JP2000109579A - Production of crystalline methacrylic resin and foam - Google Patents

Production of crystalline methacrylic resin and foam

Info

Publication number
JP2000109579A
JP2000109579A JP21758599A JP21758599A JP2000109579A JP 2000109579 A JP2000109579 A JP 2000109579A JP 21758599 A JP21758599 A JP 21758599A JP 21758599 A JP21758599 A JP 21758599A JP 2000109579 A JP2000109579 A JP 2000109579A
Authority
JP
Japan
Prior art keywords
mixture
methyl methacrylate
methacrylic resin
pressure gas
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21758599A
Other languages
Japanese (ja)
Other versions
JP4465747B2 (en
Inventor
Tomohiro Mizumoto
智裕 水本
Norio Sugimura
紀夫 杉村
Masahiko Moriya
雅彦 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP21758599A priority Critical patent/JP4465747B2/en
Publication of JP2000109579A publication Critical patent/JP2000109579A/en
Application granted granted Critical
Publication of JP4465747B2 publication Critical patent/JP4465747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a crystalline methacrylic resin having no limitation even on shape applicable to molding products, having excellent solvent resistance and mechanical characteristics, useful for illumination, or the like, by bringing a mixture of an isotactic and a syndiotactic methyl methacrylate-based polymers into contact with a high-pressure gas. SOLUTION: A mixture of an isotactic methyl methacrylate-based polymer and a syndiotactic methyl methacrylate-based polymer (the blending ratio is preferably 15/85-85/15 based on weight) is brought into contact with a high- pressure gas containing >=50 vol.% carbon dioxide (pressure is preferably >=1 MPa) to give a crystalline methacrylic resin. Preferably, after the mixture is brought into contact with the high-pressure gas, the mixture is expanded to produce a foam. Preferably, the foam comprises a fine foam having <=10 μm average cell diameter and 109 to 1015 cells/cm3 density of number of cells.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶性メタクリル
樹脂の製造方法および該結晶性メタクリル樹脂発泡体な
らびにその製造方法に関する。
The present invention relates to a method for producing a crystalline methacrylic resin, a crystalline methacrylic resin foam, and a method for producing the same.

【0002】[0002]

【従来の技術】メタクリル樹脂は、透明性、耐候性、機
械的性質に優れた特性を持つことより、種々の形状に成
形され、照明、看板、ディスプレイ、建築材料、発泡材
料やレンズ、光ディスク等の光学機器に幅広く使用され
ている。
2. Description of the Related Art Methacrylic resins have excellent properties of transparency, weather resistance and mechanical properties, so they are molded into various shapes, and are used for lighting, signboards, displays, building materials, foam materials, lenses, optical disks, etc. Widely used for optical equipment.

【0003】一方、アイソタクチックポリメタクリル酸
メチル(以下、IPMMAと略記する場合がある)とシ
ンジオタクチックポリメタクリル酸メチル(以下、SP
MMAと略記する場合がある)を適当な条件で混合する
と、ステレオコンプレックスポリメタクリル酸メチル
(以下、SCPMMAと略記する場合がある)とよばれ
る結晶性メタクリル樹脂が得られることは、広く知られ
ている。このような結晶性メタクリル樹脂を得る方法と
しては、種々の方法が知られている。例えば、IPM
MAとSPMMAをトルエン、アセトン、DMF等の特
定溶媒中で混合する方法、或いは、IPMMAとSP
MMAからなる固体の混合物を熱処理する方法がある(
日本化学会編、" 実験化学講座28高分子合成"丸善
1992,129頁第10〜13行目)。また、IP
MMAとSPMMAの各々をメタクリル酸メチルに溶解
し、混合してSCPMMAを形成させた後、メタクリル
酸メチルを光重合し、SCPMMA含有のポリメタクリ
ル酸メチルを得る方法( 特公昭47−14834号公
報) 、IPMMAをメタクリル酸メチルで膨潤させ、
マトリックス重合してその界面にSCPMMAを形成さ
せる方法〔H.Yau,and S.I.Stupp,J.Polym.Sci.,Polym.C
hem.Ed.,23,813(1985)〕等が知られている。このように
して得られた結晶性メタクリル樹脂は、非結晶性メタク
リル樹脂に比較して耐溶剤性に優れていることが知られ
ている(特開平3−244651号公報)。
On the other hand, isotactic polymethyl methacrylate (hereinafter sometimes abbreviated as IPMMA) and syndiotactic polymethyl methacrylate (hereinafter SP)
It is widely known that, when mixed under appropriate conditions, a crystalline methacrylic resin called stereocomplex polymethyl methacrylate (hereinafter sometimes abbreviated as SCPMMA) can be obtained. I have. Various methods are known for obtaining such a crystalline methacrylic resin. For example, IPM
Mixing MA and SPMMA in a specific solvent such as toluene, acetone, DMF, or IPMMA and SP
There is a method of heat-treating a solid mixture of MMA (
The Chemical Society of Japan, "Experimental Chemistry Lecture 28 Polymer Synthesis" Maruzen
1992, p. 129, lines 10-13). In addition, IP
A method of dissolving each of MMA and SPMMA in methyl methacrylate and mixing to form SCPMMA, and then photopolymerizing methyl methacrylate to obtain a polymethylmethacrylate containing SCPMMA (Japanese Patent Publication No. 47-14834). Swell IPMMA with methyl methacrylate,
Matrix polymerization to form SCPMMA at the interface [H.Yau, and SIStupp, J.Polym.Sci., Polym.C
hem. Ed., 23, 813 (1985)]. It is known that the crystalline methacrylic resin thus obtained has better solvent resistance than non-crystalline methacrylic resin (JP-A-3-244651).

【0004】メタクリル樹脂の表面に模様やパターンを
印刷し適用する分野がある。例えばメタクリル樹脂製の
導光板において、該導光板の輝度を向上させるために、
該導光板の表面にスクリーン印刷により適当なドットパ
ターンを付与している。該方法に於ける印刷には通常、
有機溶媒が使用されているが、かかる方法に於いては、
印刷によりメタクリル系樹脂の表面が該溶媒に侵され印
刷が不鮮明になるという欠陥が生じる場合がある。ま
た、金属材料等の基材表面に各種模様を印刷したメタク
リル樹脂フィルムを被覆した化粧板を製造する場合に
は、仕上げ工程で通常アルコール系溶媒で印刷に用いた
有機溶剤を除去するため化粧板表面を洗浄する。この場
合、被覆段階での残留応力のためか該アルコール系溶媒
での洗浄においてメタクリル樹脂フィルムにクラックが
発生する場合がある。
There is a field in which patterns and patterns are printed on the surface of methacrylic resin and applied. For example, in a light guide plate made of methacrylic resin, in order to improve the brightness of the light guide plate,
An appropriate dot pattern is provided on the surface of the light guide plate by screen printing. The printing in the method is usually
Organic solvents are used, but in such methods,
There is a case where a defect that the surface of the methacrylic resin is eroded by the solvent by printing and the printing becomes unclear is caused. Also, when manufacturing a decorative board coated with a methacrylic resin film in which various patterns are printed on the surface of a base material such as a metal material, the decorative board is usually used in a finishing process in order to remove an organic solvent used for printing with an alcoholic solvent. Clean the surface. In this case, cracks may occur in the methacrylic resin film due to residual stress in the coating step or in washing with the alcohol-based solvent.

【0005】以上のような用途においては、上記したよ
うなSCPMMAと呼ばれる耐溶剤性に優れた結晶性メ
タクリル樹脂の適用が考えられるが、従来公知の結晶性
メタクリル樹脂の製造方法に於いては、のような特別
な溶媒中でIPMMAとSPMMAを単に混合するのみ
の方法では、得られる結晶性メタクリル樹脂の結晶化度
も低く、成形品中に溶媒が残存し、残存溶媒が耐溶剤性
を悪化せしめるため耐溶剤性改良の目的には使用し難い
との欠点を有する。またの混合物を熱処理する方法で
は、比較的低分子量で立体規則性の高いIPMMAとS
PMMAを用いる場合は速やかに結晶化が進行するが原
料コストが高く、他方、比較的高分子量で立体規則性の
低いIPMMAとSPMMAを用いる場合は結晶化が進
行し難いという欠点がある。さらに、上記したのIP
MMAとSPMMAの各々をメタクリル酸メチルに溶解
し、混合してステレオコンプレックスを形成させた後、
単量体を光重合し、ステレオコンプレックス含有のポリ
メタクリル酸メチルを得る方法や、のIPMMAをメ
タクリル酸メチルで膨潤させ、マトリックス重合してそ
の界面にSCPMMAを形成させる方法は、適用し得る
成型品の形状が限定されるとの問題点を有する。
In the above-mentioned applications, application of a crystalline methacrylic resin having excellent solvent resistance called SCPMMA as described above can be considered. However, in a conventionally known method for producing a crystalline methacrylic resin, In a method in which IPMMA and SPMMA are simply mixed in a special solvent such as above, the crystallinity of the obtained crystalline methacrylic resin is low, the solvent remains in the molded article, and the residual solvent deteriorates the solvent resistance. However, it has a drawback that it is difficult to use for the purpose of improving solvent resistance. In the method of heat-treating a mixture, IPMMA and S have relatively low molecular weight and high stereoregularity.
When PMMA is used, crystallization proceeds rapidly, but the raw material cost is high. On the other hand, when IPMMA and SPMMA having relatively high molecular weight and low stereoregularity are used, crystallization is difficult to proceed. In addition, the IP
After dissolving each of MMA and SPMMA in methyl methacrylate and mixing to form a stereo complex,
A molded product that can be applied is a method of obtaining a stereocomplex-containing polymethyl methacrylate by photopolymerizing a monomer or a method of swelling IPMMA with methyl methacrylate and polymerizing the matrix to form SCPMMA at the interface. Is limited.

【0006】[0006]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等は上記したような欠点のない、即ち、適用し
得る成型品の形状にも制限がなく、簡単な方法で、結晶
化度の高い、耐溶剤性に優れた結晶性メタクリル樹脂の
製造方法を見出すことを目的として鋭意検討した結果、
IPMMAとSPMMAの混合物を特定条件で処理する
場合には、上記目的を全て満足した結晶性メタクリル樹
脂が得られることを見出し、本発明を完成するに至っ
た。また、IPMMAとSPMMAの混合物を特定条件
で処理し、これを発泡せしめる場合には、耐溶剤性に優
れ、かつ平均セル直径が約10μm以下でセル数密度が10
9〜1015個/cm3の微細気泡を有する耐衝撃性や曲げ強
度等の機械的特性に優れた結晶性メタクリル樹脂発泡体
が得られることを見出し、本発明を完成するに至った。
In view of such circumstances,
The present inventors do not have the above-mentioned drawbacks, that is, there is no limitation on the shape of a molded article that can be applied, and in a simple method, a high crystallinity, a crystalline methacrylic resin excellent in solvent resistance. As a result of intensive studies aimed at finding a manufacturing method,
When a mixture of IPMMA and SPMMA is treated under specific conditions, it has been found that a crystalline methacrylic resin satisfying all of the above objects can be obtained, and the present invention has been completed. When a mixture of IPMMA and SPMMA is treated under specific conditions and foamed, the mixture has excellent solvent resistance, an average cell diameter of about 10 μm or less, and a cell number density of 10 μm or less.
Found that 9-10 crystalline methacrylic resin foam having excellent mechanical properties such as impact resistance and flexural strength with fine bubbles of 15 / cm 3 is obtained, and have completed the present invention.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、アイソタ
クチックメタクリル酸メチル系重合体とシンジオタクチ
ックメタクリル酸メチル系重合体の混合物を高圧ガスに
接触させる工程からなる結晶性メタクリル樹脂の製造方
法を提供する。さらに本発明は、アイソタクチックメタ
クリル酸メチル系重合体とシンジオタクチックメタクリ
ル酸メチル系重合体の混合物を高圧ガスに接触させた
後、該混合物を発泡させる工程からなる結晶性メタクリ
ル樹脂発泡体の製造方法を提供するにある。加えて本発
明は、平均セル直径が約10μm以下で、セル数密度が10
9〜1015個/cm3の微細気泡を有することを特徴とする
結晶性メタクリル樹脂発泡体を提供するにある。
That is, the present invention provides a process for producing a crystalline methacrylic resin comprising a step of contacting a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer with a high-pressure gas. Provide a way. Further, the present invention provides a crystalline methacrylic resin foam comprising a step of contacting a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer with a high-pressure gas, and then foaming the mixture. It is to provide a manufacturing method. In addition, the present invention provides a cell having an average cell diameter of about 10 μm or less and a cell number density of 10 μm or less.
To provide a crystalline methacrylic resin foam characterized by having a fine bubbles 9-10 15 / cm 3.

【0008】[0008]

【発明の実施の形態】本発明におけるアイソタクチック
メタクリル酸メチル系重合体とは、メタクリル酸メチル
単位が主成分としてなる重合体で、メタクリル酸メチル
単位連鎖のアイソタクチシチーがトライアッド表示で約
50%以上、好ましくは約80%以上のものである。本
発明におけるアイソタクチックメタクリル酸メチル系重
合体は、メタクリル酸メチル単量体の単独重合体であっ
てもよいし、メタクリル酸メチル単量体と共重合可能な
単量体とメタクリル酸メチル単量体との共重合体であっ
てもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The isotactic methyl methacrylate-based polymer in the present invention is a polymer containing methyl methacrylate units as a main component, and the isotacticity of the methyl methacrylate unit chain is about 50 in triad display. %, Preferably at least about 80%. The isotactic methyl methacrylate polymer in the present invention may be a homopolymer of a methyl methacrylate monomer, or a monomer copolymerizable with a methyl methacrylate monomer and a methyl methacrylate monomer. It may be a copolymer with a monomer.

【0009】メタクリル酸メチル単量体と共重合可能な
単量体としては、公知のものであれば特に限定されるも
のではなく、例えば、メタクリル酸エチル、メタクリル
酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸
2−エチルヘキシル、メタクリル酸2−ヒドロキシエチ
ル等のメタクリル酸エステル類、アクリル酸メチル、ア
クリル酸エチル、アクリル酸ブチル、アクリル酸シクロ
ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸
2−ヒドロキシエチル等のアクリル酸エステル類、メタ
クリル酸、アクリル酸などの不飽和酸類、アクリロニト
リル、メタクリロニトリル、スチレン等の単官能単量
体、さらにエチレングリコールジメタクリレート、トリ
メチルプロパントリメタクリレート等の多官能単量体等
が挙げられ。本発明におけるアイソタクチックメタクリ
ル酸メチル系重合体を得るにあたりこれら単量体が用い
られる場合、これらは単独で、または2種類以上が併用
されてメタクリル酸メチル単量体と共に用いられる。
The monomer copolymerizable with the methyl methacrylate monomer is not particularly limited as long as it is a known monomer. Examples thereof include ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and methacrylic acid. Methacrylic esters such as 2-ethylhexyl and 2-hydroxyethyl methacrylate, and acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate and 2-hydroxyethyl acrylate , Unsaturated acids such as methacrylic acid and acrylic acid, monofunctional monomers such as acrylonitrile, methacrylonitrile, and styrene; and polyfunctional monomers such as ethylene glycol dimethacrylate and trimethylpropane trimethacrylate. When these monomers are used for obtaining the isotactic methyl methacrylate-based polymer in the present invention, these may be used alone or in combination of two or more kinds together with the methyl methacrylate monomer.

【0010】共重合可能な単量体の量は、所望とする結
晶性メタクリル系樹脂の物性により決定されるものであ
り、特に限定されるものではないが、使用する単量体全
量に対して、約30重量%以下、好ましくは0〜約20
重量%である。共重合可能な単量体の量が多すぎると結
晶性メタクリル系樹脂が形成し難くなる場合がある。
The amount of the copolymerizable monomer is determined by the desired physical properties of the crystalline methacrylic resin, and is not particularly limited. , About 30% by weight or less, preferably 0 to about 20% by weight.
% By weight. If the amount of the copolymerizable monomer is too large, it may be difficult to form a crystalline methacrylic resin.

【0011】本発明に適用するアイソタクチックメタク
リル酸メチル系重合体は、従来公知の方法によって製造
する事が出来る。例えば、メタクリル酸メチル単量体に
グリニアル試薬を重合開始剤として用いてアニオン重合
させることによって得られる(例えば特開昭61−17
9210号公報、特開昭61−176617号公報参
照) 。
The isotactic methyl methacrylate polymer used in the present invention can be produced by a conventionally known method. For example, it can be obtained by anionic polymerization of a methyl methacrylate monomer using a Grignard reagent as a polymerization initiator (for example, JP-A-61-17).
No. 9210, JP-A-61-176617).

【0012】本発明に適用する他の一つのシンジオタク
チックメタクリル酸メチル系重合体とは、メタクリル酸
メチル単位を主成分としてなる重合体で、メタクリル酸
メチル単位連鎖のシンジオタクチシチーがトライアッド
表示で約50%以上であることを意味し、必要により上
記アイソタクチックメタクリル酸メチル系重合体と同様
の共重合可能な他の単量体との共重合体を含むものであ
る。
Another syndiotactic methyl methacrylate polymer applied to the present invention is a polymer having a methyl methacrylate unit as a main component, and a syndiotacticity of a methyl methacrylate unit chain is represented by a triad. Means about 50% or more, and if necessary, a copolymer with another copolymerizable monomer similar to the isotactic methyl methacrylate-based polymer.

【0013】共重合可能な単量体の量は、所望とする結
晶性メタクリル系樹脂の物性により決定されるものであ
り、特に限定されるものではないが、使用する単量体全
量に対し約30重量%以下、好ましくは0〜約20重量
%である。共重合可能な単量体の量が多すぎると結晶性
メタクリル系樹脂が形成し難くなる場合がある。
The amount of the copolymerizable monomer is determined by the desired physical properties of the crystalline methacrylic resin, and is not particularly limited. It is less than 30% by weight, preferably 0 to about 20% by weight. If the amount of the copolymerizable monomer is too large, it may be difficult to form a crystalline methacrylic resin.

【0014】シンジオタクチックメタクリル酸メチル系
重合体は、従来公知の方法によって製造する事が出来
る。例えば、特公平6−89054号公報、特開平3−
263412号公報等に記載されるごとく、メタクリル
酸メチル単量体に有機アルミニウム化合物或いは有機ラ
ンタニド錯体等を開始剤として用いてアニオン重合させ
ることによって得られる。また、公知のラジカル重合開
始剤でメタクリル酸メチル単量体を重合する事によって
も得られる。かかるラジカル重合開始剤としては、例え
ばベンゾイルパーオキサイド、ジtブチルパーオキサイ
ド、tブチルパーオキシ2エチルヘキサエート等の有機
過酸化物系開始剤;2、2’アゾビスイソブチロニトリ
ル、2、2’アゾビス(2、4−ジメチルバレロニトリ
ル)等のアゾ系開始剤;さらには過酸化物開始剤とアミ
ン類、メルカプタン類等の還元性化合物を主成分として
組み合わされた公知のレドックス系開始剤;また、ベン
ゾイン、ベンゾインエーテル類、1−ヒドロヘキシルフ
ェニルケトン、ベンジルジメチルケタール、アシルホス
フェノキサイド、ベンゾフェノン、ミヒラーケトン、チ
オキサントン類等に必要に応じて光増感剤を併用する光
重合開始剤系等が挙げられる。
The syndiotactic methyl methacrylate polymer can be produced by a conventionally known method. For example, Japanese Patent Publication No. Hei 6-89054,
As described in JP-A-263412 and the like, it can be obtained by anionic polymerization of a methyl methacrylate monomer using an organic aluminum compound or an organic lanthanide complex as an initiator. It can also be obtained by polymerizing a methyl methacrylate monomer with a known radical polymerization initiator. Such radical polymerization initiators include, for example, organic peroxide initiators such as benzoyl peroxide, di-t-butyl peroxide, and t-butyl peroxy 2-ethylhexaate; 2,2 ′ azobisisobutyronitrile, 2, Azo-based initiators such as 2 'azobis (2,4-dimethylvaleronitrile); and known redox-based initiators in which a peroxide initiator is combined with a reducing compound such as an amine or a mercaptan as a main component. A photopolymerization initiator system in which benzoin, benzoin ethers, 1-hydrohexyl phenyl ketone, benzyldimethyl ketal, acylphosphenoxide, benzophenone, Michler's ketone, thioxanthone and the like are used in combination with a photosensitizer as required. Is mentioned.

【0015】本発明の一つは、アイソタクチックメタク
リル酸メチル系重合体とシンジオタクチックメタクリル
酸メチル系重合体の混合物を高圧ガスに接触させる工程
からなるものである。アイソタクチックメタクリル酸メ
チル系重合体とシンジオタクチックメタクリル酸メチル
系重合体の混合物を得る方法としては、公知の方法であ
ってもよく、特に制限されるものではないが、例えばク
ロロホルム、塩化メチレン等の結晶性メタクリル系樹脂
を溶解し得る溶媒中で混合するか、アイソタクチックメ
タクリル酸メチル系重合体とシンジオタクチックメタク
リル酸メチル系重合体を溶融混練する方法等が挙げられ
る。該混合物は、該混合物を得る工程中でその一部が結
晶化していてもよく、また該混合物中に該混合物を得る
工程中で用いた溶媒の一部が残存していても良い。
One aspect of the present invention comprises a step of contacting a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer with a high-pressure gas. The method for obtaining the mixture of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer may be a known method, and is not particularly limited, but includes, for example, chloroform and methylene chloride. Or a method of melt-kneading an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer in a solvent capable of dissolving a crystalline methacrylic resin such as the above. Part of the mixture may be crystallized during the step of obtaining the mixture, and part of the solvent used in the step of obtaining the mixture may remain in the mixture.

【0016】該混合物中の該アイソタクチックメタクリ
ル酸メチル系重合体と該シンジオタクチックメタクリル
酸メチル系重合体の混合比は重量基準で、約1:約99
〜約99:約1である。好ましくは約10:約90〜約
90:約10、更に好ましくは約15:約85〜約8
5:約15である。該アイソタクチックメタクリル酸メ
チル系重合体、該シンジオタクチックメタクリル酸メチ
ル系重合体の量が少ないと形成される結晶性メタクリル
樹脂の耐溶剤性が低くなる傾向にある。また発泡体とし
た場合、微細なセル径を有する気泡が得難くなる傾向に
ある。該混合物の形態としては、フィルム状、板状、所
望の成型品形状など任意の形でよく、特に限定されな
い。
The mixing ratio of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer in the mixture is about 1: about 99% by weight.
~ About 99: about 1. Preferably about 10: about 90 to about 90: about 10, more preferably about 15: about 85 to about 8
5: about 15. When the amount of the isotactic methyl methacrylate-based polymer or the syndiotactic methyl methacrylate-based polymer is small, the solvent resistance of the crystalline methacrylic resin formed tends to be low. In the case of a foam, it tends to be difficult to obtain air bubbles having a fine cell diameter. The form of the mixture may be any form such as a film, a plate, or a desired molded product, and is not particularly limited.

【0017】本発明の実施に際しては、アイソタクチッ
クメタクリル酸メチル系重合体と該シンジオタクチック
メタクリル酸メチル系重合体よりなる混合物は次いで高
圧ガスと接触せしめ、該混合物中にガスを含有せしめ
る。該混合物に接触せしめる高圧ガスとしては、従来公
知のガスであってもよく、例えば、二酸化炭素、窒素、
アルゴン、水素、酸素、ブタン、プロパン、空気等が挙
げられ、これらは単独、或いは2種類以上を混合して用
いても良い。就中、処理対象とする樹脂に対し不活性で
あり、メタクリル酸メチル系重合体への溶解性が高く、
かつ取扱いが容易である点より、約50容量%以上の二
酸化炭素を含有する高圧ガスの適用が好ましい。
In practicing the present invention, a mixture comprising the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer is then brought into contact with a high-pressure gas, so that the mixture contains a gas. The high-pressure gas to be brought into contact with the mixture may be a conventionally known gas, for example, carbon dioxide, nitrogen,
Examples thereof include argon, hydrogen, oxygen, butane, propane, and air. These may be used alone or as a mixture of two or more. In particular, it is inert to the resin to be treated, has high solubility in methyl methacrylate polymer,
It is preferable to use a high-pressure gas containing about 50% by volume or more of carbon dioxide from the viewpoint of easy handling.

【0018】該混合物に接触させる高圧ガスの圧力は、
所望とする結晶性メタクリル樹脂の物性により決定され
るが、通常約0.2MPa以上、好ましくは約1MPa
以上である。圧力が低い場合には得られる結晶性メタク
リル樹脂の融点、結晶化度とも低くなり、他方、圧力が
高くなれば得られる結晶性メタクリル樹脂の融点、結晶
化度とも高くなる。また圧力が低い場合には発泡体のセ
ル直径が大きくなり、他方、圧力が高くなれば発泡体の
セル直径が小さくなる。使用する高圧ガスの上限は特に
制限はなく、経済性等により主として決定されるが、通
常約40MPa程度までである。
The pressure of the high-pressure gas brought into contact with the mixture is
Although determined by the physical properties of the desired crystalline methacrylic resin, it is usually about 0.2 MPa or more, preferably about 1 MPa.
That is all. When the pressure is low, the melting point and the degree of crystallinity of the obtained crystalline methacrylic resin are low, and when the pressure is high, the melting point and the degree of crystallinity of the obtained crystalline methacrylic resin are high. Also, when the pressure is low, the cell diameter of the foam increases, whereas when the pressure increases, the cell diameter of the foam decreases. The upper limit of the high-pressure gas to be used is not particularly limited and is mainly determined by economics and the like, but is usually up to about 40 MPa.

【0019】該混合物に接触させる高圧ガスの温度も、
特に限定されるものではなく所望とする結晶性メタクリ
ル樹脂の物性により決定されるが、通常約0〜約300
℃であり、好ましくは約0〜約200℃である。温度が
低い場合には融点が低くなり、発泡体のセル直径は小さ
くなる。あまり温度が高いと樹脂が分解する恐れがあ
り、またガスがポリマー中に溶解し難くなる傾向にあ
る。
The temperature of the high-pressure gas contacting the mixture also
It is not particularly limited and is determined by the physical properties of the desired crystalline methacrylic resin.
° C, preferably from about 0 to about 200 ° C. When the temperature is low, the melting point is low, and the cell diameter of the foam is small. If the temperature is too high, the resin may be decomposed, and the gas tends to be difficult to dissolve in the polymer.

【0020】該混合物に接触させる高圧ガスは超臨界状
態にあることが好ましい。高圧ガスが超臨界状態にある
とは、高圧ガスの温度、圧力が臨界点以上にあることを
意味し、この状態では圧力を変えることで密度、粘度、
拡散係数などを気体に近い状態から液体に近い状態まで
幅広く変えることができる。周知の如く高圧ガスの臨界
点は、高圧ガスの種類により異なる。例えば二酸化炭素
では温度が304.2K、圧力が7.4MPaであり、
窒素では温度126.2K、圧力3.4MPaである。
2種類以上のガスを混合した場合にも、混合ガスの種
類、混合比に応じて臨界点が存在する。
The high-pressure gas brought into contact with the mixture is preferably in a supercritical state. The high-pressure gas being in a supercritical state means that the temperature and pressure of the high-pressure gas are at or above the critical point.In this state, changing the pressure changes the density, viscosity,
The diffusion coefficient and the like can be changed widely from a state close to a gas to a state close to a liquid. As is well known, the critical point of the high-pressure gas differs depending on the type of the high-pressure gas. For example, in carbon dioxide, the temperature is 304.2K, the pressure is 7.4 MPa,
For nitrogen, the temperature is 126.2K and the pressure is 3.4 MPa.
Even when two or more types of gases are mixed, there is a critical point according to the type of the mixed gas and the mixing ratio.

【0021】該混合物に高圧ガスを接触させる時間も、
特に限定されるものではなく処理対象となるメタクリル
樹脂の形状により決定されるが、通常約0.1秒〜約7
日、好ましくは約30秒〜約12時間である。時間が上
記範囲より短い場合には表層のごく薄い部分しか結晶化
せず、処理時間の上限は特に制限されるものではない
が、あまり長時間接触せしめても、時間に見合う効果は
なくなるので、通常操業効率より上記範囲内で処理され
る。
The time for contacting the mixture with a high pressure gas is also
Although it is not particularly limited and is determined by the shape of the methacrylic resin to be treated, it is usually about 0.1 second to about 7 seconds.
Days, preferably from about 30 seconds to about 12 hours. When the time is shorter than the above range, only a very thin portion of the surface layer is crystallized, and the upper limit of the processing time is not particularly limited, but even if the contact is performed for a long time, the effect corresponding to the time is lost, It is processed within the above range from normal operation efficiency.

【0022】該混合物を該高圧ガスに接触せしめる方法
は、該混合物が該高圧ガス雰囲気下で高圧ガスと接触し
得る状況下にあればよく、特にその手段は限定されるも
のではない。例えば、該混合物を入れた耐圧容器内に高
圧ガスを封入する方法、該混合物を入れた耐圧容器内に
常圧のガスを封入した後、加熱等の操作により容器内を
高圧ガス雰囲気に設定する方法等が挙げられる。該混合
物を高圧ガスに接触せしめることにより、該混合物中に
ガスが含有される。その具体的な方法としては、例え
ば、フィルム状、板状、所望の成型品形状等の任意形状
の該混合物を耐圧容器内に入れて容器全体にガスを注入
し、該混合物と高圧ガスを接触せしめることにより、該
混合物中にガスを含有せしめる方法、溶融状態の該混合
物を耐圧容器内や押出成形機内あるいは射出成形機内等
に入れて該混合物中に高圧ガスを注入し、該混合物中に
ガスを含有せしめる方法等が挙げられる。
The method of bringing the mixture into contact with the high-pressure gas is not particularly limited as long as the mixture can be brought into contact with the high-pressure gas in the high-pressure gas atmosphere. For example, a method of enclosing a high-pressure gas in a pressure vessel containing the mixture, a method of enclosing a gas at normal pressure in a pressure vessel containing the mixture, and then setting the inside of the vessel to a high-pressure gas atmosphere by an operation such as heating. Method and the like. The gas is contained in the mixture by contacting the mixture with a high pressure gas. As a specific method, for example, the mixture having an arbitrary shape such as a film shape, a plate shape, and a desired molded product shape is put into a pressure-resistant container, a gas is injected into the entire container, and the mixture is brought into contact with the high-pressure gas. A method of causing a gas to be contained in the mixture by introducing the mixture into the mixture, placing the mixture in a molten state in a pressure vessel, an extruder, an injection molding machine, or the like, injecting a high-pressure gas into the mixture, and introducing a gas into the mixture. And the like.

【0023】高圧ガスと接触処理後の混合物は、次いで
常圧になるまで減圧し取り出せばよい。このとき、常圧
までゆっくり減圧することにより、未発泡の透明な結晶
性メタクリル樹脂を得ることができる。また一気に減圧
することにより結晶性メタクリル樹脂発泡体を得ること
ができる。
The mixture after the contact treatment with the high-pressure gas may then be taken out by reducing the pressure until it reaches normal pressure. At this time, an unfoamed transparent crystalline methacrylic resin can be obtained by slowly reducing the pressure to normal pressure. In addition, a crystalline methacrylic resin foam can be obtained by reducing the pressure at once.

【0024】このようにして得られた、本発明の高圧ガ
スと接触処理後の該混合物は、単にIPMMAとSPM
MAの混合物を熱処理する従来方法等により得られた結
晶性メタクリル樹脂の結晶化度が高々2%程度であった
のに対し、通常3%以上、普通には5%、好ましくは1
0%を越える高結晶化度を有する結晶性メタクリル樹脂
となっており、極めて優れた耐溶剤性を有する結晶性メ
タクリル樹脂である。また該混合物を発泡してなる結晶
性メタクリル樹脂発泡体は上記高結晶化度を有すると共
に、通常、平均セル直径が約10μm以下、普通には約5
μm以下、好ましくは約2μm以下で、セル数密度が10
9〜1015セル/cm3の微細気泡を有する、発泡体の平均
セル直径が小さく、かつセル数密度の大きい発泡体であ
り、該発泡体は、従来公知のメタクリル酸メチル系樹脂
発泡体に比較し、耐溶剤性に優れるだけでなく、発泡倍
率が同等の発泡体と比し耐衝撃性や曲げ強度等の機械的
特性優れた発泡体である。
The mixture obtained after the contact treatment with the high-pressure gas of the present invention thus obtained is simply IPMMA and SPM
The degree of crystallinity of the crystalline methacrylic resin obtained by a conventional method of heat-treating a mixture of MAs is at most about 2%, whereas it is usually 3% or more, usually 5%, preferably 1%.
It is a crystalline methacrylic resin having a high degree of crystallinity exceeding 0%, and is a crystalline methacrylic resin having extremely excellent solvent resistance. The crystalline methacrylic resin foam obtained by foaming the mixture has the above high crystallinity and usually has an average cell diameter of about 10 μm or less, usually about 5 μm or less.
μm or less, preferably about 2 μm or less, and a cell number density of 10
It is a foam having fine cells of 9 to 10 15 cells / cm 3, a small average cell diameter of the foam, and a high cell number density, and the foam is formed of a conventionally known methyl methacrylate resin foam. By comparison, the foam has not only excellent solvent resistance but also excellent mechanical properties such as impact resistance and bending strength as compared with foams having the same expansion ratio.

【0025】[0025]

【発明の効果】以上詳述した如く、本発明によれば、極
めて簡便な方法で、結晶化度が高く、且つ優れた耐溶剤
性を有する結晶性メタクリル樹脂ならびに結晶性メタク
リル樹脂発泡体の提供を可能としたもので、また従来法
の、及びで紹介した方法の如く成形品の形状に制
限を受けることもないことより、照明、看板、ディスプ
レイ、建築材料、発泡材料または、レンズ、光ディスク
等の光学機器等の各種分野に適用可能であり、その産業
上の利用価値は極めて大なるものである。
As described in detail above, according to the present invention, a crystalline methacrylic resin and a crystalline methacrylic resin foam having high crystallinity and excellent solvent resistance are provided by an extremely simple method. Lighting, signboards, displays, building materials, foam materials, lenses, optical discs, etc., because the shape of the molded article is not restricted as in the conventional methods and the methods introduced in the above. It can be applied to various fields such as optical equipment, and its industrial use value is extremely large.

【0026】[0026]

【実施例】以下、本発明を実施例に従って説明するが、
本発明はこれに限定されるものではない。なお、実施例
中用いた物性測定、試験方法は以下に示す通りである。
Hereinafter, the present invention will be described with reference to Examples.
The present invention is not limited to this. The physical property measurement and test methods used in the examples are as shown below.

【0027】数平均分子量:ゲル・パーミエーション・
クロマトグラフィー(ウォータズ社製 150−CV)
を使用して、溶媒としてTHFを用いて40℃で被検物
サンプルの分子量分布を測定した。数平均分子量決定に
はポリメタクリル酸メチル標準サンプルにより作成した
検量線を用いた。
Number average molecular weight: gel permeation
Chromatography (Waters 150-CV)
The molecular weight distribution of the test sample was measured at 40 ° C. using THF as a solvent. For the determination of the number average molecular weight, a calibration curve prepared from a polymethyl methacrylate standard sample was used.

【0028】立体規則性:プロトン核磁気共鳴スペクト
ル測定装置(Varian社製XL−200)を使用し
て、溶媒としてニトロベンゼン−d5を用いて110℃
で被検物サンプルの核磁気共鳴スペクトルを測定した。
立体規則性の表示は、アイソタクチックメタクリル系樹
脂は、アイソタクチシチーのトライアッド表示(mm)
で行った。またシンジオタクチックメタクリル系樹脂
は、シンジオタクチシチーのトライアッド表示(rr)
で行った。
Stereoregularity: 110 ° C. using a proton nuclear magnetic resonance spectrometer (XL-200 manufactured by Varian) using nitrobenzene-d5 as a solvent.
The nuclear magnetic resonance spectrum of the sample was measured.
For stereoregularity indication, isotactic methacrylic resin is isotacticity triad indication (mm)
I went in. Syndiotactic methacrylic resin is a syndiotactic triad (rr)
I went in.

【0029】融点および結晶化度:走査熱量測定装置(
セイコー電子社製 SSC−5880II) を使用し
て、昇温速度10℃/ minで被検物サンプルの吸熱ピ
ークを測定した。被検物サンプルの融点( Tm) は、結
晶に由来する吸収ピークのピークトップから求めた。ま
た、該吸熱ピークの面積から融解熱量変化( ΔH) を計
算して求め、100%の結晶化度のΔHを58J/g
(K.Konnecke,and G.Rehage,Makromol.Chem.,184,2679-
2691(1983))として、被検物サンプルの結晶化度を算出
した。
Melting point and crystallinity: Scanning calorimeter (
The endothermic peak of the test sample was measured at a heating rate of 10 ° C./min by using SSC-5880II manufactured by Seiko Instruments Inc. The melting point (Tm) of the test sample was determined from the peak top of the absorption peak derived from the crystal. The change in heat of fusion (ΔH) was calculated and calculated from the area of the endothermic peak, and ΔH of 100% crystallinity was calculated to be 58 J / g.
(K. Konnecke, and G. Rehage, Makromol. Chem., 184, 2679-
2691 (1983)), the crystallinity of the test sample was calculated.

【0030】耐溶剤性試験:被検物サンプルがフィルム
状である場合は、20mm角のフィルム状試験片を作成
しそれを耐溶剤試験にもちいた。試験面にアセトンを塗
布し、塗布後のクレーズの有無により試験片の耐溶剤性
を評価した。クレーズが発生せずに耐溶剤性に優れてい
たものを○、クレーズが発生し耐溶剤性に劣っていたも
のを×とした。被検物サンプルが発泡体サンプルの場合
は、表面にアセトンを滴下し、室温で乾燥後、滴下の跡
の大きさで評価した。その跡が小さく目立たず耐溶剤性
に優れていたものを○、その跡がやや大きく見られたも
のを△、その跡が大きくはっきり認められ耐溶剤性に劣
っていたものを×とした。
Solvent resistance test: When the test sample was in the form of a film, a 20 mm square film-like test piece was prepared and used for the solvent resistance test. Acetone was applied to the test surface, and the solvent resistance of the test piece was evaluated based on the presence or absence of craze after the application. The sample which was excellent in solvent resistance without crazing was evaluated as ○, and the sample which was crazed and poor in solvent resistance was evaluated as ×. When the test sample was a foam sample, acetone was dropped on the surface, dried at room temperature, and evaluated by the size of the trace of the drop. When the trace was small and inconspicuous and the solvent resistance was excellent, it was evaluated as ○. When the trace was slightly large, it was evaluated as Δ. When the trace was clearly recognized and the solvent resistance was poor, the cross was evaluated as X.

【0031】気泡の平均セル直径、セル数密度:走査型
電子顕微鏡(日本電子株式会社製、JSM−840A)
で撮影した発泡体断面のSEM写真を画像処理ソフト
(東洋紡績株式会社製、Image AnalyzerV10LAB for
Windows95)で統計処理し、発泡体断面の気泡の直径の
平均値を求めた。その値を被検物サンプルにおける気泡
の平均セル直径Dとした。また、次式よりセル数密度N
を求めた。 N= (n/A)3/2/(1-4/3π(D/2)3・(n/A)3/2) (式中、Nはセル数密度、Aは統計処理領域の面積、n
はA中のセル個数、Dは平均セル直径を表す)
Average cell diameter and cell number density of bubbles: Scanning electron microscope (JSM-840A, manufactured by JEOL Ltd.)
Image processing software (Toyobo Co., Ltd., Image Analyzer V10LAB for
Statistical processing was performed using Windows 95), and the average value of the diameter of cells in the cross section of the foam was obtained. The value was defined as the average cell diameter D of bubbles in the test sample. In addition, the cell number density N
I asked. N = (n / A) 3/2 / (1−4 / 3π (D / 2) 3 · (n / A) 3/2 ) (where N is the cell number density, A is the area of the statistical processing area) , N
Is the number of cells in A, D is the average cell diameter)

【0032】実施例1 アニオン重合によって得られたアイソタクチックメタク
リル酸メチル系重合体( 数平均分子量36,200、m
m=81%) 15重量部、ラジカル重合によって得られ
たシンジオタクチックメタクリル酸メチル系重合体( 数
平均分子量=55,800、rr=57%) 15重量部
を、塩化メチレン70重量部に溶解した。この溶液をポ
リエチレンテレフタレート樹脂製フィルム上に展開し、
室温で1時間、真空乾燥機中で1時間乾燥した。平均厚
さ113μmのアイソタクチックメタクリル酸メチル系
重合体とシンジオタクチックメタクリル酸メチル系重合
体のフィルム状混合物を得た。このフィルムを走査熱量
測定装置により結晶化度を測定したところ、Tmが12
2.8℃、結晶化度が0.7%であった。このフィルム
を耐圧容器に入れ、30℃、5MPaの二酸化炭素で耐
圧容器内を満たした。30℃、5MPaで6時間保持
後、5MPa/hで耐圧容器内を常圧まで減圧したのち
フィルムを取り出した。得られたフィルムを走査熱量測
定装置により、Tm、結晶化度を測定した。また、得ら
れたフィルムの耐溶剤性試験を行った。結果を表2に示
す。
Example 1 Isotactic methyl methacrylate polymer obtained by anionic polymerization (number average molecular weight 36,200, m
(m = 81%) 15 parts by weight, 15 parts by weight of a syndiotactic methyl methacrylate polymer (number average molecular weight = 55,800, rr = 57%) obtained by radical polymerization are dissolved in 70 parts by weight of methylene chloride. did. This solution was spread on a polyethylene terephthalate resin film,
Dried for 1 hour at room temperature and 1 hour in a vacuum dryer. A film-like mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer having an average thickness of 113 μm was obtained. When the crystallinity of this film was measured by a scanning calorimeter, the Tm was 12
2.8 ° C., crystallinity 0.7%. This film was placed in a pressure vessel, and the inside of the pressure vessel was filled with carbon dioxide at 30 ° C. and 5 MPa. After holding at 30 ° C. and 5 MPa for 6 hours, the pressure inside the pressure vessel was reduced to normal pressure at 5 MPa / h, and then the film was taken out. Tm and crystallinity of the obtained film were measured by a scanning calorimeter. Further, the obtained film was subjected to a solvent resistance test. Table 2 shows the results.

【0033】実施例2〜11 耐圧容器内に満たす二酸化炭素の温度、圧力を表1に示
した値とし、表1に示した時間接触させた以外は、実施
例1と同様の操作でフィルムを得た。得られたフィルム
を走査熱量測定装置により、Tm、結晶化度を測定し
た。また、得られたフィルムの耐溶剤性試験を行った。
結果を表2に示す。
Examples 2 to 11 The temperature and pressure of the carbon dioxide filled in the pressure vessel were set to the values shown in Table 1, and the film was formed in the same manner as in Example 1 except that the film was kept in contact for the time shown in Table 1. Obtained. Tm and crystallinity of the obtained film were measured by a scanning calorimeter. Further, the obtained film was subjected to a solvent resistance test.
Table 2 shows the results.

【0034】比較例1 実施例1と同様の方法で得られたフィルム状混合物を、
何ら処理せず(耐圧容器内に入れず、高圧二酸化炭素と
接触させない)走査熱量測定装置により、Tm、結晶化
度を測定した。また、得られたフィルムの耐溶剤性試験
を行った。結果を表2に示す。
Comparative Example 1 A film-like mixture obtained in the same manner as in Example 1 was used.
Tm and crystallinity were measured by a scanning calorimeter without any treatment (not put in a pressure vessel and not in contact with high-pressure carbon dioxide). Further, the obtained film was subjected to a solvent resistance test. Table 2 shows the results.

【0035】比較例2〜5 実施例1において、重合体のフィルム状混合物を耐圧容
器に入れ容器内を高圧の二酸化炭素雰囲気下に保持し、
その後常圧に戻す操作を行うのに代えて、重合体のフィ
ルム状混合物を常圧下のエアーオーブン中で、表1に示
す温度、時間の間放置した以外は、実施例1と同様の方
法でフィルムを得た。走査熱量測定装置を用い得られた
フィルムのTm、及び結晶化度を測定した。また、得ら
れたフィルムの耐溶剤性試験を行った。結果を表2に示
す。
Comparative Examples 2 to 5 In Example 1, the polymer film mixture was placed in a pressure vessel, and the vessel was kept under a high-pressure carbon dioxide atmosphere.
Then, the same procedure as in Example 1 was repeated, except that the polymer film mixture was allowed to stand in an air oven under normal pressure for the time and temperature shown in Table 1 instead of performing the operation of returning to normal pressure. A film was obtained. The Tm and crystallinity of the obtained film were measured using a scanning calorimeter. Further, the obtained film was subjected to a solvent resistance test. Table 2 shows the results.

【0036】[0036]

【表1】 *1.約0.1MPa[Table 1] * 1. About 0.1MPa

【0037】[0037]

【表2】 [Table 2]

【0038】実施例12 アニオン重合によって得られたアイソタクチックメタク
リル酸メチル系重合体(数平均分子量36,200、m
m=81%)10重量部、ラジカル重合によって得られ
たシンジオタクチックメタクリル酸メチル系重合体(数
平均分子量=55,800、rr=57%)90重量部
を、一軸押出機にて溶融混練し、混合体のペレットを得
た。得られた混合体ペレットを220℃でプレスして厚
さ約1mmのシートを得た。このシートを耐圧容器に入
れ、40℃、20MPaの二酸化炭素で耐圧容器内を満
たした。同温度、同圧力の二酸化炭素加圧条件を5時間
保持した後、容器内の二酸化炭素を10秒で排気し、容
器内の圧力を常圧まで減圧して発泡体を得た。走査熱量
測定装置を用い、得られた発泡体のTm、結晶化度を測
定した。また得られた発泡体の断面のSEM写真から画
像処理により発泡体の気泡の平均セル直径D、セル数密
度Nを求めた。結果を表5に示す。
Example 12 An isotactic methyl methacrylate polymer obtained by anionic polymerization (number average molecular weight 36,200, m
(m = 81%) 10 parts by weight and 90 parts by weight of a syndiotactic methyl methacrylate-based polymer (number average molecular weight = 55,800, rr = 57%) obtained by radical polymerization are melt-kneaded with a single screw extruder. Then, a pellet of the mixture was obtained. The obtained mixture pellet was pressed at 220 ° C. to obtain a sheet having a thickness of about 1 mm. This sheet was placed in a pressure vessel, and the inside of the pressure vessel was filled with carbon dioxide at 40 ° C. and 20 MPa. After maintaining the carbon dioxide pressurizing condition of the same temperature and the same pressure for 5 hours, the carbon dioxide in the container was evacuated in 10 seconds, and the pressure in the container was reduced to normal pressure to obtain a foam. Using a scanning calorimeter, the Tm and crystallinity of the obtained foam were measured. Further, the average cell diameter D and the cell number density N of the cells of the foam were determined by image processing from the SEM photograph of the cross section of the obtained foam. Table 5 shows the results.

【0039】実施例13〜27、比較例6〜9 実施例12において、アイソタクチックメタクリル酸メ
チル系重合体及びシンジオタクチックメタクリル酸メチ
ル系重合体の各使用量を、10重量部及び90重量部か
ら表3に示す重量部に代えた以外は、実施例12と同様
の操作を行って、各々の実験例、比較例において、表3
に示す厚さのシートを得、又、耐圧容器内を満たす二酸
化炭素の温度及び圧力を40℃、20MPaから表4に
示すものに代える以外は、各々の実験例、比較例におい
て、実施例12と同様の操作を行って発泡体を得た。走
査熱量測定装置を用い、得られた発泡体のTm、及び結
晶化度を測定した。また、得られた発泡体の断面のSE
M写真から画像処理により発泡体の気泡の平均セル直径
D、セル数密度Nを求めた。結果を表5に示す。
Examples 13 to 27 and Comparative Examples 6 to 9 In Example 12, the amounts of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer were changed to 10 parts by weight and 90 parts by weight, respectively. The same operation as in Example 12 was carried out except that the parts by weight were changed to parts by weight shown in Table 3, and in each of the experimental examples and comparative examples, Table 3 was used.
In each experimental example and comparative example, except that the sheet having the thickness shown in Table 4 was obtained and the temperature and pressure of carbon dioxide filling the pressure vessel were changed from 40 ° C. and 20 MPa to those shown in Table 4. By performing the same operation as described above, a foam was obtained. Using a scanning calorimeter, the Tm and crystallinity of the obtained foam were measured. Also, the SE of the cross section of the obtained foam was
The average cell diameter D and cell number density N of the cells of the foam were determined from the M photograph by image processing. Table 5 shows the results.

【0040】[0040]

【表3】 *3.二酸化炭素の含浸時間を十分とっているので、シ
ート厚みの実験結果への影響はないと考えられる。
[Table 3] * 3. Since the carbon dioxide impregnation time is sufficient, it is considered that the sheet thickness does not affect the experimental results.

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 *4.耐溶剤性試験において、○はアセトン滴下の跡が
小さく目立たなかったことを示し、△はその跡がやや大
きくみられたことを示し、×はその跡が大きくはっきり
認められたことを示す。
[Table 5] * 4. In the solvent resistance test, ○ indicates that the trace of acetone dripping was small and inconspicuous, △ indicates that the trace was slightly large, and X indicates that the trace was large and clearly recognized.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】アイソタクチックメタクリル酸メチル系重
合体とシンジオタクチックメタクリル酸メチル系重合体
の混合物を高圧ガスに接触させる工程からなる結晶性メ
タクリル樹脂の製造方法。
1. A method for producing a crystalline methacrylic resin, comprising a step of bringing a mixture of an isotactic methyl methacrylate polymer and a syndiotactic methyl methacrylate polymer into contact with a high-pressure gas.
【請求項2】アイソタクチックメタクリル酸メチル系重
合体とシンジオタクチックメタクリル酸メチル系重合体
の混合物を高圧ガスに接触させた後、該混合物を発泡さ
せる工程からなる結晶性メタクリル樹脂発泡体の製造方
法。
2. A process for contacting a mixture of an isotactic methyl methacrylate-based polymer and a syndiotactic methyl methacrylate-based polymer with a high-pressure gas and then foaming the mixture. Production method.
【請求項3】接触させる高圧ガスが二酸化炭素を50容
量%以上含有することを特徴とする請求項1または2記
載の結晶性メタクリル樹脂の製造方法。
3. The method for producing a crystalline methacrylic resin according to claim 1, wherein the high-pressure gas to be contacted contains 50% by volume or more of carbon dioxide.
【請求項4】接触させる高圧ガスの圧力が1MPa以上
であることを特徴とする請求項1〜3のいずれか一項に
記載の結晶性メタクリル樹脂の製造方法。
4. The method for producing a crystalline methacrylic resin according to claim 1, wherein the pressure of the high-pressure gas to be contacted is 1 MPa or more.
【請求項5】接触させる高圧ガスの温度が0℃以上であ
ることを特徴とする請求項1〜4のいずれか一項に記載
の結晶性メタクリル樹脂の製造方法。
5. The method for producing a crystalline methacrylic resin according to claim 1, wherein the temperature of the high-pressure gas to be contacted is 0 ° C. or higher.
【請求項6】接触させる高圧ガスが超臨界状態にあるこ
とを特徴とする請求項1〜5いずれか一項に記載の結晶
性メタクリル樹脂の製造方法。
6. The method for producing a crystalline methacrylic resin according to claim 1, wherein the high-pressure gas to be brought into contact is in a supercritical state.
【請求項7】混合物が溶融状物、フィルム状、板状、各
種成型品形状の少なくとも一種であることを特徴とする
請求項1〜6のいずれか一項に記載の結晶性メタクリル
樹脂の製造方法。
7. The method for producing a crystalline methacrylic resin according to claim 1, wherein the mixture is at least one of a melt, a film, a plate, and various molded articles. Method.
【請求項8】平均セル直径が約10μm以下で、セル数密
度が109〜1015個/cm3の微細気泡を有することを特徴
とする結晶性メタクリル樹脂発泡体。
8. A crystalline methacrylic resin foam having fine cells having an average cell diameter of about 10 μm or less and a cell number density of 10 9 to 10 15 cells / cm 3 .
【請求項9】アイソタクチックメタクリル酸メチル系重
合体とシンジオタクチックメタクリル酸メチル系重合体
の混合物を高圧ガスに接触させた後、該混合物を発泡さ
せることを特徴とする請求項8記載の結晶性メタクリル
樹脂発泡体。
9. The method according to claim 8, wherein a mixture of the isotactic methyl methacrylate polymer and the syndiotactic methyl methacrylate polymer is brought into contact with a high-pressure gas, and then the mixture is foamed. Crystalline methacrylic resin foam.
JP21758599A 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin Expired - Lifetime JP4465747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21758599A JP4465747B2 (en) 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22287398 1998-08-06
JP10-222873 1998-08-06
JP21758599A JP4465747B2 (en) 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009295017A Division JP4900468B2 (en) 1998-08-06 2009-12-25 Method for producing crystalline methacrylic resin foam

Publications (2)

Publication Number Publication Date
JP2000109579A true JP2000109579A (en) 2000-04-18
JP4465747B2 JP4465747B2 (en) 2010-05-19

Family

ID=26522108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21758599A Expired - Lifetime JP4465747B2 (en) 1998-08-06 1999-07-30 Method for producing crystalline methacrylic resin

Country Status (1)

Country Link
JP (1) JP4465747B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024861A (en) * 2006-07-24 2008-02-07 Tokyo Institute Of Technology Method for producing crystalline methacrylic resin
JP2008231355A (en) * 2007-03-23 2008-10-02 Saitama Prefecture Method of manufacturing resin structure
JP2010521560A (en) * 2007-03-12 2010-06-24 ユニヴァーシティ オブ ワシントン Method for changing the impact strength of non-porous thermoplastic materials
CN1993410B (en) * 2004-07-30 2012-05-30 株式会社杜威腊 Foamed sheet, and method and apparatus for producing same
WO2014185509A1 (en) * 2013-05-16 2014-11-20 株式会社クラレ Methacrylic resin composition and molded body thereof
JPWO2014185508A1 (en) * 2013-05-16 2017-02-23 株式会社クラレ the film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993410B (en) * 2004-07-30 2012-05-30 株式会社杜威腊 Foamed sheet, and method and apparatus for producing same
JP2008024861A (en) * 2006-07-24 2008-02-07 Tokyo Institute Of Technology Method for producing crystalline methacrylic resin
JP2010521560A (en) * 2007-03-12 2010-06-24 ユニヴァーシティ オブ ワシントン Method for changing the impact strength of non-porous thermoplastic materials
JP2013139582A (en) * 2007-03-12 2013-07-18 Univ Of Washington Methods for altering impact strength of noncellular thermoplastic materials
US9481774B2 (en) 2007-03-12 2016-11-01 University Of Washington Methods for altering the impact strength of noncellular thermoplastic materials
JP2008231355A (en) * 2007-03-23 2008-10-02 Saitama Prefecture Method of manufacturing resin structure
WO2014185509A1 (en) * 2013-05-16 2014-11-20 株式会社クラレ Methacrylic resin composition and molded body thereof
JPWO2014185509A1 (en) * 2013-05-16 2017-02-23 株式会社クラレ Methacrylic resin composition and molded body thereof
JPWO2014185508A1 (en) * 2013-05-16 2017-02-23 株式会社クラレ the film
US10196510B2 (en) 2013-05-16 2019-02-05 Kuraray Co., Ltd. Methacrylic resin composition and molded body thereof

Also Published As

Publication number Publication date
JP4465747B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
CA2209921C (en) Prevention of groove tip deformation in brightness enhancement film
JP4900468B2 (en) Method for producing crystalline methacrylic resin foam
CA1197063A (en) Process of making articles of foamed polymethyl methacrylate
WO2012111443A1 (en) Resin foam and production method therefor
TWI478948B (en) Method of preparing resin composition for optical film by using continuous bulk polymerization and methods of preparing optical film and polarizing plate using the resin composition
JP2021192106A (en) Stretched film and manufacturing method for stretched film
JP2006131881A (en) Method for manufacturing porous member, porous member, antireflection coating, method for manufacturing antireflection sheet and antireflection sheet
JP4465747B2 (en) Method for producing crystalline methacrylic resin
JP2016071264A (en) Optical film, polarizing plate protection film, polarizing plate, and liquid crystal display device
TW200907507A (en) Retardation film, retardation film laminate, and their production methods
JP2006116533A (en) Manufacturing method of surface uneven sheet, surface uneven sheet and anti-glaring sheet
US6224938B1 (en) Method for producing foamed pressure-sensitive adhesive tape or sheet
CN109843993B (en) Acrylic film
WO2001012738A1 (en) Coating composition for hard-coat formation on polycarbonate substrate, polycarbonate film with hard coat layer, and polycarbonate molding with hard coat layer
CN113754806A (en) Preparation method of expanded polystyrene
JP2008024861A (en) Method for producing crystalline methacrylic resin
WO2006030695A1 (en) Process for producing porous material, porous material, antireflective film, process for producing antireflective sheet, and antireflective sheet
KR102260108B1 (en) Acrylic optical film and manufacturing method thereof
KR20190112976A (en) Acrylic optical film and manufacturing method thereof
KR102122723B1 (en) Acrylic optical film and manufacturing method thereof
JP2000226467A (en) Production of methyl methacrylate based resin foam
JP2001151924A (en) Method for manufacturing copolymer resin foam
JP2001277277A (en) Method for manufacturing resin foam, and resin foam obtained thereby
JP2003026846A (en) Foaming resin composition, method of producing resin foam and method of electric wire coated with foamed polypropylene
RU2069674C1 (en) Method for production of polymer articles, coatings and films of solutions of polyphenylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

RD05 Notification of revocation of power of attorney

Effective date: 20080125

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A977 Report on retrieval

Effective date: 20080602

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Effective date: 20091225

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3