JP5195950B2 - Method for manufacturing a plastic container having a pearly appearance - Google Patents

Method for manufacturing a plastic container having a pearly appearance Download PDF

Info

Publication number
JP5195950B2
JP5195950B2 JP2011031248A JP2011031248A JP5195950B2 JP 5195950 B2 JP5195950 B2 JP 5195950B2 JP 2011031248 A JP2011031248 A JP 2011031248A JP 2011031248 A JP2011031248 A JP 2011031248A JP 5195950 B2 JP5195950 B2 JP 5195950B2
Authority
JP
Japan
Prior art keywords
foamed
average
container
preform
appearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011031248A
Other languages
Japanese (ja)
Other versions
JP2011168337A (en
Inventor
健太郎 市川
宣久 小磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2011031248A priority Critical patent/JP5195950B2/en
Publication of JP2011168337A publication Critical patent/JP2011168337A/en
Application granted granted Critical
Publication of JP5195950B2 publication Critical patent/JP5195950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Description

本発明は、器壁中に発泡セルが分布しており、この発泡セルによりパール調外観が付与されたプラスチック容器の製造方法に関するものである。   The present invention relates to a method for producing a plastic container in which foam cells are distributed in a vessel wall and a pearly appearance is imparted by the foam cells.

従来、鱗片状の無機顔料(例えばタルク)が分散されている樹脂組成物を成形して得られるプラスチック容器は、パール調(真珠光沢状)の外観を有することが知られている。即ち、鱗片状の顔料により、容器壁の内部で光の散乱・反射が生じるものである。このようなパール調の外観を有するプラスチック容器は、その商品価値が極めて高い。   Conventionally, it is known that a plastic container obtained by molding a resin composition in which a scaly inorganic pigment (for example, talc) is dispersed has a pearl-like (pearly luster) appearance. In other words, the scaly pigment causes light scattering and reflection inside the container wall. A plastic container having such a pearly appearance has an extremely high commercial value.

一方、近年では、資源の再利用が強く求められ、上記のようなポリエステル容器に関しても、使用済みの容器を回収し、リサイクル樹脂として種々の用途への再利用が図られている。ところで、上記のようなパール調外観を有するプラスチック容器は、リサイクルに適当でない。パール調の外観を付与するために、樹脂中に鱗片状の無機顔料が分散されているため、リサイクル樹脂に透明性を確保することが困難となってしまうからである。   On the other hand, in recent years, the reuse of resources has been strongly demanded, and with respect to the polyester container as described above, a used container is collected and reused for various purposes as a recycled resin. By the way, the plastic container having the pearly appearance as described above is not suitable for recycling. This is because it is difficult to ensure transparency in the recycled resin because the scaly inorganic pigment is dispersed in the resin to give a pearly appearance.

また、特許文献1には、気泡(発泡セル)を容器壁中に分布させることにより遮光性が付与されたプラスチック容器が提案されている。   Patent Document 1 proposes a plastic container provided with light shielding properties by distributing bubbles (foamed cells) in the container wall.

特開2003−26137号JP 2003-26137 A

特許文献1のプラスチック容器は、容器壁の内部に分布している発泡セルによる光散乱によって遮光性が付与されているものであり、顔料などの着色成分は使用されておらず、リサイクル適性の点では優れているが、パール調の如き審美性が付与されるには至っておらず、商品価値を高めるほどの外観は得られていない。   The plastic container of Patent Document 1 is provided with a light-shielding property by light scattering by foamed cells distributed inside the container wall, and does not use a coloring component such as a pigment, and is suitable for recycling. However, it has not yet been imparted with aesthetics such as a pearl tone, and an appearance that enhances the product value is not obtained.

従って、本発明の目的は、鱗片状無機顔料などの着色成分を使用せず、発泡セルの分布によりパール調外観が付与されており、商品価値が高く、しかも、リサイクル適性にも優れたプラスチック容器の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a plastic container that does not use a coloring component such as a scale-like inorganic pigment, has a pearly appearance due to the distribution of foamed cells, has high commercial value, and is excellent in recyclability. It is in providing the manufacturing method of.

本発明によれば、
非発泡樹脂体からなり且つ不活性ガスが含浸された非発泡プリフォームを用意し、
冷却固化した状態で常圧下に開放することにより、前記非発泡プリフォームの外表面部分から不活性ガスを放出させ、
次いで前記非発泡プリフォームを加熱して発泡セルを形成することにより、外表面側に発泡セルの存在しない表皮層を有する発泡プリフォームを得、
前記発泡プリフォームを加熱して延伸成形することを特徴とするプラスチック容器の製造方法が提供される。
According to the present invention,
A non-foamed preform made of a non-foamed resin body and impregnated with an inert gas is prepared,
By releasing under normal pressure in a cooled and solidified state, the inert gas is released from the outer surface portion of the non-foamed preform,
Next, the foamed cell is formed by heating the non-foamed preform to obtain a foamed preform having a skin layer where no foamed cell exists on the outer surface side,
A method for producing a plastic container is provided, wherein the foamed preform is heated and stretch-molded.

本発明の製造方法により得られるプラスチック容器は、所定の大きさの偏平形状を有する発泡セルが容器壁中に多重に分布しているため、パール調の外観を呈しており、その商品価値が極めて高い。また、顔料等の着色剤乃至充填材を使用せず、発泡セルによりパール調外観が付与されているため、リサイクル適性にも優れている。   The plastic container obtained by the manufacturing method of the present invention has a pearl-like appearance because the foam cells having a flat shape of a predetermined size are distributed in the container wall, and its commercial value is extremely high. high. Further, since a pearl-like appearance is imparted by the foamed cell without using a colorant or filler such as a pigment, it is excellent in recyclability.

本発明の製造方法により得られるプラスチック容器における最大延伸方向に沿っての器壁断面を示す図。The figure which shows the vessel wall cross section along the maximum extending | stretching direction in the plastic container obtained by the manufacturing method of this invention. 本発明の製造方法における代表的な工程の概略を示す図。The figure which shows the outline of the typical process in the manufacturing method of this invention.

<プラスチック容器>
本発明の製造方法により得られるプラスチック容器では、その最大延伸方向に沿った容器壁断面を示す図1を参照して、発泡セル1が容器壁(10で示す)内に分布している。このような発泡セル1は、図1に示されているように、最大延伸方向を指向した偏平形状を有しており、厚み方向に多重に重なりあって分布している。このため、光の散乱及び多重反射が生じ、特有のパール調外観を呈することとなる。例えば、発泡セル1が球形であり、偏平形状を有していない場合には、光の散乱は生じるが反射が少なく(反射面が小さい)、パール調外観を呈することがなく、単に遮光性が付与されるに過ぎない。
<Plastic container>
In the plastic container obtained by the manufacturing method of the present invention, the foamed cells 1 are distributed in the container wall (indicated by 10) with reference to FIG. 1 showing a cross section of the container wall along the maximum stretching direction. As shown in FIG. 1, such a foam cell 1 has a flat shape oriented in the maximum stretching direction, and is distributed in multiple layers in the thickness direction. For this reason, light scattering and multiple reflection occur, and a unique pearl-like appearance is exhibited. For example, when the foam cell 1 is spherical and does not have a flat shape, light scattering occurs but reflection is small (reflection surface is small), and a pearl-like appearance is not exhibited. It is only granted.

本発明において、上記の発泡セル1は、平均長径が400μm以下、特に200μm以下であり、且つ平均アスペクト比(前記断面でみて、長径Lと厚みtとの比L/t)が6以上、特に8以上の範囲にあることも重要である。即ち、平均長径Lが上記範囲よりも大きい場合には、光の散乱の度合いが少なくなることで外観が悪くなり、また平均アスペクト比が上記範囲よりも小さい場合には、光の反射面が小さくなり、反射の程度が少なく、何れの場合にもパール調外観が不満足なものとなってしまう。   In the present invention, the foam cell 1 has an average major axis of 400 μm or less, particularly 200 μm or less, and an average aspect ratio (the ratio L / t of the major axis L to the thickness t in the cross section) is 6 or more, particularly It is also important that it is in the range of 8 or more. That is, when the average major axis L is larger than the above range, the appearance is deteriorated by reducing the degree of light scattering, and when the average aspect ratio is smaller than the above range, the light reflecting surface is small. Therefore, the degree of reflection is small and the pearly appearance is unsatisfactory in any case.

また、発泡セル1の厚み方向への重なり度合いは、通常、平均して3以上であることが、十分なパール調外観を確保するために好適である。   Further, the degree of overlap of the foamed cells 1 in the thickness direction is usually preferably 3 or more on average in order to ensure a sufficient pearly appearance.

さらに、本発明においては、図1に示されるように、器壁10の表面、特に外面側に、発泡セル1が存在していない表皮層3を形成する。このような表皮層3を形成することにより、器壁10の外面を平滑な面、例えば平均表面粗さRa(JIS B 0601)が5μm以下の平滑な面とすることができ、この結果、一層、審美性の高いパール調外観を得ることができる。即ち、表面の平滑性により光沢が高められると同時に、表面での反射光と内部の発泡セル1での反射光の一部との干渉により、より顕著なパール調外観を呈するようになり、最も審美性の高い外観が得られる。 Furthermore, in the present invention, as shown in FIG. 1, the skin layer 3 in which the foamed cells 1 do not exist is formed on the surface of the vessel wall 10, particularly on the outer surface side . By forming such a skin layer 3, the outer surface of the vessel wall 10 can be a smooth surface, for example, a smooth surface having an average surface roughness Ra (JIS B 0601) of 5 μm or less. A pearly appearance with high aesthetics can be obtained. That is, the gloss is enhanced by the smoothness of the surface, and at the same time, the interference between the reflected light from the surface and a part of the reflected light from the foam cell 1 in the interior comes to exhibit a more remarkable pearl-like appearance. A highly aesthetic appearance can be obtained.

また、上記のような発泡セル1が存在していない表皮層3の形成は、容器の印刷適性を高めると同時に、発泡セル1の形成による強度低下やガスバリア性の低下を緩和する上でも有効である。   In addition, the formation of the skin layer 3 in which the foam cell 1 does not exist as described above is effective in improving the printability of the container and at the same time reducing the strength reduction and the gas barrier property due to the formation of the foam cell 1. is there.

本発明において、容器壁10の外表面側に形成される表皮層3の厚みは、発泡セル1が厚み方向に所定の度合いで多重に重なり合って分布している限りにおいて特に制限されるものではないが、一般には、2乃至200μm程度とすることが好適である。この表皮層3の厚みがあまり薄いと、厚みムラを生じ易く、表皮層3による審美性向上効果を安定して発現させることが困難となるおそれを生じる。また、過度に厚くした場合には、強度低下やガスバリア性の低下を抑制するという点では問題はないが、発泡セル1の重なり度合いを確保して所望のパール調外観を得るために、必要以上に容器壁10を厚くすることが必要となってしまう。   In the present invention, the thickness of the skin layer 3 formed on the outer surface side of the container wall 10 is not particularly limited as long as the foamed cells 1 are distributed in multiple overlapping layers at a predetermined degree in the thickness direction. However, in general, the thickness is preferably about 2 to 200 μm. If the thickness of the skin layer 3 is too thin, thickness unevenness is likely to occur, and it may be difficult to stably develop the aesthetic improvement effect of the skin layer 3. Moreover, when it is excessively thick, there is no problem in terms of suppressing a decrease in strength and a decrease in gas barrier properties. However, in order to obtain a desired pearly appearance by securing the degree of overlap of the foamed cells 1, it is more than necessary. In addition, it is necessary to increase the thickness of the container wall 10.

尚、上記のような表皮層3は、容器壁10の外面側に形成されていればよいが、その内面側にも形成されていてもよい。   In addition, although the above skin layers 3 should just be formed in the outer surface side of the container wall 10, you may be formed also in the inner surface side.

上述したように発泡セル1が容器壁10中に分布した構造を有するプラスチック容器は、後述する本発明方法にしたがって、不活性ガスを含浸させての物理発泡により製造される。従って、容器壁10を構成する樹脂としては、不活性ガスの含浸が可能である限り特に制限されず、それ自体公知の熱可塑性樹脂を使用することができる。例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテンあるいはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同志のランダムあるいはブロック共重合体、環状オレフィン共重合体などのオレフィン系樹脂;エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体等のエチレン・ビニル系共重合体;ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α−メチルスチレン・スチレン共重合体等のスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、及びこれらの共重合ポリエステル等のポリエステル樹脂;ポリカーボネート樹脂;ポリフエニレンオキサイド樹脂;ポリ乳酸など生分解性樹脂;などにより、容器壁10を形成することができる。勿論、これらの熱可塑性樹脂のブレンド物により、容器壁10が形成されていてもよい。特に容器の分野に好適に使用されるオレフィン系樹脂やポリエステル樹脂が好適であり、中でもポリエステル樹脂は、本発明の利点を最大限に発揮させる上で最適である。   As described above, a plastic container having a structure in which the foam cells 1 are distributed in the container wall 10 is manufactured by physical foaming impregnated with an inert gas according to the method of the present invention described later. Accordingly, the resin constituting the container wall 10 is not particularly limited as long as it can be impregnated with an inert gas, and a known thermoplastic resin can be used. For example, low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene or random of α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene Olefin resins such as block copolymers and cyclic olefin copolymers; ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers, ethylene / vinyl chloride copolymers and other ethylene / vinyl copolymers; polystyrene Styrene resins such as acrylonitrile / styrene copolymer, ABS, α-methylstyrene / styrene copolymer; polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymer, polymethyl acrylate, polymethacrylic acid Vinyl resins such as methyl; nylon 6, nylon Polyamide resins such as Ron 6-6, Nylon 6-10, Nylon 11 and Nylon 12; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and their copolyesters; Polycarbonate resins; Polyphenylene oxide resins The container wall 10 can be formed of a biodegradable resin such as polylactic acid; Of course, the container wall 10 may be formed of a blend of these thermoplastic resins. In particular, olefin resins and polyester resins that are preferably used in the field of containers are suitable, and among these, polyester resins are most suitable for maximizing the advantages of the present invention.

また、容器壁10は単層構造に限定されるものではなく、例えばエチレンビニルアルコール共重合体樹脂などからなるガスバリア層を有し、酢酸ビニル共重合体樹脂などからなる接着剤層を介してポリオレフィン系樹脂層やポリエステル樹脂層などが設けられた多層構造を有していてもよい。さらに、リサイクル性を考慮しないのであれば、鉄粉などの酸素吸収剤を樹脂層中に分散させたガスバリア層が設けられた層構造を有するものであってもよい。   The container wall 10 is not limited to a single layer structure, and has a gas barrier layer made of, for example, an ethylene vinyl alcohol copolymer resin, and a polyolefin through an adhesive layer made of a vinyl acetate copolymer resin. It may have a multilayer structure provided with a system resin layer or a polyester resin layer. Furthermore, as long as recyclability is not taken into consideration, it may have a layer structure provided with a gas barrier layer in which an oxygen absorbent such as iron powder is dispersed in a resin layer.

<プラスチック容器の製造>
上述したパール調外観を有するプラスチック容器は、本発明に従い不活性ガスが含浸された非発泡プリフォームを作製し、これを加熱して発泡プリフォームを得、次いで延伸成形することにより製造される。このような製造プロセスの代表例の概略を図2に示した。
<Manufacture of plastic containers>
The plastic container having the above-mentioned pearl-like appearance is manufactured by producing a non-foamed preform impregnated with an inert gas according to the present invention, heating this to obtain a foamed preform, and then stretch-molding. An outline of a typical example of such a manufacturing process is shown in FIG.

図2を参照して、先ず、前述した原料樹脂により作製された非発泡プリフォーム20を用意し、この非発泡プリフォームを高圧下におき、不活性ガス(例えば炭酸ガスや窒素ガス)を含浸させ、不活性ガスを溶解させる(工程(a))。   Referring to FIG. 2, first, a non-foamed preform 20 made of the raw material resin described above is prepared, and this non-foamed preform is placed under high pressure and impregnated with an inert gas (for example, carbon dioxide gas or nitrogen gas). To dissolve the inert gas (step (a)).

非発泡プリフォーム20は、押出し成形、射出成形、圧縮成形などの公知の成形手段により成形することができ、一般に、ボトル形状の容器を製造する場合には、試験管形状を有しており、カップ形状の容器を製造する場合には、板状形状や椀形状を有している。勿論、ガスバリア層などを備えた多層構造を有する容器を製造する場合には、この非発泡プリフォーム20は、共押出し、共射出などにより、それに対応する多層構造を有するように成形される。   The non-foamed preform 20 can be molded by known molding means such as extrusion molding, injection molding, compression molding, etc. Generally, when producing a bottle-shaped container, it has a test tube shape, In the case of manufacturing a cup-shaped container, it has a plate shape or a bowl shape. Of course, when manufacturing a container having a multilayer structure including a gas barrier layer, the non-foamed preform 20 is formed by co-extrusion, co-injection or the like so as to have a corresponding multilayer structure.

かかる工程(a)における非発泡プリフォーム20への不活性ガスの含浸は、所望のパール調外観を発現するに足る偏平状の発泡セル1が形成されるに十分な量のガスを溶解させるように行われ、例えば、非発泡プリフォーム20を加熱して高圧下での不活性ガスの含浸を行うこともできるし、非加熱下で行うこともできる。この場合、この温度が高いほど、ガスの溶解量は少ないが含浸速度は速く、温度が低いほどガスの溶解量は多いが、含浸には時間がかかることとなる。   The impregnation of the non-foamed preform 20 with the inert gas in the step (a) dissolves a sufficient amount of gas to form a flat foam cell 1 sufficient to develop a desired pearl-like appearance. For example, the non-foamed preform 20 can be heated and impregnated with an inert gas under high pressure, or can be performed under non-heating. In this case, the higher the temperature, the smaller the amount of gas dissolved, but the faster the impregnation rate. The lower the temperature, the larger the amount of dissolved gas, but the impregnation takes time.

次いで、この非発泡プリフォーム20を、冷却固化した状態で所定時間、常圧下(大気圧)に開放することにより、非発泡プリフォーム20の表面から不活性ガスを放出させ、不活性ガスが溶解していないかあるいは不活性ガス濃度が低くなった表層部23を形成する(工程(b))。即ち、常圧、常温下での不活性ガスの溶解度はほとんどゼロであるから、冷却固化されている非発泡プリフォーム20を常圧下に保持することにより、該プリフォーム20の表面から不活性ガスが徐々に放出されることとなる。   Next, the non-foamed preform 20 is released under normal pressure (atmospheric pressure) for a predetermined time in a cooled and solidified state, thereby releasing the inert gas from the surface of the non-foamed preform 20 and dissolving the inert gas. A surface layer portion 23 that is not formed or has a low inert gas concentration is formed (step (b)). That is, since the solubility of the inert gas at normal pressure and normal temperature is almost zero, the inert gas from the surface of the preform 20 can be maintained by holding the non-foamed preform 20 that has been cooled and solidified under normal pressure. Will be gradually released.

この表層部23は、前述した発泡セル1が存在していない表皮層3に対応するものであり、例えば、冷却固化した状態での常圧下に開放する時間を調整することにより、前述した表皮層3の厚みを調整することができる。即ち、この開放時間が長いほど、表層部23の厚みが大となり、表皮層3の厚みを厚くすることができ、開放時間が短いほど、表層部23の厚みは薄くなり、前述した表皮層3の厚みを薄くすることができる。但し、この開放時間をあまり長くすると、不活性ガスがほとんど放出されてしまい、パール調外観を呈するに足る偏平状の発泡セル1を形成することが困難となってしまうので注意を要する。   This surface layer portion 23 corresponds to the above-described skin layer 3 in which the foam cell 1 does not exist. For example, the above-described skin layer is adjusted by adjusting the time for release under normal pressure in a cooled and solidified state. The thickness of 3 can be adjusted. That is, as the opening time is longer, the thickness of the surface layer portion 23 is increased, and the thickness of the skin layer 3 can be increased. As the opening time is shorter, the thickness of the surface layer portion 23 is decreased. Can be made thinner. However, if this open time is too long, the inert gas is almost released and it becomes difficult to form the flat foam cell 1 that is sufficient to give a pearl-like appearance.

また、図2の例では、非発泡プリフォーム20の両面(外表面側及び内表面側)に表層部23が形成されているが、一方の面側(外表面側)にのみ表層部23を形成して、外面側にのみ表皮層3が形成された容器を製造する場合には、例えば、試験管形状の非発泡プリフォーム20の口部を閉じた状態で常圧下に開放したり、或いは板形状の一方の面(内面側)を適当な支持部材に密着させ、外表面のみを常圧の雰囲気に曝せばよい。   In the example of FIG. 2, the surface layer portion 23 is formed on both surfaces (outer surface side and inner surface side) of the non-foamed preform 20, but the surface layer portion 23 is formed only on one surface side (outer surface side). When forming and manufacturing a container in which the skin layer 3 is formed only on the outer surface side, for example, the mouth of the test tube-shaped non-foamed preform 20 is closed under normal pressure, or One plate-shaped surface (inner surface side) may be brought into close contact with an appropriate support member, and only the outer surface may be exposed to an atmospheric pressure atmosphere.

次いで、このような表層部23が形成された非発泡プリフォーム20を加熱することにより発泡成形を行う(工程(c))。この加熱により、不活性ガスが残存している非発泡プリフォーム20の内部において、発泡を生じ、発泡セル25が分布した発泡プリフォーム27が得られる。この場合において、表層部23は不活性ガスが存在していないかまたはその濃度が低い為に、加熱しても発泡しないかよほど注意深く観察しないと気泡が確認できない程度の実質的に発泡していない状態となり、発泡プリフォーム27中に発泡セル25が存在していない未発泡領域としてそのまま残る。   Next, foam molding is performed by heating the non-foamed preform 20 on which the surface layer portion 23 is formed (step (c)). By this heating, the foamed preform 27 in which foaming occurs and the foamed cells 25 are distributed is obtained inside the non-foamed preform 20 where the inert gas remains. In this case, since the inert gas is not present or the concentration thereof is low, the surface layer portion 23 is not substantially foamed to such an extent that bubbles cannot be confirmed unless it is observed carefully so that it does not foam even when heated. As a result, the foamed preform 27 remains as an unfoamed region where the foamed cells 25 do not exist.

発泡のための加熱の温度は、非発泡プリフォーム20を形成している樹脂のガラス転移点以上であり、このような加熱により、樹脂中に溶解している不活性ガスの内部エネルギー(自由エネルギー)の急激な変化がもたらされ、相分離が引き起こされ、気泡として樹脂体と分離するため発泡が生じることとなる。尚、この加熱温度は、当然、発泡プリフォーム27の変形を防止するために、融点以下の温度とすることは言うまでもない。   The heating temperature for foaming is equal to or higher than the glass transition point of the resin forming the non-foamed preform 20, and the internal energy (free energy) of the inert gas dissolved in the resin by such heating. ), A phase separation is caused, and foaming occurs due to separation from the resin body as bubbles. Needless to say, this heating temperature is a temperature below the melting point in order to prevent deformation of the foamed preform 27.

上記のようにして発泡プリフォーム27中に形成される発泡セル25(以下、球状発泡セルと呼ぶことがある)は実質的に球形状であり、このため、この段階では、遮光性は発現しているが、パール調外観は発現しておらず、パール調外観を発現するために、後述する延伸成形が必要となる。   The foamed cells 25 (hereinafter sometimes referred to as spherical foamed cells) formed in the foamed preform 27 as described above have a substantially spherical shape. Therefore, at this stage, light shielding properties are exhibited. However, the pearl-like appearance is not expressed, and in order to express the pearl-like appearance, stretch molding described later is required.

また、球状発泡セル25のセル密度(表層部23を除く領域での密度)は、前述した不活性ガスの溶解量に依存し、この溶解量が多いほど、セル密度を高くし、また球状発泡セルの径を小さくすることができ、溶解量が少ないほど、セル密度は小さく、発泡セル25の径は大きくなる。また、球状発泡セル25の径は、上記の加熱時間により調整することができ、例えば、発泡のための加熱時間が長いほど、球状発泡セル25の径は大きく、加熱時間が短いほど、球状発泡セル25は小径となる。本発明においては、上記の条件を調整し、例えば球状発泡セル25のセル密度が10乃至10cells/cm程度とし、平均径が5乃至50μm程度となるように設定することが、後述する延伸成形により、前述した厚みtや平均アスペクト比を有し、さらには厚み方向での適度な重なり度合いを有する偏平形状の発泡セル1を形成する上で好適である。 The cell density of the spherical foamed cells 25 (density in the region excluding the surface layer portion 23) depends on the dissolved amount of the inert gas described above. The larger the dissolved amount, the higher the cell density and the spherical foamed cell. The cell diameter can be reduced, and the smaller the amount of dissolution, the smaller the cell density and the larger the diameter of the foam cell 25. The diameter of the spherical foam cell 25 can be adjusted by the above heating time. For example, the longer the heating time for foaming, the larger the diameter of the spherical foam cell 25 and the shorter the heating time, the spherical foam. The cell 25 has a small diameter. In the present invention, adjusting the above conditions, for example, setting the cell density of the spherical foamed cells 25 to about 10 6 to 10 9 cells / cm 3 and setting the average diameter to about 5 to 50 μm is described later. It is suitable for forming the flat foam cell 1 having the above-described thickness t and average aspect ratio and further having an appropriate degree of overlap in the thickness direction by stretch molding.

尚、本発明においては、発泡のための加熱を、熱風の吹き付けなどにより、非発泡プリフォーム20の両面(外面側と内面側)から行うことができるが、このような場合、表層部23を除く内部全体に球状発泡セル25が形成される前の段階で加熱を停止することにより、中心部分に球状発泡セル25が形成されていない領域(芯層)を形成することができる。即ち、このような芯層を有する発泡プリフォーム27を用いれば、例えば図1において、偏平形状の発泡セル1が形成されている領域の中心部分に、発泡セル1が存在しない芯層を形成することができ、これにより、プラスチック容器の強度やガスバリア性を高めることができる。勿論、このような芯層があまり厚く形成されてしまうと、偏平形状の発泡セル1の厚み方向での重なり度合いが減少し、パール調外観が損なわれてしまうので、芯層の厚みは、このような不都合が生じない程度の範囲としなければならない。   In the present invention, heating for foaming can be performed from both surfaces (outer surface side and inner surface side) of the non-foamed preform 20 by blowing hot air or the like. By stopping the heating in a stage before the spherical foam cells 25 are formed in the entire interior, a region (core layer) in which the spherical foam cells 25 are not formed can be formed in the central portion. That is, if the foamed preform 27 having such a core layer is used, for example, in FIG. 1, a core layer in which the foamed cells 1 do not exist is formed in the central portion of the region where the flat foamed cells 1 are formed. This can increase the strength and gas barrier properties of the plastic container. Of course, if such a core layer is formed too thick, the degree of overlap in the thickness direction of the flat foam cell 1 is reduced, and the pearl-like appearance is impaired. It should be in a range that does not cause such inconvenience.

また、発泡のための加熱を非発泡プリフォーム20の一方の面側(特に内面側)から行う場合には、球状発泡セル25は、内面側から順次形成されるため、これを利用して、前述した不活性ガスの放出(工程(b))を行わずに、外面側に球状発泡セル25の存在しない表層部23を形成することができる。即ち、非発泡プリフォーム20の厚みの全体にわたって球状発泡セル25が形成されるまえの段階で、加熱を停止すればよいのである。   In addition, when heating for foaming is performed from one surface side (particularly the inner surface side) of the non-foamed preform 20, the spherical foam cells 25 are sequentially formed from the inner surface side. Without performing the above-described inert gas release (step (b)), the surface layer portion 23 without the spherical foamed cells 25 can be formed on the outer surface side. That is, heating may be stopped before the spherical foam cell 25 is formed over the entire thickness of the non-foamed preform 20.

また、上述した例では、予め非発泡プリフォーム20を成形した後に不活性ガスを含浸させているが(工程(a))、非発泡プリフォームを成形するための押出機、射出成形機、圧縮成形機などの成形機における樹脂混練部もしくは可塑化部などで加熱溶融状態に保持されている樹脂に所定圧力で不活性ガスを供給することにより、含浸を行うこともでき、さらには成形機中で加熱発泡までを一気に行うこともできる。但し、成形機中で加熱発泡まで一気に行う場合には、発泡セル25が存在していない表面層23を形成するには適当でなく、また、この場合には、形成される発泡セル25が樹脂の流動方向に沿って若干偏平した形状となる。従って、このような場合には、通常、後述する延伸成形に際して、最大延伸方向となる面に沿った部分での発泡セルの平均径が、前述した球状発泡セル25について述べた平均径と同等の範囲であることが好適である。   In the above-described example, the non-foamed preform 20 is molded in advance and then impregnated with an inert gas (step (a)). However, an extruder, an injection molding machine, and a compression machine for molding the non-foamed preform. Impregnation can be performed by supplying an inert gas at a predetermined pressure to the resin held in a heated and melted state in a resin kneading part or plasticizing part in a molding machine such as a molding machine. It is also possible to carry out heating and foaming at once. However, in the case where heating foaming is performed all at once in a molding machine, it is not suitable for forming the surface layer 23 in which the foam cell 25 does not exist. In this case, the foam cell 25 to be formed is a resin. The shape becomes slightly flat along the flow direction. Therefore, in such a case, the average diameter of the foamed cells in the portion along the surface that becomes the maximum stretching direction is usually equal to the average diameter described for the spherical foamed cells 25 described above in the stretch molding described later. A range is preferred.

本発明においては、上記のようにして形成された発泡プリフォーム27を延伸成形することにより、図1に示す偏平形状を有する発泡セル1が器壁10の内部に分布したプラスチック容器を得ることができる。   In the present invention, a plastic container in which the foamed cells 1 having the flat shape shown in FIG. 1 are distributed inside the vessel wall 10 can be obtained by stretching the foamed preform 27 formed as described above. it can.

延伸成形は、それ自体公知の方法で行われ、例えば、樹脂のガラス転移温度以上、融点未満の温度にプリフォームを加熱してのブロー成形或いはプラグアシスト成形に代表される真空成形などによって延伸され、例えば球状の発泡セル25が図1に示すような偏平形状に変形した発泡セル1を有するボトルやカップ形状の容器が得られる。   Stretch molding is performed by a method known per se, for example, stretched by blow molding by heating the preform to a temperature not lower than the glass transition temperature of the resin and lower than the melting point, or vacuum molding typified by plug assist molding. For example, a bottle or a cup-shaped container having the foamed cell 1 in which the spherical foamed cell 25 is deformed into a flat shape as shown in FIG. 1 is obtained.

延伸は、例えば最大延伸方向に沿った断面での発泡セル1の厚みtやアスペクト比が前述した範囲となるように、発泡プリフォーム27中の発泡セル25の径やセル密度などに応じて、適度な延伸倍率で行われる。例えば、軸方向(高さ方向)及び周方向の二軸方向に延伸されるブロー成形では、通常、この方向での延伸倍率が2乃至4倍程度となるように延伸され、軸方向のみについて一軸方向に延伸が行われるプラグアシスト成形などでは、この方向での延伸が最大延伸方向となり、上記と同様の延伸倍率で延伸が行われる。   Stretching, for example, according to the diameter and cell density of the foamed cells 25 in the foamed preform 27 so that the thickness t and aspect ratio of the foamed cells 1 in the cross section along the maximum stretched direction are in the above-described ranges. It is carried out at an appropriate stretch ratio. For example, in blow molding that is stretched in the biaxial direction of the axial direction (height direction) and the circumferential direction, the stretch is usually performed so that the stretch ratio in this direction is about 2 to 4 times. In plug assist molding or the like in which stretching is performed in the direction, stretching in this direction becomes the maximum stretching direction, and stretching is performed at the same stretching ratio as described above.

尚、上述した方法によって本発明のプラスチック容器を製造するにあたっては、不活性ガスの溶解量が増大するにしたがい、樹脂のガラス転移点は直線的或いは指数関数的に減少する。また、ガスの溶解によって樹脂の粘弾性も変化し、例えばガス溶解量の増大によって樹脂の粘度が低下する。従って、このような不活性ガスの溶解量を考慮して、パール調外観を呈するような偏平状のセル1が形成されるように、各種条件を設定すべきである。   When the plastic container of the present invention is manufactured by the above-described method, the glass transition point of the resin decreases linearly or exponentially as the dissolved amount of the inert gas increases. Further, the viscoelasticity of the resin also changes due to the dissolution of the gas. For example, the viscosity of the resin decreases due to an increase in the amount of dissolved gas. Therefore, various conditions should be set so that a flat cell 1 having a pearl-like appearance is formed in consideration of the dissolved amount of the inert gas.

上述のような発泡プリフォームからボトルやカップ状容器を得る方法以外にも、例えば発泡シートをプラグアシスト成形してカップ形状の容器を得たり、発泡シートを延伸成形したフィルムを用いて袋状容器を得た場合でも前述の扁平状セルを有していればパール調外観を有する容器が得られることは言うまでもない。   Other than the method of obtaining a bottle or cup-shaped container from the foamed preform as described above, for example, a foam-shaped sheet is plug-assist molded to obtain a cup-shaped container, or a bag-shaped container using a film obtained by stretching and molding a foamed sheet Needless to say, a container having a pearl-like appearance can be obtained if the above-described flat cells are provided.

このようにして得られる本発明のプラスチック容器は、パール調外観を有し、極めて商品価値が高いが、特に発泡セル1が形成されていない表皮層3が形成されているものでは、平滑な表面を有し、特に審美性が優れたパール調外観を有しているばかりか、印刷適性も良好である。さらに、遮光性を有しているため、光による変質を生じる内容物の収容に有効に適用され、また着色剤が配合されていないため、リサイクルにも適している。さらには、発泡セルの形成による軽量化や断熱性の向上も達成することができる。   The plastic container of the present invention thus obtained has a pearl-like appearance and has a very high commercial value. In particular, in the case where the skin layer 3 in which the foamed cells 1 are not formed is formed, a smooth surface In particular, it has not only a pearly appearance with excellent aesthetics, but also good printability. Furthermore, since it has light-shielding properties, it can be effectively applied to contain contents that cause alteration due to light, and it is also suitable for recycling because it contains no colorant. Furthermore, the weight reduction and heat insulation improvement by formation of a foam cell can also be achieved.

(実施例1)
固有粘度(IV)0.84dL/gからなるホモPET(ポリエチレンテレフタレート)を用いて、射出成形により胴部肉厚3mmの500mlボトル用プリフォームを作製した。このプリフォームを40℃の耐圧容器内に設置し、15MPaの圧力で1時間保持して二酸化炭素ガスの含浸を行った。その後大気圧まで減圧し圧力容器内からプリフォームを取り出し、大気圧下で5分間保持した。さらにプリフォームの外面に対して90℃の湯を10秒間浴びせ発泡させ、セル密度8.5×10cells/cmで厚さ180μmの発泡層、その外面に厚さ70μmの表皮層を有する発泡プリフォームを得た。
このときセル密度は断面写真より以下の式を用いて算出した。
=(n/A)3/2
:セル密度(/cm
A:観察断面面積
n:断面積A内の存在するセル数
Example 1
A 500 ml bottle preform having a body thickness of 3 mm was produced by injection molding using homo-PET (polyethylene terephthalate) having an intrinsic viscosity (IV) of 0.84 dL / g. This preform was placed in a pressure vessel at 40 ° C. and held at a pressure of 15 MPa for 1 hour to impregnate carbon dioxide gas. Thereafter, the pressure was reduced to atmospheric pressure, the preform was taken out from the pressure vessel, and held at atmospheric pressure for 5 minutes. Furthermore, 90 ° C. hot water was bathed for 10 seconds on the outer surface of the preform and foamed. The foamed layer had a cell density of 8.5 × 10 7 cells / cm 3 and a thickness of 180 μm, and the outer surface had a skin layer of 70 μm thickness. A foamed preform was obtained.
At this time, the cell density was calculated from the cross-sectional photograph using the following formula.
N f = (n / A) 3/2
N f : cell density (/ cm 3 )
A: Observation cross-sectional area
n: Number of cells existing in the cross-sectional area A

このようにして得られた発泡プリフォームを延伸倍率が縦2×横2倍に相当するボトル形状にブロー成形したところ、側壁部における容器平均肉厚0.68mm、平均表面粗さRa0.5μm、表皮層17μm、発泡層における気泡の平均長径29μm、気泡の平均アスペクト比8.7の、外観、パール調光沢が良好な発泡PETボトルが得られた。
このとき平均長径および平均アスペクト比は、断面写真の気泡形状から画像処理、形状測定ソフトにより求め、5乃至は50個のセルの平均値をとった。
表面粗さはJISB0601に準じ、表面粗さ測定器を用い、中心線平均粗さRaを測定した。
光沢評価は目視で行い、外観、パール調光沢ともに特に優れているものを◎、良好なものを○、外観、パール調光沢のどちらかでも好ましくないものを△、不良のものを×とした。
When the foamed preform thus obtained was blow-molded into a bottle shape corresponding to a stretching ratio of 2 × longitudinal, the container has an average wall thickness of 0.68 mm, an average surface roughness Ra of 0.5 μm, A foamed PET bottle having a skin appearance of 17 μm, an average major diameter of bubbles in the foam layer of 29 μm, and an average aspect ratio of bubbles of 8.7, and good appearance and pearly gloss was obtained.
At this time, the average major axis and the average aspect ratio were determined by image processing and shape measurement software from the bubble shape of the cross-sectional photograph, and the average values of 5 to 50 cells were taken.
The surface roughness was measured according to JISB0601, using a surface roughness measuring instrument, to measure the centerline average roughness Ra.
Gloss evaluation was performed visually, and ◎ was particularly excellent in appearance and pearly gloss, ○ was good, △ was unfavorable in either appearance or pearly gloss, and X was poor.

(実施例2)
実施例1と同様な方法で作製した発泡プリフォームを延伸倍率が縦3×横3倍に相当するボトル形状にブロー成形したところ、側壁部における容器平均肉厚0.32mm、平均表面粗さRa0.3μm、表皮層厚さ10μm、発泡層における気泡平均長径42μm、気泡平均アスペクト比11.6の、外観、パール調光沢ともに優れた発泡PETボトルが得られた。
(Example 2)
When the foamed preform produced by the same method as in Example 1 was blow-molded into a bottle shape corresponding to a stretch ratio of 3 × length × 3 times, the container had an average wall thickness of 0.32 mm and an average surface roughness Ra0. A foamed PET bottle excellent in appearance and pearly luster having a thickness of 3 μm, a skin layer thickness of 10 μm, an average cell diameter of 42 μm in the foam layer and an average cell aspect ratio of 11.6 was obtained.

(実施例3)
イソフタル酸を5mol%含む固有粘度(IV)0.90dL/gの共重合PETを用い、炭酸ガスを発泡剤に用いた押出発泡成形法によりTダイより平均肉厚0.58mm、セル密度4×10cells/cmのほぼ球状のセルを有する発泡シートを得た。このときTダイ温度を適切にコントロールすることでシート表面が平滑になるよう工夫した。このようにして得られた発泡シートを二軸延伸機で縦2×横2倍に延伸し、それをヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.16mm、平均表面粗さRa4.3μm、発泡層における気泡平均長径101μm、気泡平均アスペクト比8.4の、表面が平滑で外観、パール調光沢がともに良好なパウチが得られた。
(Example 3)
An average wall thickness of 0.58 mm and a cell density of 4 × from a T-die by an extrusion foaming method using copolymerized PET containing 5 mol% of isophthalic acid and having an intrinsic viscosity (IV) of 0.90 dL / g and carbon dioxide as a blowing agent. A foam sheet having approximately spherical cells of 10 6 cells / cm 3 was obtained. At this time, the sheet surface was devised so as to be smooth by appropriately controlling the T die temperature. The foamed sheet thus obtained was stretched 2 × 2 times by a biaxial stretching machine and heat sealed to form a pouch-shaped container. The container had an average wall thickness of 0.16 mm and an average surface roughness Ra4. A pouch having a smooth surface, a good appearance, and a good pearly luster having an average long diameter of 101 μm in the foam layer and an average bubble aspect ratio of 8.4 was obtained.

(実施例4)
実施例3と同様な方法で作製した発泡シートを二軸延伸機で縦3×横3倍に延伸し、それをヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.07mm、平均表面粗さRa1.9μm、発泡層における気泡平均長径107μm、気泡平均アスペクト比15.7の、表面が平滑で外観、パール調光沢ともに優れたパウチが得られた。
Example 4
A foamed sheet produced in the same manner as in Example 3 was stretched 3 × longitudinal 3 times with a biaxial stretching machine, and heat-sealed into a pouch-shaped container. The container had an average wall thickness of 0.07 mm and an average surface. A pouch having a roughness Ra of 1.9 μm, an average bubble major diameter of 107 μm in the foamed layer, an average bubble aspect ratio of 15.7, a smooth surface, and an excellent pearly luster was obtained.

(実施例5)
実施例3と同様な方法で作製した発泡シートを二軸延伸機で縦4×横4倍に延伸し、それをヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.05mm、平均表面粗さRa1.4μm、発泡層における気泡平均長径102μm、気泡平均アスペクト比19.8の、表面が平滑で外観、パール調光沢ともに優れたパウチが得られた。
(Example 5)
A foamed sheet produced by the same method as in Example 3 was stretched 4 × 4 times by a biaxial stretching machine and heat sealed to form a pouch-shaped container. The container average thickness 0.05 mm, average surface A pouch having a roughness Ra of 1.4 μm, an average cell major axis of 102 μm in the foamed layer, and an average cell aspect ratio of 19.8, having a smooth surface and an excellent pearly luster was obtained.

(実施例6)
炭酸ガス供給圧力を低くし、Tダイ温度を高めに設定した以外は実施例3と同様な方法で発泡シートを成形して実施例3よりセル径が大きい発泡シートを得た。これに未発泡PETシートをラミネートし、発泡層と未発泡層からなる2層シートを作製し、二軸延伸機で縦3×横3倍に延伸した。さらにヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.12mm、平均表面粗さRa0.8μm、発泡層における気泡平均長径240μm、気泡平均アスペクト比18.5の、表面が平滑で外観、パール調光沢ともに良好なパウチが得られた。
(Example 6)
A foamed sheet was formed in the same manner as in Example 3 except that the carbon dioxide gas supply pressure was lowered and the T-die temperature was set higher, thereby obtaining a foamed sheet having a cell diameter larger than that of Example 3. This was laminated with an unfoamed PET sheet to prepare a two-layer sheet composed of a foamed layer and an unfoamed layer, and stretched 3 times in length and 3 times in width with a biaxial stretching machine. Furthermore, when heat-sealed into a pouch-shaped container, the container has an average wall thickness of 0.12 mm, an average surface roughness Ra of 0.8 μm, a bubble average major axis of 240 μm in the foamed layer, a bubble average aspect ratio of 18.5, and a smooth surface. A pouch with good pearly luster was obtained.

(実施例7)
実施例3と同様な方法で作製した発泡シートをプラグアシスト成形により延伸倍率縦4倍×横1倍に相当するカップ形状に成形したところ、容器平均肉厚0.26mm、平均表面粗さRa2.3μm、発泡層における気泡平均長径103μm、気泡平均アスペクト比8.2の外観、パール調光沢ともに良好なカップ形状容器が得られた。
(Example 7)
When the foam sheet produced by the same method as in Example 3 was molded into a cup shape corresponding to a stretch ratio of 4 × longitudinal 1 × by plug-assist molding, the container had an average wall thickness of 0.26 mm, an average surface roughness Ra2. A cup-shaped container having an excellent appearance and pearly luster of 3 μm, an average long diameter of bubbles in the foam layer of 103 μm, an average average aspect ratio of air bubbles of 8.2, and a pearly gloss was obtained.

(比較例1)
実施例1と同様な方法で作製した発泡プリフォームを延伸倍率が縦1.5×横1.5倍に相当するボトル形状にブロー成形したところ、側壁部における容器平均肉厚1.2mm、平均表面粗さRa0.5μm、発泡層における気泡平均長径22μm、気泡平均アスペクト比5.1の発泡PETボトルが得られた。容器は白色で遮光性能は優れていたが、反射光不足のためパール調光沢が好ましくなかった。
(Comparative Example 1)
When the foamed preform produced by the same method as in Example 1 was blow-molded into a bottle shape corresponding to a stretch ratio of 1.5 × 1.5 times the average, the container had an average wall thickness of 1.2 mm and average A foamed PET bottle having a surface roughness Ra of 0.5 μm, an average bubble major diameter of 22 μm in the foam layer, and an average bubble aspect ratio of 5.1 was obtained. The container was white and had excellent light blocking performance, but pearly luster was not preferred due to insufficient reflected light.

(比較例2)
実施例1と同様な方法で作製した発泡プリフォームを梨地処理したブロー金型で延伸倍率が縦3×横3倍に相当するボトル形状にブロー成形したところ、側壁部における容器平均肉厚0.31mm、平均表面粗さRaが6.2μm、発泡層における気泡平均長径45μm、気泡平均アスペクト比12.0の発泡PETボトルが得られたが、表面反射光不測のため光沢感が乏しく外観が好ましくなかった。
(Comparative Example 2)
When the foamed preform produced by the same method as in Example 1 was blown into a bottle shape corresponding to a stretch ratio of 3 × width 3 times with a blow-molded finish, the container average thickness 0. A foamed PET bottle with 31 mm, average surface roughness Ra of 6.2 μm, average cell major axis in the foam layer of 45 μm, and average cell aspect ratio of 12.0 was obtained. There wasn't.

(比較例3)
実施例3と同様な方法で作製した発泡シートを圧空成形によりトレー形状容器に成形したところ、容器平均肉厚0.58mm、平均表面粗さ3.3μm、発泡層における気泡平均長径24μm、気泡平均アスペクト比1.3の発泡トレーが得られたが、外観、パール調光沢ともに好ましくなかった。
(Comparative Example 3)
When the foamed sheet produced by the same method as in Example 3 was molded into a tray-shaped container by pressure forming, the container average thickness 0.58 mm, the average surface roughness 3.3 μm, the average bubble diameter in the foam layer 24 μm, the average bubble Although a foamed tray having an aspect ratio of 1.3 was obtained, both the appearance and pearly luster were unfavorable.

(比較例4)
実施例3と同様な方法で作製した発泡シートを二軸延伸機で縦1.5×横1.5倍に延伸し、それをヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.34mm、平均表面粗さRa4.0μm、発泡層における気泡平均長径72μm、気泡平均アスペクト比4.3のパウチが得られたが、パール調光沢が好ましくなかった。
(Comparative Example 4)
The foamed sheet produced by the same method as in Example 3 was stretched 1.5 × 1.5 times by a biaxial stretching machine and heat sealed to form a pouch-shaped container. A pouch having a diameter of 34 mm, an average surface roughness Ra of 4.0 μm, an average bubble major diameter of 72 μm in the foam layer, and an average bubble aspect ratio of 4.3 was obtained, but the pearly luster was not preferable.

(比較例5)
実施例6と同様な方法で発泡シートを作製し、未発泡PETシートをラミネートせずに二軸延伸機で縦3×横3倍に延伸し、それをヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.10mm、平均表面粗さRa6.8μm、発泡層における気泡平均長径204μm、気泡平均アスペクト比17.6の発泡パウチが得られたが表皮層が無いために表面が荒れており、実施例6に比べて光沢感が乏しく外観不良であった。
(Comparative Example 5)
A foamed sheet was produced in the same manner as in Example 6, and the unfoamed PET sheet was stretched 3 × longitudinal 3 × with a biaxial stretching machine without laminating, and heat-sealed to make a pouch-shaped container. A foamed pouch with an average container thickness of 0.10 mm, an average surface roughness Ra of 6.8 μm, an average bubble major diameter of 204 μm in the foam layer, and an average bubble aspect ratio of 17.6 was obtained, but the surface was rough because there was no skin layer. Compared with Example 6, the gloss was poor and the appearance was poor.

(比較例6)
実施例6よりさらに炭酸ガス圧力を低くしてセル径がより大きい発泡シートを作製した。このときTダイ温度条件はシート表面荒れが小さくなるよう低めに設定した。この発泡シートを二軸延伸機で縦3×横3倍に延伸し、それをヒートシールしパウチ形状容器にしたところ、容器平均肉厚0.11mm、平均表面粗さRaが2.3μm、発泡層における気泡平均長径719μm、気泡平均アスペクト比15.6の発泡パウチが得られた。気泡が大きくまたセル密度が小さいことから光の散乱や反射光が小さく、パール光沢感に乏しい容器であった。また肉眼で扁平気泡を確認できるほど気泡が大きい為に外観的にも好ましくなかった。
(Comparative Example 6)
A foamed sheet having a larger cell diameter was produced by lowering the carbon dioxide pressure further than in Example 6. At this time, the T-die temperature condition was set low so that the sheet surface roughness was reduced. When this foamed sheet was stretched 3 × 3 times by a biaxial stretching machine and heat sealed to form a pouch-shaped container, the container had an average wall thickness of 0.11 mm and an average surface roughness Ra of 2.3 μm. A foamed pouch having an average cell major axis of 719 μm and an average cell aspect ratio of 15.6 was obtained. Since the bubbles were large and the cell density was small, light scattering and reflected light were small, and the container was poor in pearly luster. Further, since the bubbles were so large that flat bubbles could be confirmed with the naked eye, the appearance was not preferable.

以上の実施例1〜7、比較例1〜6の評価結果を表1に示す。   The evaluation results of Examples 1 to 7 and Comparative Examples 1 to 6 are shown in Table 1.

Figure 0005195950
Figure 0005195950

1:偏平状発泡セル
3:表皮層
10:容器壁
1: Flat foam cell 3: Skin layer 10: Container wall

Claims (1)

非発泡樹脂体からなり且つ不活性ガスが含浸された非発泡プリフォームを用意し、
冷却固化した状態で常圧下に開放することにより、前記非発泡プリフォームの外表面部分から不活性ガスを放出させ、
次いで前記非発泡プリフォームを加熱して発泡セルを形成することにより、外表面側に発泡セルの存在しない表皮層を有する発泡プリフォームを得、
前記発泡プリフォームを加熱して延伸成形することを特徴とするプラスチック容器の製造方法。
A non-foamed preform made of a non-foamed resin body and impregnated with an inert gas is prepared,
By releasing under normal pressure in a cooled and solidified state, the inert gas is released from the outer surface portion of the non-foamed preform,
Next, the foamed cell is formed by heating the non-foamed preform to obtain a foamed preform having a skin layer where no foamed cell exists on the outer surface side,
A method for producing a plastic container, comprising heating and molding the foamed preform.
JP2011031248A 2011-02-16 2011-02-16 Method for manufacturing a plastic container having a pearly appearance Active JP5195950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031248A JP5195950B2 (en) 2011-02-16 2011-02-16 Method for manufacturing a plastic container having a pearly appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031248A JP5195950B2 (en) 2011-02-16 2011-02-16 Method for manufacturing a plastic container having a pearly appearance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005203868A Division JP4839708B2 (en) 2005-07-13 2005-07-13 Plastic container with pearly appearance

Publications (2)

Publication Number Publication Date
JP2011168337A JP2011168337A (en) 2011-09-01
JP5195950B2 true JP5195950B2 (en) 2013-05-15

Family

ID=44682875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031248A Active JP5195950B2 (en) 2011-02-16 2011-02-16 Method for manufacturing a plastic container having a pearly appearance

Country Status (1)

Country Link
JP (1) JP5195950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056929B4 (en) * 2004-11-25 2014-11-27 Schaeffler Technologies Gmbh & Co. Kg Method for producing a storage unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138571A1 (en) * 2018-12-28 2020-07-02 주식회사 휴비스 Foam sheet comprising skin layer, method for manufacturing same, and food container comprising same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153021A (en) * 1984-08-23 1986-03-15 Mitsubishi Gas Chem Co Inc Manufacture of foamed container
JP4876385B2 (en) * 2004-11-01 2012-02-15 三菱化学株式会社 Resin hollow molded container and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056929B4 (en) * 2004-11-25 2014-11-27 Schaeffler Technologies Gmbh & Co. Kg Method for producing a storage unit

Also Published As

Publication number Publication date
JP2011168337A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4839708B2 (en) Plastic container with pearly appearance
KR101233002B1 (en) Plastic container having pearl-like appearance and process for producing the same
JP5414162B2 (en) Light-shielding plastic container
US9283697B2 (en) Stretched and foamed plastic container and method of producing the same
JP5584987B2 (en) Non-foamed gas-impregnated molded body and foamed plastic container
JP5018593B2 (en) Foam plastic container
JP5024166B2 (en) Foamed plastic molding and method for producing the same
JP5286561B2 (en) Polyester expanded foam container
JP4853110B2 (en) Manufacturing method of resin integrated molded body
JP5292593B2 (en) Method for producing stretched foam molded container and stretched foam container produced by the method
JP5929082B2 (en) Foamed stretched plastic container and manufacturing method thereof
JP4784149B2 (en) Container preform and plastic container
JP5239479B2 (en) Method for producing partially foamed co-injection molded body and partially foamed co-injection molded body
JP5195950B2 (en) Method for manufacturing a plastic container having a pearly appearance
JP5725124B2 (en) Manufacturing method of light-shielding plastic container
JP6167638B2 (en) Foam stretched plastic bottle with excellent light shielding and specular gloss
JP5392425B2 (en) Preform for container and method for producing the same
JP6163850B2 (en) Foam stretch plastic bottle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350