JP2001277277A - Method for manufacturing resin foam, and resin foam obtained thereby - Google Patents

Method for manufacturing resin foam, and resin foam obtained thereby

Info

Publication number
JP2001277277A
JP2001277277A JP2000093956A JP2000093956A JP2001277277A JP 2001277277 A JP2001277277 A JP 2001277277A JP 2000093956 A JP2000093956 A JP 2000093956A JP 2000093956 A JP2000093956 A JP 2000093956A JP 2001277277 A JP2001277277 A JP 2001277277A
Authority
JP
Japan
Prior art keywords
resin
resin foam
pressure gas
pressure
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093956A
Other languages
Japanese (ja)
Inventor
Norio Sugimura
紀夫 杉村
Tomohiro Mizumoto
智裕 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000093956A priority Critical patent/JP2001277277A/en
Publication of JP2001277277A publication Critical patent/JP2001277277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin foam excellent in transparency and a method of manufacturing the same. SOLUTION: After a resin is impregnated with high pressure gas, this resin is foamed to be held to a temperature of 15 deg.C or lower to manufacture the resin foam of which the expansion ratio of 1.01 or more and the total light transmissivity is 10% or more in the case of a sheet within a thickness of 1 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂発泡体および
その製造方法に関する。詳しくは、樹脂に高圧ガスを含
浸させた後、発泡させてなる樹脂発泡体およびその製造
する方法に関する。
[0001] The present invention relates to a resin foam and a method for producing the same. More specifically, the present invention relates to a resin foam obtained by impregnating a resin with a high-pressure gas and then foaming the resin, and a method for producing the same.

【0002】[0002]

【従来の技術】メタクリル樹脂やポリカーボネート等の
アモルファス樹脂は、優れた透明性や機械物性を有し、
照明カバー、看板、建築材料の他、レンズ、光ディスク
等の光学材料に使用されている。一方、これら樹脂の軽
量化、高弾性化、低屈折率化等の技術として、樹脂を発
泡させる方法が知られている。例えば、特表平6−50
6724号公報には、樹脂に超臨界流体を含浸させた
後、発泡させることにより、気泡密度が高く、気泡サイ
ズが小さい樹脂発泡体が得られることが記載されてい
る。また、特開平10−36547号公報には、樹脂に
液状二酸化炭素を含浸させた後、発泡させることによ
り、さらに気泡密度が高く、気泡サイズが小さい樹脂発
泡体が得られることが記載されている。また、特開平6
−3501号公報には、樹脂に発泡物質を含有させた
後、発泡させる等の方法により、屈折率の低い樹脂発泡
体が得られることが記載されている。しかしながら、従
来の樹脂発泡方法では、得られる樹脂発泡体の透明性が
十分でなく、例えば光学材料等の透明性が要求される材
料に用いる場合に、満足できるものではなかった。
2. Description of the Related Art Amorphous resins such as methacrylic resin and polycarbonate have excellent transparency and mechanical properties.
In addition to lighting covers, signboards, building materials, they are used for optical materials such as lenses and optical disks. On the other hand, as a technique for reducing the weight, increasing the elasticity, or reducing the refractive index of these resins, a method of foaming the resin is known. For example, Tokiohei 6-50
No. 6724 describes that a resin foam having a high cell density and a small cell size can be obtained by impregnating a resin with a supercritical fluid and then foaming the resin. JP-A-10-36547 describes that a resin foam having a higher cell density and a smaller cell size can be obtained by impregnating a resin with liquid carbon dioxide and then foaming the resin. . In addition, Japanese Unexamined Patent Publication
JP-A-3501 describes that a resin foam having a low refractive index can be obtained by, for example, adding a foaming substance to a resin and then foaming the resin. However, in the conventional resin foaming method, the transparency of the obtained resin foam is not sufficient, and it is not satisfactory when used for a material requiring transparency, such as an optical material.

【0003】[0003]

【発明が解決しようとする課題】本発明者の目的は、上
記問題点を解決して、透明性に優れる樹脂発泡体および
その製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a resin foam excellent in transparency and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者等は、鋭意検討
の結果、高圧ガスを含浸させた樹脂を発泡させた後、特
定の処理をすることにより、上記目的が達成できること
を見出し、本発明を完成するに至った。すなわち、本発
明は、樹脂に高圧ガスを含浸させた後、該樹脂を発泡さ
せ、15℃以下の温度に保持する樹脂発泡体の製造方法
に係るものである。また、本発明は、発泡倍率が1.0
1以上であり、厚さ1mmのシートとした場合の全光線
透過率が10%以上である樹脂発泡体に係るものであ
る。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that the above object can be achieved by foaming a resin impregnated with a high-pressure gas and then performing a specific treatment. The invention has been completed. That is, the present invention relates to a method for producing a resin foam in which a resin is impregnated with a high-pressure gas, and then the resin is foamed and kept at a temperature of 15 ° C. or lower. Further, the present invention has an expansion ratio of 1.0
This is a resin foam having a total light transmittance of 10% or more when the sheet is 1 or more and the thickness is 1 mm.

【0005】[0005]

【発明の実施の形態】本発明で用いる樹脂としては、透
明性の高い樹脂が好ましく、また、樹脂の種類として
は、例えば、ポリメチルメタクリレート、ポリカーボネ
ート、メチルメタクリレート−スチレン共重合体、ポリ
プロピレン、ABS、ポリスチレン、ポリ塩化ビニル、
ポリアリレート、ポリサルフォン、ポリエーテルサルフ
ォン、エポキシ樹脂、ナイロン樹脂、フッ素樹脂、ポリ
ブチレンテレフタレート、フェノキシ樹脂、フッ素化ポ
リイミド、ポリジエチレングリコールビスアリルカーボ
ネート、ポリエチレンテレフタレート等の非結晶性樹脂
や、ポリ−4−メチルペンテン−1、結晶性ポリメチル
メタクリレート等の一部の結晶性樹脂が挙げられ、必要
に応じてその2種以上の混合物を用いることもできる。
中でも、透明性、二酸化炭素等のガス溶解性の観点か
ら、ポリメチルメタクリレート、ポリカーボネートが好
ましい。なお、上記樹脂のモノマー単位としては、主成
分のモノマー単位以外に、これと共重合可能なモノマー
単位を含んでいてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The resin used in the present invention is preferably a highly transparent resin. Examples of the type of resin include polymethyl methacrylate, polycarbonate, methyl methacrylate-styrene copolymer, polypropylene and ABS. , Polystyrene, polyvinyl chloride,
Non-crystalline resins such as polyarylate, polysulfone, polyether sulfone, epoxy resin, nylon resin, fluororesin, polybutylene terephthalate, phenoxy resin, fluorinated polyimide, polydiethylene glycol bisallyl carbonate, polyethylene terephthalate, and poly-4- Some crystalline resins such as methylpentene-1 and crystalline polymethylmethacrylate may be mentioned, and a mixture of two or more thereof may be used as necessary.
Among them, polymethyl methacrylate and polycarbonate are preferable from the viewpoint of transparency and gas solubility such as carbon dioxide. In addition, as the monomer unit of the resin, in addition to the monomer unit of the main component, a monomer unit copolymerizable therewith may be included.

【0006】樹脂は組成物であってもよく、例えば、透
明性を損なわない範囲で、増核剤としてフィラー等を添
加してもよい。また、分子鎖間に架橋構造を持つ樹脂や
微細な結晶構造を持つ樹脂を用いてもよい。この様な樹
脂は、高分子鎖の運動が抑制されており、得られる樹脂
発泡体の気泡径を小さくすることができる。
The resin may be a composition. For example, a filler or the like may be added as a nucleating agent as long as the transparency is not impaired. Further, a resin having a crosslinked structure between molecular chains or a resin having a fine crystal structure may be used. In such a resin, the movement of the polymer chain is suppressed, and the cell diameter of the obtained resin foam can be reduced.

【0007】樹脂と高圧ガスとを接触させることによ
り、樹脂に高圧ガスを含浸させる。高圧ガスと接触させ
る際の樹脂の形態としては、フィルム状、シート状等の
樹脂成形品であってもよいし、溶融状の樹脂であっても
よい。樹脂と高圧ガスとを接触させる方法としては、例
えば、樹脂成形品を耐圧容器内に入れ、この中に高圧ガ
スを注入してもよいし、溶融状態の樹脂を耐圧容器内、
押出成形機内、射出成形機内等に入れ、この中に高圧ガ
スを注入してもよい。
[0007] The resin is impregnated with the high-pressure gas by contacting the resin with the high-pressure gas. When the resin is brought into contact with the high-pressure gas, the form of the resin may be a resin molded product such as a film or a sheet, or may be a molten resin. As a method of bringing the resin and the high-pressure gas into contact, for example, a resin molded product may be placed in a pressure-resistant container, and a high-pressure gas may be injected into the resin-molded product.
It may be placed in an extruder, an injection molder, or the like, into which high-pressure gas is injected.

【0008】高圧ガスとしては、例えば、二酸化炭素、
窒素、アルゴン、水素、酸素、ブタン、プロパン等が挙
げられ、必要に応じてその2種以上を用いることがで
き、例えば、空気を用いてもよい。中でも、樹脂に対す
る不活性さ、樹脂への溶解性、取扱い性の観点から、二
酸化炭素、窒素が好ましい。二酸化炭素を用いる場合、
その濃度は、通常50容量%以上、好ましくは80容量
%以上である。
As the high-pressure gas, for example, carbon dioxide,
Examples thereof include nitrogen, argon, hydrogen, oxygen, butane, and propane. If necessary, two or more of them can be used. For example, air may be used. Among them, carbon dioxide and nitrogen are preferred from the viewpoints of inertness to the resin, solubility in the resin, and handleability. When using carbon dioxide,
The concentration is usually at least 50% by volume, preferably at least 80% by volume.

【0009】樹脂と接触させる高圧ガスの圧力は、通常
1MPa以上、好ましくは20MPa以上である。上限
については特に限定されないが、経済性や操作性の点か
ら、通常50MPa以下である。該圧力が高いほど、得
られる樹脂発泡体の気泡径が小さくなる傾向にある。
[0009] The pressure of the high-pressure gas brought into contact with the resin is usually 1 MPa or more, preferably 20 MPa or more. The upper limit is not particularly limited, but is usually 50 MPa or less from the viewpoint of economy and operability. The higher the pressure, the smaller the cell diameter of the obtained resin foam tends to be.

【0010】樹脂と接触させる高圧ガスの温度は、樹脂
の形態により適宜選択され、樹脂溶融体を用いる場合
は、通常300℃以下、好ましくは200℃以下であ
り、樹脂成形品を用いる場合は、通常100℃以下、好
ましくは70℃以下である。下限については特に限定さ
れないが、経済性や操作性の観点から、通常0℃以上で
ある。該温度が低いほど、得られる樹脂発泡体の気泡径
が小さくなる傾向にある。
[0010] The temperature of the high-pressure gas to be brought into contact with the resin is appropriately selected depending on the form of the resin. When a resin melt is used, it is usually 300 ° C or lower, preferably 200 ° C or lower. It is usually 100 ° C. or lower, preferably 70 ° C. or lower. The lower limit is not particularly limited, but is usually 0 ° C. or higher from the viewpoint of economy and operability. The lower the temperature is, the smaller the cell diameter of the obtained resin foam tends to be.

【0011】樹脂と高圧ガスとの接触時間は、樹脂の形
態により適宜選択され、樹脂溶融体を用いる場合は、通
常1秒以上、好ましくは1分以上であり、樹脂成形品を
用いる場合は、通常1時間以上、好ましくは3時間以上
である。上限については特に限定されないが、樹脂に高
圧ガスが十分に含浸、拡散され、樹脂中の溶存ガスが飽
和溶解量に達した後は、時間に見合う効果が乏しいの
で、生産効率の観点から、通常100時間以内である。
The contact time between the resin and the high-pressure gas is appropriately selected depending on the form of the resin. When a resin melt is used, it is usually 1 second or more, preferably 1 minute or more. Usually, it is 1 hour or more, preferably 3 hours or more. The upper limit is not particularly limited, but the resin is sufficiently impregnated with and diffused with a high-pressure gas, and after the dissolved gas in the resin reaches a saturated dissolved amount, the effect corresponding to time is poor. Within 100 hours.

【0012】樹脂と接触させる高圧ガスの状態として
は、超臨界状態か液体状態であることが好ましい。高圧
ガスが超臨界状態にあるとは、高圧ガスの温度、圧力が
臨界点以上にあることを意味し、この状態では圧力を変
えることで密度、粘度、拡散係数等を気体に近い状態か
ら液体に近い状態まで幅広く変えることができる。高圧
ガスの臨界点は、高圧ガスの種類により異なり、例え
ば、二酸化炭素では、臨界温度304.2K、臨界圧力
7.4MPaであり、窒素では、臨界温度126.2
K、臨界圧力3.4MPaである。2種類以上混合ガス
の場合には、ガス成分の種類、混合比に応じて臨界点が
存在する。
The state of the high-pressure gas brought into contact with the resin is preferably a supercritical state or a liquid state. The high-pressure gas in the supercritical state means that the temperature and pressure of the high-pressure gas are above the critical point.In this state, the pressure is changed to change the density, viscosity, diffusion coefficient, etc. from a state close to the gas to the liquid. Can be widely changed to a state close to. The critical point of the high-pressure gas differs depending on the type of the high-pressure gas. For example, the critical temperature is 304.2 K and the critical pressure is 7.4 MPa for carbon dioxide, and the critical temperature is 126.2 for nitrogen.
K, critical pressure 3.4 MPa. In the case of a mixed gas of two or more types, there is a critical point according to the type of the gas component and the mixing ratio.

【0013】高圧ガスを接触、含浸させた樹脂は、通
常、常圧程度にまで周囲圧力を下げる、すなわち減圧す
ることにより、発泡させることができる。減圧の過程に
おいては、通常、樹脂中の溶存ガスの一部が樹脂外部へ
抜け、ジュール−トムソン膨張することにより、樹脂が
冷却される。減圧速度は適宜調整すればよいが、減圧速
度が遅い程、樹脂中の溶存ガスが樹脂外部へ抜ける量が
多くなり、発泡体中の気泡数が少なくなる。減圧終了後
は、通常1時間以内、好ましくは5分以内に下記低温保
持を行う。
The resin impregnated with and contacted with a high-pressure gas can be foamed by lowering the ambient pressure to about normal pressure, that is, by reducing the pressure. In the process of depressurization, usually, a part of the dissolved gas in the resin escapes to the outside of the resin, and the resin is cooled by Joule-Thomson expansion. The decompression speed may be appropriately adjusted, but as the decompression speed is lower, the amount of dissolved gas in the resin that escapes to the outside of the resin increases, and the number of bubbles in the foam decreases. After the completion of the depressurization, the following low-temperature holding is performed usually within 1 hour, preferably within 5 minutes.

【0014】発泡させた樹脂を、次いで15℃以下、好
ましくは10℃以下、さらに好ましくは5℃以下の温度
にて保持する。この様な低温保持を行うことにより、透
明性の高い樹脂発泡体を得ることができる。保持温度の
下限については特に限定されないが、操作性の観点か
ら、通常0℃以上である。
[0014] The foamed resin is then held at a temperature of 15 ° C or less, preferably 10 ° C or less, more preferably 5 ° C or less. By maintaining such a low temperature, a resin foam having high transparency can be obtained. The lower limit of the holding temperature is not particularly limited, but is usually 0 ° C. or higher from the viewpoint of operability.

【0015】上記低温保持の時間は、適宜調整すればよ
いが、溶存ガスを十分に樹脂外部に抜けさせる目的か
ら、通常1分以上、好ましくは5分以上、さらに好まし
くは1時間以上である。保持時間の上限については特に
限定されないが、操作性の観点から、通常24時間以内
である。また、該保持に用いる媒体としては、例えば、
冷水やオイル等の液体やフロン等の気体が挙げられ、樹
脂に直接または間接的に接触させればよい。
The time for maintaining the low temperature may be appropriately adjusted, but is usually 1 minute or more, preferably 5 minutes or more, and more preferably 1 hour or more, for the purpose of sufficiently allowing the dissolved gas to escape outside the resin. The upper limit of the holding time is not particularly limited, but is usually within 24 hours from the viewpoint of operability. Further, as a medium used for the holding, for example,
Examples thereof include liquids such as cold water and oil and gases such as chlorofluorocarbons, which may be brought into direct or indirect contact with the resin.

【0016】本発明の方法によれば、従来の方法では得
ることが出来なかった透明性の高い樹脂発泡体を得るこ
とができる。その発泡倍率は、通常1.01以上、好ま
しくは1.03以上、さらに好ましくは1.05以上で
あり、かつ、該樹脂発泡体を厚さ1mmのシートとした
場合の全光線透過率は、通常10%以上、好ましくは3
0%以上、さらに好ましくは50%以上である。発泡倍
率は、得られた樹脂発泡体の体積を原料樹脂の体積で除
することにより求めることができる。また、全光線透過
率は、ASTM D−1003に定める方法により測定
することができる。
According to the method of the present invention, a resin foam having high transparency, which cannot be obtained by the conventional method, can be obtained. The expansion ratio is usually 1.01 or more, preferably 1.03 or more, more preferably 1.05 or more, and the total light transmittance when the resin foam is a sheet having a thickness of 1 mm is as follows: Usually 10% or more, preferably 3%
0% or more, more preferably 50% or more. The expansion ratio can be determined by dividing the volume of the obtained resin foam by the volume of the raw material resin. The total light transmittance can be measured by a method specified in ASTM D-1003.

【0017】本発明の方法で得ることができる樹脂発泡
体が透明性に優れる理由については、従来の方法で得ら
れる樹脂発泡体に比べて、気泡密度が高いながら、気泡
径が小さいためと考えられ、この様になるのは、発泡後
に15℃以下の温度で保持することにより、高分子鎖の
運動を抑制しつつ、溶存ガスを樹脂外部に抜けさせるこ
とができ、気泡径の増大を抑制することができるためと
解される。本発明の樹脂発泡体の平均気泡径は、通常1
-4cm以下、好ましくは10-5cm以下であり、気泡
密度は、通常1010個/cm3以上、好ましくは1013
個/cm3以上であると考えられる。
The reason why the resin foam obtained by the method of the present invention is excellent in transparency is considered to be that the cell diameter is small while the cell density is high as compared with the resin foam obtained by the conventional method. This is because, by maintaining the temperature at 15 ° C. or less after foaming, the dissolved gas can be released to the outside of the resin while suppressing the movement of the polymer chains, and the increase in the bubble diameter is suppressed. It is understood that it can be. The average cell diameter of the resin foam of the present invention is usually 1
0 -4 cm or less, preferably 10 -5 cm or less, and the bubble density is usually 10 10 / cm 3 or more, preferably 10 13
Pcs / cm 3 or more.

【0018】本発明の方法による得られる樹脂発泡体の
用途としては、例えば、照明カバー、看板、建築材料の
他、レンズ、プリズム、ディスプレイなどの反射防止
膜、導光板、偏光フィルム等の光学材料が挙げられる。
特に、本発明の方法により得られる樹脂発泡体は、透明
性に優れることから、光学材料に好適に用いることがで
きる。
The application of the resin foam obtained by the method of the present invention includes, for example, in addition to lighting covers, signboards, and building materials, optical materials such as lenses, prisms, displays, and other antireflection films, light guide plates, and polarizing films. Is mentioned.
In particular, the resin foam obtained by the method of the present invention has excellent transparency, and thus can be suitably used as an optical material.

【0019】[0019]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れらに限定されるものではない。なお、物性測定方法
は、以下の通りである。 ・数平均分子量:ゲル・パーミエーション・クロマトグ
ラフィー(装置:ウォータズ社製 150−CV、溶
媒:THF)で分析して求めた。検量線作成にはポリメ
チルメタクリレートの標準サンプルを用いた。 ・立体規則性:プロトン核磁気共鳴スペクトル(装置:
Varian社製 XL−200、溶媒:ニトロベンゼ
ン−d5)を測定して求めた。立体規則性の表示は、ア
イソタクチックポリメチルメタクリレートについてはト
ライアッド表示(mm)、シンジオタクチックポリメチ
ルメタクリレートについてはトライアッド表示(rr)
で行った。 ・全光線透過率:反射・透過率計(村上色彩技術研究所
製、HR−100型)を用い、ASTM D−1003
に準じて測定した。 ・透過率:自記分光光度計(株式会社日立製作所製、U
−4000形)を用い、300〜800nmにおける透
過率を5nmごとに測定した。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples. In addition, the physical property measuring method is as follows. -Number average molecular weight: It was determined by analyzing with gel permeation chromatography (apparatus: 150-CV, manufactured by Waters, solvent: THF). A standard sample of polymethyl methacrylate was used for preparing a calibration curve. -Stereoregularity: proton nuclear magnetic resonance spectrum (apparatus:
Manufactured by Varian XL-200, solvent: it was determined by measuring the nitrobenzene -d 5). The stereoregularity is indicated by triad display for isotactic polymethyl methacrylate (mm) and triad display for syndiotactic polymethyl methacrylate (rr).
I went in. -Total light transmittance: ASTM D-1003 using a reflection / transmittance meter (HR-100, manufactured by Murakami Color Research Laboratory)
It measured according to. -Transmittance: self-recording spectrophotometer (U, manufactured by Hitachi, Ltd.
-4000 form), and the transmittance at 300 to 800 nm was measured every 5 nm.

【0020】実施例1 アニオン重合によって得られたアイソタクチックポリメ
チルメタクリレート(数平均分子量=36,200、m
m=81%)100重量部とラジカル重合によって得ら
れたシンジオタクチックポリメチルメタクリレート(数
平均分子量=55,800、rr=57%)200重量
部とを一軸押出機にて溶融混練し、ペレットを得た。該
ペレットを220℃にてプレスして、厚さ1.1mmの
シートを得た。このシートを耐圧容器に入れ、40℃、
35MPaの二酸化炭素で耐圧容器内を満たし、5時間
保持した。耐圧容器内を10秒で常圧とした後、発泡シ
ートを耐圧容器から取り出し、2分後、3℃の水中に浸
漬し、1時間保持した。得られた発泡シートは透明で、
透過光は薄い黄色に見え、散乱光は青色に見えた。該発
泡シートの発泡後厚み、発泡倍率および全光線透過率を
表1に示し、透過率を図1に示す。
Example 1 Isotactic polymethyl methacrylate obtained by anionic polymerization (number average molecular weight = 36,200, m
m = 81%) and 200 parts by weight of syndiotactic polymethyl methacrylate (number average molecular weight = 55,800, rr = 57%) obtained by radical polymerization are melt-kneaded with a single screw extruder, and pelletized. I got The pellet was pressed at 220 ° C. to obtain a sheet having a thickness of 1.1 mm. Put this sheet in a pressure vessel,
The pressure vessel was filled with 35 MPa of carbon dioxide and held for 5 hours. After the inside of the pressure-resistant container was set to normal pressure in 10 seconds, the foamed sheet was taken out of the pressure-resistant container, immersed in water at 3 ° C., and held for 1 hour. The resulting foam sheet is transparent,
The transmitted light appeared pale yellow and the scattered light appeared blue. The thickness, expansion ratio and total light transmittance of the foamed sheet after foaming are shown in Table 1, and the transmittance is shown in FIG.

【0021】実施例2 実施例1の前半に準じて、厚さ1.0mmのシートを作
製し、このシートを用いて、浸漬する水の温度を11℃
とした以外は、実施例1の後半と同様の操作を行った。
得られた発泡シートは透明で、透過光は薄い黄色に見
え、散乱光は青色に見えた。該発泡シートの発泡後厚
み、発泡倍率および全光線透過率を表1に示し、透過率
を図1に示す。
Example 2 A sheet having a thickness of 1.0 mm was prepared according to the first half of Example 1, and the temperature of water to be immersed in the sheet was set at 11 ° C.
The same operation as in the latter half of Example 1 was performed, except that the above was set.
The obtained foamed sheet was transparent, the transmitted light appeared pale yellow, and the scattered light appeared blue. The thickness, expansion ratio and total light transmittance of the foamed sheet after foaming are shown in Table 1, and the transmittance is shown in FIG.

【0022】比較例1 実施例1において、浸漬する水の温度を20℃とした以
外は、実施例1と同様の操作を行った。得られた発泡シ
ートは不透明だった。該発泡シートの発泡後厚み、発泡
倍率および全光線透過率を表1に示し、透過率を図1に
示す。
Comparative Example 1 The same operation as in Example 1 was carried out except that the temperature of the immersion water was changed to 20 ° C. The resulting foam sheet was opaque. The thickness, expansion ratio and total light transmittance of the foamed sheet after foaming are shown in Table 1, and the transmittance is shown in FIG.

【0023】比較例2 実施例2において、浸漬する水の温度を35℃とした以
外は、実施例2と同様の操作を行った。得られた発泡シ
ートは不透明だった。該発泡シートの発泡後厚み、発泡
倍率および全光線透過率を表1に示し、透過率を図1に
示す。
Comparative Example 2 The same operation as in Example 2 was performed, except that the temperature of the immersion water was changed to 35 ° C. The resulting foam sheet was opaque. The thickness, expansion ratio and total light transmittance of the foamed sheet after foaming are shown in Table 1, and the transmittance is shown in FIG.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例3 アリルメタクリレート0.1重量%を含むメチルメタク
リレート100重量部にアゾビスイソブチロニトリル
0.10重量部を溶解した。この溶液をポリ塩化ビニル
製ガスケットと二枚のガラス板からなる重合用セルに注
入し、70℃にて5時間、次いで120℃にて1時間加
熱重合して、架橋構造を有するアクリル樹脂の厚さ2.
0mmのシートを得た。このシートを耐圧容器に入れ、
30℃、35MPaの二酸化炭素で耐圧容器内を満た
し、5時間保持した。耐圧容器内を10秒で常圧とした
後、発泡シートを耐圧容器から取り出し、2分後、3℃
の水中に浸漬し、1時間保持した。得られた発泡シート
は半透明で、透過光は赤色に見え、散乱光は青白色に見
えた。該発泡シートの厚さは2.1mmであり(発泡倍
率1.05)、全光線透過率は33.2%であった。該
発泡シートの透過率を図2に示す。
Example 3 0.10 parts by weight of azobisisobutyronitrile was dissolved in 100 parts by weight of methyl methacrylate containing 0.1% by weight of allyl methacrylate. This solution was poured into a polymerization cell consisting of a polyvinyl chloride gasket and two glass plates, and was heated and polymerized at 70 ° C. for 5 hours and then at 120 ° C. for 1 hour to obtain a cross-linked acrylic resin having a thickness. 2.
A sheet of 0 mm was obtained. Put this sheet in a pressure vessel,
The pressure vessel was filled with carbon dioxide at 30 ° C. and 35 MPa, and held for 5 hours. After the inside of the pressure-resistant container was set to normal pressure in 10 seconds, the foamed sheet was taken out of the pressure-resistant container, and after 2 minutes, 3 ° C.
And kept for 1 hour. The obtained foam sheet was translucent, the transmitted light appeared red, and the scattered light appeared blue-white. The thickness of the foam sheet was 2.1 mm (expansion ratio: 1.05), and the total light transmittance was 33.2%. FIG. 2 shows the transmittance of the foamed sheet.

【0026】[0026]

【発明の効果】本発明の方法によれば、透明性に優れる
樹脂発泡体を製造することができる。
According to the method of the present invention, a resin foam having excellent transparency can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1、2、比較例1、2で得られた発泡シ
ートの透過率を示すグラフである。
FIG. 1 is a graph showing the transmittance of the foamed sheets obtained in Examples 1 and 2 and Comparative Examples 1 and 2.

【図2】実施例3で得られた発泡シートの透過率を示す
グラフである。
FIG. 2 is a graph showing the transmittance of the foamed sheet obtained in Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 33:12 C08L 69:00 69:00 B29C 67/22 Fターム(参考) 4F074 AA48 AA70 AB01 BA32 BA33 BA36 BA37 BA84 CA21 CA23 CA24 CC34X DA02 DA24 4F212 AA21 AA28 AB02 AB16 AB20 AG20 UA09 UB01 UC06 UN11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 33:12 C08L 69:00 69:00 B29C 67/22 F term (Reference) 4F074 AA48 AA70 AB01 BA32 BA33 BA36 BA37 BA84 CA21 CA23 CA24 CC34X DA02 DA24 4F212 AA21 AA28 AB02 AB16 AB20 AG20 UA09 UB01 UC06 UN11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】樹脂に高圧ガスを含浸させた後、該樹脂を
発泡させ、15℃以下の温度に保持することを特徴とす
る樹脂発泡体の製造方法。
1. A method for producing a resin foam, comprising impregnating a resin with a high-pressure gas, foaming the resin, and maintaining the resin at a temperature of 15 ° C. or lower.
【請求項2】樹脂がポリメチルメタクリレートまたはポ
リカーボネートである請求項1記載の樹脂発泡体の製造
方法
2. The method for producing a resin foam according to claim 1, wherein the resin is polymethyl methacrylate or polycarbonate.
【請求項3】高圧ガスが二酸化炭素、窒素、アルゴン、
水素、酸素、ブタンおよびプロパンから選ばれる少なく
とも1種である請求項1または2に記載の樹脂発泡体の
製造方法。
3. The high-pressure gas is carbon dioxide, nitrogen, argon,
The method for producing a resin foam according to claim 1 or 2, wherein the method is at least one selected from hydrogen, oxygen, butane, and propane.
【請求項4】高圧ガスが超臨界状態または液体状態にあ
る請求項1〜3のいずれかに記載の樹脂発泡体の製造方
法。
4. The method for producing a resin foam according to claim 1, wherein the high-pressure gas is in a supercritical state or a liquid state.
【請求項5】発泡倍率が1.01以上であり、厚さ1m
mのシートとした場合の全光線透過率が10%以上であ
ることを特徴とする樹脂発泡体。
5. An expansion ratio of 1.01 or more and a thickness of 1 m
m. A resin foam having a total light transmittance of 10% or more when a sheet of m is used.
JP2000093956A 2000-03-30 2000-03-30 Method for manufacturing resin foam, and resin foam obtained thereby Pending JP2001277277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093956A JP2001277277A (en) 2000-03-30 2000-03-30 Method for manufacturing resin foam, and resin foam obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093956A JP2001277277A (en) 2000-03-30 2000-03-30 Method for manufacturing resin foam, and resin foam obtained thereby

Publications (1)

Publication Number Publication Date
JP2001277277A true JP2001277277A (en) 2001-10-09

Family

ID=18609070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093956A Pending JP2001277277A (en) 2000-03-30 2000-03-30 Method for manufacturing resin foam, and resin foam obtained thereby

Country Status (1)

Country Link
JP (1) JP2001277277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246822A (en) * 2004-03-05 2005-09-15 Mitsubishi Chemicals Corp Multi-layer foamed resin molding and its production method
WO2013031989A1 (en) * 2011-08-31 2013-03-07 住友化学株式会社 Method for producing foam molded article, resin material, foam article, heat-insulating member, and fluid retention member
JP2013522391A (en) * 2010-03-10 2013-06-13 ダウ グローバル テクノロジーズ エルエルシー Nanoporous polymer foam with high cell density without nanofillers
JP2013202783A (en) * 2012-03-27 2013-10-07 Sekisui Plastics Co Ltd Method of manufacturing fiber reinforced composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268344A (en) * 1991-02-25 1992-09-24 Furukawa Electric Co Ltd:The Production of saturated polyester resin foam
JPH09236735A (en) * 1996-02-29 1997-09-09 Asahi Chem Ind Co Ltd Plastic optical fiber cable
JPH1036547A (en) * 1996-07-24 1998-02-10 Yamaha Corp Production of microfoam
JPH11268157A (en) * 1998-03-25 1999-10-05 Sumitomo Chem Co Ltd Foam multilayer material
JP2000198869A (en) * 1998-10-30 2000-07-18 Sumitomo Chem Co Ltd Foamed sheet based on polypropylene
JP2000248101A (en) * 1999-03-01 2000-09-12 Nitto Denko Corp Polymer foam and its preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268344A (en) * 1991-02-25 1992-09-24 Furukawa Electric Co Ltd:The Production of saturated polyester resin foam
JPH09236735A (en) * 1996-02-29 1997-09-09 Asahi Chem Ind Co Ltd Plastic optical fiber cable
JPH1036547A (en) * 1996-07-24 1998-02-10 Yamaha Corp Production of microfoam
JPH11268157A (en) * 1998-03-25 1999-10-05 Sumitomo Chem Co Ltd Foam multilayer material
JP2000198869A (en) * 1998-10-30 2000-07-18 Sumitomo Chem Co Ltd Foamed sheet based on polypropylene
JP2000248101A (en) * 1999-03-01 2000-09-12 Nitto Denko Corp Polymer foam and its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246822A (en) * 2004-03-05 2005-09-15 Mitsubishi Chemicals Corp Multi-layer foamed resin molding and its production method
JP2013522391A (en) * 2010-03-10 2013-06-13 ダウ グローバル テクノロジーズ エルエルシー Nanoporous polymer foam with high cell density without nanofillers
WO2013031989A1 (en) * 2011-08-31 2013-03-07 住友化学株式会社 Method for producing foam molded article, resin material, foam article, heat-insulating member, and fluid retention member
JP2013202783A (en) * 2012-03-27 2013-10-07 Sekisui Plastics Co Ltd Method of manufacturing fiber reinforced composite

Similar Documents

Publication Publication Date Title
US6689480B2 (en) Surface-treated plastic article and method of surface treatment
JP5036191B2 (en) Polyvinyl alcohol film and method for producing the same
CN101970199B (en) Method for cast molding contact lenses
JP6856540B2 (en) Production of microporous PMMA foam by the use of nucleating agents
JPH11255925A (en) Modification of medical polymer and polymer base material for medical purpose
Paul Handa et al. Some thermodynamic and kinetic properties of the system PETG‐CO2, and morphological characteristics of the CO2‐blown PETG foams
JP2001277277A (en) Method for manufacturing resin foam, and resin foam obtained thereby
JP4843283B2 (en) Method for producing antiglare sheet
CN104487888A (en) Twisted alignment mode liquid crystal display device
Rodríguez et al. Analysis of the retrograde behavior in PMMA-CO2 systems by measuring the (effective) glass transition temperature using refractive index variations
JP4900468B2 (en) Method for producing crystalline methacrylic resin foam
JP3976157B2 (en) Light scattering film, method for producing the same, and birefringent film
JP2003335956A (en) Light-diffusing resin composition
JP4624591B2 (en) Method for producing retardation film
JP4465747B2 (en) Method for producing crystalline methacrylic resin
JP5400296B2 (en) Resin composition
US5405556A (en) Process of fabricating light-focusing plastic optical elements
JPH03217412A (en) Monomer composition and employment thereof
JP5625898B2 (en) Fumaric acid diester resin and retardation film using the same
JP3549108B2 (en) Anti-reflective porous optical material
TWI785703B (en) Optical film, polarizing plate and liquid crystal display device
WO2023058354A1 (en) Method for producing film and dope for producing film
JPH11302330A (en) Light-diffusing agent particle and light-diffusive sheet
WO2006035649A1 (en) Process for producing surface-roughened sheet, surface-roughened sheet, and antiglare sheet
JPS606710A (en) Production of hydrogel molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308