JP4507784B2 - Vacuum forming method for thermoplastic resin foam sheet - Google Patents

Vacuum forming method for thermoplastic resin foam sheet Download PDF

Info

Publication number
JP4507784B2
JP4507784B2 JP2004271232A JP2004271232A JP4507784B2 JP 4507784 B2 JP4507784 B2 JP 4507784B2 JP 2004271232 A JP2004271232 A JP 2004271232A JP 2004271232 A JP2004271232 A JP 2004271232A JP 4507784 B2 JP4507784 B2 JP 4507784B2
Authority
JP
Japan
Prior art keywords
mold
sheet
foam sheet
thermoplastic resin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004271232A
Other languages
Japanese (ja)
Other versions
JP2006082472A (en
Inventor
暁 花田
吉典 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004271232A priority Critical patent/JP4507784B2/en
Priority to US11/209,762 priority patent/US20060049551A1/en
Priority to DE102005040497A priority patent/DE102005040497A1/en
Publication of JP2006082472A publication Critical patent/JP2006082472A/en
Application granted granted Critical
Publication of JP4507784B2 publication Critical patent/JP4507784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は熱可塑性樹脂発泡シートの真空成形方法に関する。   The present invention relates to a vacuum forming method for a thermoplastic resin foam sheet.

熱可塑性樹脂発泡成形体は、軽量性、リサイクル性、断熱性などに優れることから、自動車部品材料、建築材料、包装材料等、種々の用途に用いられている。
熱可塑性樹脂発泡成形体を上記のような用途として用いる場合には、熱可塑性樹脂発泡シートを製造した後、該熱可塑性樹脂発泡シートを真空成形などの二次成形方法により所望の形状に賦形し熱可塑性樹脂発泡成形体として使用することが多い。熱可塑性樹脂発泡シートの真空成形方法としては、型締めしたときに所定の空隙を有する一対の雌雄金型の間に熱可塑性樹脂発泡シートを供給して型締めし、型締めしたまま両金型面より真空減圧して発泡シートを空隙の形状に賦形し、熱可塑性樹脂発泡成形体を得る方法が知られている(例えば特許文献1参照)。
Thermoplastic resin foam molded articles are excellent in light weight, recyclability, heat insulation, and the like, and are therefore used in various applications such as automotive parts materials, building materials, and packaging materials.
When a thermoplastic resin foam molded article is used as described above, after producing a thermoplastic resin foam sheet, the thermoplastic resin foam sheet is shaped into a desired shape by a secondary molding method such as vacuum molding. It is often used as a thermoplastic resin foam molded article. As a method of vacuum forming a thermoplastic resin foam sheet, a thermoplastic resin foam sheet is supplied between a pair of male and female molds having a predetermined gap when the molds are clamped, and both molds are kept clamped. A method is known in which a vacuum pressure is reduced from the surface to shape a foamed sheet into a void shape to obtain a thermoplastic resin foamed molded article (see, for example, Patent Document 1).

特開昭54−148863号公報JP 54-148863 A

発泡シートとしては、発泡倍率が高く、厚みの厚いものが望まれる。前記方法によれば、真空成形に用いる原反発泡シートと比較すると、発泡倍率が高く、厚みの厚いシートを得ることができる。しかしながら前記の方法では、一対の成形型を型締めした時に形成される空隙分しか原反発泡シートを膨張させられないため、得られる熱可塑性樹脂発泡シートの厚みは原反シート厚みの2倍程度でしかなく、発泡倍率も未だ満足できるものではなかった。
前記の方法で原反発泡シートよりも十分に発泡倍率が高く厚みの厚い熱可塑性樹脂発泡シートを得るためには、空隙部が大きい成形型を用いる必要があるが、その場合には真空吸引を行っても原反発泡シートによって該空隙部を満たすことができないことがあり、やはり原反発泡シートよりも発泡倍率が高く、厚みの厚い熱可塑性樹脂発泡シートを得ることは困難であった。
本発明は、発泡倍率が高く、かつ厚みの厚い熱可塑性樹脂発泡シートの製造方法を提供するものである。
As the foam sheet, a sheet having a high foaming ratio and a large thickness is desired. According to the said method, compared with the raw fabric foam sheet used for vacuum forming, a foam ratio is high and a thick sheet can be obtained. However, in the above method, since the raw foam sheet can be expanded only by the gap formed when the pair of molds are clamped, the thickness of the obtained thermoplastic resin foam sheet is about twice the thickness of the raw sheet. However, the expansion ratio was still not satisfactory.
In order to obtain a thermoplastic resin foam sheet having a sufficiently high foaming ratio and a thicker thickness than the original foam foam sheet by the above method, it is necessary to use a mold having a large void portion. Even if this is done, the voids may not be filled with the original fabric foamed sheet, and it is still difficult to obtain a thermoplastic resin foamed sheet having a higher foaming ratio than that of the original fabric foamed sheet.
The present invention provides a method for producing a thermoplastic resin foam sheet having a high expansion ratio and a large thickness.

すなわち本発明は、成形型の成形面より真空吸引可能な成形型Aと、少なくとも成形面外縁部にシート固定部材を有する成形型Bを用いた、以下の工程を含む熱可塑性樹脂発泡シートの真空成形方法である。
(1)熱可塑性樹脂発泡シートを加熱軟化させる工程
(2)成形型Aと成形型Bとの間に、工程(1)で得られる熱可塑性樹脂発泡シートを供給する工程
(3)加熱軟化された熱可塑性樹脂発泡シートを成形型間で挟持しつつ、成形面外縁部における両成形型間のクリアランスが、該シートの厚み以下となるまで両成形型を閉じ、成形型Bの成形面全面と前記発泡シート表面とを接触させる工程
(4)工程(3)で成形型Bの成形面全面と前記発泡シート表面とが接触した後に、成形型Aの成形面より真空吸引を開始する工程
(5)真空吸引を継続しつつ、成形面間の前記シートが所望の成形品厚みになるまで型開きして賦形する工程
(6)真空吸引を停止して成形型を開き、成形品を取り出す工程
That is, the present invention uses a molding die A that can be vacuum-sucked from the molding surface of the molding die and a molding die B having a sheet fixing member at least on the outer edge of the molding surface, and includes a vacuum for a thermoplastic resin foam sheet including the following steps: This is a molding method.
(1) Step of heating and softening the thermoplastic resin foam sheet (2) Step of supplying the thermoplastic resin foam sheet obtained in step (1) between the mold A and the mold B (3) Heat softening While sandwiching the thermoplastic resin foam sheet between the molds, close both molds until the clearance between the molds at the outer edge of the mold surface is equal to or less than the thickness of the sheet, Step (4) of contacting the surface of the foamed sheet (4) Step of starting vacuum suction from the molding surface of the mold A (5) after the entire molding surface of the mold B and the surface of the foamed sheet B are contacted in the step (3). ) A step of opening and shaping the mold until the sheet between the molding surfaces reaches a desired thickness of the molded product while continuing the vacuum suction (6) A step of stopping the vacuum suction and opening the molding die and taking out the molded product

本発明の熱可塑性樹脂発泡シートの製造方法によれば、発泡倍率が高く、厚みの厚い熱可塑性樹脂発泡シートを製造することができる。   According to the method for producing a thermoplastic resin foam sheet of the present invention, it is possible to produce a thermoplastic resin foam sheet having a high foaming ratio and a large thickness.

以下、本発明の一例を図1に基づいて詳細に説明するが、本発明はこの例に限定されるものではない。   Hereinafter, an example of the present invention will be described in detail with reference to FIG. 1, but the present invention is not limited to this example.

本発明は、図1に示すように成形型の成形面より真空吸引可能な成形型A(4)と、少なくとも成形面外縁部にシート固定部材(6)を有する成形型B(5)を用いて、クリップ部材(2)で固定し赤外ヒーター(3)で加熱軟化させた状態の熱可塑性樹脂発泡シート(1)の成形を行う。成形型Bは、成形面より真空吸引可能であってもよい。使用する成形型としては、一方が雄型、他方が雌型の成形型や、雌型同士の成形型、一対の板状の成形型などが例示でき、成形面外縁部における両成形型間のクリアランスが発泡シートの厚み以下となるまで両成形型を閉じた際に、成形型Bの成形面全面と発泡シート表面とが接触するような型であればよい。   As shown in FIG. 1, the present invention uses a molding die A (4) that can be vacuum-sucked from the molding surface of the molding die and a molding die B (5) having a sheet fixing member (6) at least on the outer edge of the molding surface. Then, the thermoplastic resin foam sheet (1) in a state of being fixed by the clip member (2) and heated and softened by the infrared heater (3) is formed. The mold B may be vacuum suckable from the molding surface. Examples of the mold to be used include a male mold on one side, a female mold on the other side, a mold between female dies, a pair of plate-shaped molds, and the like. What is necessary is just a type in which the entire molding surface of the molding die B and the foam sheet surface come into contact when both molding dies are closed until the clearance becomes equal to or less than the thickness of the foam sheet.

成形型の成形面より真空吸引可能な成形型としては、その成形面の少なくとも一部が焼結合金から構成される型や、成形面の少なくとも一部に孔が設けられた型などが例示される。成形型に設けられる前記孔の数や位置、孔径は特に限定されるものではなく、該孔を通じて真空吸引することにより、成形型間に供給された熱可塑性樹脂発泡シートを成形型成形面状に賦形することができるものであればよい。   Examples of the mold that can be vacuum-sucked from the molding surface of the molding die include a mold in which at least a part of the molding surface is made of a sintered alloy and a mold in which holes are provided in at least a part of the molding surface. The The number, position, and hole diameter of the holes provided in the mold are not particularly limited. By vacuum suction through the holes, the thermoplastic resin foam sheet supplied between the molds is shaped into a mold surface. Anything that can be shaped is acceptable.

成形型の材質は特に限定されるものではないが、通常寸法安定性、耐久性、熱伝導性などの観点から金属製であり、コストや軽量性などの面からアルミ製であることが好ましい。
また成形型は、ヒーターや熱媒などにより温度調整可能な構造であることが好ましい。発泡シートとの滑り性を高める観点や、成形完了前に発泡シートが冷却されてしまうことを防止する観点から、成形型の成形面を30〜80℃とすることが好ましく、50〜60℃とすることがさらに好ましい。
The material of the mold is not particularly limited, but is usually made of metal from the viewpoints of dimensional stability, durability, thermal conductivity, and the like, and is preferably made of aluminum from the viewpoints of cost and lightness.
Moreover, it is preferable that a shaping | molding die is a structure which can adjust temperature with a heater, a heat medium, etc. From the viewpoint of enhancing the slipperiness with the foam sheet and from the viewpoint of preventing the foam sheet from being cooled before the completion of molding, the molding surface of the molding die is preferably set to 30 to 80 ° C, and 50 to 60 ° C. More preferably.

一方または両方の成形型として、気密性保持部を有する成形型を用いることが好ましい。このような成形型を用いた場合、真空吸引した際にキャビティ内の真空度を維持しやすくなり、きわめてひけの小さい成形品を得ることができる。
気密性保持部を有する成形型としては、例えば少なくとも一方の成形型の成形面外縁部が、対向する成形型方向に可動である成形型が挙げられる。このような成形型の場合、型閉め時は該可動部が成形面外縁部と同じ平面上となるよう、可動部が成形型に収納可能である構造が好ましい。このような成形型は、型を開くに従い可動部が突出するため、後述する型開き工程においてキャビティ内の真空度が維持しやすくなる。
As one or both of the molds, it is preferable to use a mold having an airtight holding portion. When such a mold is used, it is easy to maintain the degree of vacuum in the cavity when vacuum suction is performed, and a molded product with extremely small sink marks can be obtained.
Examples of the mold having the hermeticity holding portion include a mold in which the outer edge portion of the molding surface of at least one of the molds is movable in the opposing mold direction. In the case of such a mold, it is preferable that the movable part can be stored in the mold so that the movable part is on the same plane as the outer edge of the molding surface when the mold is closed. In such a mold, the movable part protrudes as the mold is opened, so that the degree of vacuum in the cavity is easily maintained in the mold opening process described later.

気密性保持部を有する成形型の他の例としては、少なくとも一方の成形型の成形面外縁部に緩衝材を有する成形型が挙げられる。通常発泡シートは、表面に微小な凹凸を有している。緩衝材を有する成形型の場合には、型閉めにより緩衝材が微小な凹凸のある発泡シート表面と密着するため、真空吸引した場合にキャビティ内の真空度を維持しやすい。緩衝材としては、ゴムや発泡体等が挙げられる。
型閉めしたときに一方の成形型の外周に設けられた気密性保持部によって、他方の成形型が覆われるような構成の一対の成形型を用いることもできる。
As another example of the mold having the airtight holding portion, a mold having a cushioning material at the outer edge of the molding surface of at least one of the molds can be cited. Usually, the foam sheet has minute irregularities on the surface. In the case of a mold having a cushioning material, the cushioning material comes into close contact with the surface of the foamed sheet having minute irregularities when the mold is closed, so that it is easy to maintain the degree of vacuum in the cavity when vacuum suction is performed. Examples of the buffer material include rubber and foam.
It is also possible to use a pair of molds configured such that when the mold is closed, the other mold is covered by an airtight holding portion provided on the outer periphery of one mold.

図1−(2)に示すように、成形型Bは少なくとも成形面外縁部にシート固定部材(6)を有する。シート固定部材は、成形面の少なくとも一部にも設けられていてもよい。シート固定部材は、後述する本発明の真空成形方法の工程(5)において、成形型Aの成形面より真空吸引を行いながら型開きする場合に、発泡シートが成形型Bに固定されるように設けられていればよく、例えば成形面外縁部に粘着材を設けたり、ピン、フック、クリップ、スリットなどを設けてもよい。このような成形型を用いることにより、発泡シートを成形面状に賦形することが容易となる。また成形型Aも、少なくとも成形面外縁部にシート固定部材を有していてもよい。   As shown in FIG. 1- (2), the molding die B has a sheet fixing member (6) at least on the outer edge of the molding surface. The sheet fixing member may be provided on at least a part of the molding surface. In the step (5) of the vacuum forming method of the present invention described later, the sheet fixing member is fixed so that the foamed sheet is fixed to the mold B when the mold is opened while performing vacuum suction from the molding surface of the mold A. For example, an adhesive material may be provided on the outer edge of the molding surface, or a pin, hook, clip, slit, or the like may be provided. By using such a mold, it becomes easy to shape the foamed sheet into a molded surface. The mold A may also have a sheet fixing member at least on the outer edge of the molding surface.

成形型は、型閉めしたときに形成されるキャビティの高さが、工程(1)で得られる発泡シート厚みの0.8〜2倍程度の成形型を用いることが好ましい。キャビティの高さとは、成形型間に供給した発泡シートの厚み方向に対応する成形型成形面間の距離である。キャビティ高さは一定である必要はなく、所望の成形品の形状に対応したキャビティであればよい。キャビティの高さが低すぎると型閉め時に発泡シートの気泡をつぶしてしまうことがあり、高すぎると後述するように真空吸引しても成形型の成形面と発泡シート表面とを接触させて賦形することが困難となり、接触させた場合でも破泡が生じやすくなる。   As the mold, it is preferable to use a mold in which the height of the cavity formed when the mold is closed is about 0.8 to 2 times the thickness of the foamed sheet obtained in the step (1). The height of the cavity is the distance between the molding surfaces corresponding to the thickness direction of the foam sheet supplied between the molding dies. The cavity height does not need to be constant, and may be a cavity corresponding to the shape of a desired molded product. If the height of the cavity is too low, bubbles in the foam sheet may be crushed when the mold is closed. If it is too high, the mold surface of the mold and the surface of the foam sheet are brought into contact with each other even if vacuum suction is applied as described later. It becomes difficult to form, and even when brought into contact, bubbles are easily broken.

図1−(1)は、熱可塑性樹脂発泡シートを加熱軟化させる工程(1)を示している。工程(1)では、通常クランプ枠で発泡シートを挟み、遠赤外ヒーター、近赤外ヒーター、接触式熱板などの公知の加熱装置で発泡シートを加熱する。短時間で効率的に加熱できることから、遠赤外ヒーターを用いることが好ましい。加熱処理は、発泡シートの表面温度が、発泡シートを構成する樹脂が結晶性樹脂であれば該樹脂の融点付近、非晶性樹脂であればガラス転移温度付近となるように加熱することが好ましい。   FIG. 1- (1) shows the step (1) of heat-softening the thermoplastic resin foam sheet. In the step (1), the foam sheet is usually sandwiched between clamp frames, and the foam sheet is heated by a known heating device such as a far infrared heater, a near infrared heater, or a contact hot plate. It is preferable to use a far infrared heater because it can be efficiently heated in a short time. The heat treatment is preferably performed so that the surface temperature of the foamed sheet is near the melting point of the resin if the resin constituting the foamed sheet is a crystalline resin, and near the glass transition temperature if the resin is an amorphous resin. .

図1−(2)は、成形型の成形面より真空吸引可能な成形型Aと、少なくとも成形面外縁部にシート固定部材を有する成形型Bとの間に、工程(1)で得られる熱可塑性樹脂発泡シートを供給した状態を示している。   FIG. 1- (2) shows the heat obtained in the step (1) between the molding die A that can be vacuum-sucked from the molding surface of the molding die and the molding die B having a sheet fixing member at least on the outer edge of the molding surface. The state which supplied the plastic resin foam sheet is shown.

図1−(3)は、加熱軟化された熱可塑性樹脂発泡シートを成形型間で挟持しつつ、成形面外縁部における両成形型間のクリアランスが、該シートの厚み以下となるまで両成形型を閉じ、成形型Bの成形面全面と前記発泡シート表面とを接触させた状態を示している。成形面外縁部における両成形型間のクリアランスが発泡シートの厚み以下となるまで両成形型を閉じることにより、成形型Bの成形面外縁部に設けられたシート固定部材によって発泡シートと成形型Bの成形面外縁部が固定され、かつ成形型Bの成形面全面と前記発泡シート表面とが接触し、成形型Bの成形面状に発泡シートが賦形される。型閉めは一方の成形型のみを他方の成形型方向に移動させてもよいし、両方の成形型を接近させてもよい。   FIG. 1- (3) shows both molds until the heat-softened thermoplastic resin foam sheet is sandwiched between the molds and the clearance between both molds at the outer edge of the molding surface is equal to or less than the thickness of the sheet. Is closed, and the entire molding surface of the mold B is in contact with the foamed sheet surface. By closing both molds until the clearance between both molds at the outer edge of the molding surface is equal to or less than the thickness of the foam sheet, the foam sheet and the mold B are provided by the sheet fixing member provided at the outer edge of the molding surface of the mold B. The outer edge of the molding surface is fixed, and the entire molding surface of the molding die B comes into contact with the surface of the foamed sheet, so that the foaming sheet is shaped into the molding surface of the molding die B. In closing the mold, only one mold may be moved in the direction of the other mold, or both molds may be brought close to each other.

図1−(4)は、成形型Aの成形面より真空吸引を行った状態を示している。真空吸引は、成形型Bの成形面全面と発泡シート表面とが接触した後に開始する。ここで成形型Bの成形面全面と発泡シート表面とが接触した後とは、成形型Bの成形面全面と発泡シート表面とが接触すると同時であってもよい。成形型Bの成形面全面と発泡シート表面とが接触した後に真空吸引を行う場合には、発泡シートが冷却される前、成形型Bの成形面全面と発泡シート表面とが接触した時点から通常3秒以内に真空吸引を行うことが好ましい。   1- (4) shows a state where vacuum suction is performed from the molding surface of the mold A. FIG. The vacuum suction starts after the entire molding surface of the mold B comes into contact with the foam sheet surface. Here, after the entire molding surface of the mold B and the foam sheet surface are in contact, the entire molding surface of the mold B and the foam sheet surface may be in contact with each other. When vacuum suction is performed after the entire molding surface of the mold B and the surface of the foam sheet are in contact with each other, usually from the time when the entire molding surface of the mold B and the surface of the foam sheet are in contact before the foam sheet is cooled. It is preferable to perform vacuum suction within 3 seconds.

成形型Bとして成形面より真空吸引可能な成形型を用いる場合、成形型Bから真空吸引を開始するタイミングは、工程(1)から工程(4)のいずれの時点であってもよい。通常工程(3)の両成形型間のクリアランスが、発泡シート厚み以下となるまで両成形型を閉じた時点から真空吸引を開始する。成形型Bからも真空吸引することにより、短時間で成形型Bの成形面状に発泡シートを賦形することができる。   When a mold that can be vacuum-sucked from the molding surface is used as the mold B, the timing of starting vacuum suction from the mold B may be any time point from the step (1) to the step (4). Vacuum suction is started from the time when both molds are closed until the clearance between both molds in the normal step (3) becomes equal to or less than the thickness of the foam sheet. By vacuum suction from the mold B, the foamed sheet can be shaped into the molding surface of the mold B in a short time.

真空吸引の程度は特に限定されるものではないが、キャビティの真空度が−0.05〜−0.1MPaになるように真空吸引することが好ましい。真空度とは、大気圧に対するキャビティ内の圧である。すなわち「真空度が−0.05MPa」とは、キャビティ内の圧力が0.95MPaであることを示す。真空度が高いほど成形型に発泡シートが強く押し付けられるため、発泡シートをキャビティ形状どおりに賦形することが可能になる。キャビティの真空度とは、真空吸引する孔のキャビティ側口で測定される値である。   The degree of vacuum suction is not particularly limited, but vacuum suction is preferably performed so that the degree of vacuum of the cavity is -0.05 to -0.1 MPa. The degree of vacuum is the pressure in the cavity with respect to atmospheric pressure. That is, “the degree of vacuum is −0.05 MPa” indicates that the pressure in the cavity is 0.95 MPa. The higher the degree of vacuum, the stronger the foam sheet is pressed against the mold, so that the foam sheet can be shaped according to the cavity shape. The vacuum degree of the cavity is a value measured at the cavity side opening of the hole to be vacuumed.

図1−(5)は、成形面間の前記シ−トが所望の成形品厚みになるまで型開きして賦形した状態である。型開きは真空吸引を継続しながら行う。型開きの速度や真空度は、発泡シ−トが各成形型の成形面に接触した状態を維持しつつ、最終的に所望の成形品形状に賦形されるように調整すればよい。   FIG. 1- (5) shows a state where the mold is opened and shaped until the sheet between the molding surfaces reaches a desired thickness of the molded product. Open the mold while continuing vacuum suction. The mold opening speed and the degree of vacuum may be adjusted so that the foamed sheet is finally shaped into a desired molded product shape while maintaining the state where the foamed sheet is in contact with the molding surface of each mold.

所定厚みまで型開きした状態で、発泡シートを十分冷却したのち、真空吸引を停止して成形型を開き、成形品を取り出す。図1−(6)は、成形品を取り出すため成形型(図示せず)を開いた状態を示している。   In the state where the mold is opened to a predetermined thickness, the foamed sheet is sufficiently cooled, then vacuum suction is stopped, the mold is opened, and the molded product is taken out. FIG. 1- (6) shows a state in which a mold (not shown) is opened to take out the molded product.

本発明において、一方あるいは両方の成形型の成形面に、予め表皮材を載置しておいてもよい。表皮材としては、該表皮材を通して真空吸引を行うことにより発泡シートを成形面状に賦形可能なものであればその材料や厚みは特に限定されるものではなく、例えば熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマーなどの樹脂、ゴム、麻などの天然繊維、けい酸カルシウムなどの鉱物などがあり、その形態はフィルム、シート、不織布、織布などが例としてあげられる。その他にも紙、プロピレン系樹脂やスチレン系樹脂などからなる合成紙、アルミニウムや鉄等の金属薄板や金属箔などを使用することができる。表皮材は単層でも多層でもよく、シボなどの凹凸模様や印刷や染色などが施されたものでもよい。   In the present invention, a skin material may be placed in advance on the molding surface of one or both molds. As the skin material, the material and thickness are not particularly limited as long as the foamed sheet can be shaped into a molding surface by performing vacuum suction through the skin material. For example, a thermoplastic resin, thermosetting Resins, thermoplastic elastomers and other natural fibers, natural fibers such as rubber and hemp, minerals such as calcium silicate, etc. Examples of the form include films, sheets, nonwoven fabrics and woven fabrics. In addition, paper, synthetic paper made of propylene resin, styrene resin, or the like, a metal thin plate such as aluminum or iron, a metal foil, or the like can be used. The skin material may be a single layer or a multilayer, and may be a textured pattern such as embossed or printed or dyed.

本発明で用いる熱可塑性樹脂発泡シートとしては特に限定されるものではなく、公知の発泡シートを用いることができる。
熱可塑性樹脂発泡シートを構成する樹脂としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン等の炭素数が6以下のオレフィンホモポリマー、あるいは炭素数が2〜10のオレフィンから選択される2種類以上のモノマーを共重合させたオレフィン共重合体などのオレフィン系樹脂、エチレン−ビニルエステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エステル系樹脂、アミド系樹脂、スチレン系樹脂、アクリル系樹脂、アクリロニトリル系樹脂、アイオノマー樹脂などがあげられる。これらの樹脂は単独で使用してもよいし複数の樹脂のブレンド物として用いることもできる。これらの樹脂の中でも、成形性、耐油性、コストなどの観点からオレフィン系樹脂が好ましく用いられ、得られる成形品の剛性、耐熱性などの観点からプロピレン系樹脂が特に好ましく用いられる。
It does not specifically limit as a thermoplastic resin foam sheet used by this invention, A well-known foam sheet can be used.
The resin constituting the thermoplastic resin foam sheet is an olefin homopolymer having 6 or less carbon atoms such as ethylene, propylene, butene, pentene, hexene, or two or more kinds selected from olefins having 2 to 10 carbon atoms. Olefin resins such as olefin copolymers obtained by copolymerizing monomers, ethylene-vinyl ester copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid ester copolymers, ester-based resins Amide resin, styrene resin, acrylic resin, acrylonitrile resin, ionomer resin and the like. These resins may be used alone or as a blend of a plurality of resins. Among these resins, olefin resins are preferably used from the viewpoints of moldability, oil resistance, cost, and the like, and propylene resins are particularly preferably used from the viewpoint of rigidity and heat resistance of the obtained molded product.

プロピレン系樹脂製の発泡シートを使用する場合、発泡層を構成するプロピレン系樹脂としては、プロピレンホモポリマーや、プロピレン由来のモノマー単位を50モル%以上含むプロピレン系共重合体をあげることができる。共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。好ましく用いられるプロピレン系共重合体の例としては、エチレンまたは炭素数4〜10のα−オレフィンとプロピレンとの共重合体を挙げることができる。炭素数4〜10のα−オレフィンとしては、例えば、1−ブテン、4−メチルペンテン−1、1−ヘキセンおよび1−オクテンが挙げられる。プロピレン系共重合体中のプロピレン以外のモノマー単位の含有量は、エチレンについては15モル%以下、炭素数4〜10のα−オレフィンについては30モル%以下であることが好ましい。プロピレン系樹脂は1種類でもよく、2種類以上を混合して用いてもよい。   When using a foamed sheet made of a propylene resin, examples of the propylene resin constituting the foamed layer include a propylene homopolymer and a propylene copolymer containing 50 mol% or more of a monomer unit derived from propylene. The copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. As an example of the propylene-based copolymer that is preferably used, a copolymer of ethylene or an α-olefin having 4 to 10 carbon atoms and propylene can be given. Examples of the α-olefin having 4 to 10 carbon atoms include 1-butene, 4-methylpentene-1, 1-hexene, and 1-octene. The content of monomer units other than propylene in the propylene-based copolymer is preferably 15 mol% or less for ethylene and 30 mol% or less for α-olefins having 4 to 10 carbon atoms. One type of propylene resin may be used, or two or more types may be mixed and used.

またプロピレン系樹脂の中でも、長鎖分岐プロピレン系樹脂や重量平均分子量が1×105以上の高分子量プロピレン系樹脂を、発泡層を構成する熱可塑性樹脂の50重量%以上用いることにより、より微細な気泡を有するプロピレン系樹脂発泡シートを得ることができる。さらにこのようなプロピレン系樹脂の中でも、シートリサイクル時にゲルを生じにくいことから非架橋のプロピレン系樹脂が好ましく使用される。 Among the propylene resins, a long chain branched propylene resin or a high molecular weight propylene resin having a weight average molecular weight of 1 × 10 5 or more is used in a finer particle by using 50% by weight or more of the thermoplastic resin constituting the foam layer. A propylene-based resin foam sheet having various bubbles can be obtained. Further, among such propylene resins, non-crosslinked propylene resins are preferably used because gels are unlikely to occur during sheet recycling.

ここで長鎖分岐プロピレン系樹脂とは、分岐度指数[A]が0.20≦[A]≦0.98を満たすプロピレン系樹脂を指す。
分岐度指数[A]が0.20≦[A]≦0.98を満たす長鎖分岐プロピレン系樹脂の例としては、バゼル社製のプロピレンPF−814が挙げられる。
Here, the long-chain branched propylene-based resin refers to a propylene-based resin having a degree of branching index [A] satisfying 0.20 ≦ [A] ≦ 0.98.
An example of a long-chain branched propylene-based resin satisfying the branching index [A] of 0.20 ≦ [A] ≦ 0.98 is propylene PF-814 manufactured by Basel.

分岐度指数とは、重合体における長鎖分岐の程度を示すものであり、下記の式において定義される数値である。
分岐度指数 [A] =〔η〕Br/〔η〕Lin
ここで〔η〕Brは、長鎖分岐を有するプロピレン系樹脂の固有粘度であり、〔η〕Linは、該長鎖分岐を有するプロピレン系樹脂と同じモノマー単位および同じ重量平均分子量を有する、直鎖プロピレン系樹脂の固有粘度である。
固有粘度は極限粘度数とも呼ばれ、重合体の溶液粘度を増強する能力の尺度である。固有粘度は特にポリマー分子の分子量と、分岐度に依存する。したがって、長鎖分岐を有するポリマーの固有粘度と、該長鎖分岐を有するポリマーと同じ重量平均分子量の直鎖ポリマーの固有粘度とを比較することにより、該長鎖分岐を有するポリマーの分岐度の尺度とすることができる。プロピレン系樹脂の固有粘度の測定方法は、エリオット等[J.Appl.Polym.Sci.,14,2947−2963(1970)]により開示されているような従来知られている方法により測定することができ、例えば、プロピレン系樹脂をテトラリン又はオルトジクロロベンゼンに溶解し、135℃で固有粘度を測定することが可能である。
プロピレン系樹脂の重量平均分子量(Mw)は、通常用いられる種々の方法で測定できるが、M.L.McConnelによって、American Laboratory,May,63−75(1978)に発表されている方法、即ち、低角度レーザー光散乱強度測定法が特に好ましく用いられる。
重量平均分子量が1×105以上の高分子量プロピレン系樹脂を重合する方法の例としては、特開平11−228629号公報に記載されたように、まず高分子量成分を重合した後に続いて低分子量成分を重合する方法などがあげられる。
The degree of branching index indicates the degree of long chain branching in a polymer, and is a numerical value defined in the following formula.
Branch index [A] = [η] Br / [η] Lin
Here, [η] Br is the intrinsic viscosity of the propylene resin having a long chain branch, and [η] Lin is a straight chain having the same monomer unit and the same weight average molecular weight as the propylene resin having the long chain branch. It is an intrinsic viscosity of a chain propylene resin.
Intrinsic viscosity, also called intrinsic viscosity, is a measure of the ability of a polymer to enhance solution viscosity. Intrinsic viscosity depends in particular on the molecular weight of the polymer molecules and the degree of branching. Therefore, by comparing the intrinsic viscosity of a polymer having long chain branches with the intrinsic viscosity of a linear polymer having the same weight average molecular weight as that of the polymer having long chain branches, the degree of branching of the polymer having long chain branches can be determined. It can be a scale. The method for measuring the intrinsic viscosity of a propylene-based resin is described by Elliott et al. [J. Appl. Polym. Sci. , 14, 2947-2963 (1970)], for example, a propylene resin is dissolved in tetralin or orthodichlorobenzene, and the intrinsic viscosity at 135 ° C. Can be measured.
The weight average molecular weight (Mw) of the propylene-based resin can be measured by various commonly used methods. L. The method disclosed by McConnel in American Laboratory, May, 63-75 (1978), that is, a low-angle laser light scattering intensity measurement method is particularly preferably used.
As an example of a method for polymerizing a high molecular weight propylene resin having a weight average molecular weight of 1 × 10 5 or more, as described in JP-A No. 11-228629, a high molecular weight component is first polymerized, followed by low molecular weight. Examples thereof include a method of polymerizing components.

長鎖分岐プロピレン系樹脂または高分子量プロピレン系樹脂の中でも、融点+30℃付近において下記の条件で測定した一軸溶融伸張粘度比η5/η0.1が5以上であるプロピレン系樹脂が好ましく、より好ましくは10以上の樹脂である。一軸溶融伸張粘度比とは、伸張ひずみ速度1sec-1で、一軸伸張粘度測定装置(例としてレオメトリックス社製一軸伸張粘度測定装置などがあげられる)などの装置を用いて測定される値であり、歪み開始から0.1秒後の一軸溶融伸長粘度をη0.1とし、5秒後の一軸溶融伸張粘度をη5とする。このような一軸伸張粘度特性を有するプロピレン系樹脂を使用することによって、より微細な気泡を有する発泡シートを製造することができる。 Among long-chain branched propylene resins or high-molecular-weight propylene resins, propylene resins having a uniaxial melt-extension viscosity ratio η 5 / η 0.1 measured under the following conditions at around melting point + 30 ° C. are preferably 5 or more, more preferably 10 or more resins. The uniaxial melt extensional viscosity ratio is a value measured using an apparatus such as a uniaxial extensional viscosity measurement apparatus (for example, a uniaxial extensional viscosity measurement apparatus manufactured by Rheometrics, Inc.) at an elongation strain rate of 1 sec −1 . the uniaxial melt elongation viscosity after 0.1 seconds from the strain initiation and eta 0.1, the uniaxial melt elongation viscosity after 5 seconds and eta 5. By using a propylene-based resin having such uniaxial extensional viscosity characteristics, a foam sheet having finer bubbles can be produced.

発泡シートを形成するために使用される発泡剤は、いわゆる化学発泡剤および物理発泡剤のいずれでもよく、これらを併用してもよい。上記化学発泡剤としては、例えば分解されて窒素ガスを発生する熱分解型発泡剤(アゾジカルボンアミド、アゾビスイソブチロニトリル、ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p,p’−オキシ−ビス(ベンゼンスルホニルヒドラジド)など)、分解されて炭酸ガスを発生する熱分解型無機発泡剤(炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウムなど)など公知の熱分解型発泡性化合物が挙げられる。物理発泡剤としては、具体的にはプロパン、ブタン、水、炭酸ガス等があげられる。上記例示の発泡剤のうち、シートが真空成形時の加熱において2次発泡による変形を生じにくいことや、高温条件や、火に対して不活性な物質であることから、水や炭酸ガス等が好適に用いられる。発泡剤の使用量は所望の発泡倍率が得られるように、用いる発泡剤や樹脂の種類に応じて適宜選択されるものであり、通常熱可塑性樹脂100重量に対して発泡剤0.5〜20重量部である。   The foaming agent used to form the foamed sheet may be either a so-called chemical foaming agent or a physical foaming agent, or may be used in combination. Examples of the chemical foaming agent include a thermal decomposition type foaming agent that decomposes to generate nitrogen gas (azodicarbonamide, azobisisobutyronitrile, dinitrosopentamethylenetetramine, p-toluenesulfonylhydrazide, p, p'- Oxy-bis (benzenesulfonyl hydrazide) and the like, and pyrolytic inorganic foaming agents that decompose to generate carbon dioxide (sodium hydrogen carbonate, ammonium carbonate, ammonium bicarbonate, etc.) . Specific examples of the physical foaming agent include propane, butane, water, carbon dioxide gas, and the like. Among the above-exemplified foaming agents, water, carbon dioxide, and the like are used because the sheet is not easily deformed by secondary foaming during heating during vacuum forming, is a substance that is inert to high temperature conditions, and fire. Preferably used. The amount of the foaming agent used is appropriately selected according to the type of foaming agent and resin used so that a desired foaming ratio can be obtained. Usually, the foaming agent is used in an amount of 0.5 to 20 with respect to 100 weight of the thermoplastic resin. Parts by weight.

本発明で用いる熱可塑性樹脂発泡シートの製造方法は特に限定するものではないが、フラットダイ(Tダイ)やサーキュラーダイを用いた押出成形により得られたシートが好ましく、サーキュラーダイから溶融した樹脂を発泡させながら押出し、マンドレル等に沿わせて延伸、冷却を行なう方法が特に好ましく用いられる。発泡シートを押出成形により製造する場合には、溶融した樹脂をダイから押出し冷却固化させた後に延伸を行なうこともできる。発泡シートは単層であっても多層であってもよいが、シート製造時の破泡を防止する観点から、非発泡層を両外層に有する多層構成の発泡シートが好ましい。非発泡層を構成する樹脂は、発泡層を構成する樹脂の例として前記したものを使用することができるが、発泡層を構成する樹脂と同種類のものであるものが好ましく、例えば発泡層がプロピレン系樹脂である場合、非発泡層もプロピレン系樹脂で構成されることが好ましい。   Although the manufacturing method of the thermoplastic resin foam sheet used in the present invention is not particularly limited, a sheet obtained by extrusion molding using a flat die (T die) or a circular die is preferable, and a resin melted from a circular die is used. A method of extruding while foaming, stretching and cooling along a mandrel or the like is particularly preferably used. When the foamed sheet is produced by extrusion molding, the molten resin can be extruded from a die and solidified by cooling and then stretched. The foamed sheet may be a single layer or a multilayer, but from the viewpoint of preventing foam breakage during sheet production, a multilayered foam sheet having non-foamed layers in both outer layers is preferred. As the resin constituting the non-foamed layer, those described above as examples of the resin constituting the foamed layer can be used, but the same type of resin as that constituting the foamed layer is preferable. In the case of a propylene-based resin, the non-foamed layer is also preferably composed of a propylene-based resin.

本発明で用いる熱可塑性樹脂発泡シートは、単層または多層の発泡シートとその他の材料とを貼合した複合シートであってもよい。このような複合シートは、発泡シートと他の材料とをドライラミネーション、サンドラミネーション、熱ロール貼合、熱風貼合などにより貼り合わせることにより得られる。
発泡シートと積層する他の材料の例としては、前記表皮材と同様なものが使用できるが、特に本発明の成形方法により自動車内装材を成形する場合には、熱可塑性樹脂製のシートや不織布、毛織物や麻などの天然繊維が広く使用され、食品容器を成形する場合には、エチレン-ビニルアルコール共重合体からなる層を有する単層または多層のガスバリア性フィルムやCPPフィルムなどが広く使用される。
The thermoplastic resin foam sheet used in the present invention may be a composite sheet obtained by laminating a single layer or multilayer foam sheet and another material. Such a composite sheet is obtained by laminating a foam sheet and another material by dry lamination, sand lamination, hot roll bonding, hot air bonding, or the like.
Examples of other materials to be laminated with the foamed sheet can be the same as the above-mentioned skin material. Especially when molding an automobile interior material by the molding method of the present invention, a sheet or nonwoven fabric made of a thermoplastic resin. Natural fibers such as woolen fabric and hemp are widely used, and when forming food containers, single-layer or multi-layer gas barrier films having a layer made of an ethylene-vinyl alcohol copolymer and CPP films are widely used. The

多層の熱可塑性樹脂発泡シートとしては、発泡層と非発泡層とからなる多層発泡シートであってもよく、異なる発泡層が積層された多層発泡シートであってもよい。例えば異なる発泡層が積層された多層発泡シートとして、発泡倍率Xαが2〜20倍、厚みTαが2〜20mm、目付量Rαが600〜3000g/m2の発泡層αと、発泡倍率Xβが4〜40倍、厚みTβが2〜12mm、目付量Rβが100〜600g/m2であって、Rα/Rβ=2〜30である発泡層βを有する多層熱可塑性樹脂発泡シートを用いることができる。本発明の真空成形方法によって前記のような多層熱可塑性樹脂発泡シートを真空成形した場合には、発泡層αよりも発泡層βの方が大きく膨張するため、剛性と緩衝性に優れた成形品が得られる。 The multilayer thermoplastic resin foam sheet may be a multilayer foam sheet composed of a foam layer and a non-foam layer, or a multilayer foam sheet in which different foam layers are laminated. For example, as a multilayer foam sheet in which different foam layers are laminated, a foam layer α having a foam ratio X α of 2 to 20 times, a thickness T α of 2 to 20 mm, and a basis weight R α of 600 to 3000 g / m 2 , and a foam ratio Multi-layer thermoplastic having foam layer β where X β is 4 to 40 times, thickness T β is 2 to 12 mm, basis weight R β is 100 to 600 g / m 2 , and R α / R β = 2 to 30 A resin foam sheet can be used. When the above-mentioned multilayer thermoplastic resin foam sheet is vacuum-formed by the vacuum forming method of the present invention, the foam layer β expands more than the foam layer α, so that the molded product has excellent rigidity and buffering properties. Is obtained.

本発明で用いる熱可塑性樹脂発泡シートは、添加剤を含有していてもよい。添加剤としては、充填剤(フィラー)、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、剥離剤、流動性付与剤、滑剤などがあげられる。上記充填剤の例としては、具体的にはガラス繊維、カーボン繊維等の無機繊維、タルク、クレー、シリカ、酸化チタン、炭酸カルシウム、硫酸マグネシウム等の無機粒子等があげられる。   The thermoplastic resin foam sheet used in the present invention may contain an additive. Examples of the additive include a filler (filler), an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, an antistatic agent, a colorant, a release agent, a fluidity-imparting agent, and a lubricant. Specific examples of the filler include inorganic fibers such as glass fibers and carbon fibers, inorganic particles such as talc, clay, silica, titanium oxide, calcium carbonate, and magnesium sulfate.

本発明の真空成形方法により得られた成形品は、発泡倍率と厚みが大きく、軽量で断熱性に優れることから、食品容器などの包装材料や、自動車内装部品、建築材料、家電製品などに使用することができる。自動車内装部品の例としてはドアトリム、天井、トランクサイドなどが挙げることができ、このような部材として本発明で得られる成形品を用いた場合には、例えば車内の温度を調整した場合に、その温度を長時間保つことができるなどの効果が得られる。食品容器として使用する場合には、カップ、トレイ、ボウルなどの様々な形状に賦形し使用することができ、断熱性に優れることから、高温に加熱した汁物充填用や、電子レンジで調理する食品容器用として好ましく用いられる。
The molded product obtained by the vacuum forming method of the present invention has a large expansion ratio and thickness, is lightweight and has excellent heat insulation properties, and is used for packaging materials such as food containers, automobile interior parts, building materials, and home appliances. can do. Examples of automobile interior parts include door trims, ceilings, trunk sides, and the like. When the molded product obtained in the present invention is used as such a member, for example, when the temperature inside the vehicle is adjusted, The effect of being able to keep temperature for a long time is acquired. When used as a food container, it can be shaped and used in various shapes such as cups, trays, bowls, etc., and because it has excellent heat insulation properties, it can be used for filling soups heated to high temperatures or cooking in a microwave oven. It is preferably used for food containers.

本発明の熱可塑性樹脂発泡シートの真空成形方法の一態様の概略図Schematic of one aspect of the vacuum forming method of the thermoplastic resin foam sheet of the present invention

符号の説明Explanation of symbols

1 熱可塑性樹脂発泡シート
2 クリップ部材
3 赤外ヒーター
4 真空吸引可能な成形型A
5 シート固定部材を有する成形型B
6 シート固定部材
1 Thermoplastic resin foam sheet 2 Clip member 3 Infrared heater 4 Vacuum mold A
5 Mold B having a sheet fixing member
6 Seat fixing member

Claims (1)

成形型の成形面より真空吸引可能な成形型Aと、少なくとも成形面外縁部にシート固定部材を有する成形型Bを用いた、以下の工程を含む熱可塑性樹脂発泡シートの真空成形方法。
(1)熱可塑性樹脂発泡シートを加熱軟化させる工程
(2)成形型Aと成形型Bとの間に、工程(1)で得られる熱可塑性樹脂発泡シートを供給する工程
(3)加熱軟化された熱可塑性樹脂発泡シートを成形型間で挟持しつつ、成形面外縁部における両成形型間のクリアランスが、該シートの厚み以下となるまで両成形型を閉じ、成形型Bの成形面全面と前記発泡シート表面とを接触させる工程
(4)工程(3)で成形型Bの成形面全面と前記発泡シート表面とが接触した後に、成形型Aの成形面より真空吸引を開始する工程
(5)真空吸引を継続しつつ、成形面間の前記シートが所望の成形品厚みになるまで型開きして賦形する工程
(6)真空吸引を停止して成形型を開き、成形品を取り出す工程
A method for vacuum forming a thermoplastic resin foam sheet, including the following steps, using a mold A that can be vacuum-sucked from a molding surface of the mold and a mold B having a sheet fixing member at least on the outer edge of the molding surface.
(1) Step of heating and softening the thermoplastic resin foam sheet (2) Step of supplying the thermoplastic resin foam sheet obtained in step (1) between the mold A and the mold B (3) Heat softening While sandwiching the thermoplastic resin foam sheet between the molds, close both molds until the clearance between the molds at the outer edge of the mold surface is equal to or less than the thickness of the sheet, Step (4) of contacting the surface of the foamed sheet (4) Step of starting vacuum suction from the molding surface of the mold A after the entire molding surface of the mold B and the surface of the foamed sheet are in contact in the step (3) (5) ) A step of opening and shaping the mold until the sheet between the molding surfaces reaches a desired thickness of the molded product while continuing the vacuum suction (6) A step of stopping the vacuum suction and opening the molding die and taking out the molded product
JP2004271232A 2004-08-21 2004-09-17 Vacuum forming method for thermoplastic resin foam sheet Active JP4507784B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004271232A JP4507784B2 (en) 2004-09-17 2004-09-17 Vacuum forming method for thermoplastic resin foam sheet
US11/209,762 US20060049551A1 (en) 2004-08-21 2005-08-24 Method for producing a thermoplastic resin foamed article
DE102005040497A DE102005040497A1 (en) 2004-08-31 2005-08-26 Process for producing a thermoplastic resin foam product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004271232A JP4507784B2 (en) 2004-09-17 2004-09-17 Vacuum forming method for thermoplastic resin foam sheet

Publications (2)

Publication Number Publication Date
JP2006082472A JP2006082472A (en) 2006-03-30
JP4507784B2 true JP4507784B2 (en) 2010-07-21

Family

ID=36161352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004271232A Active JP4507784B2 (en) 2004-08-21 2004-09-17 Vacuum forming method for thermoplastic resin foam sheet

Country Status (1)

Country Link
JP (1) JP4507784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884090B2 (en) * 2006-06-15 2012-02-22 積水化成品工業株式会社 Thermoforming method of thermoplastic resin foam board
DE102009025995A1 (en) * 2009-06-18 2011-03-31 Benecke-Kaliko Ag Process for producing a shaped body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148863A (en) * 1978-05-15 1979-11-21 Kanegafuchi Chem Ind Co Ltd Doubleeside vacuum forming method of foamed thermoplastic resin sheet
JPH04332623A (en) * 1991-05-09 1992-11-19 Sekisui Plastics Co Ltd Method of forming foamable thermoplastic resin sheet and formed article thereof
JPH0890688A (en) * 1994-09-20 1996-04-09 Rp Topla Ltd Synthetic resin vessel or the like and manufacture thereof
JP2002052547A (en) * 2000-08-11 2002-02-19 Sumitomo Chem Co Ltd Method for manufacturing fiber reinforced thermoplastic resin molded object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148863A (en) * 1978-05-15 1979-11-21 Kanegafuchi Chem Ind Co Ltd Doubleeside vacuum forming method of foamed thermoplastic resin sheet
JPH04332623A (en) * 1991-05-09 1992-11-19 Sekisui Plastics Co Ltd Method of forming foamable thermoplastic resin sheet and formed article thereof
JPH0890688A (en) * 1994-09-20 1996-04-09 Rp Topla Ltd Synthetic resin vessel or the like and manufacture thereof
JP2002052547A (en) * 2000-08-11 2002-02-19 Sumitomo Chem Co Ltd Method for manufacturing fiber reinforced thermoplastic resin molded object

Also Published As

Publication number Publication date
JP2006082472A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US20060068169A1 (en) Thermoplastic resin foamed sheet
JP2009137306A (en) Hollow foamed blow molding
JP2007245552A (en) Manufacturing method of thermoplastic resin-molded product
JP2006205376A (en) Manufacturing method of thermoplastic resin molded product
US20060163764A1 (en) Method for producing a thermoplastic resin article
JP4539238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
JP2006306030A (en) Molding
JP4507784B2 (en) Vacuum forming method for thermoplastic resin foam sheet
US20060049551A1 (en) Method for producing a thermoplastic resin foamed article
JP3297253B2 (en) Crosslinked polyolefin-based resin foam, laminate and molded article
JP4569238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
US20170334104A1 (en) Process for Producing a Foam Film Laminate and Use Thereof
JP2008207548A (en) Method for manufacturing thermoplastic resin molding
JP4890280B2 (en) Method for producing thermoplastic resin molded article
JP2007007869A (en) Manufacturing method of thermoplastic resin molded product
JP7164660B2 (en) Core material
JP2009029021A (en) Method for producing composite molded product
JP2007007870A (en) Manufacturing method of thermoplastic resin foamed molded product
WO2022220258A1 (en) Injection foam molded body
JP4172685B2 (en) Method for producing foam molded article with skin material
WO2008093858A1 (en) Process for producing thermoplastic resin molding
JP2007203502A (en) Thermoplastic resin made molded product and its manufacturing method
JP2011131525A (en) Method for producing molding
JP2006111003A (en) Thermoplastic resin foamed sheet
JP2011148305A (en) Method for producing molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4507784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250