JP2006068919A - Vacuum forming method of thermoplastic resin foamed sheet - Google Patents

Vacuum forming method of thermoplastic resin foamed sheet Download PDF

Info

Publication number
JP2006068919A
JP2006068919A JP2004251731A JP2004251731A JP2006068919A JP 2006068919 A JP2006068919 A JP 2006068919A JP 2004251731 A JP2004251731 A JP 2004251731A JP 2004251731 A JP2004251731 A JP 2004251731A JP 2006068919 A JP2006068919 A JP 2006068919A
Authority
JP
Japan
Prior art keywords
mold
molds
thermoplastic resin
sheet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004251731A
Other languages
Japanese (ja)
Other versions
JP4539238B2 (en
Inventor
Akira Hanada
暁 花田
Yoshinori Omura
吉典 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004251731A priority Critical patent/JP4539238B2/en
Priority to US11/209,762 priority patent/US20060049551A1/en
Priority to DE102005040497A priority patent/DE102005040497A1/en
Priority to CNB2005100959692A priority patent/CN100522545C/en
Publication of JP2006068919A publication Critical patent/JP2006068919A/en
Application granted granted Critical
Publication of JP4539238B2 publication Critical patent/JP4539238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a thermoplastic resin foamed sheet having a high expansion rate and increased in thickness. <P>SOLUTION: This vacuum foaming method of the thermoplastic resin foamed sheet using a pair of molds capable of being sucked under vacuum from the molding surfaces thereof includes a process (1) for heating and softening the thermoplastic resin foamed sheet, a process (2) for supplying the thermoplastic resin foamed sheet obtained in the process (1) to the space between the molds, a process (3) for closing both molds until the clearance between both molds in the outer edge parts of the molding surfaces becomes the thickness of the thermoplastic resin foamed sheet or below while holding the heated and softened thermoplastic resin foamed sheet between the molds, a process (4) for starting the vacuum suction from the molding surfaces of both molds at the arbitrary point of time when the clearance in the process (3) becomes the thickness of the heated and softened thermoplastic resin foamed sheet or after the thickness of the sheet becomes a predetermined thickness, a process (5) for opening the molds until the sheet between both molding surface becomes the desired thickness of a molded product while continuing vacuum suction to shape the sheet and a process (6) for taking out of the vacuum formed product. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱可塑性樹脂発泡シートの真空成形方法に関する。   The present invention relates to a vacuum forming method for a thermoplastic resin foam sheet.

熱可塑性樹脂発泡成形体は、軽量性、リサイクル性、断熱性などに優れることから、自動車部品材料、建築材料、包装材料等、種々の用途に用いられている。
熱可塑性樹脂発泡成形体を上記のような用途として用いる場合には、熱可塑性樹脂発泡シートを製造した後、該熱可塑性樹脂発泡シートを真空成形などの二次成形方法により所望の形状に賦形し熱可塑性樹脂発泡成形体として使用することが多い。熱可塑性樹脂発泡シートの真空成形方法としては、型締めしたときに所定の空隙を有する一対の雌雄金型の間に熱可塑性樹脂発泡シートを供給して型締めし、型締めしたまま両金型面より真空減圧して発泡シートを空隙の形状に賦形し、熱可塑性樹脂発泡成形体を得る方法が知られている(例えば特許文献1参照)。
Thermoplastic resin foam molded articles are excellent in light weight, recyclability, heat insulation, and the like, and are therefore used in various applications such as automotive parts materials, building materials, and packaging materials.
When a thermoplastic resin foam molded article is used as described above, after producing a thermoplastic resin foam sheet, the thermoplastic resin foam sheet is shaped into a desired shape by a secondary molding method such as vacuum molding. It is often used as a thermoplastic resin foam molded article. As a method of vacuum forming a thermoplastic resin foam sheet, a thermoplastic resin foam sheet is supplied between a pair of male and female molds having a predetermined gap when the molds are clamped, and both molds are kept clamped. A method is known in which a vacuum pressure is reduced from the surface to shape a foamed sheet into a void shape to obtain a thermoplastic resin foamed molded article (see, for example, Patent Document 1).

特開昭54−148863号公報JP 54-148863 A

発泡シートとしては、発泡倍率が高く、厚みの厚いものが望まれる。前記方法によれば、真空成形に用いる原反発泡シートと比較すると、発泡倍率が高く、厚みの厚いシートを得ることができる。しかしながら前記の方法では、一対の成形型を型締めした時に形成される空隙分しか原反発泡シートを膨張させられないため、得られる熱可塑性樹脂発泡シートの厚みは原反シート厚みの2倍程度でしかなく、発泡倍率も未だ満足できるものではなかった。
前記の方法で原反発泡シートよりも十分に発泡倍率が高く厚みの厚い熱可塑性樹脂発泡シートを得るためには、空隙部が大きい成形型を用いる必要があるが、その場合には真空吸引を行っても原反発泡シートによって該空隙部を満たすことができないことがあり、やはり原反発泡シートよりも発泡倍率が高く、厚みの厚い熱可塑性樹脂発泡シートを得ることは困難であった。
本発明は、発泡倍率が高く、かつ厚みの厚い熱可塑性樹脂発泡シートの製造方法を提供するものである。
As the foam sheet, a sheet having a high foaming ratio and a large thickness is desired. According to the said method, compared with the raw fabric foam sheet used for vacuum forming, a foam ratio is high and a thick sheet can be obtained. However, in the above method, since the raw foam sheet can be expanded only by the gap formed when the pair of molds are clamped, the thickness of the obtained thermoplastic resin foam sheet is about twice the thickness of the raw sheet. However, the expansion ratio was still not satisfactory.
In order to obtain a thermoplastic resin foam sheet having a sufficiently high foaming ratio and a thicker thickness than the original foam foam sheet by the above method, it is necessary to use a mold having a large void portion. Even if this is done, the voids may not be filled with the original fabric foamed sheet, and it is still difficult to obtain a thermoplastic resin foamed sheet having a higher foaming ratio than that of the original fabric foamed sheet.
The present invention provides a method for producing a thermoplastic resin foam sheet having a high expansion ratio and a large thickness.

すなわち本発明は、それぞれの成形型の成形面より真空吸引可能な一対の成形型を用いた、以下の工程を含む熱可塑性樹脂発泡シートの真空成形方法である。
(1)熱可塑性樹脂発泡シートを加熱軟化させる工程
(2)成形型間に、工程(1)で得られる熱可塑性樹脂発泡シートを供給する工程
(3)加熱軟化された熱可塑性樹脂発泡シートを成形型間で挟持しつつ、成形面外縁部における両成形型間のクリアランスが、該シートの厚み以下となるまで両成形型を閉じる工程
(4)工程(3)におけるクリアランスが、加熱軟化された熱可塑性樹脂発泡シートの厚み以下になった任意の時点または所定の厚みになったのち、両方の成形型の成形面より真空吸引を開始する工程
(5)真空吸引を継続しつつ、成形面間の前記シートが所望の成形品厚みになるまで型開きして賦形する工程
(6)真空吸引を停止して成形型を開き、成形品を取り出す工程
That is, the present invention is a vacuum molding method for a thermoplastic resin foam sheet including the following steps using a pair of molds that can be vacuum-sucked from the molding surfaces of the respective molds.
(1) Step of heat-softening the thermoplastic resin foam sheet (2) Step of supplying the thermoplastic resin foam sheet obtained in step (1) between the molds (3) Heat-softened thermoplastic resin foam sheet The clearance in the step (4) and the step (3) is closed by heating and softening until the clearance between the two dies at the outer edge of the molding surface is equal to or less than the thickness of the sheet while being sandwiched between the dies. Step of starting vacuum suction from the molding surfaces of both molding dies at an arbitrary time when the thickness of the thermoplastic resin foam sheet becomes less than or equal to the predetermined thickness (5) While continuing vacuum suction, between the molding surfaces (6) A step of stopping the vacuum suction to open the mold and taking out the molded product until the sheet has a desired molded product thickness.

本発明の熱可塑性樹脂発泡シートの製造方法によれば、発泡倍率が高く、厚みの厚い熱可塑性樹脂発泡シートを製造することができる。   According to the method for producing a thermoplastic resin foam sheet of the present invention, it is possible to produce a thermoplastic resin foam sheet having a high foaming ratio and a large thickness.

以下、本発明の一例を図3に基づいて詳細に説明するが、本発明はこの例に限定されるものではない。   Hereinafter, an example of the present invention will be described in detail with reference to FIG. 3, but the present invention is not limited to this example.

本発明では、それぞれの成形型の成形面より真空吸引可能な一対の成形型を用いる。使用する成形型としては、一方が雄型、他方が雌型の成形型や、雌型同士の成形型、一対の板状の成形型などが例示できる。   In the present invention, a pair of molds that can be vacuum-sucked from the molding surface of each mold is used. Examples of the mold used include a male mold on one side and a female mold on the other side, a mold between female dies, a pair of plate-shaped molds, and the like.

それぞれの成形型の成形面より真空吸引可能な成形型としては、その成形面の少なくとも一部が焼結合金から構成される型や、成形面の少なくとも一部に孔が設けられた型などが例示される。成形型に設けられる前期孔の数や位置、孔径は特に限定されるものではなく、該孔を通じて真空吸引することにより、成形型間に供給された熱可塑性樹脂発泡シートを成形型成形面状に賦形することができるものであればよい。   Molds that can be vacuum-sucked from the molding surface of each mold include molds in which at least a part of the molding surface is made of a sintered alloy, and molds in which holes are provided in at least a part of the molding surface Illustrated. The number, position, and hole diameter of the previous holes provided in the mold are not particularly limited. By vacuum suction through the holes, the foamed thermoplastic resin sheet supplied between the molds is formed into a mold surface. Anything that can be shaped is acceptable.

成形型の材質は特に限定されるものではないが、通常寸法安定性、耐久性、熱伝導性などの観点から金属製であり、コストや軽量性などの面からアルミ製であることが好ましい。
また成形型は、ヒーターや熱媒などにより温度調整可能な構造であることが好ましい。発泡シートとの滑り性を高める観点や、成形完了前に発泡シートが冷却されてしまうことを防止する観点から、成形型の成形面を30〜80℃とすることが好ましく、50〜60℃とすることがさらに好ましい。
The material of the mold is not particularly limited, but is usually made of metal from the viewpoints of dimensional stability, durability, thermal conductivity, and the like, and is preferably made of aluminum from the viewpoints of cost and lightness.
Moreover, it is preferable that a shaping | molding die is a structure which can adjust temperature with a heater, a heat medium, etc. From the viewpoint of enhancing the slipperiness with the foam sheet and from the viewpoint of preventing the foam sheet from being cooled before the completion of molding, the molding surface of the molding die is preferably set to 30 to 80 ° C, and 50 to 60 ° C. More preferably.

一方または両方の成形型に、気密性保持部を有する成形型を用いることが好ましい。このような成形型を用いた場合、真空吸引した際にキャビティ内の真空度を維持しやすくなり、きわめてひけの小さい成形品を得ることができる。
気密性保持部を有する成形型としては、例えば少なくとも一方の成形型の成形面外縁部が、対向する成形型方向に可動である成形型が挙げられる。このような成形型の場合、型閉め時は該可動部が成形面外縁部と同じ平面上となるよう、可動部が成形型に収納可能である構造が好ましい。このような成形型は、型を開くに従い可動部が突出するため、後述する型開き工程においてキャビティ内の真空度が維持しやすくなる。
It is preferable to use a mold having an airtight holding portion for one or both molds. When such a mold is used, it is easy to maintain the degree of vacuum in the cavity when vacuum suction is performed, and a molded product with extremely small sink marks can be obtained.
Examples of the mold having the hermeticity holding portion include a mold in which the outer edge portion of the molding surface of at least one of the molds is movable in the opposing mold direction. In the case of such a mold, it is preferable that the movable part can be stored in the mold so that the movable part is on the same plane as the outer edge of the molding surface when the mold is closed. In such a mold, the movable part protrudes as the mold is opened, so that the degree of vacuum in the cavity is easily maintained in the mold opening process described later.

気密性保持部を有する成形型の他の例としては、図4に示すような、少なくとも一方の成形型の成形面外縁部に緩衝材を有する成形型が挙げられる。通常発泡シートは、表面に微小な凹凸を有している。緩衝材を有する成形型の場合には、型閉めにより緩衝材が微小な凹凸のある発泡シート表面と密着するため、真空吸引した場合にキャビティ内の真空度を維持しやすい。緩衝材としては、ゴムや発泡体等が挙げられる。
図5に示すような、型閉めしたときに一方の成形型の外周に設けられた気密性保持部によって、他方の成形型が覆われるような構成の一対の成形型を用いることもできる。
As another example of the mold having the airtight holding portion, there is a mold having a buffer material at the outer edge of the molding surface of at least one of the molds as shown in FIG. Usually, the foam sheet has minute irregularities on the surface. In the case of a mold having a cushioning material, the cushioning material comes into close contact with the surface of the foamed sheet having minute irregularities when the mold is closed, so that it is easy to maintain the degree of vacuum in the cavity when vacuum suction is performed. Examples of the buffer material include rubber and foam.
As shown in FIG. 5, it is also possible to use a pair of molds configured such that the other mold is covered by an airtight holding portion provided on the outer periphery of one mold when the mold is closed.

成形型の成形面および/または成形面外縁部には、発泡シートを固定する部材が設けられていてもよい。例えば成形面および/または成形面外縁部の一部あるいは全面に粘着材を設けたり、ピン、フック、クリップ、スリットなどを設けてもよい。このような成形型を用いることにより、発泡シートを成形面状に賦形することが容易となる。   A member for fixing the foam sheet may be provided on the molding surface and / or the outer edge of the molding surface of the molding die. For example, an adhesive material may be provided on a part or the whole of the molding surface and / or the outer edge of the molding surface, or a pin, hook, clip, slit, or the like may be provided. By using such a mold, it becomes easy to shape the foamed sheet into a molded surface.

成形型は、型閉めしたときに形成されるキャビティの高さが、工程(1)で得られる発泡シート厚みの0.8〜2倍程度の成形型を用いることが好ましい。キャビティの高さとは、成形型間に供給した発泡シートの厚み方向に対応する成形型成形面間の距離である。キャビティ高さは一定である必要はなく、所望の成形品の形状に対応したキャビティであればよい。キャビティの高さが低すぎると型閉め時に発泡シートの気泡をつぶしてしまうことがあり、高すぎると後述するように真空吸引しても成形型の成形面と発泡シート表面とを接触させて賦形することが困難となり、接触させた場合でも破泡が生じやすくなる。   As the mold, it is preferable to use a mold in which the height of the cavity formed when the mold is closed is about 0.8 to 2 times the thickness of the foamed sheet obtained in the step (1). The height of the cavity is the distance between the molding surfaces corresponding to the thickness direction of the foam sheet supplied between the molding dies. The cavity height does not need to be constant, and may be a cavity corresponding to the shape of a desired molded product. If the height of the cavity is too low, bubbles in the foam sheet may be crushed when the mold is closed. If it is too high, the mold surface of the mold and the surface of the foam sheet are brought into contact with each other even if vacuum suction is applied as described later. It becomes difficult to form, and even when brought into contact, bubbles are easily broken.

図3−(1)は、熱可塑性樹脂発泡シートを加熱軟化させる工程(1)を示している。工程(1)では、通常クランプ枠で発泡シートを挟み、遠赤外ヒーター、近赤外ヒーター、接触式熱板などの公知の加熱装置で発泡シートを加熱する。短時間で効率的に加熱できることから、遠赤外ヒーターを用いることが好ましい。加熱処理は、発泡シートの表面温度が、発泡シートを構成する樹脂が結晶性樹脂であれば該樹脂の融点付近、非晶性樹脂であればガラス転移温度付近となるように加熱することが好ましい。   FIG. 3- (1) shows the step (1) of heat-softening the thermoplastic resin foam sheet. In the step (1), the foam sheet is usually sandwiched between clamp frames, and the foam sheet is heated by a known heating device such as a far infrared heater, a near infrared heater, or a contact hot plate. It is preferable to use a far infrared heater because it can be efficiently heated in a short time. The heat treatment is preferably performed so that the surface temperature of the foamed sheet is near the melting point of the resin if the resin constituting the foamed sheet is a crystalline resin, and near the glass transition temperature if the resin is an amorphous resin. .

図3−(2)は、それぞれの成形型の成形面より真空吸引可能な一対の成形型間に、工程(1)で得られる熱可塑性樹脂発泡シートを供給した状態を示している。   FIG. 3- (2) shows a state in which the thermoplastic resin foam sheet obtained in step (1) is supplied between a pair of molds that can be vacuum-sucked from the molding surfaces of the respective molds.

図3−(3)は、加熱軟化された熱可塑性樹脂発泡シートを成形型間で挟持しつつ、成形面外縁部における両成形型間のクリアランスが、該シートの厚み以下となるまで両成形型を閉じた状態を示している。型閉めは一方の成形型のみを他方の成形型方向に移動させてもよいし、両方の成形型を接近させてもよい。   FIG. 3-(3) shows both molds until the heat-softened thermoplastic resin foam sheet is sandwiched between the molds and the clearance between both molds at the outer edge of the molding surface is less than the thickness of the sheet. The closed state is shown. In closing the mold, only one mold may be moved in the direction of the other mold, or both molds may be brought close to each other.

図3−(4)は、両方の成形型の成形面より真空吸引を行った状態を示している。真空吸引は、成形面外縁部における両成形型間のクリアランスが、加熱軟化された熱可塑性樹脂発泡シートの厚み以下になった任意の時点または所定の厚みになったのちに開始する。例えば成形面外縁部における両成形型間のクリアランスが、加熱軟化された熱可塑性樹脂発泡シートの厚みと同じになった時点から真空吸引を開始し、真空吸引しながら所定の厚みまでさらに型を閉じてもよいし、クリアランスが所定の厚みになると同時、または所定の厚みとなったのちに真空吸引を開始してもよい。所定の厚みとなったのちに真空吸引を行う場合には、発泡シートが冷却される前、所定の厚みとなった時点から通常3秒以内に真空吸引を行うことが好ましい。
各成形型から真空吸引を開始するタイミングは、内部構造が均一な成形品を得るためには同時であることが好ましいが、発泡シートが冷却されない時間内であれば時間差をつけることも可能である。一方の成形型から真空吸引を開始した後に他方の成形型から真空吸引を開始する場合には、開始時間の差が3秒以内であることが好ましい。
FIG. 3- (4) shows a state where vacuum suction is performed from the molding surfaces of both molds. The vacuum suction starts at any time when the clearance between the two molds at the outer edge of the molding surface becomes equal to or less than the thickness of the heat-softened thermoplastic resin foam sheet or after a predetermined thickness. For example, vacuum suction starts when the clearance between both molds at the outer edge of the molding surface becomes the same as the thickness of the heat-softened thermoplastic foam sheet, and the mold is further closed to a predetermined thickness while vacuum suction is performed. Alternatively, vacuum suction may be started at the same time when the clearance reaches a predetermined thickness or after the clearance has reached the predetermined thickness. When vacuum suction is performed after the predetermined thickness is reached, it is preferable to perform vacuum suction within 3 seconds from the point of time when the foam sheet has reached the predetermined thickness before cooling.
The timing of starting vacuum suction from each mold is preferably the same for obtaining a molded product having a uniform internal structure, but it is also possible to make a time difference as long as the foamed sheet is not cooled. . In the case where vacuum suction is started from the other mold after starting vacuum suction from one mold, the difference in the start times is preferably within 3 seconds.

真空吸引の程度は特に限定されるものではないが、キャビティの真空度が−0.05〜−0.1MPaになるように真空吸引することが好ましい。真空度とは、大気圧に対するキャビティ内の圧である。すなわち「真空度が−0.05MPa」とは、キャビティ内の圧力が0.95MPaであることを示す。真空度が高いほど成形型に発泡シートが強く押し付けられるため、発泡シートをキャビティ形状どおりに賦形することが可能になる。キャビティの真空度とは、真空吸引する孔のキャビティ側口で測定される値である。   The degree of vacuum suction is not particularly limited, but vacuum suction is preferably performed so that the degree of vacuum of the cavity is -0.05 to -0.1 MPa. The degree of vacuum is the pressure in the cavity with respect to atmospheric pressure. That is, “the degree of vacuum is −0.05 MPa” indicates that the pressure in the cavity is 0.95 MPa. The higher the degree of vacuum, the stronger the foam sheet is pressed against the mold, so that the foam sheet can be shaped according to the cavity shape. The degree of vacuum of the cavity is a value measured at the cavity side opening of the hole to be vacuumed.

図3−(5)は、成形面間の前記シ−トが所望の成形品厚みになるまで型開きして賦形した状態である。型開きは真空吸引を継続しながら行う。型開きの速度や真空度は、発泡シ−トが所望の成形品形状に賦形されるように調整すればよい。   FIG. 3- (5) shows a state where the mold is opened and shaped until the sheet between the molding surfaces reaches a desired thickness of the molded product. Open the mold while continuing vacuum suction. The mold opening speed and the degree of vacuum may be adjusted so that the foamed sheet is shaped into a desired molded product shape.

所定厚みまで型開きした状態で、発泡シートを十分冷却したのち、真空吸引を停止して成形型を開き、成形品を取り出す。図3−(6)は、成形品を取り出すため成形型(図示せず)を開いた状態を示している。   In the state where the mold is opened to a predetermined thickness, the foamed sheet is sufficiently cooled, then vacuum suction is stopped, the mold is opened, and the molded product is taken out. FIG. 3- (6) shows a state in which a mold (not shown) is opened to take out the molded product.

本発明において、一方あるいは両方の成形型の成形面に、予め表皮材を載置しておいてもよい。表皮材としては、該表皮材を通して真空吸引を行うことにより発泡シートを成形面状に賦形可能なものであればその材料や厚みは特に限定されるものではなく、例えば熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマーなどの樹脂、ゴム、麻などの天然繊維、けい酸カルシウムなどの鉱物などがあり、その形態はフィルム、シート、不織布、織布などが例としてあげられる。その他にも紙、プロピレン系樹脂やスチレン系樹脂などからなる合成紙、アルミニウムや鉄等の金属薄板や金属箔などを使用することができる。表皮材は単層でも多層でもよく、シボなどの凹凸模様や印刷や染色などが施されたものでもよい。   In the present invention, a skin material may be placed in advance on the molding surface of one or both molds. As the skin material, the material and thickness are not particularly limited as long as the foamed sheet can be shaped into a molding surface by performing vacuum suction through the skin material. For example, a thermoplastic resin, thermosetting Resins, thermoplastic elastomers and other natural fibers, natural fibers such as rubber and hemp, minerals such as calcium silicate, etc. Examples of the form include films, sheets, nonwoven fabrics and woven fabrics. In addition, paper, synthetic paper made of propylene resin, styrene resin, or the like, a metal thin plate such as aluminum or iron, a metal foil, or the like can be used. The skin material may be a single layer or a multilayer, and may be a textured pattern such as embossed or printed or dyed.

本発明で用いる熱可塑性樹脂発泡シートとしては特に限定されるものではなく、公知の発泡シートを用いることができる。
熱可塑性樹脂発泡シートを構成する樹脂としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン等の炭素数が6以下のオレフィンホモポリマー、あるいは炭素数が2〜10のオレフィンから選択される2種類以上のモノマーを共重合させたオレフィン共重合体などのオレフィン系樹脂、エチレン−ビニルエステル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体、エステル系樹脂、アミド系樹脂、スチレン系樹脂、アクリル系樹脂、アクリロニトリル系樹脂、アイオノマー樹脂などがあげられる。これらの樹脂は単独で使用してもよいし複数の樹脂のブレンド物として用いることもできる。これらの樹脂の中でも、成形性、耐油性、コストなどの観点からオレフィン系樹脂が好ましく用いられ、得られる成形品の剛性、耐熱性などの観点からプロピレン系樹脂が特に好ましく用いられる。
It does not specifically limit as a thermoplastic resin foam sheet used by this invention, A well-known foam sheet can be used.
The resin constituting the thermoplastic resin foam sheet is an olefin homopolymer having 6 or less carbon atoms such as ethylene, propylene, butene, pentene, hexene, or two or more kinds selected from olefins having 2 to 10 carbon atoms. Olefin resins such as olefin copolymers obtained by copolymerizing monomers, ethylene-vinyl ester copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid ester copolymers, ester-based resins Amide resin, styrene resin, acrylic resin, acrylonitrile resin, ionomer resin and the like. These resins may be used alone or as a blend of a plurality of resins. Among these resins, olefin resins are preferably used from the viewpoints of moldability, oil resistance, cost, and the like, and propylene resins are particularly preferably used from the viewpoint of rigidity and heat resistance of the obtained molded product.

プロピレン系樹脂製の発泡シートを使用する場合、発泡層を構成するプロピレン系樹脂としては、プロピレンホモポリマーや、プロピレン由来のモノマー単位を50モル%以上含むプロピレン系共重合体をあげることができる。共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。好ましく用いられるプロピレン系共重合体の例としては、エチレンまたは炭素数4〜10のα−オレフィンとプロピレンとの共重合体を挙げることができる。炭素数4〜10のα−オレフィンとしては、例えば、1−ブテン、4−メチルペンテン−1、1−ヘキセンおよび1−オクテンが挙げられる。プロピレン系共重合体中のプロピレン以外のモノマー単位の含有量は、エチレンについては15モル%以下、炭素数4〜10のα−オレフィンについては30モル%以下であることが好ましい。プロピレン系樹脂は1種類でもよく、2種類以上を混合して用いてもよい。   When using a foamed sheet made of a propylene resin, examples of the propylene resin constituting the foamed layer include a propylene homopolymer and a propylene copolymer containing 50 mol% or more of a monomer unit derived from propylene. The copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. As an example of the propylene-based copolymer that is preferably used, a copolymer of ethylene or an α-olefin having 4 to 10 carbon atoms and propylene can be given. Examples of the α-olefin having 4 to 10 carbon atoms include 1-butene, 4-methylpentene-1, 1-hexene, and 1-octene. The content of monomer units other than propylene in the propylene-based copolymer is preferably 15 mol% or less for ethylene and 30 mol% or less for α-olefins having 4 to 10 carbon atoms. One type of propylene resin may be used, or two or more types may be mixed and used.

またプロピレン系樹脂の中でも、長鎖分岐プロピレン系樹脂や重量平均分子量が1×105以上の高分子量プロピレン系樹脂を、発泡層を構成する熱可塑性樹脂の50重量%以上用いることにより、より微細な気泡を有するプロピレン系樹脂発泡シートを得ることができる。さらにこのようなプロピレン系樹脂の中でも、シートリサイクル時にゲルを生じにくいことから非架橋のプロピレン系樹脂が好ましく使用される。 Among the propylene resins, a long chain branched propylene resin or a high molecular weight propylene resin having a weight average molecular weight of 1 × 10 5 or more is used in a finer particle by using 50% by weight or more of the thermoplastic resin constituting the foam layer. A propylene-based resin foam sheet having various bubbles can be obtained. Further, among such propylene resins, non-crosslinked propylene resins are preferably used because gels are unlikely to occur during sheet recycling.

ここで長鎖分岐プロピレン系樹脂とは、分岐度指数[A]が0.20≦[A]≦0.98を満たすプロピレン系樹脂を指す。
分岐度指数[A]が0.20≦[A]≦0.98を満たす長鎖分岐プロピレン系樹脂の例としては、バゼル社製のプロピレンPF−814が挙げられる。
Here, the long-chain branched propylene-based resin refers to a propylene-based resin having a degree of branching index [A] satisfying 0.20 ≦ [A] ≦ 0.98.
An example of a long-chain branched propylene-based resin satisfying the branching index [A] of 0.20 ≦ [A] ≦ 0.98 is propylene PF-814 manufactured by Basel.

分岐度指数とは、重合体における長鎖分岐の程度を示すものであり、下記の式において定義される数値である。
分岐度指数 [A] =〔η〕Br/〔η〕Lin
ここで〔η〕Brは、長鎖分岐を有するプロピレン系樹脂の固有粘度であり、〔η〕Linは、該長鎖分岐を有するプロピレン系樹脂と同じモノマー単位および同じ重量平均分子量を有する、直鎖プロピレン系樹脂の固有粘度である。
固有粘度は極限粘度数とも呼ばれ、重合体の溶液粘度を増強する能力の尺度である。固有粘度は特にポリマー分子の分子量と、分岐度に依存する。したがって、長鎖分岐を有するポリマーの固有粘度と、該長鎖分岐を有するポリマーと同じ重量平均分子量の直鎖ポリマーの固有粘度とを比較することにより、該長鎖分岐を有するポリマーの分岐度の尺度とすることができる。プロピレン系樹脂の固有粘度の測定方法は、エリオット等[J.Appl.Polym.Sci.,14,2947−2963(1970)]により開示されているような従来知られている方法により測定することができ、例えば、プロピレン系樹脂をテトラリン又はオルトジクロロベンゼンに溶解し、135℃で固有粘度を測定することが可能である。
プロピレン系樹脂の重量平均分子量(Mw)は、通常用いられる種々の方法で測定できるが、M.L.McConnelによって、American Laboratory,May,63−75(1978)に発表されている方法、即ち、低角度レーザー光散乱強度測定法が特に好ましく用いられる。
重量平均分子量が1×105以上の高分子量プロピレン系樹脂を重合する方法の例としては、特開平11−228629号公報に記載されたように、まず高分子量成分を重合した後に続いて低分子量成分を重合する方法などがあげられる。
The degree of branching index indicates the degree of long chain branching in a polymer, and is a numerical value defined in the following formula.
Branch index [A] = [η] Br / [η] Lin
Here, [η] Br is the intrinsic viscosity of the propylene resin having a long chain branch, and [η] Lin is a straight chain having the same monomer unit and the same weight average molecular weight as the propylene resin having the long chain branch. It is an intrinsic viscosity of a chain propylene resin.
Intrinsic viscosity, also called intrinsic viscosity, is a measure of the ability of a polymer to enhance solution viscosity. Intrinsic viscosity depends in particular on the molecular weight of the polymer molecules and the degree of branching. Therefore, by comparing the intrinsic viscosity of a polymer having long chain branches with the intrinsic viscosity of a linear polymer having the same weight average molecular weight as that of the polymer having long chain branches, the degree of branching of the polymer having long chain branches can be determined. It can be a scale. The method for measuring the intrinsic viscosity of a propylene resin is described by Elliott et al. Appl. Polym. Sci. , 14, 2947-2963 (1970)], for example, a propylene resin is dissolved in tetralin or orthodichlorobenzene, and the intrinsic viscosity at 135 ° C. Can be measured.
The weight average molecular weight (Mw) of the propylene-based resin can be measured by various commonly used methods. L. The method disclosed by McConnel in American Laboratory, May, 63-75 (1978), that is, a low-angle laser light scattering intensity measurement method is particularly preferably used.
As an example of a method for polymerizing a high molecular weight propylene resin having a weight average molecular weight of 1 × 10 5 or more, as described in JP-A No. 11-228629, a high molecular weight component is first polymerized and subsequently a low molecular weight polymer is used. Examples thereof include a method of polymerizing components.

長鎖分岐プロピレン系樹脂または高分子量プロピレン系樹脂の中でも、融点+30℃付近において下記の条件で測定した一軸溶融伸張粘度比η5/η0.1が5以上であるプロピレン系樹脂が好ましく、より好ましくは10以上の樹脂である。一軸溶融伸張粘度比とは、伸張ひずみ速度1sec-1で、一軸伸張粘度測定装置(例としてレオメトリックス社製一軸伸張粘度測定装置などがあげられる)などの装置を用いて測定される値であり、歪み開始から0.1秒後の一軸溶融伸長粘度をη0.1とし、5秒後の一軸溶融伸張粘度をη5とする。このような一軸伸張粘度特性を有するプロピレン系樹脂を使用することによって、より微細な気泡を有する発泡シートを製造することができる。 Among long-chain branched propylene resins or high-molecular-weight propylene resins, propylene resins having a uniaxial melt-extension viscosity ratio η 5 / η 0.1 measured under the following conditions at around melting point + 30 ° C. are preferably 5 or more, more preferably 10 or more resins. The uniaxial melt extensional viscosity ratio is a value measured using an apparatus such as a uniaxial extensional viscosity measurement apparatus (for example, a uniaxial extensional viscosity measurement apparatus manufactured by Rheometrics, Inc.) at an elongation strain rate of 1 sec −1 . the uniaxial melt elongation viscosity after 0.1 seconds from the strain initiation and eta 0.1, the uniaxial melt elongation viscosity after 5 seconds and eta 5. By using a propylene-based resin having such uniaxial extensional viscosity characteristics, a foam sheet having finer bubbles can be produced.

発泡シートを形成するために使用される発泡剤は、いわゆる化学発泡剤および物理発泡剤のいずれでもよく、これらを併用してもよい。上記化学発泡剤としては、例えば分解されて窒素ガスを発生する熱分解型発泡剤(アゾジカルボンアミド、アゾビスイソブチロニトリル、ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルヒドラジド、p,p’−オキシ−ビス(ベンゼンスルホニルヒドラジド)など)、分解されて炭酸ガスを発生する熱分解型無機発泡剤(炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウムなど)など公知の熱分解型発泡性化合物が挙げられる。物理発泡剤としては、具体的にはプロパン、ブタン、水、炭酸ガス等があげられる。上記例示の発泡剤のうち、シートが真空成形時の加熱において2次発泡による変形を生じにくいことや、高温条件や、火に対して不活性な物質であることから、水や炭酸ガス等が好適に用いられる。発泡剤の使用量は所望の発泡倍率が得られるように、用いる発泡剤や樹脂の種類に応じて適宜選択されるものであり、通常熱可塑性樹脂100重量に対して発泡剤0.5〜20重量部である。   The foaming agent used to form the foamed sheet may be either a so-called chemical foaming agent or a physical foaming agent, or may be used in combination. Examples of the chemical foaming agent include a thermal decomposition type foaming agent that decomposes to generate nitrogen gas (azodicarbonamide, azobisisobutyronitrile, dinitrosopentamethylenetetramine, p-toluenesulfonylhydrazide, p, p'- Oxy-bis (benzenesulfonyl hydrazide) and the like, and pyrolytic inorganic foaming agents that decompose to generate carbon dioxide (sodium hydrogen carbonate, ammonium carbonate, ammonium bicarbonate, etc.) . Specific examples of the physical foaming agent include propane, butane, water, carbon dioxide gas, and the like. Among the above-exemplified foaming agents, water, carbon dioxide, and the like are used because the sheet is not easily deformed by secondary foaming during heating during vacuum forming, is a substance that is inert to high temperature conditions, and fire. Preferably used. The amount of the foaming agent used is appropriately selected according to the type of foaming agent and resin used so that a desired foaming ratio can be obtained. Usually, the foaming agent is used in an amount of 0.5 to 20 with respect to 100 weight of the thermoplastic resin. Parts by weight.

本発明で用いる熱可塑性樹脂発泡シートの製造方法は特に限定するものではないが、フラットダイ(Tダイ)やサーキュラーダイを用いた押出成形により得られたシートが好ましく、サーキュラーダイから溶融した樹脂を発泡させながら押出し、マンドレル等に沿わせて延伸、冷却を行なう方法が特に好ましく用いられる。発泡シートを押出成形により製造する場合には、溶融した樹脂をダイから押出し冷却固化させた後に延伸を行なうこともできる。発泡シートは単層であっても多層であってもよいが、シート製造時の破泡を防止する観点から、非発泡層を両外層に有する多層構成の発泡シートが好ましい。非発泡層を構成する樹脂は、発泡層を構成する樹脂の例として前記したものを使用することができるが、発泡層を構成する樹脂と同種類のものであるものが好ましく、例えば発泡層がプロピレン系樹脂である場合、非発泡層もプロピレン系樹脂で構成されることが好ましい。   Although the manufacturing method of the thermoplastic resin foam sheet used in the present invention is not particularly limited, a sheet obtained by extrusion molding using a flat die (T die) or a circular die is preferable, and a resin melted from a circular die is used. A method of extruding while foaming, stretching and cooling along a mandrel or the like is particularly preferably used. When the foamed sheet is produced by extrusion molding, the molten resin can be extruded from a die and solidified by cooling and then stretched. The foamed sheet may be a single layer or a multilayer, but from the viewpoint of preventing foam breakage during sheet production, a multilayered foam sheet having non-foamed layers in both outer layers is preferred. As the resin constituting the non-foamed layer, those described above as examples of the resin constituting the foamed layer can be used, but the same type of resin as that constituting the foamed layer is preferable. In the case of a propylene-based resin, the non-foamed layer is also preferably composed of a propylene-based resin.

本発明で用いる熱可塑性樹脂発泡シートは、単層または多層の発泡シートとその他の材料とを貼合した複合シートであってもよい。このような複合シートは、発泡シートと他の材料とをドライラミネーション、サンドラミネーション、熱ロール貼合、熱風貼合などにより貼り合わせることにより得られる。
発泡シートと積層する他の材料の例としては、前記表皮材と同様なものが使用できるが、特に本発明の成形方法により自動車内装材を成形する場合には、熱可塑性樹脂製のシートや不織布、毛織物や麻などの天然繊維が広く使用され、食品容器を成形する場合には、エチレン-ビニルアルコール共重合体からなる層を有する単層または多層のガスバリア性フィルムやCPPフィルムなどが広く使用される。
The thermoplastic resin foam sheet used in the present invention may be a composite sheet obtained by laminating a single layer or multilayer foam sheet and another material. Such a composite sheet is obtained by laminating a foam sheet and another material by dry lamination, sand lamination, hot roll bonding, hot air bonding, or the like.
Examples of other materials to be laminated with the foamed sheet can be the same as the above-mentioned skin material. Especially when molding an automobile interior material by the molding method of the present invention, a sheet or nonwoven fabric made of a thermoplastic resin. Natural fibers such as woolen fabric and hemp are widely used, and when forming food containers, single-layer or multi-layer gas barrier films having a layer made of an ethylene-vinyl alcohol copolymer and CPP films are widely used. The

本発明で用いる熱可塑性樹脂発泡シートは、添加剤を含有していてもよい。添加剤としては、充填剤(フィラー)、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、剥離剤、流動性付与剤、滑剤などがあげられる。上記充填剤の例としては、具体的にはガラス繊維、カーボン繊維等の無機繊維、タルク、クレー、シリカ、酸化チタン、炭酸カルシウム、硫酸マグネシウム等の無機粒子等があげられる。   The thermoplastic resin foam sheet used in the present invention may contain an additive. Examples of the additive include a filler (filler), an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, an antistatic agent, a colorant, a release agent, a fluidity-imparting agent, and a lubricant. Specific examples of the filler include inorganic fibers such as glass fibers and carbon fibers, inorganic particles such as talc, clay, silica, titanium oxide, calcium carbonate, and magnesium sulfate.

本発明の真空成形方法により得られた成形品は、発泡倍率と厚みが大きく、軽量で断熱性に優れることから、食品容器などの包装材料や、自動車内装部品、建築材料、家電製品などに使用することができる。自動車内装部品の例としてはドアトリム、天井、トランクサイドなどが挙げることができ、このような部材として本発明で得られる成形品を用いた場合には、例えば車内の温度を調整した場合に、その温度を長時間保つことができるなどの効果が得られる。食品容器として使用する場合には、カップ、トレイ、ボウルなどの様々な形状に賦形し使用することができ、断熱性に優れることから、高温に加熱した汁物充填用や、電子レンジで調理する食品容器用として好ましく用いられる。
The molded product obtained by the vacuum forming method of the present invention has a large expansion ratio and thickness, is lightweight and has excellent heat insulation properties, and is used for packaging materials such as food containers, automobile interior parts, building materials, and home appliances. can do. Examples of automobile interior parts include door trims, ceilings, trunk sides, and the like. When the molded product obtained in the present invention is used as such a member, for example, when the temperature inside the vehicle is adjusted, The effect of being able to keep temperature for a long time is acquired. When used as a food container, it can be shaped and used in various shapes such as cups, trays, bowls, etc., and because it has excellent heat insulation properties, it can be used for filling soups heated to high temperatures or cooking in a microwave oven. It is preferably used for food containers.

以下、本発明を実施例に基づき説明するが、本発明は実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example at all.

[実施例1]
以下に示す方法により、発泡層の両面に非発泡層が積層された、二種三層の熱可塑性樹脂発泡シートを作製した。
[Example 1]
By the method shown below, a thermoplastic resin foam sheet of two types and three layers in which a non-foamed layer was laminated on both surfaces of the foamed layer was produced.

(発泡層用材料)
特開平11−228629号公報に開示された方法により得た、下記の物性を有するプロピレン系重合体粉末100重量部に対して、ステアリン酸カルシウム0.1重量部、フェノール系酸化防止剤(商品名:イルガノックス1010、チバスペシャルティケミカルズ社製)0.05重量部、フェノール系酸化防止剤(商品名:スミライザーBHT、住友化学工業(株)製)0.2重量部を加えて混合し、230℃で溶融混練して、プロピレン系重合体ペレット(i)を得た。プロピレン系重合体ペレット(i)のJIS K6758で測定されるメルトフローレート(MFR)は12g/10min(230℃ 2.16kgf)であった。該プロピレン系重合体ペレット(i)を発泡層用材料とした。
プロピレン系重合体の物性
成分(A)(特開平11−228629に開示された方法で得られたプロピレン系重合体に含まれる2成分のうちの高分子量成分)の極限粘度([η]A)=8dl/g、成分(A)中のエチレン由来の構成単位含量(C2inA)=0%、成分(B)の極限粘度([η]B)=1.2dl/g、成分(B)(特開平11−228629に開示された方法で得られたプロピレン系重合体に含まれる2成分のうちの低分子量成分)中のエチレン由来の構成単位含量(C2inB)=0%。レオメトリックス社製一軸伸張粘度測定装置を用いて測定した180℃、0.1sec-1におけるη5=71000Pa・s、η0.1=2400Pa・s。
(Foam layer material)
With respect to 100 parts by weight of propylene polymer powder having the following physical properties obtained by the method disclosed in JP-A-11-228629, 0.1 part by weight of calcium stearate, phenolic antioxidant (trade name: Irganox 1010, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.05 parts by weight, phenolic antioxidant (trade name: Sumilyzer BHT, manufactured by Sumitomo Chemical Co., Ltd.) 0.2 parts by weight are added and mixed at 230 ° C. By melt-kneading, propylene polymer pellets (i) were obtained. The melt flow rate (MFR) of the propylene-based polymer pellet (i) measured by JIS K6758 was 12 g / 10 min (230 ° C. 2.16 kgf). The propylene polymer pellet (i) was used as a foam layer material.
Physical properties of propylene polymer Intrinsic viscosity of component (A) (high molecular weight component of two components contained in the propylene polymer obtained by the method disclosed in JP-A-11-228629) ([ η] A) = 8 dl / g, ethylene-derived constituent unit content in component (A) (C2inA) = 0%, intrinsic viscosity of component (B) ([η] B) = 1.2 dl / g, component ( B) Structural unit content (C2inB) derived from ethylene in (low molecular weight component of the two components contained in the propylene-based polymer obtained by the method disclosed in JP-A-11-228629) = 0%. Η 5 = 71000 Pa · s and η 0.1 = 2400 Pa · s at 180 ° C. and 0.1 sec −1 measured using a uniaxial extensional viscosity measuring device manufactured by Rheometrics.

(非発泡層用材料)
ポリプロピレン(ii)(住友化学工業(株)製ホモポリプロピレン FS2011DG2 MFR 2.5g/10min(230℃ 2.16kgf))、ポリプロピレン(iii)(バゼル社製長鎖分岐型ホモポリプロピレン PF814 MFR 3g/10min(230℃ 2.16kgf))、ポリプロピレン(iv)(住友化学工業(株)製プロピレン−エチレンランダム共重合体 W151 エチレン由来の構成単位含量4.5% MFR 8g/10min(230℃ 2.16kgf))、タルクマスターバッチ(v)(住友化学工業(株)製ブロックポリプロピレンベースタルクマスターバッチ MF110 タルク含有量70wt%)、チタンマスターバッチ(vi)(東京インキ(株)製チタンマスターバッチ PPM2924 チタン含有量60wt% ランダムポリプロピレンベース MFR 30g/10min(230℃ 2.16kgf))を、(ii)/(iii)/(iv)/(v)/(vi)=12/30/15/43/5の重量比でドライブレンドし、非発泡層用材料とした。
(Material for non-foamed layer)
Polypropylene (ii) (Homopolypropylene FS2011DG2 MFR 2.5 g / 10 min (230 ° C. 2.16 kgf) manufactured by Sumitomo Chemical Co., Ltd.), polypropylene (iii) (long-chain branched homopolypropylene PF814 MFR 3 g / 10 min (manufactured by Basel) 230 ° C. 2.16 kgf)), polypropylene (iv) (Propylene-ethylene random copolymer W151 manufactured by Sumitomo Chemical Co., Ltd. W151 ethylene-derived structural unit content 4.5% MFR 8 g / 10 min (230 ° C. 2.16 kgf)) , Talc Masterbatch (v) (Sumitomo Chemical Co., Ltd. Block Polypropylene Base Talc Masterbatch MF110 Talc content 70wt%), Titanium Masterbatch (vi) (Tokyo Ink Co., Ltd. Titanium Masterbatch PPM2924 Titanium content 60wt Random polypropylene base MFR 30 g / 10 min (230 ° C. 2.16 kgf)) at a weight ratio of (ii) / (iii) / (iv) / (v) / (vi) = 12/30/15/43/5 Dry blended to obtain a non-foamed layer material.

(発泡シートの製造方法)
前記発泡層用材料、非発泡層用材料を使用し、図1および図2に示すような、発泡層押出用の50mmφ2軸押出機(2)と、非発泡層押出用の32mmφ単軸押出機(3)、に90mmφサーキュラーダイ(4)を取り付けた装置(1)により押出成形を行い、以下のようにして熱可塑性樹脂製発泡シートを得た。
(Method for producing foam sheet)
A 50 mmφ twin screw extruder (2) for extruding a foam layer and a 32 mmφ single screw extruder for extruding a non-foamed layer as shown in FIG. 1 and FIG. Extrusion molding was performed by the apparatus (1) in which the 90 mmφ circular die (4) was attached to (3), and a thermoplastic resin foam sheet was obtained as follows.

発泡層用材料100重量部に対して核剤(三共化成製MB1023)0.1重量部をブレンドした原料を50mmφ2軸押出機(2)のホッパーに投入し、180℃に加熱したシリンダー内で混練した。 A raw material obtained by blending 0.1 part by weight of a nucleating agent (MB1023 manufactured by Sankyo Chemical Co., Ltd.) with 100 parts by weight of the foam layer material was put into a hopper of a 50 mmφ twin screw extruder (2) and kneaded in a cylinder heated to 180 ° C did.

50mmφ2軸押出機(2)中で、発泡層用材料と核剤とが十分に溶融混練されて相溶し、核剤が熱により分解発泡した時点で、液化炭酸ガスボンベに接続したポンプ(5)より物理発泡剤として炭酸ガス0.5重量部を注入した。炭酸ガス注入後、さらに混練して炭酸ガスを含浸させた後、これらをサーキュラーダイ(4)に供給した。
非発泡層用材料は32mmφ単軸押出機(3)により溶融混練してサーキュラーダイ(4)に供給した。
A pump (5) connected to a liquefied carbon dioxide gas cylinder when the foam layer material and the nucleating agent are sufficiently melt-kneaded and compatible in the 50 mmφ twin screw extruder (2), and the nucleating agent is decomposed and foamed by heat. Further, 0.5 part by weight of carbon dioxide gas was injected as a physical foaming agent. After carbon dioxide gas injection, the mixture was further kneaded and impregnated with carbon dioxide gas, and then supplied to the circular die (4).
The non-foamed layer material was melt-kneaded by a 32 mmφ single-screw extruder (3) and supplied to the circular die (4).

発泡層用材料は50mmφ2軸押出機のヘッド(7)よりサーキュラーダイ(4)の内部に導入され、流路(9a)によりダイ出口方向に送られ、その途中でパスPを通過して分岐され流路(9b)にも送られた。
非発泡層用材料は32mmφ単軸押出機(3)のヘッド(8)よりダイ内部に導入され、流路(10a)と(10b)に分割された後、流路(9a)の両面に積層するように供給されながらダイ出口方向に送られ、(11a)において積層化された。流路(10a)と(10b)に供給された非発泡層用材料は、その途中でパスPに類似した分割流路(図示せず)により分岐され流路(10c)、(10d)に送られた後、流路(9b)の両面に積層するように供給されながらダイ出口方向に送られ、(11b)において積層化された。
(11a)、(11b)において二種三層構造の円筒状となった溶融樹脂は、サーキュラーダイ(4)の出口(12)から押出され、この大気圧への開放により、発泡層用材料に含浸された炭酸ガスが膨張し、気泡が形成されて発泡層が形成された。
The material for the foam layer is introduced into the circular die (4) from the head (7) of the 50 mmφ twin screw extruder, is sent in the direction of the die exit through the flow path (9a), and is branched through the path P in the middle. It was also sent to the flow path (9b).
The non-foamed layer material is introduced into the die from the head (8) of the 32 mmφ single screw extruder (3), divided into flow paths (10a) and (10b), and then laminated on both sides of the flow path (9a). While being fed, it was sent in the direction of the die exit and laminated in (11a). The material for the non-foamed layer supplied to the flow paths (10a) and (10b) is branched in the middle by a divided flow path (not shown) similar to the path P and sent to the flow paths (10c) and (10d). Then, while being supplied so as to be laminated on both surfaces of the flow path (9b), it was sent in the direction of the die exit, and was laminated in (11b).
In (11a) and (11b), the molten resin having a cylindrical shape having a two-layer / three-layer structure is extruded from the outlet (12) of the circular die (4), and is released into the foam layer material by opening to the atmospheric pressure. The impregnated carbon dioxide gas expanded, bubbles were formed, and a foam layer was formed.

ダイより押出された二種三層の発泡シートを最大径700mmのマンドレル(6)に沿わせながらチューブ状に引取り、拡大と冷却を行った。得られたチューブ状発泡シートの円周上の2ヶ所でシートを切開することで幅1080mmの2枚の平坦なシートとし、引取ロールにより引取り、発泡倍率3倍、厚さ1.5mmの熱可塑性樹脂発泡シートを得た。   The two- and three-layer foam sheet extruded from the die was taken up in a tube shape along a mandrel (6) having a maximum diameter of 700 mm, and expanded and cooled. The sheet-like foamed sheet is cut at two locations on the circumference to form two flat sheets with a width of 1080 mm, taken up by a take-up roll, and heated at a foaming ratio of 3 times and a thickness of 1.5 mm. A plastic resin foam sheet was obtained.

上記の方法により得られた熱可塑性樹脂発泡シートを使用し、真空成形機(佐藤鉄工製VAIM0301)を用いて図3に示すようにして真空成形を実施した。成形型16、17は、いずれもエポキシ樹脂製であって、底面が300mm×300mmの正方形であり、側面が300mm×0.5mmである成形面を有し、該成形面外縁に幅15mmのパーティング面を有する雌型を用いた。各成形型は、成形面底面を構成する各辺に直径1mmの真空吸引孔を10cm間隔で4個ずつ有していた。また成形時の型の温度は60℃に調整した。
発泡シート(13)をクランプ枠(14)で固定し、シート表面が160℃になるように赤外ヒーター(15)により加熱軟化させた。加熱軟化した発泡シートの厚みは1.5mmであった。
加熱軟化させた発泡シートをクランプ枠に固定したまま、成形型(16)及び成形型(17)の間に供給した。
成形型(16)と成形型(17)のパーティング面間のクリアランスが1mmとなるまで両成形型を接近させて両成形型を閉じた。型閉め完了と同時に両方の成形型から真空度−0.09MPaで真空吸引を行った。
真空吸引開始から0.5秒後に、成形型をそれぞれ20mm/minで型開きし、キャビティ高さ、すなわち対向する成形面底面間の距離が5mmの地点で5秒間停止した。
真空吸引を停止して成形型を開き、成形品を取り出した。得られた成形品の評価結果を表1に示す。
Using the thermoplastic resin foam sheet obtained by the above method, vacuum forming was performed using a vacuum forming machine (VAIM0301 manufactured by Sato Tekko Co., Ltd.) as shown in FIG. The molding dies 16 and 17 are both made of epoxy resin and have a molding surface with a bottom surface of 300 mm × 300 mm, a side surface of 300 mm × 0.5 mm, and a party having a width of 15 mm on the outer edge of the molding surface. A female mold having a curved surface was used. Each mold had four vacuum suction holes with a diameter of 1 mm at intervals of 10 cm on each side constituting the bottom surface of the molding surface. The mold temperature during molding was adjusted to 60 ° C.
The foam sheet (13) was fixed with a clamp frame (14), and was softened by heating with an infrared heater (15) so that the sheet surface was 160 ° C. The thickness of the heat-softened foamed sheet was 1.5 mm.
The foamed sheet softened by heating was fixed between the mold (16) and the mold (17) while being fixed to the clamp frame.
Both molds were brought close to each other until the clearance between the parting surfaces of the mold (16) and the mold (17) was 1 mm, and both molds were closed. Simultaneously with completion of mold closing, vacuum suction was performed from both molds at a vacuum degree of -0.09 MPa.
0.5 seconds after the start of vacuum suction, the molds were each opened at 20 mm / min, and stopped for 5 seconds at a point where the cavity height, that is, the distance between the bottom surfaces of the opposing molding surfaces was 5 mm.
The vacuum suction was stopped, the mold was opened, and the molded product was taken out. The evaluation results of the obtained molded product are shown in Table 1.

[実施例2]
実施例1で用いたものと同様の発泡シートと真空成形機を使用し、図4に示すようにして真空成形を実施した。成形型としては、実施例1で用いた成形型のパーティング面全周に渡って気密性保持部(18)を有する型を用いた。気密性保持部(18)は、幅10mm、厚さ3mmであって、面圧14MPaで型閉めしたときの厚さが0.2mmとなる発泡ゴム製緩衝材である。また成形時の型の温度は60℃に調整した。
発泡シート(13)をクランプ枠(14)で固定し、シート表面が160℃になるように赤外ヒーター(15)により加熱軟化させた。加熱軟化した発泡シートの厚みは1.5mmであった。
加熱軟化させた発泡シートをクランプ枠に固定したまま、成形型(19)及び成形型(20)の間に供給した。
成形型(19)と成形型(20)のパーティング面間のクリアランスが1mmとなるまで両成形型を接近させて両成形型を閉じた。型閉め完了と同時に両方の成形型から真空度−0.09MPaで真空吸引を行った。
真空吸引開始から0.5秒後に、成形型をそれぞれ20mm/minで型開きし、キャビティ高さ、すなわち対向する成形面底面間の距離が5mmの地点で5秒間停止した。
真空吸引を停止して成形型を開き、成形品を取り出した。得られた成形品の評価結果を表1に示す。
[Example 2]
Using the same foamed sheet and vacuum forming machine as those used in Example 1, vacuum forming was performed as shown in FIG. As the mold, a mold having an airtight holding portion (18) over the entire periphery of the parting surface of the mold used in Example 1 was used. The airtight holding portion (18) is a foamed rubber cushioning material having a width of 10 mm, a thickness of 3 mm, and a thickness of 0.2 mm when the mold is closed at a surface pressure of 14 MPa. The mold temperature during molding was adjusted to 60 ° C.
The foam sheet (13) was fixed with a clamp frame (14), and was softened by heating with an infrared heater (15) so that the sheet surface was 160 ° C. The thickness of the heat-softened foamed sheet was 1.5 mm.
The foam sheet heated and softened was supplied between the mold (19) and the mold (20) while being fixed to the clamp frame.
Both molds were brought close to each other until the clearance between the parting surfaces of the mold (19) and the mold (20) reached 1 mm. Simultaneously with completion of mold closing, vacuum suction was performed from both molds at a vacuum degree of -0.09 MPa.
0.5 seconds after the start of vacuum suction, the molds were each opened at 20 mm / min, and stopped for 5 seconds at a point where the cavity height, that is, the distance between the bottom surfaces of the opposing molding surfaces was 5 mm.
The vacuum suction was stopped, the mold was opened, and the molded product was taken out. The evaluation results of the obtained molded product are shown in Table 1.

[実施例3]
実施例1で用いた発泡シートを製造する際に用いたものと同様の原料と装置を使用し、物理発泡剤である炭酸ガス注入量を1.3重量部とすることにより、発泡倍率5倍、厚さ1.5mmの発泡シートを得た。この発泡シートを使用し、真空成形(佐藤鉄工製VAIM0301)により、図5に示すようにして真空成形を実施した。一方の成形型としては、実施例1で用いた成形型(17)を用い、他方の成形型としては、成形型(16)の成形型外周に気密性保持部(19)を有する成形型(20)を用いた。成形時の型の温度は60℃に調整した。
発泡シート(13)をクランプ枠(14)で固定し、シート表面が160℃になるように赤外ヒーター(15)により加熱軟化させた。加熱軟化した発泡シートの厚みは1.5mmであった。
加熱軟化させた発泡シートをクランプ枠に固定したまま、成形型(20)と成形型(17)との間に供給した。
成形型(20)と成形型(17)のパーティング面間のクリアランスが1mmとなるまで両成形型を接近させて両成形型を閉じた。型閉め完了と同時に両方の成形型から真空度−0.09MPaで真空吸引を行った。
真空吸引開始から0.5秒後に、成形型をそれぞれ20mm/minで型開きし、キャビティ高さ、すなわち対向する成形面底面間の距離が6mmの地点で5秒間停止した。
真空吸引を停止して成形型を開き、成形品を取り出した。得られた成形品の評価結果を表1に示す。
[Example 3]
By using the same raw materials and equipment as those used in the production of the foam sheet used in Example 1, the amount of carbon dioxide injection, which is a physical foaming agent, is 1.3 parts by weight, so that the expansion ratio is 5 times. A foamed sheet having a thickness of 1.5 mm was obtained. Using this foam sheet, vacuum forming was performed by vacuum forming (VAIM0301 manufactured by Sato Tekko Co., Ltd.) as shown in FIG. As one mold, the mold (17) used in Example 1 is used, and as the other mold, a mold having an airtight holding portion (19) on the outer periphery of the mold (16) ( 20) was used. The mold temperature during molding was adjusted to 60 ° C.
The foam sheet (13) was fixed with a clamp frame (14), and was softened by heating with an infrared heater (15) so that the sheet surface was 160 ° C. The thickness of the heat-softened foamed sheet was 1.5 mm.
While the heat-softened foam sheet was fixed to the clamp frame, it was supplied between the mold (20) and the mold (17).
Both molds were brought close to each other until the clearance between the parting surfaces of the mold (20) and the mold (17) reached 1 mm. Simultaneously with completion of mold closing, vacuum suction was performed from both molds at a vacuum degree of -0.09 MPa.
0.5 seconds after the start of vacuum suction, the molds were each opened at 20 mm / min, and stopped for 5 seconds at a point where the cavity height, that is, the distance between the opposed molding surface bottoms was 6 mm.
The vacuum suction was stopped, the mold was opened, and the molded product was taken out. The evaluation results of the obtained molded product are shown in Table 1.

[実施例4]
実施例3で用いたものと同様の発泡シートと真空成形機を使用し、図6に示すようにして真空成形を実施した。一方の成形型としては、実施例2で用いた気密性保持部(18)を有する成形型(20)を用い、他方の成形型としては、成形型(19)の成形型外周に気密性保持部(19)を有する成形型(23)を用いた。成形時の型の温度は60℃に調整した。
発泡シート(13)をクランプ枠(14)で固定し、シート表面が160℃になるように赤外ヒーター(15)により加熱軟化させた。加熱軟化した発泡シートの厚みは1.5mmであった。
加熱軟化させた発泡シートをクランプ枠に固定したまま、成形型(20)と成形型(23)との間に供給した。
成形型(20)と成形型(23)のパーティング面間のクリアランスが1mmとなるまで両成形型を接近させて両成形型を閉じた。型閉め完了と同時に両方の成形型から真空度−0.09MPaで真空吸引を行った。
真空吸引開始から0.5秒後に、成形型をそれぞれ20mm/minで型開きし、キャビティ高さ、すなわち対向する成形面底面間の距離が6mmの地点で5秒間停止した。
真空吸引を停止して成形型を開き、成形品を取り出した。得られた成形品の評価結果を表1に示す。
[Example 4]
Using a foam sheet and a vacuum forming machine similar to those used in Example 3, vacuum forming was performed as shown in FIG. As one mold, the mold (20) having the airtight holding portion (18) used in Example 2 was used, and as the other mold, the airtightness was maintained on the outer periphery of the mold of the mold (19). A mold (23) having a part (19) was used. The mold temperature during molding was adjusted to 60 ° C.
The foam sheet (13) was fixed with a clamp frame (14), and was softened by heating with an infrared heater (15) so that the sheet surface was 160 ° C. The thickness of the heat-softened foamed sheet was 1.5 mm.
The foam sheet heated and softened was supplied between the mold (20) and the mold (23) while being fixed to the clamp frame.
Both molds were brought close to each other until the clearance between the parting surfaces of the mold (20) and the mold (23) reached 1 mm. Simultaneously with completion of mold closing, vacuum suction was performed from both molds at a vacuum degree of -0.09 MPa.
0.5 seconds after the start of vacuum suction, the molds were each opened at 20 mm / min, and stopped for 5 seconds at a point where the cavity height, that is, the distance between the opposed molding surface bottoms was 6 mm.
The vacuum suction was stopped, the mold was opened, and the molded product was taken out. The evaluation results of the obtained molded product are shown in Table 1.

[比較例1]
実施例1で用いたものと同様の発泡シート、成形型を使用し、図7に示すようにして真空成形を実施した。成形時の型の温度は60℃に調整した。
発泡シート(13)をクランプ枠(14)で固定し、シート表面が160℃になるように赤外ヒーター(15)により加熱軟化させた。加熱軟化した発泡シートの厚みは1.5mmであった。
加熱軟化させた発泡シートをクランプ枠に固定したまま、成形型(16)及び成形型(17)の間に供給した。
成形型(16)と成形型(17)のパーティング面間のクリアランスが1mmとなるまで両成形型を接近させて両成形型を閉じた。型閉め完了と同時に両方の成形型から真空度−0.09MPaで真空吸引を行い、10秒間停止した。
真空吸引を停止して成形型を開き、成形品を取り出した。得られた成形品の評価結果を表1に示す。
[Comparative Example 1]
Using the same foamed sheet and mold as those used in Example 1, vacuum forming was performed as shown in FIG. The mold temperature during molding was adjusted to 60 ° C.
The foam sheet (13) was fixed with a clamp frame (14), and was softened by heating with an infrared heater (15) so that the sheet surface was 160 ° C. The thickness of the heat-softened foamed sheet was 1.5 mm.
The foamed sheet softened by heating was fixed between the mold (16) and the mold (17) while being fixed to the clamp frame.
Both molds were brought close to each other until the clearance between the parting surfaces of the mold (16) and the mold (17) was 1 mm, and both molds were closed. Simultaneously with completion of mold closing, vacuum suction was performed from both molds at a degree of vacuum of -0.09 MPa and stopped for 10 seconds.
The vacuum suction was stopped, the mold was opened, and the molded product was taken out. The evaluation results of the obtained molded product are shown in Table 1.

[比較例2]
実施例1で用いたものと同様の発泡シートを使用し、真空成形を実施した。成形型は、いずれもエポキシ樹脂製であって、底面が300mm×300mmの正方形であり、側面が300mm×2mmである成形面を有し、該成形面外縁に幅15mmのパーティング面を有する雌型を用いた。各成形型は、成形面底面を構成する各辺に直径1mmの真空吸引孔を10cm間隔で4個ずつ有していた。また成形時の型の温度は60℃に調整した。
発泡シート(13)をクランプ枠(14)で固定し、シート表面が160℃になるように赤外ヒーター(15)により加熱軟化させた。加熱軟化した発泡シートの厚みは1.5mmであった。
加熱軟化させた発泡シートをクランプ枠に固定したまま、成形型間に供給した。
両成形型のパーティング面間のクリアランスが1mmとなるまで両成形型を接近させて両成形型を閉じた。型閉め完了と同時に両方の真空成形型から真空度−0.09MPaで真空吸引を行い、10秒間停止した。
真空吸引を停止して成形型を開き、成形品を取り出した。得られた成形品は、破泡によるしぼみを生じたため表面凹凸が大きく、成形面状に賦形されていなかった。得られた成形品の評価結果を表1に示す。
[Comparative Example 2]
Using a foam sheet similar to that used in Example 1, vacuum forming was performed. Each of the molds is made of epoxy resin, has a bottom surface of 300 mm × 300 mm square, a side surface of 300 mm × 2 mm, a female surface having a parting surface with a width of 15 mm on the outer edge of the molding surface. A mold was used. Each mold had four vacuum suction holes with a diameter of 1 mm at intervals of 10 cm on each side constituting the bottom surface of the molding surface. The mold temperature during molding was adjusted to 60 ° C.
The foam sheet (13) was fixed with a clamp frame (14), and was softened by heating with an infrared heater (15) so that the sheet surface was 160 ° C. The thickness of the heat-softened foamed sheet was 1.5 mm.
The foamed sheet softened by heating was supplied between the molds while being fixed to the clamp frame.
Both molds were brought close to each other until the clearance between the parting surfaces of both molds reached 1 mm. Simultaneously with completion of mold closing, vacuum suction was performed at a vacuum degree of -0.09 MPa from both vacuum forming molds, and stopped for 10 seconds.
The vacuum suction was stopped, the mold was opened, and the molded product was taken out. The obtained molded product was squeezed due to bubble breakage, so that the surface unevenness was large and the molded surface was not shaped. The evaluation results of the obtained molded product are shown in Table 1.

[比較例3]
実施例3で用いたものと同様の発泡シートを使用した以外は比較例2と同様にして真空成形を行った。得られた成形品は、破泡によるしぼみを生じたため表面凹凸が大きく、成形面状に賦形されていなかった。この成形品について評価を行った結果を表1に示す。
[Comparative Example 3]
Vacuum forming was performed in the same manner as in Comparative Example 2 except that the same foamed sheet as used in Example 3 was used. The obtained molded product was squeezed due to bubble breakage, so that the surface unevenness was large and the molded surface was not shaped. Table 1 shows the results of evaluation of this molded product.

(発泡倍率測定)
水中置換式密度計((株)東洋精機製作所製 自動比重計 型式D−H100)を使用し、20mm×20mmにサンプリングした製品の比重を測定し、製品を構成する各材料の密度を用いて発泡倍率を計算した。
(Measurement of foaming ratio)
Using a submersible density meter (automatic hydrometer model D-H100 manufactured by Toyo Seiki Seisakusho Co., Ltd.), measure the specific gravity of the product sampled to 20 mm x 20 mm, and foam using the density of each material constituting the product. The magnification was calculated.

(熱貫流率評価)
英弘精機(株)製熱伝導率測定装置(AUTO−Λシリーズ HC−074)にて、JIS A1412に基づき熱伝導率を測定し、得られた結果を元に熱貫流率を算出した。(低温プレート温度20℃、高温プレート温度30℃、Temperature Equilirium 0.2℃、Between Block HEM Equil 49μV、HFM Percent Change 2.0%、Min Number of Block 4、Calculation Blocks 3) 熱貫流率が小さいほど断熱性に優れるといえる。
(Evaluation of heat transmissibility)
The thermal conductivity was measured based on JIS A1412 with a thermal conductivity measuring device (AUTO-Λ series HC-074) manufactured by Eihiro Seiki Co., Ltd., and the thermal conductivity was calculated based on the obtained results. (Low plate temperature 20 ° C., high temperature plate temperature 30 ° C., Temperature Equirillium 0.2 ° C., Between Block HEM Equil 49 μV, HFM Percent Change 2.0%, Min Number of Block 4, Calblock 3 heat block rate) It can be said that it is excellent in heat insulation.

Figure 2006068919

Figure 2006068919
※1:比較例2と3の成形品は、厚み、発泡倍率ともバラツキが大きかった
Figure 2006068919

Figure 2006068919
* 1: The molded products of Comparative Examples 2 and 3 had large variations in both thickness and foaming ratio.

熱可塑性樹脂発泡シートを製造する装置の例を示した図The figure which showed the example of the apparatus which manufactures a thermoplastic resin foam sheet 熱可塑性樹脂発泡シートを製造する際に用いるサーキュラーダイの断面形状の例を示した図The figure which showed the example of the section shape of the circular die used when manufacturing a thermoplastic resin foam sheet 本発明の熱可塑性樹脂発泡シートの真空成形方法の一態様の概略図Schematic of one aspect of the vacuum forming method of the thermoplastic resin foam sheet of the present invention 本発明の熱可塑性樹脂発泡シートの真空成形方法の他の態様の概略図Schematic of another embodiment of the vacuum forming method of the thermoplastic resin foam sheet of the present invention 本発明の熱可塑性樹脂発泡シートの真空成形方法の他の態様の概略図Schematic of another embodiment of the vacuum forming method of the thermoplastic resin foam sheet of the present invention 本発明の熱可塑性樹脂発泡シートの真空成形方法の他の態様の概略図Schematic of another embodiment of the vacuum forming method of the thermoplastic resin foam sheet of the present invention 従来の熱可塑性樹脂発泡シートの真空成形方法の概略図Schematic of conventional vacuum forming method for thermoplastic resin foam sheets

符号の説明Explanation of symbols

1 熱可塑性樹脂発泡シートを製造する装置
2 50mmφ2軸押出機
3 32mmφ単軸押出機
4 サーキュラーダイ
5 炭酸ガス供給用ポンプ
6 マンドレル
7 50mmφ2軸押出機のヘッド
8 32mmφ単軸押出機のヘッド
9a 流路
9b 流路
10a 流路
10b 流路
10c 流路
10d 流路
11a 流路
11b 流路
12 サーキュラーダイ出口
13 熱可塑性樹脂発泡シート
14 クリップ部材
15 赤外ヒーター
16 成形型
17 成形型
18 気密性保持部
19 成形型
20 成形型
21 気密性保持部
22 成形型
23 成形型
DESCRIPTION OF SYMBOLS 1 The apparatus which manufactures a thermoplastic resin foam sheet 2 50 mmphi biaxial extruder 3 32 mmphi single screw extruder 4 Circular die 5 Carbon dioxide supply pump 6 Mandrel 7 Head of 50 mmphi biaxial extruder 8 Head 9a of 32 mmphi single screw extruder 9b flow path 10a flow path 10b flow path 10c flow path 10d flow path 11a flow path 11b flow path 12 circular die outlet 13 thermoplastic resin foam sheet 14 clip member 15 infrared heater 16 mold 17 mold 18 airtight holding part 19 Mold 20 Mold 21 Airtight holding part 22 Mold 23 Mold

Claims (1)

それぞれの成形型の成形面より真空吸引可能な一対の成形型を用いた、以下の工程を含む熱可塑性樹脂発泡シートの真空成形方法
(1)熱可塑性樹脂発泡シートを加熱軟化させる工程
(2)成形型間に、工程(1)で得られる熱可塑性樹脂発泡シートを供給する工程
(3)加熱軟化された熱可塑性樹脂発泡シートを成形型間で挟持しつつ、成形面外縁部における両成形型間のクリアランスが、該シートの厚み以下となるまで両成形型を閉じる工程
(4)工程(3)におけるクリアランスが、加熱軟化された熱可塑性樹脂発泡シートの厚み以下になった任意の時点または所定の厚みになったのち、両方の成形型の成形面より真空吸引を開始する工程
(5)真空吸引を継続しつつ、成形面間の前記シートが所望の成形品厚みになるまで型開きして賦形する工程
(6)真空吸引を停止して成形型を開き、成形品を取り出す工程

Vacuum forming method for thermoplastic resin foam sheet including the following steps using a pair of molds that can be vacuum-sucked from the molding surface of each mold (1) Step (2) for softening thermoplastic resin foam sheet by heating Step of supplying the thermoplastic resin foam sheet obtained in step (1) between the molds (3) Both molds at the outer edge of the molding surface while sandwiching the heat-softened thermoplastic resin foam sheet between the molds Step (4) of closing both molds until the clearance between them becomes equal to or less than the thickness of the sheet (4) Any time when the clearance in the step (3) becomes equal to or less than the thickness of the heat-softened thermoplastic resin foam sheet Step (5) of starting vacuum suction from the molding surfaces of both molds after the thickness is reached (5) While continuing the vacuum suction, open the mold until the sheet between the molding surfaces reaches the desired molded product thickness. Open form to step (6) the mold to stop the vacuum suction, the step of removing the molded article

JP2004251731A 2004-08-21 2004-08-31 Vacuum forming method for thermoplastic resin foam sheet Active JP4539238B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004251731A JP4539238B2 (en) 2004-08-31 2004-08-31 Vacuum forming method for thermoplastic resin foam sheet
US11/209,762 US20060049551A1 (en) 2004-08-21 2005-08-24 Method for producing a thermoplastic resin foamed article
DE102005040497A DE102005040497A1 (en) 2004-08-31 2005-08-26 Process for producing a thermoplastic resin foam product
CNB2005100959692A CN100522545C (en) 2004-08-31 2005-08-29 Method for producing a thermoplastic resin foamed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251731A JP4539238B2 (en) 2004-08-31 2004-08-31 Vacuum forming method for thermoplastic resin foam sheet

Publications (2)

Publication Number Publication Date
JP2006068919A true JP2006068919A (en) 2006-03-16
JP4539238B2 JP4539238B2 (en) 2010-09-08

Family

ID=36150038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251731A Active JP4539238B2 (en) 2004-08-21 2004-08-31 Vacuum forming method for thermoplastic resin foam sheet

Country Status (2)

Country Link
JP (1) JP4539238B2 (en)
CN (1) CN100522545C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025128A (en) * 2010-07-27 2012-02-09 Toyota Boshoku Corp Multilayer foaming base material and method of manufacturing the same
JP2012030401A (en) * 2010-07-28 2012-02-16 Toyota Boshoku Corp Multilayer foam base material and method of manufacturing the same
JP2013121706A (en) * 2011-12-12 2013-06-20 Toyota Boshoku Corp Method of manufacturing multilayer foam base material
WO2018062033A1 (en) * 2016-09-30 2018-04-05 キョーラク株式会社 Method for manufacturing foam molded body
JP2018058352A (en) * 2016-09-30 2018-04-12 キョーラク株式会社 Method for manufacturing formed shaped article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540620A (en) * 2018-11-26 2019-03-29 镇江立达纤维工业有限责任公司 A kind of preparation facilities and preparation method of sound-absorbing exemplar
CN109397670A (en) * 2018-11-26 2019-03-01 沈阳力登维汽车部件有限公司 Vacuum equipment
US11780129B2 (en) 2020-03-20 2023-10-10 King Steel Machinery Co., Ltd. Molding method for operating molding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314530A (en) * 1991-04-12 1992-11-05 Mitsuiya Kogyo Kk Foam molding process
JPH08229971A (en) * 1995-02-23 1996-09-10 Tamai Kasei Kk Resin foam sheet and molding method thereof
JPH09254249A (en) * 1996-03-21 1997-09-30 Sumitomo Chem Co Ltd Production of porous fiber reinforced thermoplastic resin molded object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314530A (en) * 1991-04-12 1992-11-05 Mitsuiya Kogyo Kk Foam molding process
JPH08229971A (en) * 1995-02-23 1996-09-10 Tamai Kasei Kk Resin foam sheet and molding method thereof
JPH09254249A (en) * 1996-03-21 1997-09-30 Sumitomo Chem Co Ltd Production of porous fiber reinforced thermoplastic resin molded object

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025128A (en) * 2010-07-27 2012-02-09 Toyota Boshoku Corp Multilayer foaming base material and method of manufacturing the same
JP2012030401A (en) * 2010-07-28 2012-02-16 Toyota Boshoku Corp Multilayer foam base material and method of manufacturing the same
JP2013121706A (en) * 2011-12-12 2013-06-20 Toyota Boshoku Corp Method of manufacturing multilayer foam base material
WO2018062033A1 (en) * 2016-09-30 2018-04-05 キョーラク株式会社 Method for manufacturing foam molded body
JP2018058352A (en) * 2016-09-30 2018-04-12 キョーラク株式会社 Method for manufacturing formed shaped article
EP3520980A4 (en) * 2016-09-30 2020-01-22 Kyoraku Co., Ltd. Method for manufacturing foam molded body
US10940620B2 (en) 2016-09-30 2021-03-09 Kyoraku Co., Ltd. Method for manufacturing foam molded body
JP7060782B2 (en) 2016-09-30 2022-04-27 キョーラク株式会社 Manufacturing method of foam molded product

Also Published As

Publication number Publication date
JP4539238B2 (en) 2010-09-08
CN1788974A (en) 2006-06-21
CN100522545C (en) 2009-08-05

Similar Documents

Publication Publication Date Title
US20060068169A1 (en) Thermoplastic resin foamed sheet
WO1999028111A1 (en) Blow-molded foam and process for producing the same
JP4269821B2 (en) Thermoplastic resin foam
JP2007245552A (en) Manufacturing method of thermoplastic resin-molded product
CN100522545C (en) Method for producing a thermoplastic resin foamed article
US20060163765A1 (en) Method for producing a thermoplastic resin article
US20060163764A1 (en) Method for producing a thermoplastic resin article
US20060049551A1 (en) Method for producing a thermoplastic resin foamed article
JP2006306030A (en) Molding
JP4569238B2 (en) Vacuum forming method for thermoplastic resin foam sheet
US20050004244A1 (en) Propylene-based resin foamed sheet and container made from the same
JP2005059224A (en) Thermoplastic resin foamed molded product
JP4507784B2 (en) Vacuum forming method for thermoplastic resin foam sheet
JP2008207548A (en) Method for manufacturing thermoplastic resin molding
JP4890280B2 (en) Method for producing thermoplastic resin molded article
JP2007007869A (en) Manufacturing method of thermoplastic resin molded product
JP2005041209A (en) Propylene resin type foamed sheet and container
JP2007007870A (en) Manufacturing method of thermoplastic resin foamed molded product
JP2007203502A (en) Thermoplastic resin made molded product and its manufacturing method
JP2009029021A (en) Method for producing composite molded product
JP4172685B2 (en) Method for producing foam molded article with skin material
JP6907764B2 (en) Method for Manufacturing Laminated Foam Insulation Sheet, Mold and Laminated Foam Insulation Sheet
JP2006111003A (en) Thermoplastic resin foamed sheet
JP2005153468A (en) Propylene-based resin foamed sheet and vessel
JP2005081796A (en) Propylene-based resin foamed sheet and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4539238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250