WO2018062033A1 - Method for manufacturing foam molded body - Google Patents

Method for manufacturing foam molded body Download PDF

Info

Publication number
WO2018062033A1
WO2018062033A1 PCT/JP2017/034274 JP2017034274W WO2018062033A1 WO 2018062033 A1 WO2018062033 A1 WO 2018062033A1 JP 2017034274 W JP2017034274 W JP 2017034274W WO 2018062033 A1 WO2018062033 A1 WO 2018062033A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
foamed resin
molds
mold
thickness
Prior art date
Application number
PCT/JP2017/034274
Other languages
French (fr)
Japanese (ja)
Inventor
芳裕 山崎
輝雄 玉田
優 五十嵐
佑太 南川
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017176128A external-priority patent/JP7060782B2/en
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Priority to CN201780056164.8A priority Critical patent/CN109689332B/en
Priority to US16/336,193 priority patent/US10940620B2/en
Priority to KR1020197009515A priority patent/KR102326199B1/en
Priority to MX2019003178A priority patent/MX2019003178A/en
Priority to EP17855987.8A priority patent/EP3520980B1/en
Publication of WO2018062033A1 publication Critical patent/WO2018062033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/30Moulds

Definitions

  • the present invention relates to a method for producing foamed molded articles such as automobile interior members (eg, door trims, ceiling materials), boards such as luggage floor boards, ducts, engine undercovers, and the like.
  • automobile interior members eg, door trims, ceiling materials
  • boards such as luggage floor boards, ducts, engine undercovers, and the like.
  • Patent Document 1 a foamed resin sheet is obtained by reheating one foamed resin sheet to a softened state and placing the foamed resin sheet under reduced pressure from both molds.
  • a technique is disclosed in which a sheet is subjected to secondary foaming to form a thick portion in a foamed molded product.
  • Patent Document 1 a foamed resin sheet prepared at room temperature is heated again by a radiant heat from an infrared heater or the like at the time of molding to be in a softened state.
  • the foamed resin sheet is very thin, it is difficult to cause a problem, but as the thickness of the foamed resin sheet increases, softening of the central portion in the thickness direction of the foamed resin sheet becomes insufficient. As a result, the formability may deteriorate, making it difficult to follow the cavity of the mold.
  • the present invention has been made in view of such circumstances, and a method for producing a foam molded body that can follow a cavity of a mold of a foamed resin sheet with high accuracy even when the thickness of the foamed resin sheet is large. Is to provide.
  • a method for producing a foamed molded article comprising an expansion step of expanding the foamed resin sheet to the thickness of the gap.
  • a foamed resin sheet obtained by reheating and softening a foamed resin sheet at room temperature instead of using a foamed resin sheet obtained by reheating and softening a foamed resin sheet at room temperature, a single foamed resin sheet formed by extruding a foamed resin in a molten state and dropping it down is used. Since the foamed resin sheet formed in this manner is less susceptible to cooling by the atmosphere as it goes toward the center in the thickness direction, the temperature increases and the viscosity decreases as it goes toward the center in the thickness direction. For this reason, according to this invention, even when the thickness of a foamed resin sheet is large, a foamed resin sheet can be made to follow the cavity of a metal mold
  • the secondary foaming is mainly performed in the vicinity of the surface of the foamed resin sheet when the foamed resin sheet is sucked under reduced pressure from both of the pair of molds Because of this, the rigidity of the thick part tends to be insufficient.
  • the viscosity decreases toward the center of the thickness direction of the foamed resin sheet, when the foamed resin sheet is sucked under reduced pressure from both of the pair of molds, mainly in the vicinity of the center of the foamed resin sheet. Foaming is promoted, and the foamed resin sheet expands.
  • a foamed molded article having a structure in which the average cell diameter of the layer near the center in the thickness direction (center layer) is large and the average cell diameter of the surface layer near the surface is small.
  • Such a foamed molded article has a sandwich structure in which a central layer having a large average cell diameter is sandwiched between surface layers having a small average cell diameter, and thus is lightweight and highly rigid.
  • the foamed resin sheet even when the thickness of the foamed resin sheet is large, it is possible to cause the foamed resin sheet to follow the cavity of the mold with high accuracy, and to provide a lightweight and highly rigid foam molded body. Can be manufactured.
  • the expansion step includes a first suction step, a mold proximity step, and a second suction step in this order, and in the first suction step, the foamed resin sheet is sucked under reduced pressure by the first die.
  • the foamed resin sheet is shaped into a shape along the cavity of the first mold, and in the mold proximity step, the first and second molds are provided so that the gap is provided between the first and second molds.
  • the foamed resin sheet is expanded to the thickness of the gap by sucking the foamed resin sheet under reduced pressure using the first and second molds.
  • the entire portion of the foamed resin sheet that becomes the foam molded body is expanded.
  • the cavities of the first and second molds are configured such that the gap is substantially constant in the entire portion of the foamed resin sheet that becomes the foamed molded body.
  • die is a shape which has a recessed part
  • die is a shape which has a convex part of the shape which penetrates in the said recessed part.
  • the gap is 1.1 to 3.0 times the thickness of the foamed resin sheet.
  • a foam molded body comprising a central layer and surface layers provided on both sides thereof, wherein the surface layer is formed with respect to the thickness of the foam molded body.
  • the center layer is a layer having a thickness of 25 to 50% from the surface of the foamed molded product with respect to the thickness of the foamed molded product.
  • a foamed molded article having an average cell diameter larger than the average cell diameter of the surface layer.
  • the ratio of (average cell diameter of the central layer) / (average cell size of the surface layer) is 1.2 to 10.
  • FIG. 1 shows an example of a foam molding machine 1 that can be used in a method for producing a foam molded body according to an embodiment of the present invention.
  • FIG. 2A is an enlarged cross-sectional view in the vicinity of the first and second molds 21 and 22 and the foamed resin sheet 23 in FIG. 1
  • FIG. 2B is a view from the state of FIG. A cross section corresponding to FIG. 2 (a), showing a state in which the foamed resin sheet 23 is sucked under reduced pressure by the first mold 21 and the foamed resin sheet 23 is shaped into a shape along the cavity 21 b of the first mold 21.
  • FIG. 3 (a) and 3 (b) are cross-sectional views corresponding to FIG. 2 (a).
  • FIG. 1 shows an example of a foam molding machine 1 that can be used in a method for producing a foam molded body according to an embodiment of the present invention.
  • FIG. 2A is an enlarged cross-sectional view in the vicinity of the first and second molds 21 and 22
  • 3 (a) shows a state in which the molds 21 and 22 are brought close to each other from the state of FIG. 2 (b).
  • 3 (b) shows the gap G between the molds 21 and 22 by sucking the foamed resin sheet 23 under reduced pressure by the second mold 22 from the state of FIG. 3 (a).
  • the state expanded to thickness is shown.
  • 4 (a) and 4 (b) are cross-sectional views corresponding to FIG. 2 (a), and FIG. 4 (a) is a foamed molded article with burrs 23b obtained in the step of FIG. 3 (b).
  • 4 (b) shows a state after the burr 23b is removed from the state of FIG. 4 (a).
  • the cross-sectional photograph of the foaming molding 24 obtained in the Example of this invention is shown.
  • FIG. 4 is a perspective view showing the structure of duct halves 31 and 32 connected by a hinge part 33.
  • FIG. It is a perspective view which shows the duct 30 formed by joining the duct half bodies 31 and 32.
  • FIG. 4 is a perspective view showing the structure of duct halves 31 and 32 connected by a hinge part 33.
  • FIG. It is a perspective view which shows the duct 30 formed by joining the duct half bodies 31 and 32.
  • the foam molding machine 1 includes a resin supply device 2, a T die 18, and dies 21 and 22.
  • the resin supply device 2 includes a hopper 12, an extruder 13, an injector 16, and an accumulator 17.
  • the extruder 13 and the accumulator 17 are connected via a connecting pipe 25.
  • the accumulator 17 and the T die 18 are connected via a connecting pipe 27.
  • the hopper 12 is used for charging the raw resin 11 into the cylinder 13 a of the extruder 13.
  • the raw material resin 11 is a thermoplastic resin such as polyolefin, and examples of the polyolefin include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, and mixtures thereof.
  • the raw material resin 11 is poured into the cylinder 13a from the hopper 12 and then melted by being heated in the cylinder 13a to become a molten resin.
  • a screw is arrange
  • a gear device is provided at the base end of the screw, and the screw is driven to rotate by the gear device.
  • the number of screws arranged in the cylinder 13a may be one or two or more.
  • the cylinder 13a is provided with an injector 16 for injecting a foaming agent into the cylinder 13a.
  • the foaming agent injected from the injector 16 include physical foaming agents, chemical foaming agents, and mixtures thereof, but physical foaming agents are preferred.
  • physical foaming agents inorganic physical foaming agents such as air, carbon dioxide, nitrogen gas, and water, and organic physical foaming agents such as butane, pentane, hexane, dichloromethane, dichloroethane, and their supercritical fluids are used. be able to.
  • the supercritical fluid it is preferable to use carbon dioxide, nitrogen or the like. If nitrogen, the critical temperature is 149.1 ° C.
  • the critical pressure is 3.4 MPa or more, and if carbon dioxide, the critical temperature is 31 ° C. It is obtained by setting it to 7.4 MPa or more.
  • the chemical foaming agent include those that generate carbon dioxide by a chemical reaction between an acid (eg, citric acid or a salt thereof) and a base (eg, sodium bicarbonate). The chemical foaming agent may be supplied from the hopper 12 instead of being injected from the injector 16.
  • the foamed resin obtained by melt-kneading the raw material resin and the foaming agent is extruded from the resin extrusion port of the cylinder 13 a and injected into the accumulator 17 through the connecting pipe 25.
  • the accumulator 17 includes a cylinder 17a and a piston 17b that can slide inside the cylinder 17a, and foamed resin can be stored in the cylinder 17a. Then, by moving the piston 17b after a predetermined amount of foamed resin is stored in the cylinder 17a, the foamed resin is pushed out from the slit provided in the T-die 18 through the connecting pipe 27 to hang down the foamed resin sheet 23.
  • the foamed resin sheet 23 is guided between the first and second molds 21 and 22.
  • the first mold 21 is provided with a number of vacuum suction holes 21 a, and the foamed resin sheet 23 is sucked under reduced pressure along the cavity 21 b of the first mold 21. It is possible to shape the shape.
  • the cavity 21b has a shape having a recess 21c, and a pinch-off portion 21d is provided so as to surround the recess 21c.
  • the second mold 22 is provided with a large number of vacuum suction holes 22a, and the foamed resin sheet 23 can be vacuum-sucked and shaped into a shape along the cavity 22b of the second mold 22. ing.
  • the cavity 22b has a shape having a convex portion 22c that enters the concave portion 21c, and a pinch-off portion 22d is provided so as to surround the convex portion 22c.
  • the cavity 22b of the second mold 22 may have a shape having a recess, and the cavity 21b of the first mold 21 may have a shape having a protrusion that enters the recess.
  • a foamed resin sheet 23 formed by extruding a foamed resin in a molten state from the slit of the T die 18 and hanging down is formed of gold. Arranged between molds 21 and 22.
  • the foamed resin sheet 23 since direct vacuum molding is performed using the foamed resin sheet 23 extruded from the T die 18 as it is, the foamed resin sheet 23 is not cooled and solidified to room temperature before molding, The solidified foamed resin sheet 23 is not heated before molding.
  • the foamed resin sheet 23 of the present embodiment has a substantially uniform temperature immediately after being extruded from the slit, and is gradually cooled from the surface by the atmosphere while being suspended.
  • the thickness of the foamed resin sheet 23 is not particularly limited, but is, for example, 0.5 to 5 mm, and preferably 1 to 3 mm. Specifically, this thickness is, for example, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 mm, and any of the numerical values exemplified here. Or within a range between the two.
  • the mold G is provided so that a gap G larger than the thickness of the foamed resin sheet 23 is provided between the molds 21 and 22.
  • the foamed resin sheet 23 is expanded to the thickness of the gap G by sucking the foamed resin sheet 23 under reduced pressure by both the molds 21 and 22 with the molds 21 and 22 brought close to each other.
  • the molds 21 and 22 are provided with pinch-off portions 21d and 22d.
  • the molds 21 and 22 are brought close to each other until the pinch-off portions 21d and 22d come into contact with each other, spaces surrounded by the pinch-off portions 21d and 22d. Becomes the sealed space S.
  • a portion 23 a in the sealed space S of the foamed resin sheet 23 becomes the foamed molded body 24.
  • a portion of the foamed resin sheet 23 outside the sealed space S is a burr 23b.
  • the cavities 21b and 22b of the molds 21 and 22 are located between the molds 21 and 22 over the entire portion of the foamed resin sheet 23 that becomes the foamed molded body 24 (that is, the portion in the sealed space S).
  • the gap G is configured to be substantially constant.
  • the foamed resin sheet 23 is sucked under reduced pressure by the molds 21 and 22 in this state, the foamed resin sheet 23 expands to the thickness of the gap G and the foamed molded body 24 is formed.
  • the pinch-off portions 21d and 22d are not essential, and the molds 21 and 22 may be brought close to each other so that a gap G is formed between the molds 21 and 22.
  • the thickness of the gap G is not particularly limited, but is preferably 1.1 to 3.0 times the thickness of the foamed resin sheet 23.
  • (thickness of the gap G) / (thickness of the foamed resin sheet 23) is, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1 .7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3.0, and may be within a range between any two of the numerical values exemplified here.
  • the vacuum suction by the molds 21 and 22 may start the vacuum suction by the first mold 21 first, the vacuum suction by the second mold 22 first, and by the molds 21 and 22.
  • the vacuum suction may be started simultaneously. Further, the vacuum suction by the first mold 21 may be stopped first, the vacuum suction by the second mold 22 may be stopped first, or the vacuum suction by the molds 21 and 22 may be stopped simultaneously. Good.
  • the vacuum suction by the molds 21 and 22 may be started before the molds 21 and 22 are brought close to each other, or may be started after they are brought close to each other.
  • foaming of the foamed resin sheet 23 is promoted and the foamed resin sheet 23 expands. Since the foamed resin sheet 23 has the lowest viscosity in the vicinity of the center in the thickness direction (the highest fluidity), the foaming in the vicinity of the center in the thickness direction is particularly promoted and the foamed resin sheet 23 expands. As a result, it is possible to obtain the foam molded body 24 having a configuration in which the average cell diameter in the layer near the center in the thickness direction (center layer) is large and the average cell diameter in the surface layer near the surface is small. Such a foam-molded body 24 has a sandwich structure in which a central layer having a large average cell diameter is sandwiched between surface layers having a small average cell diameter, and thus is lightweight and highly rigid.
  • the foam molded body 24 obtained by the method of the present embodiment is provided with a layer having a thickness of 10% from the surface of the foam molded body 24 to the thickness of the foam molded body 24.
  • the surface layer is a layer having a thickness of 25 to 50% from the surface of the foamed molded product, the average cell diameter of the center layer is larger than the average cell size of the surface layer.
  • the ratio of (average cell diameter of the central layer) / (average cell size of the surface layer) is not particularly limited, but is, for example, 1.2 to 10.
  • this ratio is, for example, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, and may be within a range between any two of the numerical values exemplified here.
  • the average cell diameter of the entire foam molded body 24 in the thickness direction is, for example, 100 to 2000 ⁇ m.
  • the average bubble diameter is, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000 ⁇ m, and between any two of the numerical values exemplified here. It may be within the range.
  • the average cell diameter of the surface layer is, for example, 80 to 500 ⁇ m.
  • the average bubble diameter is, for example, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500 ⁇ m, and is within the range between any two of the numerical values exemplified here. May be.
  • the average cell diameter of the central layer is, for example, 100 to 2000 ⁇ m.
  • the average bubble diameter is, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, It may be within a range between any two of the numerical values exemplified here.
  • the number of bubbles through which the reference line R passes in the center layer is 6, and the maximum length in the thickness direction for each bubble is L1 to L6. Therefore, in this example, the temporary average bubble diameter of the central layer is calculated by (L1 + L2 +++ L3 + L4 + L5 + L6) / 6.
  • the expansion step is preferably performed by executing the first suction step, the mold proximity step, and the second suction step in this order.
  • the first suction step as shown in FIG. 2 (b)
  • the foamed resin sheet 23 is sucked under reduced pressure by the first mold 21, so that the foamed resin sheet 23 is shaped into a shape along the cavity 21 b of the first mold 21. Shape.
  • the molds 21 and 22 are brought close to each other so that the gap G is provided between the molds 21 and 22 as shown in FIG.
  • the foamed resin sheet 23 is expanded to the thickness of the gap G by sucking the foamed resin sheet 23 under reduced pressure by the molds 21 and 22.
  • the foamed resin sheet 23 comes into contact with the convex portion 22c of the mold 22 before the foamed resin sheet 23 is shaped. .
  • the temperatures of the molds 21 and 22 are lower than the temperature of the foamed resin sheet 23. Therefore, when the foamed resin sheet 23 comes into contact with the convex portion 22c of the mold 22, the foamed resin sheet 23 is cooled and its viscosity increases. However, the followability of the molds 21 and 22 to the cavities 21b and 22b is deteriorated.
  • the foamed resin sheet 23 has a shape along the cavity 21b of the first mold 21. Since it is minimized that the foamed resin sheet 23 comes into contact with the molds 21 and 22 before being shaped, an increase in the viscosity of the foamed resin sheet 23 is suppressed, and the foamed resin sheet 23 is removed from the mold 21. , 22 can be followed with high accuracy.
  • the foamed resin sheet 23 can be made to follow the cavity of the mold with high accuracy, and is lightweight and highly rigid. A certain foam molding 24 can be manufactured.
  • the foamed molded article 24 of the present invention is lightweight and highly rigid, it can be used for various applications in which such physical properties are suitable.
  • the skin material comprised by breathable members, such as a nonwoven fabric can be provided in the single side
  • the skin material is disposed between the foamed resin sheet 23 and the mold 21 and between one or both of the foamed resin sheet 23 and the mold 22.
  • the foamed molded body 24 can be integrally molded on one side or both sides.
  • the foamed molded body 24 of the present invention can be used for, for example, automotive interior members such as door trims and ceiling materials, boards such as luggage floor boards, ducts, engine undercovers, and the like.
  • automotive interior members such as door trims and ceiling materials
  • boards such as luggage floor boards, ducts, engine undercovers, and the like.
  • the foam molded body 24 it is preferable to integrally mold the skin material on one side of the foam molded body 24.
  • the ceiling material has been adhered to the polyurethane sheet with an adhesive or the like, but according to the present invention, the skin material can be integrally molded into the foam molded body 24, It is possible to save the time and effort to stick the skin material, and the display material can be expanded by an anchor effect (an effect that the skin material is fixed to the resin by the resin soaking into the skin material) without using an adhesive. Can be fixed to.
  • the duct 30 can be formed by joining a pair of duct halves 31 and 32 into a cylindrical shape.
  • the duct halves 31 and 32 are connected to each other by a hinge portion 33.
  • the duct halves 31 and 32 and the hinge part 33 can be integrally formed by the manufacturing method described above.
  • the duct halves 31 and 32 are provided with joint surfaces 31a and 32a, respectively.
  • the duct halves 31 and 32 are relatively rotated around the hinge portion 33, and the duct halves 31 and 32 are joined to each other in a state where the joining surfaces 31a and 32a are in contact with each other, thereby forming the duct 30. be able to.
  • the duct halves 31 and 32 can be joined using screws, rivets, tuckers or the like.
  • a foam molded product (door trim) was produced.
  • the weight ratio of the raw material resin is polypropylene resin A (manufactured by Borealis AG, trade name “Daploy WB140”) and polypropylene resin B (manufactured by Nippon Polypro Co., Ltd., trade name “NOVATEC PP / BC4BSW”).
  • LDPE base masterbatch (made by Dainichi Seika Kogyo Co., Ltd., trade name “Finecell Master P0217K”) mixed at 60:40 and containing 20 wt% sodium bicarbonate-based blowing agent as a nucleating agent with respect to 100 parts by mass of resin ) And 1.0 part by weight of LLDPE base masterbatch containing 40 wt% carbon black as a colorant were used.
  • the temperature of each part was controlled so that the temperature of the foamed resin sheet 23 was 190 to 200 ° C.
  • the number of rotations of the screw was 60 rpm, and the amount of extrusion was 20 kg / hr.
  • the blowing agent was injected through the injector 16 using N 2 gas.
  • the injection amount is 0.4 [wt. %] (N 2 injection amount / resin extrusion amount).
  • the T-die 18 was controlled so that the foamed resin sheet 23 had a thickness of 2 mm.
  • the foamed resin sheet 23 formed under the above conditions was placed between the molds 21 and 22.
  • reduced pressure suction of the foamed resin sheet 23 was performed by the first mold 21, and the foamed resin sheet 23 was shaped into a shape along the cavity of the first mold 21.
  • the foamed resin sheet 23 is sucked by the molds 21 and 22 under a reduced pressure to obtain the foamed resin.
  • the foamed resin sheet 23 was expanded so that the thickness of the sheet 23 became the thickness of the gap G to obtain a foamed molded body 24. Vacuum suction by the molds 21 and 22 was performed at ⁇ 0.1 MPa.
  • the foam molded body 24 was lighter and more rigid than a general foam molded body.
  • a cross-sectional photograph of the foamed molded product 24 is shown in FIG.
  • the average cell diameters of the surface layer and the central layer of the foamed molded product 24 were measured, they were 132.3 ⁇ m and 184.2 ⁇ m, respectively, and the ratio of (average cell diameter of the central layer) / (average cell size of the surface layer) was 1.39.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

Provided is a method for manufacturing a foam molded body by which a foam resin sheet can be caused to follow a mold cavity with high accuracy even where the thickness of the foam resin sheet is large. According to the present invention, there is provided a method for manufacturing a foam molded body, the method including: an arrangement step of arranging a foam resin sheet between a first mold and a second mold, the foam resin sheet being formed by extruding and dropping molten foam resin from a slit; and an expansion step of depressurizing and suctioning the foam resin sheet using both the first and second molds in a state in which the first and second molds are brought close to each other such that a gap larger than the thickness of the foam resin sheet is provided between the first and second molds, thereby causing the foam resin sheet to expand to the thickness of the gap.

Description

発泡成形体の製造方法Method for producing foam molded article
 本発明は、自動車の内装部材(例:ドアトリム、天井材)、ラゲッジフロアボード等のボード類、ダクト、エンジンアンダーカバー等の発泡成形体の製造方法に関する。 The present invention relates to a method for producing foamed molded articles such as automobile interior members (eg, door trims, ceiling materials), boards such as luggage floor boards, ducts, engine undercovers, and the like.
 特許文献1には、1枚の発泡樹脂シートを再加熱して軟化状態としたものを一対の分割金型の間に配置し、両方の金型から発泡樹脂シートを減圧吸引することによって発泡樹脂シートを二次発泡させて発泡成形体に厚肉部を形成する技術が開示されている。 In Patent Document 1, a foamed resin sheet is obtained by reheating one foamed resin sheet to a softened state and placing the foamed resin sheet under reduced pressure from both molds. A technique is disclosed in which a sheet is subjected to secondary foaming to form a thick portion in a foamed molded product.
特開2001-310380号公報JP 2001-310380 A
 特許文献1の技術では、予め用意した常温の発泡樹脂シートを、成形時に赤外線ヒータなどの輻射熱により再度加熱して軟化状態にしている。このような方法では、発泡樹脂シートが非常に薄い場合は問題が生じにくいが、発泡樹脂シートの肉厚の増大に伴って発泡樹脂シートの厚さ方向の中央部の軟化が不十分となることにより、賦形性が悪化して金型のキャビティに追従しにくくなる場合がある。 In the technique of Patent Document 1, a foamed resin sheet prepared at room temperature is heated again by a radiant heat from an infrared heater or the like at the time of molding to be in a softened state. In such a method, when the foamed resin sheet is very thin, it is difficult to cause a problem, but as the thickness of the foamed resin sheet increases, softening of the central portion in the thickness direction of the foamed resin sheet becomes insufficient. As a result, the formability may deteriorate, making it difficult to follow the cavity of the mold.
 本発明はこのような事情に鑑みてなされたものであり、発泡樹脂シートの肉厚が大きい場合でも発泡樹脂シートの金型のキャビティに高精度に追従させることができる、発泡成形体の製造方法を提供するものである。 The present invention has been made in view of such circumstances, and a method for producing a foam molded body that can follow a cavity of a mold of a foamed resin sheet with high accuracy even when the thickness of the foamed resin sheet is large. Is to provide.
 本発明によれば、溶融状態の発泡樹脂をスリットから押し出して垂下させて形成した1枚の発泡樹脂シートを第1及び第2金型間に配置する配置工程と、前記発泡樹脂シートの厚さよりも大きい隙間が第1及び第2金型の間に設けられるように第1及び第2金型を近づけた状態で第1及び第2金型の両方によって前記発泡樹脂シートを減圧吸引することによって、前記発泡樹脂シートを前記隙間の厚さにまで膨張させる膨張工程を備える、発泡成形体の製造方法が提供される。 According to the present invention, an arrangement step of placing one foamed resin sheet formed by extruding a foamed resin in a molten state from a slit and dropping between the first and second molds, and the thickness of the foamed resin sheet, By suctioning the foamed resin sheet with both the first and second molds in a state where the first and second molds are close to each other so that a large gap is provided between the first and second molds. There is provided a method for producing a foamed molded article, comprising an expansion step of expanding the foamed resin sheet to the thickness of the gap.
 本発明では、常温の発泡樹脂シートを再加熱して軟化させた発泡樹脂シートを用いるのではなく、溶融状態の発泡樹脂をスリットから押し出して垂下させて形成した1枚の発泡樹脂シートを用いる。このようにして形成した発泡樹脂シートは、厚さ方向の中央に向かうほど大気による冷却の影響を受けにくくなるので、厚さ方向の中央に向かうほど温度が上昇して粘度が低下する。このため、本発明によれば、発泡樹脂シートの肉厚が大きい場合でも発泡樹脂シートを金型のキャビティに高精度に追従させることができる。 In the present invention, instead of using a foamed resin sheet obtained by reheating and softening a foamed resin sheet at room temperature, a single foamed resin sheet formed by extruding a foamed resin in a molten state and dropping it down is used. Since the foamed resin sheet formed in this manner is less susceptible to cooling by the atmosphere as it goes toward the center in the thickness direction, the temperature increases and the viscosity decreases as it goes toward the center in the thickness direction. For this reason, according to this invention, even when the thickness of a foamed resin sheet is large, a foamed resin sheet can be made to follow the cavity of a metal mold | die with high precision.
 また、従来技術では、発泡樹脂シートの中央部の軟化が不十分な場合には、発泡樹脂シートを一対の金型の両方から減圧吸引したときに主に発泡樹脂シートの表面近傍において二次発泡が起こるために厚肉部の剛性が不十分になりやすかった。一方、本発明では、発泡樹脂シートの厚さ方向の中央に向かうほど粘度が低下するので、発泡樹脂シートを一対の金型の両方から減圧吸引したときに、主に発泡樹脂シートの中央付近での発泡が促進されて発泡樹脂シートが膨張する。このため、本発明によれば、厚さ方向の中央付近の層(中央層)の平均気泡径が大きく、表面近傍の表面層の平均気泡径が小さいという構成の発泡成形体が得られる。このような発泡成形体は、平均気泡径が大きい中央層が平均気泡径が小さい表面層で挟まれたサンドイッチ構造となっているために、軽量且つ高剛性である。 Further, in the conventional technology, when the softening of the central portion of the foamed resin sheet is insufficient, the secondary foaming is mainly performed in the vicinity of the surface of the foamed resin sheet when the foamed resin sheet is sucked under reduced pressure from both of the pair of molds Because of this, the rigidity of the thick part tends to be insufficient. On the other hand, in the present invention, since the viscosity decreases toward the center of the thickness direction of the foamed resin sheet, when the foamed resin sheet is sucked under reduced pressure from both of the pair of molds, mainly in the vicinity of the center of the foamed resin sheet. Foaming is promoted, and the foamed resin sheet expands. Therefore, according to the present invention, it is possible to obtain a foamed molded article having a structure in which the average cell diameter of the layer near the center in the thickness direction (center layer) is large and the average cell diameter of the surface layer near the surface is small. Such a foamed molded article has a sandwich structure in which a central layer having a large average cell diameter is sandwiched between surface layers having a small average cell diameter, and thus is lightweight and highly rigid.
 以上のように、本発明によれば、発泡樹脂シートの肉厚が大きい場合でも発泡樹脂シートを金型のキャビティに高精度に追従させることができ、かつ軽量且つ高剛性である発泡成形体を製造することができる。 As described above, according to the present invention, even when the thickness of the foamed resin sheet is large, it is possible to cause the foamed resin sheet to follow the cavity of the mold with high accuracy, and to provide a lightweight and highly rigid foam molded body. Can be manufactured.
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
 好ましくは、前記膨張工程は、第1吸引工程と、金型近接工程と、第2吸引工程をこの順に備え、第1吸引工程では、第1金型により前記発泡樹脂シートを減圧吸引して前記発泡樹脂シートを第1金型のキャビティに沿った形状に賦形し、前記金型近接工程では、前記隙間が第1及び第2金型の間に設けられるように第1及び第2金型を近接させ、第2吸引工程では、第1及び第2金型により前記発泡樹脂シートを減圧吸引することによって前記発泡樹脂シートを前記隙間の厚さにまで膨張させる。
 好ましくは、前記膨張工程では、前記発泡樹脂シートのうち前記発泡成形体となる部位の全体が膨張される。
 好ましくは、第1及び第2金型のキャビティは、前記発泡樹脂シートのうち前記発泡成形体となる部位の全体において前記隙間が略一定となるように構成される。
 好ましくは、第1金型のキャビティは、凹部を有する形状であり、第2金型のキャビティは、前記凹部内に入り込む形状の凸部を有する形状である。
 好ましくは、前記隙間は、前記発泡樹脂シートの厚さの1.1~3.0倍である。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the expansion step includes a first suction step, a mold proximity step, and a second suction step in this order, and in the first suction step, the foamed resin sheet is sucked under reduced pressure by the first die. The foamed resin sheet is shaped into a shape along the cavity of the first mold, and in the mold proximity step, the first and second molds are provided so that the gap is provided between the first and second molds. In the second suction step, the foamed resin sheet is expanded to the thickness of the gap by sucking the foamed resin sheet under reduced pressure using the first and second molds.
Preferably, in the expansion step, the entire portion of the foamed resin sheet that becomes the foam molded body is expanded.
Preferably, the cavities of the first and second molds are configured such that the gap is substantially constant in the entire portion of the foamed resin sheet that becomes the foamed molded body.
Preferably, the cavity of a 1st metal mold | die is a shape which has a recessed part, and the cavity of a 2nd metal mold | die is a shape which has a convex part of the shape which penetrates in the said recessed part.
Preferably, the gap is 1.1 to 3.0 times the thickness of the foamed resin sheet.
 本発明の別の観点によれば、中央層と、その両側に設けられた表面層を備える発泡成形体であって、前記表面層は、前記発泡成形体の肉厚に対して前記発泡成形体の表面から厚さ10%までの層であり、前記中央層は、前記発泡成形体の肉厚に対して前記発泡成形体の表面から厚さ25~50%の層であり、前記中央層の平均気泡径は、前記表面層の平均気泡径よりも大きい、発泡成形体が提供される。
 好ましくは、(前記中央層の平均気泡径)/(前記表面層の平均気泡径)の比は、1.2~10である。
According to another aspect of the present invention, there is provided a foam molded body comprising a central layer and surface layers provided on both sides thereof, wherein the surface layer is formed with respect to the thickness of the foam molded body. The center layer is a layer having a thickness of 25 to 50% from the surface of the foamed molded product with respect to the thickness of the foamed molded product. There is provided a foamed molded article having an average cell diameter larger than the average cell diameter of the surface layer.
Preferably, the ratio of (average cell diameter of the central layer) / (average cell size of the surface layer) is 1.2 to 10.
本発明の一実施形態の発泡成形体の製造方法で利用可能な発泡成形機1の一例を示す。1 shows an example of a foam molding machine 1 that can be used in a method for producing a foam molded body according to an embodiment of the present invention. 図2(a)は、図1の第1及び第2金型21,22及び発泡樹脂シート23の近傍の拡大断面図であり、図2(b)は、図2(a)の状態から、第1金型21によって発泡樹脂シート23を減圧吸引して、発泡樹脂シート23を第1金型21のキャビティ21bに沿った形状に賦形した状態を示す、図2(a)に対応する断面図である。FIG. 2A is an enlarged cross-sectional view in the vicinity of the first and second molds 21 and 22 and the foamed resin sheet 23 in FIG. 1, and FIG. 2B is a view from the state of FIG. A cross section corresponding to FIG. 2 (a), showing a state in which the foamed resin sheet 23 is sucked under reduced pressure by the first mold 21 and the foamed resin sheet 23 is shaped into a shape along the cavity 21 b of the first mold 21. FIG. 図3(a)~(b)は、図2(a)に対応する断面図であり、図3(a)は、図2(b)の状態から金型21,22を互いに近接させた状態を示し、図3(b)は、図3(a)の状態から、第2金型22によって発泡樹脂シート23を減圧吸引して発泡樹脂シート23を金型21,22の間の隙間Gの厚さにまで膨張させた状態を示す。3 (a) and 3 (b) are cross-sectional views corresponding to FIG. 2 (a). FIG. 3 (a) shows a state in which the molds 21 and 22 are brought close to each other from the state of FIG. 2 (b). 3 (b) shows the gap G between the molds 21 and 22 by sucking the foamed resin sheet 23 under reduced pressure by the second mold 22 from the state of FIG. 3 (a). The state expanded to thickness is shown. 図4(a)~(b)は、図2(a)に対応する断面図であり、図4(a)は、図3(b)の工程で得られたバリ23bのついた発泡成形体24を示し、図4(b)は、図4(a)の状態からバリ23bを除去した後の状態を示す。4 (a) and 4 (b) are cross-sectional views corresponding to FIG. 2 (a), and FIG. 4 (a) is a foamed molded article with burrs 23b obtained in the step of FIG. 3 (b). 4 (b) shows a state after the burr 23b is removed from the state of FIG. 4 (a). 本発明の実施例で得られた発泡成形体24の断面写真を示す。The cross-sectional photograph of the foaming molding 24 obtained in the Example of this invention is shown. 仮平均気泡径の算出方法を説明するための気泡の形態の一例を示す。An example of a bubble form for explaining a method of calculating a temporary average bubble diameter is shown. ヒンジ部33で連結されたダクト半体31,32の構造を示す斜視図である。4 is a perspective view showing the structure of duct halves 31 and 32 connected by a hinge part 33. FIG. ダクト半体31,32を接合して形成されたダクト30を示す斜視図である。It is a perspective view which shows the duct 30 formed by joining the duct half bodies 31 and 32. FIG.
 以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described. Various characteristic items shown in the following embodiments can be combined with each other. In addition, the invention is independently established for each feature.
1.発泡成形機1の構成
 最初に、図1~図4を用いて、本発明の一実施形態の発泡成形体の製造方法の実施に利用可能な発泡成形機1について説明する。発泡成形機1は、樹脂供給装置2と、Tダイ18と、金型21,22を備える。樹脂供給装置2は、ホッパー12と、押出機13と、インジェクタ16と、アキュームレータ17を備える。押出機13とアキュームレータ17は、連結管25を介して連結される。アキュームレータ17とTダイ18は、連結管27を介して連結される。
 以下、各構成について詳細に説明する。
1. Configuration of Foam Molding Machine 1 First, a foam molding machine 1 that can be used for carrying out a method for producing a foam molded body according to an embodiment of the present invention will be described with reference to FIGS. The foam molding machine 1 includes a resin supply device 2, a T die 18, and dies 21 and 22. The resin supply device 2 includes a hopper 12, an extruder 13, an injector 16, and an accumulator 17. The extruder 13 and the accumulator 17 are connected via a connecting pipe 25. The accumulator 17 and the T die 18 are connected via a connecting pipe 27.
Hereinafter, each configuration will be described in detail.
<ホッパー12,押出機13>
 ホッパー12は、原料樹脂11を押出機13のシリンダ13a内に投入するために用いられる。原料樹脂11の形態は、特に限定されないが、通常は、ペレット状である。原料樹脂は、例えばポリオレフィンなどの熱可塑性樹脂であり、ポリオレフィンとしては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体及びその混合物などが挙げられる。原料樹脂11は、ホッパー12からシリンダ13a内に投入された後、シリンダ13a内で加熱されることによって溶融されて溶融樹脂になる。また、シリンダ13a内に配置されたスクリューの回転によってシリンダ13aの先端に向けて搬送される。スクリューは、シリンダ13a内に配置され、その回転によって溶融樹脂を混練しながら搬送する。スクリューの基端にはギア装置が設けられており、ギア装置によってスクリューが回転駆動される。シリンダ13a内に配置されるスクリューの数は、1本でもよく、2本以上であってもよい。
<Hopper 12, Extruder 13>
The hopper 12 is used for charging the raw resin 11 into the cylinder 13 a of the extruder 13. Although the form of the raw material resin 11 is not specifically limited, Usually, it is a pellet form. The raw material resin is a thermoplastic resin such as polyolefin, and examples of the polyolefin include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, and mixtures thereof. The raw material resin 11 is poured into the cylinder 13a from the hopper 12 and then melted by being heated in the cylinder 13a to become a molten resin. Moreover, it is conveyed toward the front-end | tip of the cylinder 13a by rotation of the screw arrange | positioned in the cylinder 13a. A screw is arrange | positioned in the cylinder 13a and conveys molten resin by kneading | mixing by the rotation. A gear device is provided at the base end of the screw, and the screw is driven to rotate by the gear device. The number of screws arranged in the cylinder 13a may be one or two or more.
<インジェクタ16>
 シリンダ13aには、シリンダ13a内に発泡剤を注入するためのインジェクタ16が設けられる。インジェクタ16から注入される発泡剤は、物理発泡剤、化学発泡剤、及びその混合物が挙げられるが、物理発泡剤が好ましい。物理発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系物理発泡剤、およびブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系物理発泡剤、さらにはそれらの超臨界流体を用いることができる。超臨界流体としては、二酸化炭素、窒素などを用いて作ることが好ましく、窒素であれば臨界温度-149.1℃、臨界圧力3.4MPa以上、二酸化炭素であれば臨界温度31℃、臨界圧力7.4MPa以上とすることにより得られる。化学発泡剤としては、酸(例:クエン酸又はその塩)と塩基(例:重曹)との化学反応により炭酸ガスを発生させるものが挙げられる。化学発泡剤は、インジェクタ16から注入する代わりに、ホッパー12から投入してもよい。
<Injector 16>
The cylinder 13a is provided with an injector 16 for injecting a foaming agent into the cylinder 13a. Examples of the foaming agent injected from the injector 16 include physical foaming agents, chemical foaming agents, and mixtures thereof, but physical foaming agents are preferred. As physical foaming agents, inorganic physical foaming agents such as air, carbon dioxide, nitrogen gas, and water, and organic physical foaming agents such as butane, pentane, hexane, dichloromethane, dichloroethane, and their supercritical fluids are used. be able to. As the supercritical fluid, it is preferable to use carbon dioxide, nitrogen or the like. If nitrogen, the critical temperature is 149.1 ° C. and the critical pressure is 3.4 MPa or more, and if carbon dioxide, the critical temperature is 31 ° C. It is obtained by setting it to 7.4 MPa or more. Examples of the chemical foaming agent include those that generate carbon dioxide by a chemical reaction between an acid (eg, citric acid or a salt thereof) and a base (eg, sodium bicarbonate). The chemical foaming agent may be supplied from the hopper 12 instead of being injected from the injector 16.
<アキュームレータ17、Tダイ18>
 原料樹脂と発泡剤が溶融混練されてなる発泡樹脂は、シリンダ13aの樹脂押出口から押し出され、連結管25を通じてアキュームレータ17内に注入される。アキュームレータ17は、シリンダ17aとその内部で摺動可能なピストン17bを備えており、シリンダ17a内に発泡樹脂が貯留可能になっている。そして、シリンダ17a内に発泡樹脂が所定量貯留された後にピストン17bを移動させることによって、連結管27を通じて発泡樹脂をTダイ18内に設けられたスリットから押し出して垂下させて発泡樹脂シート23を形成する。
<Accumulator 17, T-die 18>
The foamed resin obtained by melt-kneading the raw material resin and the foaming agent is extruded from the resin extrusion port of the cylinder 13 a and injected into the accumulator 17 through the connecting pipe 25. The accumulator 17 includes a cylinder 17a and a piston 17b that can slide inside the cylinder 17a, and foamed resin can be stored in the cylinder 17a. Then, by moving the piston 17b after a predetermined amount of foamed resin is stored in the cylinder 17a, the foamed resin is pushed out from the slit provided in the T-die 18 through the connecting pipe 27 to hang down the foamed resin sheet 23. Form.
<第1及び第2金型21,22>
 発泡樹脂シート23は、第1及び第2金型21,22間に導かれる。図1~図3に示すように、第1金型21には、多数の減圧吸引孔21aが設けられており、発泡樹脂シート23を減圧吸引して第1金型21のキャビティ21bに沿った形状に賦形することが可能になっている。キャビティ21bは、凹部21cを有する形状になっており、凹部21cを取り囲むようにピンチオフ部21dが設けられている。第2金型22には、多数の減圧吸引孔22aが設けられており、発泡樹脂シート23を減圧吸引して第2金型22のキャビティ22bに沿った形状に賦形することが可能になっている。キャビティ22bは、凹部21cに入り込む形状の凸部22cを有する形状になっており、凸部22cを取り囲むようにピンチオフ部22dが設けられている。なお、第2金型22のキャビティ22bが凹部を有する形状で、第1金型21のキャビティ21bが凹部に入り込む凸部を有する形状であってもよい。
<First and second molds 21, 22>
The foamed resin sheet 23 is guided between the first and second molds 21 and 22. As shown in FIGS. 1 to 3, the first mold 21 is provided with a number of vacuum suction holes 21 a, and the foamed resin sheet 23 is sucked under reduced pressure along the cavity 21 b of the first mold 21. It is possible to shape the shape. The cavity 21b has a shape having a recess 21c, and a pinch-off portion 21d is provided so as to surround the recess 21c. The second mold 22 is provided with a large number of vacuum suction holes 22a, and the foamed resin sheet 23 can be vacuum-sucked and shaped into a shape along the cavity 22b of the second mold 22. ing. The cavity 22b has a shape having a convex portion 22c that enters the concave portion 21c, and a pinch-off portion 22d is provided so as to surround the convex portion 22c. The cavity 22b of the second mold 22 may have a shape having a recess, and the cavity 21b of the first mold 21 may have a shape having a protrusion that enters the recess.
2.発泡成形体の製造方法
 ここで、図2~図4を用いて、本発明の一実施形態の発泡成形体の製造方法について説明する。本実施形態の方法は、配置工程と膨張工程を備える。以下、詳細に説明する。
2. Method for Manufacturing Foam Molded Body Here, a method for manufacturing a foam molded body according to an embodiment of the present invention will be described with reference to FIGS. The method of this embodiment includes an arrangement step and an expansion step. Details will be described below.
2.1 配置工程
 この工程では、図1及び図2(a)に示すように、溶融状態の発泡樹脂をTダイ18のスリットから押し出して垂下させて形成した1枚の発泡樹脂シート23を金型21,22間に配置する。本実施形態では、Tダイ18から押し出された発泡樹脂シート23をそのまま使用するダイレクト真空成形が行われるので、発泡樹脂シート23は、成形前に室温にまで冷却されて固化されることがなく、固化された発泡樹脂シート23が成形前に加熱されることもない。また、本実施形態の発泡樹脂シート23は、スリットから押し出された直後は全体がほぼ均一の温度であり、垂下されている間に大気によって表面から徐々に冷却されるものである。そして、発泡樹脂シート23の厚さ方向の中央に向かうほど大気による冷却の影響を受けにくくなるので、本実施形態の発泡樹脂シート23は、厚さ方向の中央に向かうほど温度が上昇して粘度が低くなるという性質を有する。発泡樹脂シート23の肉厚は、特に限定されないが、例えば、0.5~5mmであり、好ましくは、1~3mmである。この肉厚は、具体的には例えば、0.5、1、1.5、2、2.5、3、3.5、4、4.5、5mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
2.1 Arrangement Step In this step, as shown in FIGS. 1 and 2 (a), a foamed resin sheet 23 formed by extruding a foamed resin in a molten state from the slit of the T die 18 and hanging down is formed of gold. Arranged between molds 21 and 22. In the present embodiment, since direct vacuum molding is performed using the foamed resin sheet 23 extruded from the T die 18 as it is, the foamed resin sheet 23 is not cooled and solidified to room temperature before molding, The solidified foamed resin sheet 23 is not heated before molding. Further, the foamed resin sheet 23 of the present embodiment has a substantially uniform temperature immediately after being extruded from the slit, and is gradually cooled from the surface by the atmosphere while being suspended. And since it becomes hard to receive the influence of cooling by air | atmosphere, so that it goes to the center of the thickness direction of the foamed resin sheet 23, the temperature rises and the viscosity of the foamed resin sheet 23 of this embodiment goes to the center of the thickness direction. Has the property of lowering. The thickness of the foamed resin sheet 23 is not particularly limited, but is, for example, 0.5 to 5 mm, and preferably 1 to 3 mm. Specifically, this thickness is, for example, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 mm, and any of the numerical values exemplified here. Or within a range between the two.
2.2 膨張工程
 この工程では、図2(b)~図3(b)に示すように、発泡樹脂シート23の厚さよりも大きい隙間Gが金型21,22の間に設けられるように金型21,22を近づけた状態で金型21,22の両方によって発泡樹脂シート23を減圧吸引することによって、発泡樹脂シート23を隙間Gの厚さにまで膨張させる。
2.2 Expansion Step In this step, as shown in FIGS. 2 (b) to 3 (b), the mold G is provided so that a gap G larger than the thickness of the foamed resin sheet 23 is provided between the molds 21 and 22. The foamed resin sheet 23 is expanded to the thickness of the gap G by sucking the foamed resin sheet 23 under reduced pressure by both the molds 21 and 22 with the molds 21 and 22 brought close to each other.
 本実施形態では、金型21,22にピンチオフ部21d,22dが設けられており、ピンチオフ部21d,22dが当接するまで金型21,22を近接させると、ピンチオフ部21d,22dで囲まれる空間が密閉空間Sとなる。発泡樹脂シート23のうち密閉空間S内にある部位23aが発泡成形体24となる。一方、発泡樹脂シート23のうち密閉空間S外にある部位はバリ23bとなる。 In this embodiment, the molds 21 and 22 are provided with pinch-off portions 21d and 22d. When the molds 21 and 22 are brought close to each other until the pinch-off portions 21d and 22d come into contact with each other, spaces surrounded by the pinch-off portions 21d and 22d. Becomes the sealed space S. A portion 23 a in the sealed space S of the foamed resin sheet 23 becomes the foamed molded body 24. On the other hand, a portion of the foamed resin sheet 23 outside the sealed space S is a burr 23b.
 金型21,22のキャビティ21b,22bは、発泡樹脂シート23のうち発泡成形体24となる部位(つまり、密閉空間S内にある部位)の全体に渡って、金型21,22の間の隙間Gが略一定となるように構成されている。この状態で金型21,22によって発泡樹脂シート23を減圧吸引すると発泡樹脂シート23が隙間Gの厚さに膨張して発泡成形体24が形成される。なお、ピンチオフ部21d,22dは、必須の構成ではなく、金型21,22の間に隙間Gが形成されるように金型21,22を非接触で近接させてもよい。但し、ピンチオフ部21d,22dを当接させて密閉空間Sを形成した状態で金型21,22による減圧吸引を行うと密閉空間S内の圧力が低下されやすいので、発泡樹脂シート23が膨張されやすいというメリットがある。 The cavities 21b and 22b of the molds 21 and 22 are located between the molds 21 and 22 over the entire portion of the foamed resin sheet 23 that becomes the foamed molded body 24 (that is, the portion in the sealed space S). The gap G is configured to be substantially constant. When the foamed resin sheet 23 is sucked under reduced pressure by the molds 21 and 22 in this state, the foamed resin sheet 23 expands to the thickness of the gap G and the foamed molded body 24 is formed. Note that the pinch-off portions 21d and 22d are not essential, and the molds 21 and 22 may be brought close to each other so that a gap G is formed between the molds 21 and 22. However, if the vacuum suction by the molds 21 and 22 is performed with the pinch-off portions 21d and 22d in contact with each other and the sealed space S is formed, the pressure in the sealed space S is likely to be reduced, so that the foamed resin sheet 23 is expanded. There is a merit that it is easy.
 隙間Gの厚さは、特に限定されないが、発泡樹脂シート23の厚さの1.1~3.0倍であることが好ましい。(隙間Gの厚さ)/(発泡樹脂シート23の厚さ)は、具体的には例えば、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The thickness of the gap G is not particularly limited, but is preferably 1.1 to 3.0 times the thickness of the foamed resin sheet 23. Specifically, (thickness of the gap G) / (thickness of the foamed resin sheet 23) is, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1 .7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3.0, and may be within a range between any two of the numerical values exemplified here.
 金型21,22による減圧吸引は、第1金型21による減圧吸引を先に開始してもよく、第2金型22による減圧吸引を先に開始してもよく、金型21,22による減圧吸引を同時に開始してもよい。また、第1金型21による減圧吸引を先に停止してもよく、第2金型22による減圧吸引を先に停止してもよく、金型21,22による減圧吸引を同時に停止してもよい。金型21,22による減圧吸引は、金型21,22を近接させる前に開始してもよく、近接させた後に開始してもよい。 The vacuum suction by the molds 21 and 22 may start the vacuum suction by the first mold 21 first, the vacuum suction by the second mold 22 first, and by the molds 21 and 22. The vacuum suction may be started simultaneously. Further, the vacuum suction by the first mold 21 may be stopped first, the vacuum suction by the second mold 22 may be stopped first, or the vacuum suction by the molds 21 and 22 may be stopped simultaneously. Good. The vacuum suction by the molds 21 and 22 may be started before the molds 21 and 22 are brought close to each other, or may be started after they are brought close to each other.
 金型21,22の両方によって発泡樹脂シート23を減圧吸引すると、発泡樹脂シート23の発泡が促進されて発泡樹脂シート23が膨張する。発泡樹脂シート23は厚さ方向の中央付近での粘度が最も低い(流動性が最も高い)ので、厚さ方向の中央付近での発泡が特に促進されて発泡樹脂シート23が膨張する。その結果、厚さ方向の中央付近の層(中央層)での平均気泡径が大きく、表面近傍の表面層の平均気泡径が小さいという構成の発泡成形体24が得られる。このような発泡成形体24は、平均気泡径が大きい中央層が、平均気泡径が小さい表面層で挟まれたサンドイッチ構造となっているために、軽量且つ高剛性である。 When the foamed resin sheet 23 is sucked under reduced pressure by both the molds 21 and 22, foaming of the foamed resin sheet 23 is promoted and the foamed resin sheet 23 expands. Since the foamed resin sheet 23 has the lowest viscosity in the vicinity of the center in the thickness direction (the highest fluidity), the foaming in the vicinity of the center in the thickness direction is particularly promoted and the foamed resin sheet 23 expands. As a result, it is possible to obtain the foam molded body 24 having a configuration in which the average cell diameter in the layer near the center in the thickness direction (center layer) is large and the average cell diameter in the surface layer near the surface is small. Such a foam-molded body 24 has a sandwich structure in which a central layer having a large average cell diameter is sandwiched between surface layers having a small average cell diameter, and thus is lightweight and highly rigid.
 本実施形態の方法によって得られる発泡成形体24は、図5の断面写真に示すように、発泡成形体24に肉厚に対して、発泡成形体24の表面から厚さ10%までの層を表面層とし、発泡成形体の表面から厚さ25~50%の層を中央層とすると、中央層の平均気泡径が表面層の平均気泡径よりも大きくなる。(中央層の平均気泡径)/(表面層の平均気泡径)の比は、特に限定されないが、例えば、1.2~10である。この比は、具体的には例えば、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.5、3、3.5、4、4.5、5、5.5、6、7、8、9、10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 As shown in the cross-sectional photograph of FIG. 5, the foam molded body 24 obtained by the method of the present embodiment is provided with a layer having a thickness of 10% from the surface of the foam molded body 24 to the thickness of the foam molded body 24. If the surface layer is a layer having a thickness of 25 to 50% from the surface of the foamed molded product, the average cell diameter of the center layer is larger than the average cell size of the surface layer. The ratio of (average cell diameter of the central layer) / (average cell size of the surface layer) is not particularly limited, but is, for example, 1.2 to 10. Specifically, this ratio is, for example, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10, and may be within a range between any two of the numerical values exemplified here.
 発泡成形体24の厚さ方向全体の平均気泡径は、例えば、100~2000μmである。この平均気泡径は、具体的には例えば、100、200、300、400、500、600、700、800、900、1000、1500、2000μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。表面層の平均気泡径は、例えば、80~500μmである。この平均気泡径は、具体的には例えば、80、100、150、200、250、300、350、400、450、500μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。中央層の平均気泡径は、例えば、100~2000μmである。この平均気泡径は、具体的には例えば、100、200、300、400、500、600、700、800、900、1000、1100、1200、1300、1400、1500、1600、1700、1800、1900、2000μmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The average cell diameter of the entire foam molded body 24 in the thickness direction is, for example, 100 to 2000 μm. Specifically, the average bubble diameter is, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000 μm, and between any two of the numerical values exemplified here. It may be within the range. The average cell diameter of the surface layer is, for example, 80 to 500 μm. Specifically, the average bubble diameter is, for example, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500 μm, and is within the range between any two of the numerical values exemplified here. May be. The average cell diameter of the central layer is, for example, 100 to 2000 μm. Specifically, the average bubble diameter is, for example, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, It may be within a range between any two of the numerical values exemplified here.
 平均気泡径は、以下の方法で測定する。
・まず、発泡成形体24について図5に示すように拡大倍率50倍で断面写真を撮影する。
・次に、断面写真中で厚さ方向に延びる5本の基準線R1~R5を引く。基準線の間の間隔は500μmとする。
・各基準線について、測定対象の層(表面層、中央層、又は厚さ方向全体)において、基準線が通過する気泡の数をカウントする。
・各気泡について厚さ方向の最大長さ(厚さ方向の長さが最長となる部位での長さ)を測定する。
・式1に従って、各基準線について仮平均気泡径を算出する。さらに、各基準線について算出した仮平均気泡径を算術平均することによって、平均気泡径を算出する。
(式1)仮平均気泡径=カウントした全ての気泡についての最大長さの合計/カウントした気泡数
The average bubble diameter is measured by the following method.
First, as shown in FIG. 5, a cross-sectional photograph of the foamed molded body 24 is taken at a magnification of 50 times.
Next, five reference lines R1 to R5 extending in the thickness direction are drawn in the cross-sectional photograph. The interval between the reference lines is 500 μm.
For each reference line, count the number of bubbles that the reference line passes through in the layer to be measured (surface layer, center layer, or the entire thickness direction).
-For each bubble, measure the maximum length in the thickness direction (the length at the portion where the length in the thickness direction is the longest).
-According to Formula 1, a temporary average bubble diameter is calculated for each reference line. Further, the average bubble diameter is calculated by arithmetically averaging the temporary average bubble diameters calculated for each reference line.
(Expression 1) Temporary average bubble diameter = total maximum length of all counted bubbles / number of counted bubbles
 例えば、図6の例では、中央層において基準線Rが通過する気泡の数が6個であり、各気泡についての厚さ方向の最大長さは、L1~L6である。このため、この例では、中央層の仮平均気泡径は、(L1+L2++L3+L4+L5+L6)/6によって算出される。 For example, in the example of FIG. 6, the number of bubbles through which the reference line R passes in the center layer is 6, and the maximum length in the thickness direction for each bubble is L1 to L6. Therefore, in this example, the temporary average bubble diameter of the central layer is calculated by (L1 + L2 +++ L3 + L4 + L5 + L6) / 6.
 膨張工程は、好ましくは、第1吸引工程と、金型近接工程と、第2吸引工程をこの順で実行することによって行う。第1吸引工程では、図2(b)に示すように、第1金型21により発泡樹脂シート23を減圧吸引して発泡樹脂シート23を第1金型21のキャビティ21bに沿った形状に賦形する。金型近接工程では、図3(a)に示すように、隙間Gが金型21,22の間に設けられるように金型21,22を近接させる。第2吸引工程では、図3(b)に示すように、金型21,22により発泡樹脂シート23を減圧吸引することによって発泡樹脂シート23を隙間Gの厚さにまで膨張させる。 The expansion step is preferably performed by executing the first suction step, the mold proximity step, and the second suction step in this order. In the first suction step, as shown in FIG. 2 (b), the foamed resin sheet 23 is sucked under reduced pressure by the first mold 21, so that the foamed resin sheet 23 is shaped into a shape along the cavity 21 b of the first mold 21. Shape. In the mold proximity process, the molds 21 and 22 are brought close to each other so that the gap G is provided between the molds 21 and 22 as shown in FIG. In the second suction step, as shown in FIG. 3B, the foamed resin sheet 23 is expanded to the thickness of the gap G by sucking the foamed resin sheet 23 under reduced pressure by the molds 21 and 22.
 金型21,22を近接させた後に金型21,22による減圧吸引を開始すると、発泡樹脂シート23が賦形される前に発泡樹脂シート23が金型22の凸部22cに当接してしまう。通常は、金型21,22の温度は発泡樹脂シート23の温度よりも低いので、発泡樹脂シート23が金型22の凸部22cに当接すると発泡樹脂シート23が冷却されてその粘度が上昇し、金型21,22のキャビティ21b,22bへの追従性が悪化する。一方、第1吸引工程と、金型近接工程と、第2吸引工程をこの順で実行することによって膨張工程を行う場合、発泡樹脂シート23が第1金型21のキャビティ21bに沿った形状に賦形される前に発泡樹脂シート23が金型21,22に接触することが最小限に抑えられるので、発泡樹脂シート23の粘度が上昇することが抑制され、発泡樹脂シート23を金型21,22のキャビティに高精度に追従させることができる。 When vacuum suction by the molds 21 and 22 is started after the molds 21 and 22 are brought close to each other, the foamed resin sheet 23 comes into contact with the convex portion 22c of the mold 22 before the foamed resin sheet 23 is shaped. . Normally, the temperatures of the molds 21 and 22 are lower than the temperature of the foamed resin sheet 23. Therefore, when the foamed resin sheet 23 comes into contact with the convex portion 22c of the mold 22, the foamed resin sheet 23 is cooled and its viscosity increases. However, the followability of the molds 21 and 22 to the cavities 21b and 22b is deteriorated. On the other hand, when the expansion process is performed by executing the first suction process, the mold proximity process, and the second suction process in this order, the foamed resin sheet 23 has a shape along the cavity 21b of the first mold 21. Since it is minimized that the foamed resin sheet 23 comes into contact with the molds 21 and 22 before being shaped, an increase in the viscosity of the foamed resin sheet 23 is suppressed, and the foamed resin sheet 23 is removed from the mold 21. , 22 can be followed with high accuracy.
2.3 仕上げ工程
 膨張工程の後、金型21,22を開いて、図4(a)に示すように、バリ23bのついた発泡成形体24を取り出し、バリ23bを切除して、図4(b)に示す発泡成形体24が得られる。
2.3 Finishing Step After the expansion step, the molds 21 and 22 are opened, and as shown in FIG. 4 (a), the foamed molded body 24 with burrs 23b is taken out, and the burrs 23b are cut out. The foamed molded body 24 shown in (b) is obtained.
 以上のように、本実施形態の方法によれば、発泡樹脂シート23の肉厚が大きい場合でも発泡樹脂シート23を金型のキャビティに高精度に追従させることができ、かつ軽量且つ高剛性である発泡成形体24を製造することができる。 As described above, according to the method of the present embodiment, even when the thickness of the foamed resin sheet 23 is large, the foamed resin sheet 23 can be made to follow the cavity of the mold with high accuracy, and is lightweight and highly rigid. A certain foam molding 24 can be manufactured.
3.用途
 本発明の発泡成形体24は、軽量且つ高剛性であるために、そのような物性が好適である種々の用途に利用可能である。また、発泡成形体24の片面又は両面に不織布などの通気性部材で構成された表皮材を設けることができる。表皮材は、図2の状態で、発泡樹脂シート23と金型21の間と、発泡樹脂シート23と金型22の間の一方又は両方に配置した状態で、上記と同様に金型21、22によって発泡樹脂シート23の減圧吸引を行うことによって、発泡成形体24の片面又は両面に一体成形することができる。
3. Applications Since the foamed molded article 24 of the present invention is lightweight and highly rigid, it can be used for various applications in which such physical properties are suitable. Moreover, the skin material comprised by breathable members, such as a nonwoven fabric, can be provided in the single side | surface or both surfaces of the foaming molding 24. FIG. In the state of FIG. 2, the skin material is disposed between the foamed resin sheet 23 and the mold 21 and between one or both of the foamed resin sheet 23 and the mold 22. By performing vacuum suction of the foamed resin sheet 23 by 22, the foamed molded body 24 can be integrally molded on one side or both sides.
 本発明の発泡成形体24は、例えば、ドアトリムや天井材などの自動車用内装部材、ラゲッジフロアボード等のボード類、ダクト、エンジンアンダーカバー等に利用可能である。発泡成形体24を自動車用内装部材として利用する場合、発泡成形体24の片面に表皮材を一体成形することが好ましい。例えば、従来技術では、天井材は、ポリウレタンのシートに表皮材を接着剤等で貼着していたが、本発明によれば、表皮材を発泡成形体24に一体成形することができるので、表皮材を貼着する手間を省くことができると共に、接着剤を用いずにアンカー効果(樹脂が表皮材に滲み込むことによって表皮材が樹脂に固定される効果)によって表示材を発泡成形体24に固定することができる。 The foamed molded body 24 of the present invention can be used for, for example, automotive interior members such as door trims and ceiling materials, boards such as luggage floor boards, ducts, engine undercovers, and the like. When the foam molded body 24 is used as an automobile interior member, it is preferable to integrally mold the skin material on one side of the foam molded body 24. For example, in the prior art, the ceiling material has been adhered to the polyurethane sheet with an adhesive or the like, but according to the present invention, the skin material can be integrally molded into the foam molded body 24, It is possible to save the time and effort to stick the skin material, and the display material can be expanded by an anchor effect (an effect that the skin material is fixed to the resin by the resin soaking into the skin material) without using an adhesive. Can be fixed to.
 図7~図8に示すように、ダクト30は、一対のダクト半体31,32を接合して筒状にすることによって形成することができる。ダクト半体31,32は、ヒンジ部33で互いに連結されている。ダクト半体31,32及びヒンジ部33は、上記の製造方法で一体成形することができる。ダクト半体31,32には、それぞれ、接合面31a,32aが設けられている。ヒンジ部33を中心にしてダクト半体31,32を相対回転させ、接合面31a,32aを互いに当接させた状態で、ダクト半体31,32を互いに接合することによって、ダクト30を形成することができる。ダクト半体31,32は、ネジ、リベット、タッカーなどを用いて接合することができる。 7 to 8, the duct 30 can be formed by joining a pair of duct halves 31 and 32 into a cylindrical shape. The duct halves 31 and 32 are connected to each other by a hinge portion 33. The duct halves 31 and 32 and the hinge part 33 can be integrally formed by the manufacturing method described above. The duct halves 31 and 32 are provided with joint surfaces 31a and 32a, respectively. The duct halves 31 and 32 are relatively rotated around the hinge portion 33, and the duct halves 31 and 32 are joined to each other in a state where the joining surfaces 31a and 32a are in contact with each other, thereby forming the duct 30. be able to. The duct halves 31 and 32 can be joined using screws, rivets, tuckers or the like.
 図1に示す発泡成形機1を用いて、発泡成形品(ドアトリム)を作製した。押出機13のシリンダ13aの内径は50mmであり、L/D=34であった。原料樹脂には、ポリプロピレン系樹脂A(ポレアリス社(Borealis AG)製、商品名「Daploy WB140」)と、ポリプロピレン系樹脂B(日本ポリプロ株式会社製、商品名「ノバテックPP・BC4BSW」)を質量比60:40で混合し、樹脂100質量部に対して、核剤として20wt%の炭酸水素ナトリウム系発泡剤を含むLDPEベースマスターバッチ(大日精化工業株式会社製、商品名「ファインセルマスターP0217K」)を1.0重量部、および着色剤として40wt%のカーボンブラックを含むLLDPEベースマスターバッチ1.0重量部を添加したものを用いた。発泡樹脂シート23の温度が190~200℃になるように各部位の温度制御を行った。スクリューの回転数は、60rpmとし、押出量は、20kg/hrとした。発泡剤は、Nガスを用い、インジェクタ16を介して注入した。注入量は、0.4[wt.%](N注入量/樹脂押出量)とした。発泡樹脂シート23は、厚さが2mmになるようにTダイ18の制御を行った。 Using a foam molding machine 1 shown in FIG. 1, a foam molded product (door trim) was produced. The inner diameter of the cylinder 13a of the extruder 13 was 50 mm, and L / D = 34. The weight ratio of the raw material resin is polypropylene resin A (manufactured by Borealis AG, trade name “Daploy WB140”) and polypropylene resin B (manufactured by Nippon Polypro Co., Ltd., trade name “NOVATEC PP / BC4BSW”). LDPE base masterbatch (made by Dainichi Seika Kogyo Co., Ltd., trade name “Finecell Master P0217K”) mixed at 60:40 and containing 20 wt% sodium bicarbonate-based blowing agent as a nucleating agent with respect to 100 parts by mass of resin ) And 1.0 part by weight of LLDPE base masterbatch containing 40 wt% carbon black as a colorant were used. The temperature of each part was controlled so that the temperature of the foamed resin sheet 23 was 190 to 200 ° C. The number of rotations of the screw was 60 rpm, and the amount of extrusion was 20 kg / hr. The blowing agent was injected through the injector 16 using N 2 gas. The injection amount is 0.4 [wt. %] (N 2 injection amount / resin extrusion amount). The T-die 18 was controlled so that the foamed resin sheet 23 had a thickness of 2 mm.
 以上の条件で形成された発泡樹脂シート23を金型21,22の間に配置した。次に、第1金型21によって発泡樹脂シート23の減圧吸引を行って発泡樹脂シート23を第1金型21のキャビティに沿った形状に賦形した。次に、金型21,22の間の隙間Gが3mmになるように金型21,22の距離を近づけた状態で、金型21,22による発泡樹脂シート23の減圧吸引を行って発泡樹脂シート23の厚さが隙間Gの厚さになるように発泡樹脂シート23を膨張させて発泡成形体24を得た。金型21,22による減圧吸引は、-0.1MPaで行った。 The foamed resin sheet 23 formed under the above conditions was placed between the molds 21 and 22. Next, reduced pressure suction of the foamed resin sheet 23 was performed by the first mold 21, and the foamed resin sheet 23 was shaped into a shape along the cavity of the first mold 21. Next, in a state where the distance between the molds 21 and 22 is reduced so that the gap G between the molds 21 and 22 is 3 mm, the foamed resin sheet 23 is sucked by the molds 21 and 22 under a reduced pressure to obtain the foamed resin. The foamed resin sheet 23 was expanded so that the thickness of the sheet 23 became the thickness of the gap G to obtain a foamed molded body 24. Vacuum suction by the molds 21 and 22 was performed at −0.1 MPa.
 発泡成形体24は、一般的な発泡成形体に比べて軽量且つ高剛性であった。発泡成形体24の断面写真を図5に示す。発泡成形体24の表面層及び中央層の平均気泡径を測定したところ、それぞれ、132.3μm及び184.2μmであり、(中央層の平均気泡径)/(表面層の平均気泡径)の比は、1.39であった。 The foam molded body 24 was lighter and more rigid than a general foam molded body. A cross-sectional photograph of the foamed molded product 24 is shown in FIG. When the average cell diameters of the surface layer and the central layer of the foamed molded product 24 were measured, they were 132.3 μm and 184.2 μm, respectively, and the ratio of (average cell diameter of the central layer) / (average cell size of the surface layer) Was 1.39.
1:発泡成形機、2:樹脂供給装置、11:原料樹脂、12:ホッパー、13:押出機、13a:シリンダ、16:インジェクタ、17:アキュームレータ、17a:シリンダ、17b:ピストン、18:Tダイ、21:第1金型、21a:減圧吸引孔、21b:キャビティ、21c:凹部、21d:ピンチオフ部、22:第2金型、22a:減圧吸引孔、22b:キャビティ、22c:凸部、22d:ピンチオフ部、23:発泡樹脂シート、23a:部位、23b:バリ、24:発泡成形体、25:連結管、27:連結管、30:ダクト、31,32:ダクト半体、31a,32a:接合面、33:ヒンジ部、G:隙間、S:密閉空間、 1: foam molding machine, 2: resin supply device, 11: raw resin, 12: hopper, 13: extruder, 13a: cylinder, 16: injector, 17: accumulator, 17a: cylinder, 17b: piston, 18: T die , 21: first mold, 21a: vacuum suction hole, 21b: cavity, 21c: recess, 21d: pinch-off part, 22: second mold, 22a: vacuum suction hole, 22b: cavity, 22c: convex part, 22d : Pinch-off part, 23: Foamed resin sheet, 23a: Site, 23b: Burr, 24: Foam molded body, 25: Connection pipe, 27: Connection pipe, 30: Duct, 31, 32: Half duct, 31a, 32a: Joint surface, 33: hinge part, G: gap, S: sealed space,

Claims (8)

  1.  溶融状態の発泡樹脂をスリットから押し出して垂下させて形成した1枚の発泡樹脂シートを第1及び第2金型間に配置する配置工程と、
     前記発泡樹脂シートの厚さよりも大きい隙間が第1及び第2金型の間に設けられるように第1及び第2金型を近づけた状態で第1及び第2金型の両方によって前記発泡樹脂シートを減圧吸引することによって、前記発泡樹脂シートを前記隙間の厚さにまで膨張させる膨張工程を備える、発泡成形体の製造方法。
    An arrangement step of arranging a single foamed resin sheet formed by extruding and dropping a molten foamed resin from the slit between the first and second molds;
    The foamed resin by both the first and second molds in a state where the first and second molds are brought close so that a gap larger than the thickness of the foamed resin sheet is provided between the first and second molds. A method for producing a foamed molded article, comprising an expansion step of expanding the foamed resin sheet to the thickness of the gap by sucking the sheet under reduced pressure.
  2.  前記膨張工程は、第1吸引工程と、金型近接工程と、第2吸引工程をこの順に備え、
     第1吸引工程では、第1金型により前記発泡樹脂シートを減圧吸引して前記発泡樹脂シートを第1金型のキャビティに沿った形状に賦形し、
     前記金型近接工程では、前記隙間が第1及び第2金型の間に設けられるように第1及び第2金型を近接させ、
     第2吸引工程では、第1及び第2金型により前記発泡樹脂シートを減圧吸引することによって前記発泡樹脂シートを前記隙間の厚さにまで膨張させる、請求項1に記載の方法。
    The expansion step includes a first suction step, a mold proximity step, and a second suction step in this order,
    In the first suction step, the foamed resin sheet is sucked under reduced pressure by a first mold, and the foamed resin sheet is shaped into a shape along the cavity of the first mold,
    In the mold proximity step, the first and second molds are brought close to each other so that the gap is provided between the first and second molds.
    The method according to claim 1, wherein in the second suction step, the foamed resin sheet is expanded to the thickness of the gap by sucking the foamed resin sheet under reduced pressure using the first and second molds.
  3.  前記膨張工程では、前記発泡樹脂シートのうち前記発泡成形体となる部位の全体が膨張される、請求項1又は請求項2に記載の方法。 The method according to claim 1 or 2, wherein in the expansion step, the entire portion of the foamed resin sheet that becomes the foamed molded body is expanded.
  4.  第1及び第2金型のキャビティは、前記発泡樹脂シートのうち前記発泡成形体となる部位の全体において前記隙間が略一定となるように構成される、請求項1~請求項3の何れか1つに記載の方法。 4. The cavity according to any one of claims 1 to 3, wherein the first and second mold cavities are configured such that the gap is substantially constant over the entire portion of the foamed resin sheet that becomes the foamed molded body. The method according to one.
  5.  第1金型のキャビティは、凹部を有する形状であり、第2金型のキャビティは、前記凹部内に入り込む形状の凸部を有する形状である、請求項1~請求項4の何れか1つに記載の方法。 The cavity of the first mold has a shape having a concave portion, and the cavity of the second mold has a shape having a convex portion that enters into the concave portion. The method described in 1.
  6.  前記隙間は、前記発泡樹脂シートの厚さの1.1~3.0倍である、請求項1~請求項5の何れか1つに記載の方法。 The method according to any one of claims 1 to 5, wherein the gap is 1.1 to 3.0 times the thickness of the foamed resin sheet.
  7.  中央層と、その両側に設けられた表面層を備える発泡成形体であって、
     前記表面層は、前記発泡成形体の肉厚に対して前記発泡成形体の表面から厚さ10%までの層であり、前記中央層は、前記発泡成形体の肉厚に対して前記発泡成形体の表面から厚さ25~50%の層であり、
     前記中央層の平均気泡径は、前記表面層の平均気泡径よりも大きい、発泡成形体。
    A foam molded body comprising a central layer and surface layers provided on both sides thereof,
    The surface layer is a layer having a thickness of 10% from the surface of the foam molded body with respect to the thickness of the foam molded body, and the center layer is formed by foam molding with respect to the thickness of the foam molded body. A layer 25 to 50% thick from the surface of the body,
    The average cell diameter of the said center layer is a foaming molding which is larger than the average cell diameter of the said surface layer.
  8.  (前記中央層の平均気泡径)/(前記表面層の平均気泡径)の比は、1.2~10である、請求項7に記載の発泡成形体。 The foam molded article according to claim 7, wherein a ratio of (average cell diameter of the central layer) / (average cell diameter of the surface layer) is 1.2 to 10.
PCT/JP2017/034274 2016-09-30 2017-09-22 Method for manufacturing foam molded body WO2018062033A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780056164.8A CN109689332B (en) 2016-09-30 2017-09-22 Method for producing foamed molded article
US16/336,193 US10940620B2 (en) 2016-09-30 2017-09-22 Method for manufacturing foam molded body
KR1020197009515A KR102326199B1 (en) 2016-09-30 2017-09-22 Method for manufacturing expanded molded article
MX2019003178A MX2019003178A (en) 2016-09-30 2017-09-22 Method for manufacturing foam molded body.
EP17855987.8A EP3520980B1 (en) 2016-09-30 2017-09-22 Method for manufacturing foam molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016193531 2016-09-30
JP2016-193531 2016-09-30
JP2017176128A JP7060782B2 (en) 2016-09-30 2017-09-13 Manufacturing method of foam molded product
JP2017-176128 2017-09-13

Publications (1)

Publication Number Publication Date
WO2018062033A1 true WO2018062033A1 (en) 2018-04-05

Family

ID=61762785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034274 WO2018062033A1 (en) 2016-09-30 2017-09-22 Method for manufacturing foam molded body

Country Status (1)

Country Link
WO (1) WO2018062033A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156916A (en) * 1996-12-04 1998-06-16 Jsp Corp Polycarbonate resin open-cell type plate-shaped extruded foam
JP2000229346A (en) * 1999-02-03 2000-08-22 Fina Res Sa Polyolefin and use thereof
JP2001310380A (en) 2000-04-28 2001-11-06 Sumitomo Chem Co Ltd Foamed thermoplastic resin molding and manufacturing method for the same
JP2006068919A (en) * 2004-08-31 2006-03-16 Sumitomo Chemical Co Ltd Vacuum forming method of thermoplastic resin foamed sheet
JP2010269510A (en) * 2009-05-21 2010-12-02 Japan Polypropylene Corp Thermoforming sheet formed of polyolefinic resin laminated foam sheet, and thermoforming article using the same
JP2010280141A (en) * 2009-06-04 2010-12-16 Japan Polypropylene Corp Foamed, laminated polyolefin based resin sheet used in thermoforming, and thermoformed article using the sheet
JP2013071309A (en) * 2011-09-27 2013-04-22 Dm Novafoam Ltd Foam, method of producing the same and application of the same
JP2016172438A (en) * 2015-03-16 2016-09-29 日本ポリプロ株式会社 Laminated foam sheet and thermoformed body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156916A (en) * 1996-12-04 1998-06-16 Jsp Corp Polycarbonate resin open-cell type plate-shaped extruded foam
JP2000229346A (en) * 1999-02-03 2000-08-22 Fina Res Sa Polyolefin and use thereof
JP2001310380A (en) 2000-04-28 2001-11-06 Sumitomo Chem Co Ltd Foamed thermoplastic resin molding and manufacturing method for the same
JP2006068919A (en) * 2004-08-31 2006-03-16 Sumitomo Chemical Co Ltd Vacuum forming method of thermoplastic resin foamed sheet
JP2010269510A (en) * 2009-05-21 2010-12-02 Japan Polypropylene Corp Thermoforming sheet formed of polyolefinic resin laminated foam sheet, and thermoforming article using the same
JP2010280141A (en) * 2009-06-04 2010-12-16 Japan Polypropylene Corp Foamed, laminated polyolefin based resin sheet used in thermoforming, and thermoformed article using the sheet
JP2013071309A (en) * 2011-09-27 2013-04-22 Dm Novafoam Ltd Foam, method of producing the same and application of the same
JP2016172438A (en) * 2015-03-16 2016-09-29 日本ポリプロ株式会社 Laminated foam sheet and thermoformed body

Similar Documents

Publication Publication Date Title
JP7060782B2 (en) Manufacturing method of foam molded product
WO2018062033A1 (en) Method for manufacturing foam molded body
JP6978671B2 (en) Structure and its manufacturing method
WO2018097320A1 (en) Structure production method, integrally molded body, and integrally molded body production method
US11524430B2 (en) Structure, and method for manufacturing same
EP3675117B1 (en) Structure for vehicles and air conditioning duct for vehicles
JP6923797B2 (en) Structure and its manufacturing method
JP6947972B2 (en) Manufacturing method of integrally molded body and integrally molded body
JP6940747B2 (en) Manufacturing method of integrally molded body and integrally molded body
JP6777856B2 (en) Manufacturing method of vibration damping member and manufacturing method of structure
JP7071632B2 (en) Manufacturing method of molded product
JP7474405B2 (en) Method for forming foamed resin sheet
JP7277740B2 (en) Duct and its manufacturing method
JP7280502B2 (en) Duct manufacturing method
JP6851267B2 (en) Vibration damping member, its manufacturing method, and structure manufacturing method
JP6770228B2 (en) Manufacturing method of foam molded product
JP2023005855A (en) Method of manufacturing foam molding body and foam molding body
JP6773967B2 (en) Manufacturing method of foam molded product
JP2018086755A (en) Structure manufacturing method
JP2021105115A (en) Foam molded body
JP2018179357A (en) Formed part and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009515

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855987

Country of ref document: EP

Effective date: 20190430