatus manufactured by Rheometrics, Inc.) at an elongation strain rate of 1 sec −1 . the uniaxial melt elongation viscosity after 0.1 seconds from the strain initiation and eta 0.1, the uniaxial melt elongation viscosity after 5 seconds and eta 5. By using a propylene-based resin having such uniaxial extensional viscosity characteristics, a foam sheet having finer bubbles can be produced.

本発明の成形体の成形に適した熱可塑性樹脂発泡シートの製造方法について以下に述べる。本発明の成形体の製造に好適に用いられる熱可塑性樹脂発泡シートの製造方法としては、フラットダイ(Tダイ)やサーキュラーダイを用いて押出成形する方法が挙げられる。サーキュラーダイから溶融した樹脂を発泡させながら押出し、マンドレル等に沿わせて延伸、冷却を行なう方法が特に好ましい。発泡シートを押出成形により製造する場合には、溶融した樹脂をダイから押出し冷却固化させた後に延伸を行なうこともできる。発泡シートは単層であっても多層であってもよいが、シート製造時の破泡を防止する観点から、非発泡層を両外層に有する多層構成の発泡シートが好ましい。非発泡層を構成する樹脂は、発泡層を構成する樹脂の例として前記したものを使用することができるが、発泡層を構成する樹脂と同種類のものであるものが好ましく、例えば発泡層がプロピレン系樹脂である場合、非発泡層もプロピレン系樹脂で構成されることが好ましい。使用する熱可塑性樹脂発泡シートの発泡倍率や厚みは特に限定されるものではなく、通常発泡倍率2〜10倍、厚さ1〜10mm程度の発泡シートが用いられる。   A method for producing a thermoplastic resin foam sheet suitable for molding the molded article of the present invention will be described below. Examples of the method for producing a thermoplastic resin foam sheet suitably used for producing the molded article of the present invention include a method of extrusion molding using a flat die (T die) or a circular die. A method of extruding a molten resin from a circular die while foaming, stretching and cooling along a mandrel or the like is particularly preferable. When the foamed sheet is produced by extrusion molding, the molten resin can be extruded from a die and solidified by cooling and then stretched. The foamed sheet may be a single layer or a multilayer, but from the viewpoint of preventing foam breakage during sheet production, a multilayered foam sheet having non-foamed layers in both outer layers is preferred. As the resin constituting the non-foamed layer, those described above as examples of the resin constituting the foamed layer can be used, but the same type of resin as that constituting the foamed layer is preferable. In the case of a propylene-based resin, the non-foamed layer is also preferably composed of a propylene-based resin. The foaming ratio and thickness of the thermoplastic resin foam sheet to be used are not particularly limited, and a foam sheet having a foaming ratio of 2 to 10 times and a thickness of about 1 to 10 mm is usually used.

発泡シートを形成するために使用される発泡剤は、いわゆる化学発泡剤および物理発泡剤のいずれでもよく、これらを併用してもよい。上記化学発泡剤としては、例えば分解されて窒素ガスを発生する熱分解型発泡剤(アゾジカルボンアミド、アゾビスイソブチロニトリル、ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p,p’−オキシ−ビス(ベンゼンスルホニルヒドラジド)など)、分解されて炭酸ガスを発生する熱分解型無機発泡剤(炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウムなど)など公知の熱分解型発泡性化合物が挙げられる。物理発泡剤としては、具体的にはプロパン、ブタン、水、炭酸ガス等があげられる。上記例示の発泡剤のうち加熱時に2次発泡による変形を生じにくいことや、高温条件や、火に対して不活性な物質であることから、水や炭酸ガス等が好適に用いられる。発泡剤の使用量は所望の発泡倍率が得られるように、用いる発泡剤や樹脂の種類に応じて適宜選択されるものであり、通常熱可塑性樹脂100重量に対して発泡剤0.5〜20重量部である。   The foaming agent used to form the foamed sheet may be either a so-called chemical foaming agent or a physical foaming agent, or may be used in combination. Examples of the chemical foaming agent include a thermal decomposition type foaming agent that decomposes to generate nitrogen gas (azodicarbonamide, azobisisobutyronitrile, dinitrosopentamethylenetetramine, p-toluenesulfonylhydrazide, p, p'- Oxy-bis (benzenesulfonyl hydrazide) and the like, and pyrolytic inorganic foaming agents that decompose to generate carbon dioxide (sodium hydrogen carbonate, ammonium carbonate, ammonium bicarbonate, etc.) . Specific examples of the physical foaming agent include propane, butane, water, carbon dioxide gas, and the like. Of the above exemplified foaming agents, water, carbon dioxide, and the like are suitably used because they are less likely to be deformed by secondary foaming during heating, are high temperature conditions, and are inert to fire. The amount of the foaming agent used is appropriately selected according to the type of foaming agent and resin used so that a desired foaming ratio can be obtained. Usually, the foaming agent is used in an amount of 0.5 to 20 with respect to 100 weight of the thermoplastic resin. Parts by weight.

本発明の成形体を成形する際に用いる熱可塑性樹脂発泡シートは、単層または多層の発泡シートとその他の材料とを貼合した複合シートであってもよい。このような複合シートは、発泡シートと他の材料とをドライラミネーション、サンドラミネーション、熱ロール貼合、熱風貼合などにより貼り合わせることにより得られる。
発泡シートと積層する他の材料としては、装飾、補強、保護などの作用をするものが挙げられ、織布、不織布、シート、フィルム、発泡体、網状物などが挙げられる。これらの材料はオレフィン系樹脂、塩化ビニル系樹脂、スチレン系樹脂などの熱可塑性樹脂、ポリブタジエン、エチレン−プロピレン共重合体などのゴムや熱可塑性エラストマー、綿、麻、竹などのセルロース系繊維などが挙げられる。これらの材料にはシボなどの凹凸模様、印刷や染色が施されていてもよく、単層構成であっても多層構成であってもよい。
The thermoplastic resin foam sheet used when molding the molded article of the present invention may be a composite sheet obtained by bonding a single-layer or multilayer foam sheet and other materials. Such a composite sheet is obtained by laminating a foam sheet and another material by dry lamination, sand lamination, hot roll bonding, hot air bonding, or the like.
Examples of other materials to be laminated with the foamed sheet include materials that act as decoration, reinforcement, protection, and the like, and examples thereof include woven fabrics, nonwoven fabrics, sheets, films, foams, and nets. These materials include thermoplastic resins such as olefin resins, vinyl chloride resins, and styrene resins, rubbers such as polybutadiene and ethylene-propylene copolymers, thermoplastic elastomers, and cellulose fibers such as cotton, hemp, and bamboo. Can be mentioned. These materials may be provided with a concavo-convex pattern such as a texture, printed or dyed, and may have a single layer structure or a multilayer structure.

本発明の成形体を成形する際に用いる熱可塑性樹脂発泡シートは、添加剤を含有していてもよい。添加剤としては、充填剤(フィラー)、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、剥離剤、流動性付与剤、滑剤などがあげられる。上記充填剤の例としては、具体的にはガラス繊維、カーボン繊維等の無機繊維、タルク、クレー、シリカ、酸化チタン、炭酸カルシウム、硫酸マグネシウム等の無機粒子等があげられる。   The thermoplastic resin foam sheet used when molding the molded article of the present invention may contain an additive. Examples of the additive include a filler (filler), an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, an antistatic agent, a colorant, a release agent, a fluidity-imparting agent, and a lubricant. Specific examples of the filler include inorganic fibers such as glass fibers and carbon fibers, inorganic particles such as talc, clay, silica, titanium oxide, calcium carbonate, and magnesium sulfate.

本発明の成形体を製造する方法は特に限定されるものではないが、熱可塑性樹脂発泡シートを真空成形する方法が好ましく、真空成形の中でも両面真空成形する方法が特に好ましい。
熱可塑性樹脂発泡シートを真空成形して本発明の成形体を製造する場合には、少なくとも一方の成形型にリブ形状を賦形するための凹部が形成された一対の成形型を用いる。一対の成形型は一方が雄型で他方が雌型、両方が雌型、両方が板状成形型等、目的とする成形品に応じた成形型を用いればよい。
真空成形に用いる成形型としては、成形型の成形面の少なくとも一部が焼結合金から構成される型や、成形面の少なくとも一部に孔が設けられた型等が挙げられる。成形型に設けられる孔の数や位置、孔径は特に限定されるものではないが、成形型から真空吸引を行なった場合に、成形型と発泡シートとが密着し、熱可塑性樹脂発泡シートによってリブを賦形するための凹部が満たされるように、孔が設けられている必要がある。成形型の材質は特に限定されるものではないが、寸法安定性、耐久性などの観点から通常金属製であり、コストや軽量性などの面からアルミ製やステンレス製であることが好ましい。また成形型は、ヒーターや熱媒などにより温度調整可能な構造であることが好ましい。成形型は、成形体製造時にはその成形面を30〜80℃とすることが好ましく、50〜60℃とすることがさらに好ましい。
The method for producing the molded article of the present invention is not particularly limited, but a method of vacuum forming a thermoplastic resin foam sheet is preferable, and a method of double-sided vacuum forming is particularly preferable among vacuum forming.
When the thermoplastic resin foam sheet is vacuum-formed to produce the molded article of the present invention, a pair of molds in which concave portions for shaping a rib shape are formed in at least one mold is used. As the pair of molds, a mold corresponding to a target molded product such as one male and the other female, both female and both plate-shaped molds may be used.
Examples of the mold used for vacuum forming include a mold in which at least a part of the molding surface of the mold is made of a sintered alloy, and a mold in which holes are provided in at least a part of the molding surface. The number and position of holes provided in the mold and the hole diameter are not particularly limited. However, when vacuum suction is performed from the mold, the mold and the foamed sheet are in close contact with each other, and the ribs are formed by the thermoplastic resin foam sheet. It is necessary that a hole is provided so that the concave portion for shaping is filled. The material of the mold is not particularly limited, but is usually made of metal from the viewpoint of dimensional stability and durability, and is preferably made of aluminum or stainless steel from the viewpoint of cost and light weight. Moreover, it is preferable that a shaping | molding die is a structure which can adjust temperature with a heater, a heat medium, etc. The molding die preferably has a molding surface of 30 to 80 ° C., more preferably 50 to 60 ° C. during the production of the molded body.

真空成形に用いる成形型は、成形時の機密性を保持するため、少なくとも一方の成形型の成形面外縁部に緩衝材を有することが望ましい。通常発泡シートは、表面に微小な凹凸を有している。緩衝材を有する成形型の場合には、型閉めにより緩衝材が微小な凹凸のある発泡シート表面と密着するため、真空吸引した場合にキャビティ内の真空度を維持しやすい。緩衝材としては、ゴムや発泡体等が挙げられる。また、型閉めしたときに一方の成形型の外周に設けられた気密性保持部によって、他方の成形型が覆われるような構成の一対の成形型を用いることもできる。   In order to maintain the confidentiality at the time of molding, it is desirable that the mold used for vacuum forming has a buffer material at the outer edge of the molding surface of at least one of the molds. Usually, the foam sheet has minute irregularities on the surface. In the case of a mold having a cushioning material, the cushioning material comes into close contact with the surface of the foamed sheet having minute irregularities when the mold is closed, so that it is easy to maintain the degree of vacuum in the cavity when vacuum suction is performed. Examples of the buffer material include rubber and foam. In addition, a pair of molds having a configuration in which the other mold is covered by the airtight holding portion provided on the outer periphery of the one mold when the mold is closed can be used.

次に本発明の成形体を両面真空成形により製造する方法について詳細に説明する。両面真空成形とは、一対の成形型の間に熱可塑性樹脂発泡シートを配し、両成形型から真空吸引して前記発泡シートを所望の形状に成形する方法であり、具体的には以下の工程(1)〜(4)を含む方法である。   Next, a method for producing the molded article of the present invention by double-sided vacuum forming will be described in detail. Double-sided vacuum molding is a method in which a thermoplastic resin foam sheet is disposed between a pair of molds, and the foamed sheet is molded into a desired shape by vacuum suction from both molds. It is a method including steps (1) to (4).

工程(1)は、リブを賦形するための凹部が形成された真空吸引可能な成形型Aと、該成形型Aと対を成す成形型Bとの間に、加熱軟化した熱可塑性樹脂発泡シートを供給する工程である。熱可塑性樹脂発泡シートを加熱する方法は特に限定されるものではなく、通常ヒーターや熱風等で加熱することができる。
工程(2)は、成形型Aと成形型Bを型閉めする工程である。型閉めのタイミングは成形型AとBどちらか一方を先行させても、同時でもよいが、どちらか一方を先行させる場合は一方の型を最終停止位置まで移動させた後、もう一方の型が最終停止位置に移動するまでの時間が5秒以内であることが好ましい。5秒より長いとシートが冷えてしまい成形が困難になることがある。型閉めしたときの成形型AとBのクリアランスは、基体部分においては成形前のシート厚みと同程度であることが好ましい。クリアランスが成形前のシート厚みより著しく大きい場合には、真空吸引によりシートの厚みと倍率が増大してしまい、基体部の圧縮強度が低下することがある。
In the step (1), a heat-softened thermoplastic resin foam is formed between a vacuum-suckable mold A in which a recess for shaping a rib is formed and a mold B that forms a pair with the mold A. This is a step of supplying a sheet. The method for heating the thermoplastic resin foam sheet is not particularly limited, and it can be usually heated with a heater or hot air.
Step (2) is a step of closing the mold A and the mold B. The closing timing of the mold may be either one of the molds A and B preceding or simultaneously, but when either one is preceded, after moving one mold to the final stop position, the other mold It is preferable that the time until moving to the final stop position is within 5 seconds. If it is longer than 5 seconds, the sheet may be cooled and molding may be difficult. The clearance between the molds A and B when the molds are closed is preferably about the same as the sheet thickness before molding in the base portion. When the clearance is remarkably larger than the sheet thickness before forming, the thickness and magnification of the sheet are increased by vacuum suction, and the compressive strength of the base portion may be decreased.

工程(3)は、前記工程(2)で型閉めすると同時または型閉め終了後に成形型Aと成形型Bの両方から真空吸引を開始し、リブを賦形するための凹部が熱可塑性樹脂発泡シートで満たされるように、前記熱可塑性樹脂発泡シートを成形型に密着させる工程である。真空吸引の程度は特に限定されるものではないが、成形型と発泡シートとの間の真空度が−0.05〜−0.1MPaとなるように真空吸引することが好ましい。真空度とは、大気圧に対する成形型と発泡シートとの間の圧である。すなわち「真空度が−0.05MPa」とは、大気圧に対する成形型と発泡シートとの間の圧力が0.95MPaであることを示す。大気圧に対する成形型と発泡シートとの間の圧の真空度とは、成形型内の真空吸引用通路において測定される。 In the step (3), vacuum suction is started from both the mold A and the mold B when the mold is closed in the step (2) or after the mold is closed, and the recess for shaping the rib is formed of a thermoplastic resin foam. This is a step of bringing the thermoplastic resin foam sheet into close contact with the mold so as to be filled with the sheet. The degree of vacuum suction is not particularly limited, but it is preferable to perform vacuum suction so that the degree of vacuum between the mold and the foamed sheet is −0.05 to −0.1 MPa. The degree of vacuum is the pressure between the mold and the foam sheet with respect to atmospheric pressure. That is, “the degree of vacuum is −0.05 MPa” indicates that the pressure between the mold and the foamed sheet with respect to atmospheric pressure is 0.95 MPa. The degree of vacuum of the pressure between the mold and the foamed sheet with respect to atmospheric pressure is measured in a vacuum suction passage in the mold.

成形型AとBから真空吸引を開始するタイミングはどちらか一方を先行させても、同時でもよいが、どちらか一方を先行させる場合は一方の型から真空吸引を開始した後、もう一方の型から真空吸引を開始するまでの時間が5秒以内であることが好ましい。5秒より長いとシートが冷えてしまい成形が困難になることがある。成形型AとBの両方から真空吸引を行っている状態の時間は、両方の金型を型閉めした後少なくとも1秒以上は両方の成形型から真空吸引を行なうことが望ましい。 The timing for starting vacuum suction from the molding dies A and B may be preceded by either one or at the same time. However, when either one is preceded, after the vacuum suction is started from one mold, the other mold is started. It is preferable that the time from the start to the vacuum suction is within 5 seconds. If it is longer than 5 seconds, the sheet may be cooled and molding may be difficult. The vacuum suction from both molds A and B is preferably performed by vacuum suction from both molds for at least 1 second after both molds are closed.

成形型AとBから真空吸引を行なう時間は、成形性と生産性の観点から5〜60秒程度であることが好ましい。また成形型AとBの両方から真空吸引を行い、各成形型と熱可塑性樹脂発泡シートとが密着した状態を維持しながら型開きしてもよい。この方法により、発泡倍率の高い成形体を得ることができる。
工程(4)は、成形型AとBからの真空吸引を停止し、型開きして成形体を取り出す工程である。成形型AとBからの真空吸引の停止は、同時に行なってもよく、一方の真空吸引を先に停止した後、他方を停止してもよい。
The time for vacuum suction from the molds A and B is preferably about 5 to 60 seconds from the viewpoint of moldability and productivity. Alternatively, vacuum suction may be performed from both molds A and B, and the molds may be opened while maintaining the state where each mold and the thermoplastic resin foam sheet are in close contact. By this method, a molded body having a high expansion ratio can be obtained.
Step (4) is a step of stopping vacuum suction from the molds A and B, opening the mold, and taking out the molded body. The vacuum suction from the molds A and B may be stopped at the same time, or after one vacuum suction is stopped first, the other may be stopped.

本発明の成形体を得るためには、使用する熱可塑性樹脂発泡シートの気泡径とリブの形状を制御することが重要である。具体的には、平均気泡径が0.5≦Rh/Rmかつ0.5≦Rh/Rt(Rh:発泡シート厚さ方向の平均気泡径、Rm:発泡シートMD方向の平均気泡径、Rt:発泡シートTD方向の平均気泡径)である熱可塑性樹脂発泡シートを用いる場合には、リブ形状を0.1L≦H(L:リブの最大厚み、H:リブの高さ)とする。一般に、用いる発泡シートの気泡がシートのMD方向およびTD方向に長い場合には、高さの高いリブ形状とすることにより、本発明の成形体を得ることができる。   In order to obtain the molded article of the present invention, it is important to control the bubble diameter and rib shape of the thermoplastic resin foam sheet to be used. Specifically, the average cell diameter is 0.5 ≦ Rh / Rm and 0.5 ≦ Rh / Rt (Rh: average cell diameter in the foam sheet thickness direction, Rm: average cell diameter in the foam sheet MD direction, Rt: When a thermoplastic resin foam sheet having an average cell diameter in the foam sheet TD direction is used, the rib shape is 0.1 L ≦ H (L: maximum rib thickness, H: rib height). Generally, when the bubbles of the foamed sheet to be used are long in the MD direction and TD direction of the sheet, the molded body of the present invention can be obtained by forming a rib shape having a high height.

本発明の成形体は、軽量性や曲げ剛性に優れ、かつ圧縮強度にも優れるため、自動車部品材料、建築材料、包装材料、家電製品等に使用することができる。具体的には、自動車部品材料であればドアトリムやトランクサイドを形成するトリム材、フロアマットやトランクマットなどのマット材、成形天井材などがあり、建築材料であれば壁材や天井材、包装材料であればドンブリ、カップ、トレーなどの食品容器、家電製品があげられる。
Since the molded article of the present invention is excellent in light weight and bending rigidity and excellent in compressive strength, it can be used for automobile part materials, building materials, packaging materials, home appliances, and the like. Specifically, there are door trims and trim materials that form the trunk side for automobile parts materials, mat materials such as floor mats and trunk mats, molded ceiling materials, and wall materials, ceiling materials, and packaging for building materials. Examples of materials include food containers such as donbri, cups and trays, and home appliances.

以下、本発明を実施例に基づき説明するが、本発明は実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example at all.

(1)発泡倍率測定
水中置換式密度計((株)東洋精機製作所製 自動比重計 型式D−H100)を使用し、20mm×20mmにサンプリングした製品の比重を測定し、製品を構成する各材料の密度を用いて発泡倍率を計算した。
(1) Foaming ratio measurement Using a submersible density meter (automatic hydrometer model D-H100 manufactured by Toyo Seiki Seisakusho Co., Ltd.), the specific gravity of the product sampled to 20 mm x 20 mm is measured, and each material constituting the product The foaming ratio was calculated using the density of.

(2)リブ断面の中心部に位置する気泡の気泡径
成形体のリブ部分を、基体およびリブの長さ方向に対して垂直方向に切断し断面を露出させた。該リブ断面全体が確認できるように断面写真を撮影し、リブの高さ方向の中心線と厚さ方向の中心線を引いた。両中心線の交点を中心として、リブ高さ方向の辺の長さがリブ高さの30%、リブ厚み方向の辺の長さがリブ最大厚みの30%の長方形を写真上に描いた。断面の気泡構造が確認可能な大きさに断面写真を拡大し、該長方形内に外周全てが含まれる気泡それぞれについて、リブ高さ方向と厚み方向の気泡径を測定し、リブ高さ方向の気泡径の平均値をXh、リブ厚み方向の気泡径の平均値をXtとした。
(2) Bubble diameter of the bubble located at the center of the rib cross section The rib portion of the molded body was cut in a direction perpendicular to the length direction of the base body and the rib to expose the cross section. A cross-sectional photograph was taken so that the entire rib cross section could be confirmed, and a center line in the height direction and a center line in the thickness direction of the rib were drawn. A rectangle with a side length in the rib height direction of 30% of the rib height and a side length in the rib thickness direction of 30% of the maximum rib thickness is drawn on the photograph centering on the intersection of both center lines. Expand the cross-sectional photograph to a size where the bubble structure of the cross-section can be confirmed, measure the bubble diameter in the rib height direction and thickness direction for each bubble that includes the entire outer periphery in the rectangle, and bubble in the rib height direction. The average value of the diameter was Xh, and the average value of the bubble diameter in the rib thickness direction was Xt.

(3)リブ中心部と基体の発泡倍率
前記したリブ断面の中心部に位置する気泡の気泡径を測定する際のリブ断面を基に、リブの高さ方向の中心線と厚さ方向の中心線との交点を含むようにして、10mm角の試験片を作製した。該試験片について比重を測定し、リブを構成する材料の密度を用いてリブ中心部の発泡倍率Xaを計算した。また基体の発泡倍率Xbは、リブと接する部分を含むようにして、10mm角の試験片を作製し、該試験片について比重を測定し、基体を構成する材料の密度を用いて計算した。
(3) Foaming ratio of rib center portion and substrate The center line in the height direction of the rib and the center in the thickness direction based on the rib cross section when measuring the bubble diameter of the bubble located at the center portion of the rib cross section. A 10 mm square test piece was prepared so as to include the intersection with the line. The specific gravity of the test piece was measured, and the expansion ratio Xa at the center of the rib was calculated using the density of the material constituting the rib. Further, the expansion ratio Xb of the substrate was calculated using a 10 mm square test piece so as to include a portion in contact with the rib, measuring the specific gravity of the test piece, and using the density of the material constituting the substrate.

(4)リブの最大厚みLとリブの高さH
前記したリブの中心部に位置する気泡の気泡径を測定する際のリブ断面において、最も厚みの厚い部分を最大厚みLとした。また同断面において、リブと基体との2つの接点を、リブを横切るようにして直線で結び、該直線とリブの頂点との距離をリブの高さHとした。
(4) Maximum rib thickness L and rib height H
In the rib cross section at the time of measuring the bubble diameter of the bubbles located at the center of the rib, the thickest portion is defined as the maximum thickness L. In the same cross section, the two contact points of the rib and the base were connected by a straight line so as to cross the rib, and the distance between the straight line and the apex of the rib was defined as the height H of the rib.

(5)曲げ剛性
成形体から、1本のリブが試験片中央となるようにして幅50mm(TD方向)、長さ150mm(MD方向)の試験片を得た。スパン100mmに調整したオートグラフ(島津製作所製 型式AGS−500D)の曲げ測定用支持台の上に、サンプルと支持台の中心を合わせてサンプルをセットした。先端が曲率半径5の形状の棒状押し治具をサンプル中心部に当て、10mm/minでサンプルを曲げながら、変位(cm)と荷重(N)の相関曲線を作成し、最初に現れる勾配の傾き(N/cm)を曲げ剛性として評価した。
(5) A test piece having a width of 50 mm (TD direction) and a length of 150 mm (MD direction) was obtained from the bending-rigid molded body so that one rib was at the center of the test piece. The sample was set on the support base for bending measurement of an autograph (model AGS-500D manufactured by Shimadzu Corporation) adjusted to a span of 100 mm by aligning the center of the sample and the support base. Applying a bar-shaped pressing jig with a tip with a radius of curvature of 5 to the center of the sample, bending the sample at 10 mm / min, creating a correlation curve of displacement (cm) and load (N), and the slope of the gradient that appears first (N / cm) was evaluated as bending rigidity.

(6)圧縮強度
成形体を50mm角にサンプリングし、オートグラフ(島津製作所製 型式AGS−500D)の平坦なステージの上にセットした。圧縮治具(30mmφ)の中心にリブが位置するようにし、0mm/minでリブ高さの20%までリブ側から圧縮し、最大荷重を測定した。
(6) The compression strength molded body was sampled to a 50 mm square and set on a flat stage of an autograph (model AGS-500D manufactured by Shimadzu Corporation). The rib was positioned at the center of the compression jig (30 mmφ), compressed from the rib side to 20% of the rib height at 0 mm / min, and the maximum load was measured.

[実施例1]
発泡倍率3倍、厚み2mmのポリプロピレン発泡シート(1)(住化プラステック製 商品名スミセラー発泡PPシート)を用いて、真空吸引孔を備えた成形面と、該成形面中に高さ5mm、厚み5mm、長さ285mmのリブ賦形用の凹部(4)を有する成形型A(3)と、成形型Aと対を成す真空吸引孔を備えた成形面を有する成形型B(5)により、図1に示す方法で前記発泡シートをリブと平板状の基体とからなる成形体に賦形した。成形型A(3)と成形型B(5)のクリアランスは3mmとした。成形型A(3)および成形型B(5)は60℃に温度調整して用いた。
ポリプロピレン発泡シート(1)を、押出機を備えた真空成形機(佐藤鉄工製VAIM0301)のクランプ枠(2)で固定した状態で、赤外ヒーターによりシート表面が160℃になるように加熱軟化させた後、成形型A(3)と成形型B(5)の間に供給した。成形型A(3)と成形型B(5)が同時に最終到達位置に達するタイミングで型閉めし、最終到達位置に達すると同時に成形型A(3)および成形型B(5)より真空吸引を行い各成形型の成形面に発泡シート(1)を密着させ、凹部(4)が発泡シートで満たされるようにして、発泡シート(1)を賦形した。成形型A(3)と発泡シート(1)との間、および成形型B(5)と発泡シート(1)との間の真空度は−0.09MPaであった。
真空吸引開始から10秒後に真空吸引を停止し、冷却ファンより送風を行い成形体を冷却した後、型開きして成形体を取り出した。不要な端部を切断し、図5に示すようなリブ(6)を有する平板状成形体(7)を得た。得られた成形体の物性を表1に示す。
[Example 1]
Using a polypropylene foam sheet (1) having a foaming ratio of 3 times and a thickness of 2 mm (trade name Sumiceller foam PP sheet manufactured by Sumika Plustech), a molding surface with vacuum suction holes, and a height of 5 mm in the molding surface, A molding die A (3) having a rib shaping recess (4) having a thickness of 5 mm and a length of 285 mm, and a molding die B (5) having a molding surface having a vacuum suction hole paired with the molding die A The foam sheet was shaped into a molded body composed of ribs and a flat substrate by the method shown in FIG. The clearance between the mold A (3) and the mold B (5) was 3 mm. Mold A (3) and Mold B (5) were used at a temperature adjusted to 60 ° C.
In a state where the polypropylene foam sheet (1) is fixed with a clamp frame (2) of a vacuum forming machine (VAIM0301 manufactured by Sato Tekko Co., Ltd.) equipped with an extruder, it is heated and softened by an infrared heater so that the sheet surface becomes 160 ° C. After that, it was supplied between the mold A (3) and the mold B (5). The mold A (3) and the mold B (5) are closed at the same time when they reach the final position, and at the same time they reach the final position, vacuum suction is performed from the mold A (3) and the mold B (5). The foamed sheet (1) was shaped so that the foamed sheet (1) was brought into close contact with the molding surface of each mold and the recess (4) was filled with the foamed sheet. The degree of vacuum between the mold A (3) and the foam sheet (1) and between the mold B (5) and the foam sheet (1) was -0.09 MPa.
After 10 seconds from the start of vacuum suction, the vacuum suction was stopped, air was blown from a cooling fan to cool the molded body, the mold was opened, and the molded body was taken out. Unnecessary end portions were cut to obtain a plate-like molded body (7) having ribs (6) as shown in FIG. Table 1 shows the physical properties of the obtained molded body.

[実施例2]
実施例1と同じ発泡シートを使用し、リブを有する平板状成形体を製造した。概略を図2に示した。
ポリプロピレン発泡シート(1)を用いて、真空吸引孔を備えた成形面と、該成形面中に高さ5mm、厚み15mm、長さ285mmのリブ賦形用の凹部(8)を有する成形型C(9)と、成形型Cと対を成す真空吸引孔を備えた成形面を有する成形型B(5)により、図2に示す方法で前記発泡シートをリブを有する平板状成形体に賦形した。成形型C(9)と成形型B(5)の成形面のクリアランスは3mmとした。成形型C(9)および成形型B(5)は60℃に温度調整して用いた。
ポリプロピレン発泡シート(1)を、押出機を備えた真空成形機(佐藤鉄工製VAIM0301)のクランプ枠(2)で固定した状態で、赤外ヒーターによりシート表面が160℃になるように加熱軟化させた後、成形型C(9)と成形型B(5)の間に供給した。成形型C(9)と成形型B(5)が同時に最終到達位置に達するタイミングで型閉めし、最終到達位置に達すると同時に成形型C(9)および成形型B(5)より真空吸引を行い各成形型の成形面に発泡シート(1)を密着させ、凹部(4)が発泡シートで満たされるようにして、発泡シート(1)を賦形した。成形型C(9)と発泡シート(1)との間、および成形型B(5)と発泡シート(1)との間の真空度は−0.09MPaであった。
真空吸引開始から10秒後に真空吸引を停止し、冷却ファンより送風を行い成形体を冷却した後、型開きして成形体を取り出した。不要な端部を切断し、リブ(10)を有する平板状成形体(11)を得た。得られた成形体の物性を表1に示す。
[Example 2]
Using the same foamed sheet as in Example 1, a flat molded body having ribs was produced. The outline is shown in FIG.
Mold C with polypropylene foam sheet (1) having a molding surface with vacuum suction holes and a rib shaping recess (8) having a height of 5 mm, a thickness of 15 mm and a length of 285 mm in the molding surface (9) and the molding die B (5) having a molding surface provided with a vacuum suction hole paired with the molding die C, the foamed sheet is shaped into a flat plate-like compact having ribs by the method shown in FIG. did. The clearance between the molding surfaces of the mold C (9) and the mold B (5) was 3 mm. Mold C (9) and Mold B (5) were used with the temperature adjusted to 60 ° C.
In a state where the polypropylene foam sheet (1) is fixed with a clamp frame (2) of a vacuum forming machine (VAIM0301 manufactured by Sato Tekko Co., Ltd.) equipped with an extruder, it is heated and softened by an infrared heater so that the sheet surface becomes 160 ° C. After that, it was supplied between the mold C (9) and the mold B (5). The molds C (9) and B (5) are closed at the same time when they reach the final arrival position, and at the same time they reach the final arrival position, vacuum suction is performed from the molds C (9) and B (5). The foamed sheet (1) was shaped so that the foamed sheet (1) was brought into close contact with the molding surface of each mold and the recess (4) was filled with the foamed sheet. The degree of vacuum between the mold C (9) and the foamed sheet (1) and between the mold B (5) and the foamed sheet (1) was -0.09 MPa.
After 10 seconds from the start of vacuum suction, the vacuum suction was stopped, air was blown from a cooling fan to cool the molded body, the mold was opened, and the molded body was taken out. Unnecessary end portions were cut to obtain a plate-like molded body (11) having a rib (10). Table 1 shows the physical properties of the obtained molded body.

[比較例1]
実施例1と同じ発泡シートを使用し、リブの無い平板状成形体を製造した。概略を図3に示した。
ポリプロピレン発泡シート(1)を用いて、真空吸引孔を備えた平板状の成形面を有する成形型D(12)と、成形型Dと対を成す真空吸引孔を備えた平板状の成形面を有する成形型B(5)により、図2に示す方法で前記発泡シートを平板に賦形した。成形型D(12)と成形型(B)の成形面のクリアランスは3mmとした。成形型D(12)および成形型B(5)は60℃に温度調整して用いた。
ポリプロピレン発泡シート(1)を、押出機を備えた真空成形機(佐藤鉄工製VAIM0301)のクランプ枠(2)で固定した状態で、赤外ヒーターによりシート表面が160℃になるように加熱軟化させた後、成形型D(12)と成形型B(5)の間に供給した。成形型D(12)と成形型B(5)が同時に最終到達位置に達するタイミングで型閉めし、最終到達位置に達すると同時に成形型D(12)および成形型B(5)より真空吸引を行い各成形型の成形面に発泡シート(1)を密着させ。成形型D(12)と発泡シート(1)との間、および成形型B(5)と発泡シート(1)との間の真空度は−0.09MPaであった。
真空吸引開始から10秒後に真空吸引を停止し、冷却ファンより送風を行い成形体を冷却した後、型開きして成形体を取り出した。不要な端部を切断し、平板状成形体(13)を得た。得られた成形体の物性を表1に示す。
[Comparative Example 1]
The same foamed sheet as in Example 1 was used to produce a flat molded body without ribs. The outline is shown in FIG.
Using the polypropylene foam sheet (1), a molding die D (12) having a flat molding surface with vacuum suction holes and a flat molding surface with vacuum suction holes paired with the molding die D are used. The foam sheet was shaped into a flat plate by the method shown in FIG. The clearance between the molding surfaces of the mold D (12) and the mold (B) was 3 mm. Mold D (12) and Mold B (5) were used after adjusting the temperature to 60 ° C.
In a state where the polypropylene foam sheet (1) is fixed with a clamp frame (2) of a vacuum forming machine (VAIM0301 manufactured by Sato Tekko Co., Ltd.) equipped with an extruder, it is heated and softened by an infrared heater so that the sheet surface becomes 160 ° C. After that, it was supplied between the mold D (12) and the mold B (5). The mold D (12) and the mold B (5) are closed at the same time when they reach the final position, and at the same time they reach the final position, vacuum suction is performed from the mold D (12) and the mold B (5). The foam sheet (1) is adhered to the molding surface of each mold. The degree of vacuum between the mold D (12) and the foamed sheet (1) and between the mold B (5) and the foamed sheet (1) was -0.09 MPa.
After 10 seconds from the start of vacuum suction, the vacuum suction was stopped, air was blown from a cooling fan to cool the molded body, the mold was opened, and the molded body was taken out. Unnecessary end portions were cut to obtain a plate-like molded body (13). Table 1 shows the physical properties of the obtained molded body.

[比較例2]
実施例1と同じ発泡シートを使用し、リブを有する平板状成形体を製造した。概略を図4に示した。
ポリプロピレン発泡シート(1)を用いて、真空吸引孔を備えた成形面と、該成形面中に高さ15mm、厚み5mm、長さ285mmのリブ賦形用の凹部(14)を有する成形型E(15)と、成形型Eと対を成す真空吸引孔を備えた成形面を有する成形型B(5)により、図4に示す方法で前記発泡シートをリブを有する平板状成形体に賦形した。成形型E(15)と成形型B(5)の成形面のクリアランスは3mmとした。成形型E(15)および成形型B(5)は60℃に温度調整して用いた。
ポリプロピレン発泡シート(1)を、押出機を備えた真空成形機(佐藤鉄工製VAIM0301)のクランプ枠(2)で固定した状態で、赤外ヒーターによりシート表面が160℃になるように加熱軟化させた後、成形型E(15)と成形型B(5)の間に供給した。成形型E(15)と成形型B(5)が同時に最終到達位置に達するタイミングで型閉めし、最終到達位置に達すると同時に成形型E(15)および成形型B(5)より真空吸引を行い各成形型の成形面に発泡シート(1)を密着させ、凹部(4)が発泡シートで満たされるようにして、発泡シート(1)を賦形した。成形型E(15)と発泡シート(1)との間、および成形型B(5)と発泡シート(1)との間の真空度は−0.09MPaであった。
真空吸引開始から10秒後に真空吸引を停止し、冷却ファンより送風を行い成形体を冷却した後、型開きして成形体を取り出した。不要な端部を切断し、リブ(16)を有する平板状成形体(17)を得た。平板状成形体(17)のリブ(16)は凹部(14)の形状に賦形できずに発泡体がつぶれた形状となった。得られた成形体の物性を表1に示す。
[Comparative Example 2]
Using the same foamed sheet as in Example 1, a flat molded body having ribs was produced. The outline is shown in FIG.
A molding die E having a molding surface having a vacuum suction hole using a polypropylene foam sheet (1), and a concave portion (14) for rib shaping having a height of 15 mm, a thickness of 5 mm and a length of 285 mm in the molding surface. (15) and the molding die B (5) having a molding surface provided with a vacuum suction hole paired with the molding die E, the foamed sheet is shaped into a plate-like molding having ribs by the method shown in FIG. did. The clearance between the molding surfaces of the molding die E (15) and the molding die B (5) was 3 mm. Mold E (15) and Mold B (5) were used at a temperature adjusted to 60 ° C.
In a state where the polypropylene foam sheet (1) is fixed with a clamp frame (2) of a vacuum forming machine (VAIM0301 manufactured by Sato Tekko Co., Ltd.) equipped with an extruder, it is heated and softened by an infrared heater so that the sheet surface becomes 160 ° C. After that, it was supplied between the mold E (15) and the mold B (5). The mold E (15) and the mold B (5) are closed at the same time when they reach the final position, and at the same time they reach the final position, vacuum suction is performed from the mold E (15) and the mold B (5). The foamed sheet (1) was shaped so that the foamed sheet (1) was brought into close contact with the molding surface of each mold and the recess (4) was filled with the foamed sheet. The degree of vacuum between the mold E (15) and the foam sheet (1) and between the mold B (5) and the foam sheet (1) was -0.09 MPa.
After 10 seconds from the start of vacuum suction, the vacuum suction was stopped, air was blown from a cooling fan to cool the molded body, the mold was opened, and the molded body was taken out. Unnecessary ends were cut to obtain a plate-like molded body (17) having ribs (16). The rib (16) of the flat molded body (17) could not be shaped into the shape of the recess (14), and the foam was crushed. Table 1 shows the physical properties of the obtained molded body.

Figure 2006306030
Figure 2006306030

本発明の成形体の製造方法の一態様の概略図Schematic of one embodiment of a method for producing a molded article of the present invention 本発明の成形体の製造方法の他の態様の概略図Schematic of the other aspect of the manufacturing method of the molded object of this invention 比較例1に記載の成形体の製造方法の概略図Schematic of the manufacturing method of the molded object described in Comparative Example 1 比較例2に記載の成形体の製造方法の概略図Schematic of the manufacturing method of the molded object described in Comparative Example 2 リブを有する平板状成形体の斜視図Perspective view of a flat molded body having ribs リブ中心部に位置する気泡の気泡径の測定方法を示す概略図Schematic showing the method of measuring the bubble diameter of bubbles located in the center of the rib

符号の説明Explanation of symbols

1 熱可塑性樹脂発泡シート
2 クランプ枠
3 成形型A
4 凹部
5 成形型B
6 リブ
7 リブを有する平板状成形体
8 凹部
9 成形型C
10 リブ
11 リブを有する平板状成形体
12 成形型D
13 平板状成形体
14 凹部
15 成形型E
16 リブ
17 リブを有する平板状成形体
18 リブ
19 基体
20 リブと基体との接点
1 Thermoplastic resin foam sheet 2 Clamp frame 3 Mold A
4 Concavity 5 Mold B
6 Ribs 7 Plate-shaped molded body having ribs 8 Recesses 9 Mold C
DESCRIPTION OF SYMBOLS 10 Rib 11 Flat plate-shaped molded object 12 which has rib Mold D
13 Flat shaped body 14 Recess 15 Mold D
16 Rib 17 Flat plate shaped body 18 having rib 18 Rib 19 Base 20 Contact point between rib and base

Claims (4)

リブと基体とが一体成形されてなる成形体であって、該リブおよび基体が熱可塑性樹脂発泡体からなり、当該リブ断面の中心部に位置する気泡が下記の式(1)を満たす成形体。
Xh>Xt 式(1)
(ただしXhはリブの高さ方向の気泡径であり、Xtはリブの厚み方向の気泡径である)
A molded body in which a rib and a base are integrally molded, wherein the rib and the base are made of a thermoplastic resin foam, and a cell located at the center of the rib cross section satisfies the following formula (1) .
Xh> Xt Formula (1)
(Where Xh is the bubble diameter in the height direction of the rib and Xt is the bubble diameter in the thickness direction of the rib)
リブ中心部の発泡倍率Xaと基体の発泡倍率Xbとが下記の式(2)を満たす請求項1に記載の成形体。
Xb<Xa 式(2)
The molded product according to claim 1, wherein the expansion ratio Xa of the rib center portion and the expansion ratio Xb of the substrate satisfy the following formula (2).
Xb <Xa Formula (2)
リブの最大厚みLとリブの高さHとが、下記の式(3)を満たす請求項1または2に記載の成形体。
0.5L≦H≦2.5L 式(3)
The molded body according to claim 1 or 2, wherein the maximum rib thickness L and the rib height H satisfy the following formula (3).
0.5L ≦ H ≦ 2.5L Formula (3)
熱可塑性樹脂発泡シートを両面真空成形して得られる請求項1−3のいずれかに記載の成形体。
The molded object according to any one of claims 1 to 3, obtained by double-sided vacuum molding of a thermoplastic resin foam sheet.
JP2006022400A 2005-03-28 2006-01-31 Molding Pending JP2006306030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022400A JP2006306030A (en) 2005-03-28 2006-01-31 Molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005091270 2005-03-28
JP2006022400A JP2006306030A (en) 2005-03-28 2006-01-31 Molding

Publications (1)

Publication Number Publication Date
JP2006306030A true JP2006306030A (en) 2006-11-09

Family

ID=37473447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022400A Pending JP2006306030A (en) 2005-03-28 2006-01-31 Molding

Country Status (1)

Country Link
JP (1) JP2006306030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311655A (en) * 2006-05-19 2007-11-29 Shindengen Electric Mfg Co Ltd Method for manufacturing semiconductor device
JP2014237233A (en) * 2013-06-06 2014-12-18 株式会社クリモト Method for producing molding of skin material
JP2016164084A (en) * 2015-02-26 2016-09-08 中央化学株式会社 Packaging container
JP2021512805A (en) * 2018-12-18 2021-05-20 ヒューヴィス コーポレーションHuvis Corporation Double-sided heating type foam sheet molding device and molding method using this

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820066A (en) * 1994-07-07 1996-01-23 Idemitsu Petrochem Co Ltd Partially foamed thermally molded container and production thereof
JPH0852795A (en) * 1994-08-10 1996-02-27 Sekisui Plastics Co Ltd Molding of thermoplastic resin foamable sheet and molded product
JP2001310380A (en) * 2000-04-28 2001-11-06 Sumitomo Chem Co Ltd Foamed thermoplastic resin molding and manufacturing method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820066A (en) * 1994-07-07 1996-01-23 Idemitsu Petrochem Co Ltd Partially foamed thermally molded container and production thereof
JPH0852795A (en) * 1994-08-10 1996-02-27 Sekisui Plastics Co Ltd Molding of thermoplastic resin foamable sheet and molded product
JP2001310380A (en) * 2000-04-28 2001-11-06 Sumitomo Chem Co Ltd Foamed thermoplastic resin molding and manufacturing method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311655A (en) * 2006-05-19 2007-11-29 Shindengen Electric Mfg Co Ltd Method for manufacturing semiconductor device
JP2014237233A (en) * 2013-06-06 2014-12-18 株式会社クリモト Method for producing molding of skin material
JP2016164084A (en) * 2015-02-26 2016-09-08 中央化学株式会社 Packaging container
JP2021512805A (en) * 2018-12-18 2021-05-20 ヒューヴィス コーポレーションHuvis Corporation Double-sided heating type foam sheet molding device and molding method using this

Similar Documents

Publication Publication Date Title
US20060068169A1 (en) Thermoplastic resin foamed sheet
JP2009137306A (en) Hollow foamed blow molding
JP2007245552A (en) Manufacturing method of thermoplastic resin-molded product
JP2006205376A (en) Manufacturing method of thermoplastic resin molded product
US20060163764A1 (en) Method for producing a thermoplastic resin article
JP4906363B2 (en) Method for producing polypropylene resin foam
JP2006306030A (en) Molding
JP2007062364A (en) Manufacturing method for hollow foamed molded body, and hollow foamed molded body
JP4539238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
US20060049551A1 (en) Method for producing a thermoplastic resin foamed article
JP3297253B2 (en) Crosslinked polyolefin-based resin foam, laminate and molded article
JP4507784B2 (en) Vacuum forming method for thermoplastic resin foam sheet
US20060061003A1 (en) Method for producing a thermoplastic resin foamed article
JP4890280B2 (en) Method for producing thermoplastic resin molded article
JP2008207548A (en) Method for manufacturing thermoplastic resin molding
JP2006181957A (en) Polypropylene-based resin expansion-molded article
JP2007007869A (en) Manufacturing method of thermoplastic resin molded product
JP2005193936A (en) Propylene expanded resin container
JP7164660B2 (en) Core material
JP2007007870A (en) Manufacturing method of thermoplastic resin foamed molded product
JP2007203502A (en) Thermoplastic resin made molded product and its manufacturing method
JP2009029021A (en) Method for producing composite molded product
JP2005041209A (en) Propylene resin type foamed sheet and container
JP2006111003A (en) Thermoplastic resin foamed sheet
JP2000280334A (en) Manufacture of foamed molding and molding

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101