JP4465747B2 - Method for producing crystalline methacrylic resin - Google Patents

Method for producing crystalline methacrylic resin Download PDF

Info

Publication number
JP4465747B2
JP4465747B2 JP21758599A JP21758599A JP4465747B2 JP 4465747 B2 JP4465747 B2 JP 4465747B2 JP 21758599 A JP21758599 A JP 21758599A JP 21758599 A JP21758599 A JP 21758599A JP 4465747 B2 JP4465747 B2 JP 4465747B2
Authority
JP
Japan
Prior art keywords
methacrylic resin
methyl methacrylate
mixture
pressure
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21758599A
Other languages
Japanese (ja)
Other versions
JP2000109579A (en
Inventor
智裕 水本
紀夫 杉村
雅彦 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP21758599A priority Critical patent/JP4465747B2/en
Publication of JP2000109579A publication Critical patent/JP2000109579A/en
Application granted granted Critical
Publication of JP4465747B2 publication Critical patent/JP4465747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶性メタクリル樹脂の製造方法および該結晶性メタクリル樹脂発泡体ならびにその製造方法に関する。
【0002】
【従来の技術】
メタクリル樹脂は、透明性、耐候性、機械的性質に優れた特性を持つことより、種々の形状に成形され、照明、看板、ディスプレイ、建築材料、発泡材料やレンズ、光ディスク等の光学機器に幅広く使用されている。
【0003】
一方、アイソタクチックポリメタクリル酸メチル(以下、IPMMAと略記する場合がある)とシンジオタクチックポリメタクリル酸メチル(以下、SPMMAと略記する場合がある)を適当な条件で混合すると、ステレオコンプレックスポリメタクリル酸メチル(以下、SCPMMAと略記する場合がある)とよばれる結晶性メタクリル樹脂が得られることは、広く知られている。
このような結晶性メタクリル樹脂を得る方法としては、種々の方法が知られている。例えば、▲1▼IPMMAとSPMMAをトルエン、アセトン、DMF等の特定溶媒中で混合する方法、或いは、▲2▼IPMMAとSPMMAからなる固体の混合物を熱処理する方法がある( 日本化学会編、" 実験化学講座28高分子合成"丸善 1992,129頁第10〜13行目)。また、▲3▼IPMMAとSPMMAの各々をメタクリル酸メチルに溶解し、混合してSCPMMAを形成させた後、メタクリル酸メチルを光重合し、SCPMMA含有のポリメタクリル酸メチルを得る方法( 特公昭47−14834号公報) 、▲4▼IPMMAをメタクリル酸メチルで膨潤させ、マトリックス重合してその界面にSCPMMAを形成させる方法〔H.Yau,and S.I.Stupp,J.Polym.Sci.,Polym.Chem.Ed.,23,813(1985)〕等が知られている。このようにして得られた結晶性メタクリル樹脂は、非結晶性メタクリル樹脂に比較して耐溶剤性に優れていることが知られている(特開平3−244651号公報)。
【0004】
メタクリル樹脂の表面に模様やパターンを印刷し適用する分野がある。例えばメタクリル樹脂製の導光板において、該導光板の輝度を向上させるために、該導光板の表面にスクリーン印刷により適当なドットパターンを付与している。該方法に於ける印刷には通常、有機溶媒が使用されているが、かかる方法に於いては、印刷によりメタクリル系樹脂の表面が該溶媒に侵され印刷が不鮮明になるという欠陥が生じる場合がある。
また、金属材料等の基材表面に各種模様を印刷したメタクリル樹脂フィルムを被覆した化粧板を製造する場合には、仕上げ工程で通常アルコール系溶媒で印刷に用いた有機溶剤を除去するため化粧板表面を洗浄する。この場合、被覆段階での残留応力のためか該アルコール系溶媒での洗浄においてメタクリル樹脂フィルムにクラックが発生する場合がある。
【0005】
以上のような用途においては、上記したようなSCPMMAと呼ばれる耐溶剤性に優れた結晶性メタクリル樹脂の適用が考えられるが、従来公知の結晶性メタクリル樹脂の製造方法に於いては、▲1▼のような特別な溶媒中でIPMMAとSPMMAを単に混合するのみの方法では、得られる結晶性メタクリル樹脂の結晶化度も低く、成形品中に溶媒が残存し、残存溶媒が耐溶剤性を悪化せしめるため耐溶剤性改良の目的には使用し難いとの欠点を有する。また▲2▼の混合物を熱処理する方法では、比較的低分子量で立体規則性の高いIPMMAとSPMMAを用いる場合は速やかに結晶化が進行するが原料コストが高く、他方、比較的高分子量で立体規則性の低いIPMMAとSPMMAを用いる場合は結晶化が進行し難いという欠点がある。さらに、上記した▲3▼のIPMMAとSPMMAの各々をメタクリル酸メチルに溶解し、混合してステレオコンプレックスを形成させた後、単量体を光重合し、ステレオコンプレックス含有のポリメタクリル酸メチルを得る方法や、▲4▼のIPMMAをメタクリル酸メチルで膨潤させ、マトリックス重合してその界面にSCPMMAを形成させる方法は、適用し得る成型品の形状が限定されるとの問題点を有する。
【0006】
【発明が解決しようとする課題】
かかる事情下に鑑み、本発明者等は上記したような欠点のない、即ち、適用し得る成型品の形状にも制限がなく、簡単な方法で、結晶化度の高い、耐溶剤性に優れた結晶性メタクリル樹脂の製造方法を見出すことを目的として鋭意検討した結果、IPMMAとSPMMAの混合物を特定条件で処理する場合には、上記目的を全て満足した結晶性メタクリル樹脂が得られることを見出し、本発明を完成するに至った。また、IPMMAとSPMMAの混合物を特定条件で処理し、これを発泡せしめる場合には、耐溶剤性に優れ、かつ平均セル直径が約10μm以下でセル数密度が109〜1015個/cm3の微細気泡を有する耐衝撃性や曲げ強度等の機械的特性に優れた結晶性メタクリル樹脂発泡体が得られることを見出し、本発明を完成するに至った。
【0007】
【課題を解決するための手段】
即ち本発明は、アイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体の混合物を高圧ガスに接触させる工程からなる結晶性メタクリル樹脂の製造方法を提供する。
さらに本発明は、アイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体の混合物を高圧ガスに接触させた後、該混合物を発泡させる工程からなる結晶性メタクリル樹脂発泡体の製造方法を提供するにある。
加えて本発明は、平均セル直径が約10μm以下で、セル数密度が109〜1015個/cm3の微細気泡を有することを特徴とする結晶性メタクリル樹脂発泡体を提供するにある。
【0008】
【発明の実施の形態】
本発明におけるアイソタクチックメタクリル酸メチル系重合体とは、メタクリル酸メチル単位が主成分としてなる重合体で、メタクリル酸メチル単位連鎖のアイソタクチシチーがトライアッド表示で約50%以上、好ましくは約80%以上のものである。本発明におけるアイソタクチックメタクリル酸メチル系重合体は、メタクリル酸メチル単量体の単独重合体であってもよいし、メタクリル酸メチル単量体と共重合可能な単量体とメタクリル酸メチル単量体との共重合体であってもよい。
【0009】
メタクリル酸メチル単量体と共重合可能な単量体としては、公知のものであれば特に限定されるものではなく、例えば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル等のメタクリル酸エステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル等のアクリル酸エステル類、メタクリル酸、アクリル酸などの不飽和酸類、アクリロニトリル、メタクリロニトリル、スチレン等の単官能単量体、さらにエチレングリコールジメタクリレート、トリメチルプロパントリメタクリレート等の多官能単量体等が挙げられ。本発明におけるアイソタクチックメタクリル酸メチル系重合体を得るにあたりこれら単量体が用いられる場合、これらは単独で、または2種類以上が併用されてメタクリル酸メチル単量体と共に用いられる。
【0010】
共重合可能な単量体の量は、所望とする結晶性メタクリル系樹脂の物性により決定されるものであり、特に限定されるものではないが、使用する単量体全量に対して、約30重量%以下、好ましくは0〜約20重量%である。共重合可能な単量体の量が多すぎると結晶性メタクリル系樹脂が形成し難くなる場合がある。
【0011】
本発明に適用するアイソタクチックメタクリル酸メチル系重合体は、従来公知の方法によって製造する事が出来る。例えば、メタクリル酸メチル単量体にグリニアル試薬を重合開始剤として用いてアニオン重合させることによって得られる(例えば特開昭61−179210号公報、特開昭61−176617号公報参照) 。
【0012】
本発明に適用する他の一つのシンジオタクチックメタクリル酸メチル系重合体とは、メタクリル酸メチル単位を主成分としてなる重合体で、メタクリル酸メチル単位連鎖のシンジオタクチシチーがトライアッド表示で約50%以上であることを意味し、必要により上記アイソタクチックメタクリル酸メチル系重合体と同様の共重合可能な他の単量体との共重合体を含むものである。
【0013】
共重合可能な単量体の量は、所望とする結晶性メタクリル系樹脂の物性により決定されるものであり、特に限定されるものではないが、使用する単量体全量に対し約30重量%以下、好ましくは0〜約20重量%である。共重合可能な単量体の量が多すぎると結晶性メタクリル系樹脂が形成し難くなる場合がある。
【0014】
シンジオタクチックメタクリル酸メチル系重合体は、従来公知の方法によって製造する事が出来る。例えば、特公平6−89054号公報、特開平3−263412号公報等に記載されるごとく、メタクリル酸メチル単量体に有機アルミニウム化合物或いは有機ランタニド錯体等を開始剤として用いてアニオン重合させることによって得られる。また、公知のラジカル重合開始剤でメタクリル酸メチル単量体を重合する事によっても得られる。かかるラジカル重合開始剤としては、例えばベンゾイルパーオキサイド、ジtブチルパーオキサイド、tブチルパーオキシ2エチルヘキサエート等の有機過酸化物系開始剤;2、2’アゾビスイソブチロニトリル、2、2’アゾビス(2、4−ジメチルバレロニトリル)等のアゾ系開始剤;さらには過酸化物開始剤とアミン類、メルカプタン類等の還元性化合物を主成分として組み合わされた公知のレドックス系開始剤;また、ベンゾイン、ベンゾインエーテル類、1−ヒドロヘキシルフェニルケトン、ベンジルジメチルケタール、アシルホスフェノキサイド、ベンゾフェノン、ミヒラーケトン、チオキサントン類等に必要に応じて光増感剤を併用する光重合開始剤系等が挙げられる。
【0015】
本発明の一つは、アイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体の混合物を高圧ガスに接触させる工程からなるものである。アイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体の混合物を得る方法としては、公知の方法であってもよく、特に制限されるものではないが、例えばクロロホルム、塩化メチレン等の結晶性メタクリル系樹脂を溶解し得る溶媒中で混合するか、アイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体を溶融混練する方法等が挙げられる。該混合物は、該混合物を得る工程中でその一部が結晶化していてもよく、また該混合物中に該混合物を得る工程中で用いた溶媒の一部が残存していても良い。
【0016】
該混合物中の該アイソタクチックメタクリル酸メチル系重合体と該シンジオタクチックメタクリル酸メチル系重合体の混合比は重量基準で、約1:約99〜約99:約1である。好ましくは約10:約90〜約90:約10、更に好ましくは約15:約85〜約85:約15である。該アイソタクチックメタクリル酸メチル系重合体、該シンジオタクチックメタクリル酸メチル系重合体の量が少ないと形成される結晶性メタクリル樹脂の耐溶剤性が低くなる傾向にある。また発泡体とした場合、微細なセル径を有する気泡が得難くなる傾向にある。
該混合物の形態としては、フィルム状、板状、所望の成型品形状など任意の形でよく、特に限定されない。
【0017】
本発明の実施に際しては、アイソタクチックメタクリル酸メチル系重合体と該シンジオタクチックメタクリル酸メチル系重合体よりなる混合物は次いで高圧ガスと接触せしめ、該混合物中にガスを含有せしめる。
該混合物に接触せしめる高圧ガスとしては、従来公知のガスであってもよく、例えば、二酸化炭素、窒素、アルゴン、水素、酸素、ブタン、プロパン、空気等が挙げられ、これらは単独、或いは2種類以上を混合して用いても良い。就中、処理対象とする樹脂に対し不活性であり、メタクリル酸メチル系重合体への溶解性が高く、かつ取扱いが容易である点より、約50容量%以上の二酸化炭素を含有する高圧ガスの適用が好ましい。
【0018】
該混合物に接触させる高圧ガスの圧力は、所望とする結晶性メタクリル樹脂の物性により決定されるが、通常約0.2MPa以上、好ましくは約1MPa以上である。圧力が低い場合には得られる結晶性メタクリル樹脂の融点、結晶化度とも低くなり、他方、圧力が高くなれば得られる結晶性メタクリル樹脂の融点、結晶化度とも高くなる。また圧力が低い場合には発泡体のセル直径が大きくなり、他方、圧力が高くなれば発泡体のセル直径が小さくなる。使用する高圧ガスの上限は特に制限はなく、経済性等により主として決定されるが、通常約40MPa程度までである。
【0019】
該混合物に接触させる高圧ガスの温度も、特に限定されるものではなく所望とする結晶性メタクリル樹脂の物性により決定されるが、通常約0〜約300℃であり、好ましくは約0〜約200℃である。温度が低い場合には融点が低くなり、発泡体のセル直径は小さくなる。あまり温度が高いと樹脂が分解する恐れがあり、またガスがポリマー中に溶解し難くなる傾向にある。
【0020】
該混合物に接触させる高圧ガスは超臨界状態にあることが好ましい。高圧ガスが超臨界状態にあるとは、高圧ガスの温度、圧力が臨界点以上にあることを意味し、この状態では圧力を変えることで密度、粘度、拡散係数などを気体に近い状態から液体に近い状態まで幅広く変えることができる。周知の如く高圧ガスの臨界点は、高圧ガスの種類により異なる。例えば二酸化炭素では温度が304.2K、圧力が7.4MPaであり、窒素では温度126.2K、圧力3.4MPaである。2種類以上のガスを混合した場合にも、混合ガスの種類、混合比に応じて臨界点が存在する。
【0021】
該混合物に高圧ガスを接触させる時間も、特に限定されるものではなく処理対象となるメタクリル樹脂の形状により決定されるが、通常約0.1秒〜約7日、好ましくは約30秒〜約12時間である。時間が上記範囲より短い場合には表層のごく薄い部分しか結晶化せず、処理時間の上限は特に制限されるものではないが、あまり長時間接触せしめても、時間に見合う効果はなくなるので、通常操業効率より上記範囲内で処理される。
【0022】
該混合物を該高圧ガスに接触せしめる方法は、該混合物が該高圧ガス雰囲気下で高圧ガスと接触し得る状況下にあればよく、特にその手段は限定されるものではない。例えば、該混合物を入れた耐圧容器内に高圧ガスを封入する方法、該混合物を入れた耐圧容器内に常圧のガスを封入した後、加熱等の操作により容器内を高圧ガス雰囲気に設定する方法等が挙げられる。該混合物を高圧ガスに接触せしめることにより、該混合物中にガスが含有される。その具体的な方法としては、例えば、フィルム状、板状、所望の成型品形状等の任意形状の該混合物を耐圧容器内に入れて容器全体にガスを注入し、該混合物と高圧ガスを接触せしめることにより、該混合物中にガスを含有せしめる方法、溶融状態の該混合物を耐圧容器内や押出成形機内あるいは射出成形機内等に入れて該混合物中に高圧ガスを注入し、該混合物中にガスを含有せしめる方法等が挙げられる。
【0023】
高圧ガスと接触処理後の混合物は、次いで常圧になるまで減圧し取り出せばよい。このとき、常圧までゆっくり減圧することにより、未発泡の透明な結晶性メタクリル樹脂を得ることができる。また一気に減圧することにより結晶性メタクリル樹脂発泡体を得ることができる。
【0024】
このようにして得られた、本発明の高圧ガスと接触処理後の該混合物は、単にIPMMAとSPMMAの混合物を熱処理する従来方法等により得られた結晶性メタクリル樹脂の結晶化度が高々2%程度であったのに対し、通常3%以上、普通には5%、好ましくは10%を越える高結晶化度を有する結晶性メタクリル樹脂となっており、極めて優れた耐溶剤性を有する結晶性メタクリル樹脂である。また該混合物を発泡してなる結晶性メタクリル樹脂発泡体は上記高結晶化度を有すると共に、通常、平均セル直径が約10μm以下、普通には約5μm以下、好ましくは約2μm以下で、セル数密度が109〜1015セル/cm3の微細気泡を有する、発泡体の平均セル直径が小さく、かつセル数密度の大きい発泡体であり、該発泡体は、従来公知のメタクリル酸メチル系樹脂発泡体に比較し、耐溶剤性に優れるだけでなく、発泡倍率が同等の発泡体と比し耐衝撃性や曲げ強度等の機械的特性優れた発泡体である。
【0025】
【発明の効果】
以上詳述した如く、本発明によれば、極めて簡便な方法で、結晶化度が高く、且つ優れた耐溶剤性を有する結晶性メタクリル樹脂ならびに結晶性メタクリル樹脂発泡体の提供を可能としたもので、また従来法の▲1▼、▲3▼及び▲4▼で紹介した方法の如く成形品の形状に制限を受けることもないことより、照明、看板、ディスプレイ、建築材料、発泡材料または、レンズ、光ディスク等の光学機器等の各種分野に適用可能であり、その産業上の利用価値は極めて大なるものである。
【0026】
【実施例】
以下、本発明を実施例に従って説明するが、本発明はこれに限定されるものではない。
なお、実施例中用いた物性測定、試験方法は以下に示す通りである。
【0027】
数平均分子量:
ゲル・パーミエーション・クロマトグラフィー(ウォータズ社製 150−CV)を使用して、溶媒としてTHFを用いて40℃で被検物サンプルの分子量分布を測定した。数平均分子量決定にはポリメタクリル酸メチル標準サンプルにより作成した検量線を用いた。
【0028】
立体規則性:
プロトン核磁気共鳴スペクトル測定装置(Varian社製XL−200)を使用して、溶媒としてニトロベンゼン−d5を用いて110℃で被検物サンプルの核磁気共鳴スペクトルを測定した。立体規則性の表示は、アイソタクチックメタクリル系樹脂は、アイソタクチシチーのトライアッド表示(mm)で行った。またシンジオタクチックメタクリル系樹脂は、シンジオタクチシチーのトライアッド表示(rr)で行った。
【0029】
融点および結晶化度:
走査熱量測定装置( セイコー電子社製 SSC−5880II) を使用して、昇温速度10℃/ minで被検物サンプルの吸熱ピークを測定した。被検物サンプルの融点( Tm) は、結晶に由来する吸収ピークのピークトップから求めた。また、該吸熱ピークの面積から融解熱量変化( ΔH) を計算して求め、100%の結晶化度のΔHを58J/g(K.Konnecke,and G.Rehage,Makromol.Chem.,184,2679-2691(1983))として、被検物サンプルの結晶化度を算出した。
【0030】
耐溶剤性試験:
被検物サンプルがフィルム状である場合は、20mm角のフィルム状試験片を作成しそれを耐溶剤試験にもちいた。試験面にアセトンを塗布し、塗布後のクレーズの有無により試験片の耐溶剤性を評価した。クレーズが発生せずに耐溶剤性に優れていたものを○、クレーズが発生し耐溶剤性に劣っていたものを×とした。被検物サンプルが発泡体サンプルの場合は、表面にアセトンを滴下し、室温で乾燥後、滴下の跡の大きさで評価した。その跡が小さく目立たず耐溶剤性に優れていたものを○、その跡がやや大きく見られたものを△、その跡が大きくはっきり認められ耐溶剤性に劣っていたものを×とした。
【0031】
気泡の平均セル直径、セル数密度:
走査型電子顕微鏡(日本電子株式会社製、JSM−840A)で撮影した発泡体断面のSEM写真を画像処理ソフト(東洋紡績株式会社製、Image Analyzer V10LAB for Windows95)で統計処理し、発泡体断面の気泡の直径の平均値を求めた。その値を被検物サンプルにおける気泡の平均セル直径Dとした。また、次式よりセル数密度Nを求めた。
N= (n/A)3/2/(1-4/3π(D/2)3・(n/A)3/2)
(式中、Nはセル数密度、Aは統計処理領域の面積、nはA中のセル個数、Dは平均セル直径を表す)
【0032】
実施例1
アニオン重合によって得られたアイソタクチックメタクリル酸メチル系重合体( 数平均分子量36,200、mm=81%) 15重量部、ラジカル重合によって得られたシンジオタクチックメタクリル酸メチル系重合体( 数平均分子量=55,800、rr=57%) 15重量部を、塩化メチレン70重量部に溶解した。この溶液をポリエチレンテレフタレート樹脂製フィルム上に展開し、室温で1時間、真空乾燥機中で1時間乾燥した。平均厚さ113μmのアイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体のフィルム状混合物を得た。このフィルムを走査熱量測定装置により結晶化度を測定したところ、Tmが122.8℃、結晶化度が0.7%であった。
このフィルムを耐圧容器に入れ、30℃、5MPaの二酸化炭素で耐圧容器内を満たした。30℃、5MPaで6時間保持後、5MPa/hで耐圧容器内を常圧まで減圧したのちフィルムを取り出した。
得られたフィルムを走査熱量測定装置により、Tm、結晶化度を測定した。また、得られたフィルムの耐溶剤性試験を行った。結果を表2に示す。
【0033】
実施例2〜11
耐圧容器内に満たす二酸化炭素の温度、圧力を表1に示した値とし、表1に示した時間接触させた以外は、実施例1と同様の操作でフィルムを得た。得られたフィルムを走査熱量測定装置により、Tm、結晶化度を測定した。また、得られたフィルムの耐溶剤性試験を行った。結果を表2に示す。
【0034】
比較例1
実施例1と同様の方法で得られたフィルム状混合物を、何ら処理せず(耐圧容器内に入れず、高圧二酸化炭素と接触させない)走査熱量測定装置により、Tm、結晶化度を測定した。また、得られたフィルムの耐溶剤性試験を行った。結果を表2に示す。
【0035】
比較例2〜5
実施例1において、重合体のフィルム状混合物を耐圧容器に入れ容器内を高圧の二酸化炭素雰囲気下に保持し、その後常圧に戻す操作を行うのに代えて、重合体のフィルム状混合物を常圧下のエアーオーブン中で、表1に示す温度、時間の間放置した以外は、実施例1と同様の方法でフィルムを得た。走査熱量測定装置を用い得られたフィルムのTm、及び結晶化度を測定した。また、得られたフィルムの耐溶剤性試験を行った。結果を表2に示す。
【0036】
【表1】

Figure 0004465747
*1.約0.1MPa
【0037】
【表2】
Figure 0004465747
【0038】
実施例12
アニオン重合によって得られたアイソタクチックメタクリル酸メチル系重合体(数平均分子量36,200、mm=81%)10重量部、ラジカル重合によって得られたシンジオタクチックメタクリル酸メチル系重合体(数平均分子量=55,800、rr=57%)90重量部を、一軸押出機にて溶融混練し、混合体のペレットを得た。得られた混合体ペレットを220℃でプレスして厚さ約1mmのシートを得た。
このシートを耐圧容器に入れ、40℃、20MPaの二酸化炭素で耐圧容器内を満たした。同温度、同圧力の二酸化炭素加圧条件を5時間保持した後、容器内の二酸化炭素を10秒で排気し、容器内の圧力を常圧まで減圧して発泡体を得た。走査熱量測定装置を用い、得られた発泡体のTm、結晶化度を測定した。また得られた発泡体の断面のSEM写真から画像処理により発泡体の気泡の平均セル直径D、セル数密度Nを求めた。結果を表5に示す。
【0039】
実施例13〜27、比較例6〜9
実施例12において、アイソタクチックメタクリル酸メチル系重合体及びシンジオタクチックメタクリル酸メチル系重合体の各使用量を、10重量部及び90重量部から表3に示す重量部に代えた以外は、実施例12と同様の操作を行って、各々の実験例、比較例において、表3に示す厚さのシートを得、又、耐圧容器内を満たす二酸化炭素の温度及び圧力を40℃、20MPaから表4に示すものに代える以外は、各々の実験例、比較例において、実施例12と同様の操作を行って発泡体を得た。
走査熱量測定装置を用い、得られた発泡体のTm、及び結晶化度を測定した。また、得られた発泡体の断面のSEM写真から画像処理により発泡体の気泡の平均セル直径D、セル数密度Nを求めた。結果を表5に示す。
【0040】
【表3】
Figure 0004465747
*3.二酸化炭素の含浸時間を十分とっているので、シート厚みの実験結果への影響はないと考えられる。
【0041】
【表4】
Figure 0004465747
【0042】
【表5】
Figure 0004465747
*4.耐溶剤性試験において、○はアセトン滴下の跡が小さく目立たなかったことを示し、△はその跡がやや大きくみられたことを示し、×はその跡が大きくはっきり認められたことを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a crystalline methacrylic resin, the crystalline methacrylic resin foam and a method for producing the same.
[0002]
[Prior art]
Methacrylic resin has excellent transparency, weather resistance, and mechanical properties, so it is molded into various shapes and widely used in optical equipment such as lighting, signboards, displays, building materials, foam materials, lenses, and optical disks. in use.
[0003]
On the other hand, when isotactic polymethyl methacrylate (hereinafter abbreviated as IPMMA) and syndiotactic polymethyl methacrylate (hereinafter abbreviated as SPMMA) are mixed under appropriate conditions, stereocomplex poly It is widely known that a crystalline methacrylic resin called methyl methacrylate (hereinafter sometimes abbreviated as SPMMMA) is obtained.
As a method for obtaining such a crystalline methacrylic resin, various methods are known. For example, (1) a method of mixing IPMMA and SPMMA in a specific solvent such as toluene, acetone, DMF, or (2) a method of heat-treating a solid mixture composed of IPMMA and SPMMA (edited by the Chemical Society of Japan, “ Experimental Chemistry Lecture 28 Polymer Synthesis “Maruzen 1992, p. 129, lines 10-13”. (3) A method in which each of IPMMA and SPMMA is dissolved in methyl methacrylate and mixed to form SPMMMA, and then methyl methacrylate is photopolymerized to obtain SPMMMA-containing polymethyl methacrylate (Japanese Patent Publication No. 47). (4) No. 14834), (4) A method in which IPMMA is swollen with methyl methacrylate and subjected to matrix polymerization to form SPMMMA at the interface [H. Yau, and SIStupp, J. Polym. Sci., Polym. Chem. Ed. ., 23, 813 (1985)] and the like are known. It is known that the crystalline methacrylic resin thus obtained is superior in solvent resistance as compared with an amorphous methacrylic resin (Japanese Patent Laid-Open No. 3-244651).
[0004]
There is a field in which patterns and patterns are printed on the surface of methacrylic resin and applied. For example, in a light guide plate made of methacrylic resin, an appropriate dot pattern is given to the surface of the light guide plate by screen printing in order to improve the luminance of the light guide plate. Usually, an organic solvent is used for printing in this method. However, in such a method, there may be a defect that the surface of the methacrylic resin is affected by the solvent and printing becomes unclear due to the printing. is there.
In addition, when manufacturing a decorative board coated with a methacrylic resin film with various patterns printed on the surface of a base material such as a metal material, the decorative board is used to remove the organic solvent used for printing with a normal alcohol solvent in the finishing process. Clean the surface. In this case, cracks may occur in the methacrylic resin film due to residual stress in the coating stage or in washing with the alcohol solvent.
[0005]
In the applications as described above, it is conceivable to apply a crystalline methacrylic resin excellent in solvent resistance called SCPMMA as described above. However, in the conventionally known methods for producing crystalline methacrylic resins, (1) In the method of simply mixing IPMMA and SPMMA in a special solvent such as the above, the crystallinity of the resulting crystalline methacrylic resin is low, the solvent remains in the molded product, and the residual solvent deteriorates the solvent resistance. Therefore, it has a drawback that it is difficult to use for the purpose of improving solvent resistance. In addition, in the method of heat treating the mixture of (2), when IPMMA and SPMMA having a relatively low molecular weight and high stereoregularity are used, the crystallization proceeds rapidly, but the raw material cost is high, while on the other hand, When IPMMA and SPMMA having low regularity are used, there is a drawback that crystallization is difficult to proceed. Further, each of IPMMA and SPMMA of (3) above is dissolved in methyl methacrylate and mixed to form a stereocomplex, and then the monomer is photopolymerized to obtain a stereocomplex-containing polymethylmethacrylate. The method and the method (4) of swelling IPMMA with methyl methacrylate and subjecting it to matrix polymerization to form SPMMMA at the interface have a problem that the shape of the applicable molded product is limited.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors have no such drawbacks as described above, i.e., there is no limitation on the shape of the molded product that can be applied, a simple method, high crystallinity, and excellent solvent resistance. As a result of intensive studies aimed at finding a method for producing a crystalline methacrylic resin, it has been found that when a mixture of IPMMA and SPMMA is treated under specific conditions, a crystalline methacrylic resin satisfying all of the above objectives can be obtained. The present invention has been completed. When a mixture of IPMMA and SPMMA is treated under specific conditions and foamed, it has excellent solvent resistance, an average cell diameter of about 10 μm or less, and a cell number density of 10 9 to 10 15 cells / cm 3. It has been found that a crystalline methacrylic resin foam having excellent micro mechanical properties such as impact resistance and bending strength can be obtained, and the present invention has been completed.
[0007]
[Means for Solving the Problems]
That is, the present invention provides a method for producing a crystalline methacrylic resin comprising a step of bringing a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer into contact with a high-pressure gas.
Furthermore, the present invention provides a crystalline methacrylic resin foam comprising a step of bringing a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer into contact with a high-pressure gas and then foaming the mixture. To provide a manufacturing method.
In addition, the present invention is to provide a crystalline methacrylic resin foam characterized by having fine cells having an average cell diameter of about 10 μm or less and a cell number density of 10 9 to 10 15 cells / cm 3 .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The isotactic methyl methacrylate polymer in the present invention is a polymer having a methyl methacrylate unit as a main component, and the isotacticity of methyl methacrylate unit chain is about 50% or more, preferably about 80 in triad display. % Or more. The isotactic methyl methacrylate polymer in the present invention may be a homopolymer of a methyl methacrylate monomer, or a monomer copolymerizable with a methyl methacrylate monomer and a methyl methacrylate monomer. It may be a copolymer with a monomer.
[0009]
The monomer copolymerizable with the methyl methacrylate monomer is not particularly limited as long as it is a known monomer, and examples thereof include ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate. Methacrylic acid esters such as 2-hydroxyethyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methacrylic acid esters, Examples thereof include unsaturated acids such as acid and acrylic acid, monofunctional monomers such as acrylonitrile, methacrylonitrile, and styrene, and polyfunctional monomers such as ethylene glycol dimethacrylate and trimethylpropane trimethacrylate. When these monomers are used in obtaining the isotactic methyl methacrylate polymer in the present invention, these monomers are used alone or in combination of two or more kinds together with the methyl methacrylate monomer.
[0010]
The amount of the copolymerizable monomer is determined by the physical properties of the desired crystalline methacrylic resin, and is not particularly limited, but is about 30 with respect to the total amount of monomers used. % By weight or less, preferably 0 to about 20% by weight. If the amount of copolymerizable monomer is too large, it may be difficult to form a crystalline methacrylic resin.
[0011]
The isotactic methyl methacrylate polymer applied to the present invention can be produced by a conventionally known method. For example, it can be obtained by anionic polymerization of a methyl methacrylate monomer using a grinal reagent as a polymerization initiator (see, for example, JP-A Nos. 61-179210 and 61-176617).
[0012]
Another syndiotactic methyl methacrylate polymer to be applied to the present invention is a polymer mainly composed of methyl methacrylate units, and the syndiotacticity of methyl methacrylate unit chain is about 50 in triad display. %, And if necessary, it contains a copolymer with another copolymerizable monomer similar to the above isotactic methyl methacrylate polymer.
[0013]
The amount of the copolymerizable monomer is determined by the physical properties of the desired crystalline methacrylic resin and is not particularly limited, but is about 30% by weight based on the total amount of monomers used. Hereinafter, it is preferably 0 to about 20% by weight. If the amount of copolymerizable monomer is too large, it may be difficult to form a crystalline methacrylic resin.
[0014]
The syndiotactic methyl methacrylate polymer can be produced by a conventionally known method. For example, as described in JP-B-6-89054, JP-A-3-263212, and the like, by anionic polymerization using a methyl methacrylate monomer using an organic aluminum compound or an organic lanthanide complex as an initiator. can get. It can also be obtained by polymerizing a methyl methacrylate monomer with a known radical polymerization initiator. Examples of such radical polymerization initiators include organic peroxide initiators such as benzoyl peroxide, di-t-butyl peroxide, and t-butyl peroxy 2-ethyl hexaate; 2, 2 ′ azobisisobutyronitrile, Azo initiators such as 2 ′ azobis (2,4-dimethylvaleronitrile); and further known redox initiators in which peroxide initiators and reducing compounds such as amines and mercaptans are combined as main components. A photopolymerization initiator system in which a photosensitizer is used in combination with benzoin, benzoin ethers, 1-hydroxyphenyl ketone, benzyl dimethyl ketal, acyl phosphenoxide, benzophenone, Michler ketone, thioxanthone, etc. as necessary Is mentioned.
[0015]
One aspect of the present invention comprises a step of contacting a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer with a high-pressure gas. A method for obtaining a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer may be a known method and is not particularly limited. For example, chloroform, methylene chloride Examples thereof include a method in which a crystalline methacrylic resin such as a solvent is mixed in a solvent capable of dissolving, or an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer are melt-kneaded. A part of the mixture may be crystallized in the step of obtaining the mixture, or a part of the solvent used in the step of obtaining the mixture may remain in the mixture.
[0016]
The mixing ratio of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer in the mixture is about 1: about 99 to about 99: about 1 on a weight basis. Preferably, it is about 10: about 90 to about 90: about 10, more preferably about 15: about 85 to about 85: about 15. When the amount of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer is small, the solvent resistance of the formed crystalline methacrylic resin tends to be low. Moreover, when it is set as a foam, it exists in the tendency for the bubble which has a fine cell diameter to become difficult to obtain.
The form of the mixture may be any shape such as a film shape, a plate shape, or a desired molded product shape, and is not particularly limited.
[0017]
In the practice of the present invention, the mixture of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer is then brought into contact with a high-pressure gas, and the gas is contained in the mixture.
The high-pressure gas to be brought into contact with the mixture may be a conventionally known gas, and examples thereof include carbon dioxide, nitrogen, argon, hydrogen, oxygen, butane, propane, air and the like. You may mix and use the above. In particular, a high-pressure gas containing about 50% by volume or more of carbon dioxide is inert to the resin to be treated, has high solubility in a methyl methacrylate polymer, and is easy to handle. Is preferable.
[0018]
The pressure of the high-pressure gas brought into contact with the mixture is determined by the desired physical properties of the crystalline methacrylic resin, but is usually about 0.2 MPa or more, preferably about 1 MPa or more. When the pressure is low, the melting point and crystallinity of the obtained crystalline methacrylic resin are low, while when the pressure is high, the melting point and crystallinity of the resulting crystalline methacrylic resin are high. Further, when the pressure is low, the cell diameter of the foam increases, and when the pressure increases, the cell diameter of the foam decreases. The upper limit of the high-pressure gas to be used is not particularly limited and is mainly determined by economics and the like, but is usually up to about 40 MPa.
[0019]
The temperature of the high-pressure gas brought into contact with the mixture is not particularly limited, and is determined by the physical properties of the desired crystalline methacrylic resin, but is usually about 0 to about 300 ° C., preferably about 0 to about 200. ° C. When temperature is low, melting | fusing point becomes low and the cell diameter of a foam becomes small. If the temperature is too high, the resin may be decomposed, and the gas tends to hardly dissolve in the polymer.
[0020]
The high-pressure gas brought into contact with the mixture is preferably in a supercritical state. The high-pressure gas being in a supercritical state means that the temperature and pressure of the high-pressure gas are above the critical point. In this state, the density, viscosity, diffusion coefficient, etc. can be changed from a state close to gas by changing the pressure. It can be widely changed to a state close to. As is well known, the critical point of high-pressure gas varies depending on the type of high-pressure gas. For example, carbon dioxide has a temperature of 304.2 K and a pressure of 7.4 MPa, and nitrogen has a temperature of 126.2 K and a pressure of 3.4 MPa. Even when two or more kinds of gases are mixed, there is a critical point depending on the kind and mixing ratio of the mixed gas.
[0021]
The time for which the mixture is brought into contact with the high-pressure gas is not particularly limited, and is determined by the shape of the methacrylic resin to be treated, but is usually about 0.1 second to about 7 days, preferably about 30 seconds to about 12 hours. When the time is shorter than the above range, only a very thin portion of the surface layer is crystallized, and the upper limit of the processing time is not particularly limited, but even if it is contacted for a long time, the effect corresponding to the time is lost, It is processed within the above range from the normal operation efficiency.
[0022]
The method of bringing the mixture into contact with the high-pressure gas is not particularly limited as long as the mixture can be in contact with the high-pressure gas in the high-pressure gas atmosphere. For example, a method of enclosing a high-pressure gas in a pressure-resistant vessel containing the mixture, and after enclosing a normal-pressure gas in the pressure-resistant vessel containing the mixture, the inside of the vessel is set to a high-pressure gas atmosphere by an operation such as heating. Methods and the like. By bringing the mixture into contact with a high-pressure gas, the gas is contained in the mixture. As a specific method, for example, the mixture having an arbitrary shape such as a film shape, a plate shape, or a desired molded product shape is placed in a pressure vessel, gas is injected into the entire vessel, and the mixture and the high pressure gas are contacted. A method of allowing gas to be contained in the mixture by putting it into the mixture, putting the mixture in a molten state into a pressure vessel, an extrusion molding machine or an injection molding machine, and injecting the high pressure gas into the mixture, And the like.
[0023]
The mixture after the high-pressure gas and the contact treatment may then be decompressed and taken out to normal pressure. At this time, an unfoamed transparent crystalline methacrylic resin can be obtained by slowly reducing the pressure to normal pressure. Moreover, a crystalline methacrylic resin foam can be obtained by reducing the pressure at once.
[0024]
The thus obtained mixture after the contact treatment with the high-pressure gas of the present invention has a crystallinity of at most 2% of the crystalline methacrylic resin obtained by a conventional method or the like in which a mixture of IPMMA and SPMMA is simply heat-treated. However, it is a crystalline methacrylic resin having a high crystallinity of usually 3% or more, usually 5%, preferably more than 10%. Methacrylic resin. A crystalline methacrylic resin foam obtained by foaming the mixture has the above-mentioned high crystallinity and usually has an average cell diameter of about 10 μm or less, usually about 5 μm or less, preferably about 2 μm or less, and the number of cells. A foam having a fine cell with a density of 10 9 to 10 15 cells / cm 3, a small average cell diameter of the foam and a large cell number density, and the foam is a conventionally known methyl methacrylate resin Compared with foams, it is not only superior in solvent resistance, but also superior in mechanical properties such as impact resistance and bending strength as compared with foams having the same expansion ratio.
[0025]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a crystalline methacrylic resin and a crystalline methacrylic resin foam having high crystallinity and excellent solvent resistance by a very simple method. In addition, since there is no limitation on the shape of the molded product as in the methods introduced in the conventional methods (1), (3) and (4), lighting, signboards, displays, building materials, foam materials, The present invention can be applied to various fields such as optical devices such as lenses and optical disks, and its industrial utility value is extremely large.
[0026]
【Example】
Hereinafter, although the present invention is explained according to an example, the present invention is not limited to this.
In addition, the physical-property measurement used in the Example and the test method are as showing below.
[0027]
Number average molecular weight:
Using gel permeation chromatography (150-CV manufactured by Waters), the molecular weight distribution of the test sample was measured at 40 ° C. using THF as a solvent. For the determination of the number average molecular weight, a calibration curve prepared from a polymethyl methacrylate standard sample was used.
[0028]
Stereoregularity:
Using a proton nuclear magnetic resonance spectrum measurement apparatus (XL-200 manufactured by Varian), a nuclear magnetic resonance spectrum of a test sample was measured at 110 ° C. using nitrobenzene-d5 as a solvent. The stereoregularity was displayed with isotactic methacrylic resin by isotactic triad display (mm). Moreover, the syndiotactic methacrylic resin was performed by a syndiotactic triad display (rr).
[0029]
Melting point and crystallinity:
The endothermic peak of the test sample was measured at a heating rate of 10 ° C./min using a scanning calorimeter (SSC-5880II manufactured by Seiko Denshi). The melting point (Tm) of the test sample was determined from the peak top of the absorption peak derived from the crystal. Also, the change in heat of fusion (ΔH) is calculated from the area of the endothermic peak, and the ΔH of 100% crystallinity is 58 J / g (K. Konnecke, and G. Rehage, Makromol. Chem., 184, 2679). -2691 (1983)), the crystallinity of the test sample was calculated.
[0030]
Solvent resistance test:
When the specimen sample was film-like, a 20 mm square film-like test piece was prepared and used for the solvent resistance test. Acetone was applied to the test surface, and the solvent resistance of the test piece was evaluated based on the presence or absence of crazing after the application. The case where no craze was generated and the solvent resistance was excellent was rated as “◯”, and the case where craze was generated and the solvent resistance was inferior was rated as “X”. When the test sample was a foam sample, acetone was dropped on the surface, dried at room temperature, and evaluated by the size of the trace of the drop. The traces were small and inconspicuous and excellent in solvent resistance. The case where the traces were found to be slightly large was indicated by Δ, and the trace was clearly recognized and the solvent resistance was poor.
[0031]
Bubble average cell diameter, cell number density:
The SEM photograph of the foam cross-section taken with a scanning electron microscope (JEOL Ltd., JSM-840A) is statistically processed with image processing software (Image Analyzer V10LAB for Windows95, manufactured by Toyobo Co., Ltd.). The average value of the bubble diameter was determined. The value was defined as the average cell diameter D of bubbles in the test sample. Further, the cell number density N was determined from the following formula.
N = (n / A) 3/2 / (1-4 / 3π (D / 2) 3 · (n / A) 3/2 )
(Where N is the cell density, A is the area of the statistical processing region, n is the number of cells in A, and D is the average cell diameter)
[0032]
Example 1
15 parts by weight of isotactic methyl methacrylate polymer (number average molecular weight 36,200, mm = 81%) obtained by anionic polymerization, syndiotactic methyl methacrylate polymer (number average) obtained by radical polymerization (Molecular weight = 55,800, rr = 57%) 15 parts by weight was dissolved in 70 parts by weight of methylene chloride. This solution was spread on a polyethylene terephthalate resin film and dried at room temperature for 1 hour and in a vacuum dryer for 1 hour. A film-like mixture of isotactic methyl methacrylate polymer and syndiotactic methyl methacrylate polymer having an average thickness of 113 μm was obtained. When the crystallinity of this film was measured with a scanning calorimeter, Tm was 122.8 ° C. and the crystallinity was 0.7%.
This film was put into a pressure vessel, and the inside of the pressure vessel was filled with carbon dioxide at 30 ° C. and 5 MPa. After holding at 30 ° C. and 5 MPa for 6 hours, the pressure inside the pressure vessel was reduced to normal pressure at 5 MPa / h, and then the film was taken out.
The obtained film was measured for Tm and crystallinity by a scanning calorimeter. Moreover, the solvent resistance test of the obtained film was done. The results are shown in Table 2.
[0033]
Examples 2-11
A film was obtained in the same manner as in Example 1 except that the temperature and pressure of carbon dioxide filled in the pressure vessel were set to the values shown in Table 1 and the contact was made for the time shown in Table 1. The obtained film was measured for Tm and crystallinity by a scanning calorimeter. Moreover, the solvent resistance test of the obtained film was done. The results are shown in Table 2.
[0034]
Comparative Example 1
The film-like mixture obtained by the same method as in Example 1 was measured for Tm and crystallinity by a scanning calorimeter without any treatment (not placed in a pressure vessel and not contacted with high-pressure carbon dioxide). Moreover, the solvent resistance test of the obtained film was done. The results are shown in Table 2.
[0035]
Comparative Examples 2-5
In Example 1, instead of placing the polymer film-like mixture in a pressure-resistant container and maintaining the inside of the container in a high-pressure carbon dioxide atmosphere, and then returning to the normal pressure, the polymer film-like mixture is usually used. A film was obtained in the same manner as in Example 1 except that the film was allowed to stand for the time and temperature shown in Table 1 in an air oven under pressure. Tm and crystallinity of the obtained film were measured using a scanning calorimeter. Moreover, the solvent resistance test of the obtained film was done. The results are shown in Table 2.
[0036]
[Table 1]
Figure 0004465747
* 1. About 0.1 MPa
[0037]
[Table 2]
Figure 0004465747
[0038]
Example 12
10 parts by weight of isotactic methyl methacrylate polymer (number average molecular weight 36,200, mm = 81%) obtained by anionic polymerization, syndiotactic methyl methacrylate polymer (number average) obtained by radical polymerization 90 parts by weight (molecular weight = 55,800, rr = 57%) were melt-kneaded with a single screw extruder to obtain pellets of the mixture. The obtained mixture pellet was pressed at 220 ° C. to obtain a sheet having a thickness of about 1 mm.
This sheet was put in a pressure vessel, and the inside of the pressure vessel was filled with carbon dioxide at 40 ° C. and 20 MPa. After maintaining the carbon dioxide pressurization conditions at the same temperature and pressure for 5 hours, the carbon dioxide in the container was exhausted in 10 seconds, and the pressure in the container was reduced to normal pressure to obtain a foam. Using a scanning calorimeter, Tm and crystallinity of the obtained foam were measured. Further, the average cell diameter D and cell number density N of the foam bubbles were determined by image processing from the SEM photograph of the cross section of the obtained foam. The results are shown in Table 5.
[0039]
Examples 13-27, Comparative Examples 6-9
In Example 12, except that the amount of each of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer used was changed from 10 parts by weight and 90 parts by weight to the parts by weight shown in Table 3, The same operation as in Example 12 was performed to obtain a sheet having the thickness shown in Table 3 in each experimental example and comparative example, and the temperature and pressure of carbon dioxide filling the pressure-resistant vessel were changed from 40 ° C. and 20 MPa. A foam was obtained by performing the same operation as in Example 12 in each of the experimental examples and the comparative examples, except for those shown in Table 4.
Using a scanning calorimeter, Tm and crystallinity of the obtained foam were measured. Further, the average cell diameter D and cell number density N of the foam bubbles were determined by image processing from the SEM photograph of the cross section of the obtained foam. The results are shown in Table 5.
[0040]
[Table 3]
Figure 0004465747
* 3. Since the carbon dioxide impregnation time is sufficient, it is considered that there is no influence on the experimental result of the sheet thickness.
[0041]
[Table 4]
Figure 0004465747
[0042]
[Table 5]
Figure 0004465747
* 4. In the solvent resistance test, ◯ indicates that the trace of acetone dripping is small and inconspicuous, Δ indicates that the trace is slightly large, and x indicates that the trace is large and clearly recognized.

Claims (6)

アイソタクチックメタクリル酸メチル系重合体とシンジオタクチックメタクリル酸メチル系重合体の混合物を高圧ガスに接触させる工程からなる結晶性メタクリル樹脂の製造方法。  A method for producing a crystalline methacrylic resin comprising a step of contacting a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer with a high-pressure gas. 接触させる高圧ガスが二酸化炭素を50容量%以上含有することを特徴とする請求項記載の結晶性メタクリル樹脂の製造方法。Method for producing a crystalline methacrylic resin according to claim 1, wherein the high-pressure gas is characterized by containing carbon dioxide 50% by volume or more of contacting. 接触させる高圧ガスの圧力が1MPa以上であることを特徴とする請求項1または2記載の結晶性メタクリル樹脂の製造方法。The method for producing a crystalline methacrylic resin according to claim 1 or 2 , wherein the pressure of the high-pressure gas to be brought into contact is 1 MPa or more. 接触させる高圧ガスの温度が0℃以上であることを特徴とする請求項1〜のいずれか一項に記載の結晶性メタクリル樹脂の製造方法。The method for producing a crystalline methacrylic resin according to any one of claims 1 to 3 , wherein the temperature of the high-pressure gas to be contacted is 0 ° C or higher. 接触させる高圧ガスが超臨界状態にあることを特徴とする請求項1〜4のいずれか一項に記載の結晶性メタクリル樹脂の製造方法。The method for producing a crystalline methacrylic resin according to any one of claims 1 to 4, wherein the high-pressure gas to be brought into contact is in a supercritical state. 混合物が溶融状物、フィルム状、板状、各種成型品形状の少なくとも一種であることを特徴とする請求項1〜のいずれか一項に記載の結晶性メタクリル樹脂の製造方法。The method for producing a crystalline methacrylic resin according to any one of claims 1 to 5 , wherein the mixture is at least one of a melt, a film, a plate, and various molded product shapes.
JP21758599A 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin Expired - Lifetime JP4465747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21758599A JP4465747B2 (en) 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22287398 1998-08-06
JP10-222873 1998-08-06
JP21758599A JP4465747B2 (en) 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009295017A Division JP4900468B2 (en) 1998-08-06 2009-12-25 Method for producing crystalline methacrylic resin foam

Publications (2)

Publication Number Publication Date
JP2000109579A JP2000109579A (en) 2000-04-18
JP4465747B2 true JP4465747B2 (en) 2010-05-19

Family

ID=26522108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21758599A Expired - Lifetime JP4465747B2 (en) 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin

Country Status (1)

Country Link
JP (1) JP4465747B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4093419B2 (en) * 2004-07-30 2008-06-04 株式会社デュエラ Foam sheet, manufacturing method and manufacturing apparatus thereof
JP2008024861A (en) * 2006-07-24 2008-02-07 Tokyo Institute Of Technology Method for producing crystalline methacrylic resin
WO2008112815A2 (en) * 2007-03-12 2008-09-18 University Of Washington Methods for altering the impact strength of noncellular thermoplastic materials
JP5205636B2 (en) * 2007-03-23 2013-06-05 埼玉県 Manufacturing method of resin structure
EP2998355B1 (en) * 2013-05-16 2018-09-19 Kuraray Co., Ltd. Methacrylic resin composition and molded body thereof
SG11201509319VA (en) * 2013-05-16 2015-12-30 Kuraray Co Film

Also Published As

Publication number Publication date
JP2000109579A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP4900468B2 (en) Method for producing crystalline methacrylic resin foam
CA2209921C (en) Prevention of groove tip deformation in brightness enhancement film
JP2009013397A (en) Thermoplastic resin foam, and method for manufacturing the same
TWI478948B (en) Method of preparing resin composition for optical film by using continuous bulk polymerization and methods of preparing optical film and polarizing plate using the resin composition
JP5867085B2 (en) Acrylic composition, molded body, mobile phone key sheet and light guide
US7419715B2 (en) Light diffusing films
JP2006131881A (en) Method for manufacturing porous member, porous member, antireflection coating, method for manufacturing antireflection sheet and antireflection sheet
JP4465747B2 (en) Method for producing crystalline methacrylic resin
JP4881645B2 (en) Method for manufacturing porous body for antireflection sheet, porous body for antireflection sheet, antireflection film, method for manufacturing antireflection sheet, and antireflection sheet
JP2008024861A (en) Method for producing crystalline methacrylic resin
KR20170105178A (en) Double-sided adhesive tape and mehod of the same
CN109843993A (en) Acrylic acid mesentery
WO2006030695A1 (en) Process for producing porous material, porous material, antireflective film, process for producing antireflective sheet, and antireflective sheet
JPH08132455A (en) Production of methacrylic resin cast plate
JP2000226467A (en) Production of methyl methacrylate based resin foam
JP2001277277A (en) Method for manufacturing resin foam, and resin foam obtained thereby
JP5897503B2 (en) Resin foam and method for producing the same
JP2001151924A (en) Method for manufacturing copolymer resin foam
JP2004051740A (en) Tubular molded article
Kojima et al. Two-phases structure and mechanical properties of poly (methyl methacrylate)/poly (ethylene)-co-vinylacetate) alloys by polymerization-induced phase decomposition
JPH08301937A (en) Production of methacrylic polymer
JP2003026846A (en) Foaming resin composition, method of producing resin foam and method of electric wire coated with foamed polypropylene
JPS63289009A (en) Mar-resistant, clear plastic plate
JP2008143938A (en) Resin composition for optical element
JPH08281669A (en) Production of methacrylic resin multilayered molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3