JP2005246123A - 吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器 - Google Patents

吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器 Download PDF

Info

Publication number
JP2005246123A
JP2005246123A JP2004056098A JP2004056098A JP2005246123A JP 2005246123 A JP2005246123 A JP 2005246123A JP 2004056098 A JP2004056098 A JP 2004056098A JP 2004056098 A JP2004056098 A JP 2004056098A JP 2005246123 A JP2005246123 A JP 2005246123A
Authority
JP
Japan
Prior art keywords
encoder
substrate
value
pulse
ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004056098A
Other languages
English (en)
Inventor
Toshiki Yamashita
利樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004056098A priority Critical patent/JP2005246123A/ja
Publication of JP2005246123A publication Critical patent/JP2005246123A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Ink Jet (AREA)
  • Dot-Matrix Printers And Others (AREA)

Abstract

【課題】 液滴の吐出タイミング又は位置について描画対象基板の実際の伸長を考慮して補正することができる吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器を提供する。
【解決手段】 予め規定した設計間隔Lを互いに持って配置されるように少なくとも2つのアライメントマークM1,M2を基板5に設け、2つのアライメントマークM1,M2の間隔を、エンコーダを用いて計測して、その計測結果をパルス数とし、設計間隔Lを前記パルス数で割り、該割り算の結果を実エンコーダ値とし、該実エンコーダ値を用いて基板5に液滴を吐出するタイミングを制御することを特徴とする。
【選択図】 図3

Description

本発明は、吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器に関するものである。
インクジェットヘッドなどから液滴を基板上に吐出して、その基板に薄膜を形成する液滴吐出方式による電気光学装置の製造が考え出されている。電気光学装置としては、液晶装置、有機エレクトロルミネッセンス装置(以下有機EL(Electronic Luminescent)装置という)、プラズマディスプレイ装置などの表示装置がある。また、近年では、このような電気光学装置をなす基板が大型化されており、かかる大型基板について液滴吐出方式により高精細及び高精度に薄膜を描画(パターニング)することが要求されている。
この高精細化及び高精度化を実現する方法としては、液滴を吐出するタイミングについての基準となるスケール(ロータリーエンコーダ、リニアスケール、レーザ測長器など)の精度が重要となる。しかし、温度変化などによるスケールの伸縮とガラス基板などの描画対象物の伸縮とが必ずしも同一ではないので、そのスケールについて誤差が発生してしまい、基板における描画結果が設計値どおりにならない。この問題点については、温度変化にともなうスケールの伸長を、測定した温度と線膨張係数とを用いて補正する方法が考え出されている(例えば、特許文献1参照)。
特開2002−29113号公報
しかしながら、上記特許文献1に記載されている補正方法では、スケールの伸長について定常的に伸縮率を算出して補正しているので、そのスケールで測定する距離が長くなるほど誤差が累積されて大きくなってしまう。すなわち、上記特許文献1の補正方法では、大きな基板について大きく描画するほど、吐出位置の誤差が大きくなってしまうという問題点がある。また、上記特許文献1の補正方法では、スケールの材質と描画対象基板の材質とが異なる場合などにおいて、描画対象基板についての実際の線膨張係数と、補正で用いる線膨張係数とが一致せず、液滴吐出位置について精密に補正することができないという問題点がある。
本発明は、上記事情に鑑みてなされたもので、液滴の吐出タイミング又は位置について描画対象基板の実際の伸長を考慮して補正することができる吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器を提供することを目的とする。
また、本発明は、スケールで測定する距離が長くなるほど誤差が累積されて大きくなることを回避することができる吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器を提供することを目的とする。
上記目的を達成するために、本発明の吐出タイミング生成方法は、予め規定した設計間隔(L)を互いに持って配置されるように少なくとも2つのアライメントマークを基板に設け、前記2つのアライメントマークの間隔を、エンコーダを用いて計測して、その計測結果をパルス数(N)とし、前記設計間隔(L)を前記パルス数(N)で割り、該割り算の結果(L/N)を実エンコーダ値とし、前記実エンコーダ値を用いて前記基板に液滴を吐出するタイミングを制御することを特徴とする。
本発明によれば、例えば液滴吐出ヘッドの基板に対する移動距離を測定するエンコーダの出力パルス数(N)を用いて、2つのアライメントマークの間隔を測定する。このアライメントマークの間隔(L)は予め規定した設計値で設けられ、その設計値に対するエンコーダの出力パルス数も一意に設定されている。ここで、温度などによるエンコーダのスケールの伸縮率と吐出対象の基板の伸縮率とが一致している場合は、エンコーダの出力パルス数(N)は予め設計したパルス数となり、エンコーダの出力パルスを基準として誤差のない状態で液滴を吐出することができる。すなわち、描画された基板を基準温度の雰囲気内に入れることなどにより、その描画が誤差なく設計値どおりに基板上に存在することとなる。この場合は設計間隔(L)に対するパルス数(N)の割合である実エンコーダ値が予め規定した設計値どおりとなる。スケールの伸縮率よりも基板の伸縮率のほうが大きい場合、パルス数(N)が大きくなり、実エンコーダ値(L/N)が小さくなる。一方、スケールの伸縮率よりも基板の伸縮率のほうが小さい場合、パルス数(N)が小さくなり、実エンコーダ値(L/N)が大きくなる。これらにより、本発明によれば、実エンコーダ値により、スケールの伸縮率に対する基板の伸縮率などを正確に把握することができ、その実エンコーダ値を基準として所望の設計位置に高精度に液滴を吐出することができる。換言すれば、本発明は、吐出対象の基板及び液滴吐出装置がどのような温度の雰囲気内に置かれていても、その時に生じている誤差をリアルタイムに補正することができ、所望の設計位置に高精度に液滴を吐出することができる。また、本発明によれば、温度及び湿度などを測定することなく、高精度に液滴を吐出することが可能となるので、製造コストを抑えながら高精度な製品を提供することができる。
また、本発明の吐出タイミング生成方法は、前記2つのアライメントマークの間隔が、少なくとも1つのカメラと、前記基板又はカメラを搭載して移動するステージと、前記エンコーダとを用いて計測されることが好ましい。具体的には、前記2つのアライメントマークの間隔が、前記カメラの視野内に該2つのアライメントマークにおける一方を入れ、該視野内における該アライメントマークの第1座標を特定する処理と、前記ステージを第1移動させて、該2つのアライメントマークにおける他方を、前記カメラの視野内に入れ、該視野内の該アライメントマークの第2座標を特定する処理と、前記第1座標におけるX軸要素又はY軸要素と前記第2座標における該X軸要素又はY軸要素とが一致するように、前記ステージを第2移動させる処理と、前記第1移動及び第2移動で移動したステージの距離を前記エンコーダのパルス数(N)として計測する処理と、を用いて計測されることが好ましい。
本発明によれば、少なくとも1つのカメラを用いて、2つのアライメントマークの間隔をエンコーダのパルス数に変換することができる。したがって、本発明によれば、簡便な構成および簡便な手順により、高精度に液滴を吐出することができる。
また、本発明の吐出タイミング生成方法は、前記実エンコーダ値の算出が、前記液滴を吐出する装置である液滴吐出装置に、前記基板をアライメントするときに、該アライメントとともに行われることが好ましい。
本発明によれば、吐出対象の基板を液滴吐出装置にアライメントすると同時に、スケールと基板との伸縮率の差などによる誤差発生要因を把握することができ、液滴吐出時にその誤差を補正しながら正確に吐出することができる。したがって、本発明によれば、製造時間及び手間が増大することを回避しながら、精密に所望位置に液滴を吐出することができる。
また、本発明の吐出タイミング生成方法は、前記エンコーダは前記液滴を吐出する吐出ヘッドが前記基板に対して移動した量に応じた数のエンコーダパルスを出力するものであり、前記液滴を吐出するタイミングは、前記エンコーダパルスを分周して生成されるラッチ信号を用いて制御し、前記分周において、設計したエンコーダパルスの1周期と実際のエンコーダパルスの1周期との差の値が累積され、該累積値が所定値以上となる前に、該実際のエンコーダパルスを間引く処理を有することが好ましい。
本発明によれば、設計したエンコーダパルスすなわち理想的なエンコーダパルスの1周期と、スケールの温度膨張などにより設計値から変化したエンコーダパルスの1周期との差が、当該パルスの連続出力にともなって累積されても、その累積値が所定値以上となることを回避することができる。例えば、かかる累積値が所定値以上となる直前に、分周におけるカウント値から該累積値に応じたパルス数を減算する。したがって、本発明によれば、スケールで測定する距離が長くなるほど誤差が累積されて大きくなることを回避することができ、大きな基板の全体について高精度に描画することができる。
また、本発明の吐出タイミング生成方法は、前記エンコーダパルスを間引く間隔が、前記実エンコーダ値を前記差の値で割ったときの算出結果を用いて求められることが好ましい。
本発明によれば、エンコーダパルスを間引く間隔を、簡便にかつ適切に算出して、誤差が累積することを回避することができる。そこで、本発明によれば、簡便な構成としながら、大きな基板の全体について高精度に液滴を吐出することができる。
また、本発明の吐出タイミング生成方法は、前記所定の値が前記実エンコーダ値であることが好ましい。
本発明によれば、エンコーダパルスについての誤差の累積値が、実エンコーダ値(すなわちエンコーダパルスの1周期)よりも大きくなることを回避することができる。そこで本発明によれば、簡便な構成としながら、大きな基板の全体について高精度に液滴を吐出することができる。
また、本発明の吐出タイミング生成方法は、前記実エンコーダ値から所望の桁以下の値を切り捨て、残った値を周期とするエンコーダパルス信号を生成し、該エンコーダパルス信号に基づいて、前記ラッチ信号を生成することが好ましい。
本発明によれば、上記切り捨て演算によってエンコーダの1パルスごとに誤差が発生しその誤差が累積されるが、その誤差の累積値がパルスの1周期以上になる時又はその前に前記間引く処理を行うことができる。したがって、本発明は、大きな基板の全体について高精度に描画できる方法であって、簡素な演算回路およびカウンタなどを用いて実行できる吐出タイミング生成方法を提供することができる。
また、本発明の吐出タイミング生成方法は、前記エンコーダのスケールがメートル系単位で製造されており、前記基板における液滴の吐出位置はDPI系単位で規定されていることが好ましい。
本発明によれば、例えば、基板に形成する薄膜パターン領域がDPI系単位で設計され、エンコーダのスケールがメートル系単位で製造されている場合、このような単位系の相違によって生じる誤差が累積されることを回避することができる。これは、前述によるスケールと基板との伸縮率の相違によって発生する誤差が累積されることを回避する作用と同じものである。すなわち、実エンコーダ値を求めて、前記間引く処理をすることで、各種原因により生じる誤差が累積されることを回避することができる。なお、DPI(Dots Per Inch)系単位とは、1インチあたりに幾つ点(画素)があるか又は打つことが可能かを示す単位であり、画像装置などの解像度の単位である。300DPI×300DPIは1インチ四方に300×300個の点がある(又は打つことが可能)ということである。
また、本発明の吐出タイミング生成方法は、液滴の吐出によって形成する描画パターンを拡大縮小する場合、拡大縮小値に応じて、前記実エンコーダ値と前記間引く処理における間引くパルス数とのうちの少なくとも一方を変更することが好ましい。
本発明によれば、例えば拡大率を実エンコーダ値に掛けることなどにより、簡便に描画パターンを拡大又は縮小することができる。また、前記間引く処理ごとの間引くパルス数、あるいは間引く処理の周期について、変えることでも簡便に拡大率を変更することができる。したがって、本発明によれば、基板に液滴を吐出して描画パターンを形成した後に乾燥・焼結処理をすることなどで生じる描画パターンの縮小などについて考慮して、所望のサイズの描画パターンをより高精度にかつ簡便に形成することができる。
上記目的を達成するために、本発明の液滴吐出装置は、前記吐出タイミング生成方法を用いて液滴を吐出するタイミングを制御する制御手段と、前記制御手段によって制御されて前記液滴を吐出する吐出ヘッドとを有することを特徴とする。
本発明によれば、基板に設けた少なくとも2つのアライメントマークとエンコーダとを利用して、吐出ヘッドの位置及び吐出タイミングを高精度に制御できる液滴吐出装置を提供することができる。
また、本発明の液滴吐出装置は、前記制御手段が、エンコーダから出力されたパルスについて前記間引く処理を行い、該間引かれたパルスをエンコーダパルスとして出力する誤差補正回路と、該誤差補正回路から出力されたエンコーダパルスを分周して前記ラッチ信号を生成する分周カウンタとを有することが好ましい。
本発明によれば、分周カウンタから出力されるラッチ信号について、誤差を低減することができ、その誤差が累積されることを回避することができる。したがって、例えばラッチ信号に同期させて液滴を吐出することにより、大きな基板に大きな描画パターンを形成した場合でも、その描画パターン全体を高精度に形成することができる。
また、本発明の液滴吐出装置は、前記制御手段が、エンコーダから出力されたパルスについてカウントして該カウント値に基づいて、液滴の吐出範囲を規定する信号である印字範囲信号を生成して出力するエンコーダアップダウンカウンタと、前記エンコーダから出力されたパルスにおけるノイズ成分を除去する逆パルス補正用アップダウンカウンタとを有し、前記分周カウンタは、前記印字範囲信号により前記分周動作の有効/無効が制御されるものであり、前記誤差補正回路は、前記逆パルス補正用アップダウンカウンタによってノイズ成分が除去されたパルスを、前記間引く処理の対象とするものであることが好ましい。
本発明によれば、エンコーダアップダウンカウンタから出力される印字範囲信号によって、基板における所望の印字範囲について規定することができる。そして、印字範囲信号が分周カウンタを動作させるイネーブル信号となるので、分周カウンタから出力されるラッチ信号は所望の印字範囲について誤差が累積されることなく出力されることとなる。また、エンコーダから出力されたパルスは逆パルス補正用アップダウンカウンタによりノイズが除去されてから誤差補正回路に入力されるので、誤差補正回路はより精密に前記間引く処理をすることができる。したがって、本発明によれば、基板における所望の印字範囲についてより高精度に描画パターンを形成できる液滴吐出装置を提供することができる。
上記目的を達成するために、本発明の電気光学装置の製造方法は、前記液滴吐出装置を用いて電気光学装置を製造することを特徴とする。
本発明によれば、前記液滴吐出装置を用いて基板に高精度に描画パターンを形成して、有機EL装置、プラズマディスプレイ装置、液晶装置などの電気光学装置を製造することができる。したがって、本発明によれば、大きな画面の全体について、高精細で高品質な画像を表示することができる電気光学装置を安価に提供することができる。例えば、有機EL装置の構成要素となる発光材料および正孔輸送材料などを高精細な画素パターンをなすように塗布することができる。
また、本発明の電子機器は、前記電気光学装置の製造方法を用いて製造された電気光学装置を備えたことを特徴とする。
本発明によれば、高精細で高品質な画像を表示できる電子機器を安価に提供することができる。特に本発明は、大画面化しながら高品位な画像を表示できる電子機器を安価に提供することができる。
以下、本発明の実施形態に係る吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器について、図面を参照して説明する。
(液滴吐出装置)
図1は本発明の実施形態に係る液滴吐出装置の構成を示す斜視図である。この液滴吐出装置は、本発明の実施形態に係る吐出タイミング生成方法を用いて液滴を吐出するものである。図1に示すように液滴吐出装置1は、制御装置2と、吐出ヘッド群3と、ステージ4と、を主な構成要素として備えている。液滴吐出装置1は、制御装置2が吐出ヘッド群3及びステージ4の動作を制御することによって、ステージ4に載置された基板5に液滴を吐出し、当該基板5上に所定のパターンを形成するものである。
そして、制御装置2は、本発明に係る制御手段をなすものであり、本発明に係る吐出タイミング生成方法を用いて吐出ヘッド群3を制御して、液滴を吐出するタイミングを制御するものである。また、吐出ヘッド群3にはカメラ3bが固着されている。このカメラ3bは、ステージ4に載置される基板5のアライメントに用いられる位置補正用のカメラであり、その基板5に設けられたアライメントマークについて認識することができる。なお、以下の説明においては、吐出ヘッド群3の配置方向をX方向とし、また、基板5の搬送方向をY方向とし、また、XY平面内における面内回転方向をθ方向とする。
吐出ヘッド群3は、1列に配列した複数の吐出ヘッド3aから構成されており、基台6から立設する支柱7、7間にステージ4を跨ぐようにX方向に架設されたX方向軸8に移動可能に設けられている。吐出ヘッド群3に固着されているカメラ3bは吐出ヘッド群3とともに移動する。当該吐出ヘッド群3を構成する各吐出ヘッド3aには、液滴を吐出するノズルが基板5に向かって多数穿設されている(例えば、180個のノズルが一列に穿設されている。)。
吐出ヘッド3aは、液滴を貯留するキャビティと、当該キャビティに連通するノズルと、当該キャビティ内に貯留された液状体をノズルから液滴として吐出する液滴吐出手段とを有した構成となっている。ここで、液滴吐出手段とは、圧電素子(ピエゾ素子)を意味しており、吐出ヘッド3aの壁面に設けられている。このように構成された吐出ヘッド3aにおいては、圧電素子に所望の電圧波形を供給することによって、吐出ヘッド3aの壁面が変形し、キャビティ内の容積が変化し、ノズルから所定量の液滴が吐出される。ここで、圧電素子に供給される電圧波形は、後述する液滴吐出データに基づいて生成されるものである。また、この電圧波形の供給タイミングすなわち吐出タイミングは、本発明に係る吐出タイミング生成方法で生成される。この吐出タイミング生成方法については後で詳細に説明する。
なお、吐出ヘッド3aの液滴吐出手段としては、上記の圧電素子を用いた電気機械変換体以外でもよく、例えば、エネルギ発生素子として電気熱変換体を用いた方式や、帯電制御型、加圧振動型といった連続方式、静電吸引方式さらにはレーザーなどの電磁波を照射して発熱させ、この発熱による作用で液状体を吐出させる方式を採用することもできる。
また、上記の吐出ヘッド群3は、1列に配列した複数の吐出ヘッド3aから構成されたものであるが、これに限定されるものではない。例えば、各吐出ヘッド3aのノズルの穿設間隔(ピッチ)に対して、X方向に1/2ピッチずらした吐出ヘッド3aを2列配置してもよい。このように吐出ヘッド3aを多数配列した場合には、ノズルの穿設間隔よりも小さい間隔で液滴の吐出が可能となる。また、吐出ヘッド3aをX方向に対して所定の角度で傾かせて配置してもよい。この場合でも、ノズルの穿設間隔よりも小さい間隔で液滴の吐出が可能となる。
ステージ4は、基板5を位置決めして載置するピン(図示せず)などを備える載置部4aと、当該載置部4aをXY平面上で面内回転可能に連結されたベース部4bとによって構成されたものである。また、ベース部4bには、エンコーダ4cが設けられている。このエンコーダ4cは、基台6のY方向に沿って設けられたリニアスケール15のスケールを読み取るものであって、これによってY方向のステージ4の位置を検出することが可能となる。リニアスケール15のスケールは、メートル系単位で設けられていても、DPI系単位で設けられていてもよい。
さらに、ステージ4は、X方向と直交するように敷設してあるY方向軸9に沿って移動可能に構成されている。ステージ4をY方向に移動させる搬送機構としては、Y方向軸9上に配列した永久磁石10と、ステージ4のベース部4bの下側に固設したプレート11にY方向に沿って、かつ、永久磁石10に近接させて配列した複数のコイル(図示せず)とから構成されるリニアモータがあげられる。
基板5は、本実施形態でパターンが形成される対象物である。基板5の材料としてはガラスなどの透明基板が用いられるが、透明性を要求しない場合には金属板などを採用してもよい。また、当該基板5のサイズは、縦横がそれぞれ1mを超えるものとしてもよい。
また、基板5上に形成されるパターンとしては、RGB色を有するカラーフィルタによって形成される画素パターンや、TFT回路を形成する場合の金属配線等が挙げられる。例えば、基板5によって有機EL装置を構成する場合、発光材料又は正孔輸送材料などからなる画素パターンを本液滴吐出装置1で形成することとしてもよい。
制御装置2は、上述の液滴吐出装置1の各構成要素に電気的に接続されたものであり、CPU(Central Processing Unit)、ROM、RAM、入出力用のインターフェース、発振回路等がバス接続された所謂コンピュータである。このような制御装置2は、予め入力されたプログラムに応じて液滴吐出装置1を統括して制御するようになっている。
次に、制御装置2の詳細な構成について図2を参照して説明する。図2は、制御装置2の機能を説明するためのブロック図である。図2に示すように、制御装置2は、液滴吐出データ設定値入力部(第1の入力手段)20と、吐出ヘッド設定値入力部(第2の入力手段)22と、CADデータ操作部(CADデータ作成手段)24と、ビットマップデータ作成部(ビットマップデータ作成手段)26と、ビットマップ処理部28と、液滴吐出データ作成部(作成手段)30と、液滴吐出データ転送部(転送手段)32と、スイッチ群34と、ヘッド駆動部38と、ヘッド駆動制御部40と、ヘッド位置検出部42と、液滴吐出タイミング制御部44と、を有している。ここで、液滴吐出タイミング制御部44は、本発明に係る吐出タイミング生成方法を用いて、液滴を吐出するタイミングについての誤差を補正するものである。
液滴吐出データ設定値入力部20は、基板5の寸法と、基板5を複数のチップ(領域)として切り出すためのチップの寸法と、隣接するチップのピッチ(相互間隔)と、画素(パターン)の配列と、画素の個数と、画素の寸法(画素の縦、横のサイズ)と、隣接する画素のピッチ(相互間隔)と、を設定する機能を有している。吐出ヘッド設定値入力部22は、画素を形成するために必要な液滴量と、画素を形成するために必要な吐出ヘッド群3と基板5とのパス数(相対移動動作の回数)と、使用する上記の吐出ヘッド群3の吐出ヘッド3aの個数、及び吐出ヘッド3aの配置を設定する機能を有している。
CADデータ操作部24は、基板に形成すべきパターンの設計図となるCADデータを生成する機能を有し、図形情報(ベクトルデータ、図形の属性等のデータ)を入力するための入力手段と、図形処理機能を有するワークステーション等から構成されている。ここでCADデータは、DPI系の単位で生成してもよく、メートル系の単位で生成してもよい。
ビットマップデータ作成部26は、CADデータから要求される分解能のビットマップデータに変換する機能を有している。また、ビットマップ処理部28は、ビットマップデータ作成部26により作成されたビットマップデータを吐出ヘッドの個数、配置、あるいは液滴の基板への着弾径を考慮した回路パターンの細線化の要求に応じて変更する処理を行う。
液滴吐出データ作成部30は、所望のパターンサイズとなるように液滴が着弾した際の着弾径を考慮し、液滴吐出データ(バイナリの時系列データ)を作成するものである。ここで、当該液滴吐出データは、吐出ヘッド群3の各ノズルに対応して設けられた各液滴吐出手段の数に対応して設けられた各液滴吐出手段の数に対応するドット数の記録データを含んでいる。
液滴吐出データ転送部32は、液滴吐出データ作成部30から出力される液滴吐出データを吐出ヘッド群3の液滴吐出手段に転送する機能を有する。スイッチ群34は、液滴吐出データ転送部32と吐出ヘッド群3との間に設けられ、吐出ヘッド群3に含まれる複数の各駆動部に1対1に対応して接続され、液滴吐出データ転送部32から転送される記録データによりオン、オフ状態に設定される複数のスイッチから構成されている。
ヘッド駆動部38は、吐出ヘッド群3と一体化しており、例えばリニアモータであり、吐出ヘッド群3を基板5の搬送方向と直交する方向に移動させる。ヘッド駆動制御部40は、ヘッド駆動部38を図示してないシステムの上位コントローラの指示に基づいてヘッド駆動部38を駆動制御する。
ヘッド位置検出部42は、基板5が固定されるステージ4の位置の変位量、即ち、基板5上における吐出ヘッド群3の相対位置を検出する機能を有するものである。当該ヘッド位置検出部は、上記のエンコーダ4cに相当するものである。液滴吐出タイミング制御部44は、ヘッド位置検出部42の検出出力に基づいて、各吐出ヘッド3aの圧電素子に印加する電圧波形の発生タイミングを規定するラッチ信号(LAT信号)を生成して出力するものである。このラッチ信号はスイッチ群34に送られる。そこで、スイッチ群34の各スイッチは、液滴吐出データ転送部32から送られてきた液滴吐出データとラッチ信号とによりオン/オフ状態が制御され、その各スイッチにより各吐出ヘッド3aの圧電素子の駆動タイミングが制御され、各吐出ヘッド3aの液滴吐出タイミングが制御される。
次に、本実施形態の液滴吐出装置1で用いられる吐出タイミング生成方法について、図3から図5を参照して説明する。この吐出タイミング生成方法は、液滴吐出装置1における液滴吐出制御部44において主に実行される。図3は本発明の実施形態に係る吐出タイミング生成方法を説明するための模式平面図である。
先ず、図3(a)に示すように、液滴の吐出対象とされる基板5には予め2つのアライメントマークM1,M2を設けておく。このアライメントマークM1とアライメントマークM2とは、予め規定した設計間隔Lの距離をもって基板5に設けられている。設計間隔Lについては予め液滴吐出制御部44などが記憶している。そして、基板5をステージ4に載置するときに、アライメントマークM1,M2を用いて該基板5のアライメント(通り出し)を行う。このアライメントは、吐出ヘッド群3に固着されたカメラ3bを用いて行ってもよい。
上記アライメントの後、図3(b)に示すように、1つのカメラ3bの視野C1内にアライメントマークM1が入るように、ステージ4及び吐出ヘッド群3を移動させる。そして、このときのエンコーダ4cのパルス値N1と視野C1におけるアライメントマークM1の座標とを液滴吐出制御部44が記憶する。
次いで、ステージ4を矢印Yの方向に移動させて、図3(c)に示すように、アライメントマークM2がカメラ3bの視野C2内に入れる。ここで、上記図3(b)の状態での視野C1におけるアライメントマークM1の座標と図3(c)の状態での視野C2におけるアライメントマークM2の座標とが一致するように、ステージ4を移動させる。そして、このときのエンコーダ4cのパルス値N2を液滴吐出制御部44が記憶する。
次いで、液滴吐出制御部44は、パルス値N1とパルス値N2との差を算出して算出結果をパルス数Nとする。このパルス数Nは、現時点(アライメント時)におけるアライメントマークM1とアライメントマークM2との距離をエンコーダ4cが測定したときの測定値を示している。次いで、液滴吐出制御部44は、設計間隔(L)をパルス数(N)で割り、その計算結果を実エンコーダ値とする。この実エンコーダ値は、温度などによる基板5の伸縮率とエンコーダ4cのリニアスケール15の伸縮率との比を示す値である。
そこで、実エンコーダ値を用いて、基板5に液滴を吐出するタイミングを制御することにより、基板5及びリニアスケール15の伸縮などで生じる吐出タイミングの誤差を補正することができる。すなわち、基板5とリニアスケール15との伸縮率の比が実エンコーダ値によりリアルタイムで認識できるので、その伸縮率の差によって生じる誤差(吐出タイミングの誤差)をリアルタイムで補正することができる。
例えば、基板5とリニアスケール15との伸縮率が一致している場合は、パルス数(N)は予め設計したパルス数となる。そこで、液滴吐出タイミング制御部44は、エンコーダ4cの出力パルスを基準としてラッチ信号を生成することで、誤差のない状態で液滴を吐出することができる。すなわち、かかる液滴により描画された基板5を基準温度の雰囲気内に入れることなどにより、その描画が誤差なく設計値どおりに基板上に存在することとなる。
スケール15の材質と基板5の材質とが異なり、スケール15の伸縮率よりも基板5の伸縮率が大きい場合、パルス数(N)が設計値よりも大きくなり、実エンコーダ値(L/N)が小さくなる。一方、スケール15の伸縮率よりも基板5の伸縮率が小さい場合、パルス数(N)が設計値よりも小さくなり、実エンコーダ値(L/N)が大きくなる。これらにより、実エンコーダ値がその設計値に対してどのように変化したかをみることなどにより、スケール15の伸縮率に対する基板5の伸縮率などを正確に把握することができ、基板5における所望の設計位置に高精度に液滴を吐出することができる。
したがって、本実施形態の吐出タイミング生成方法を用いる液滴吐出装置1によれば、基板5及び液滴吐出装置1がどのような温度の雰囲気内に置かれていても、その時に生じている誤差をリアルタイムに補正することができ、所望の設計位置に高精度に液滴を吐出することができる。また、本実施形態によれば、温度及び湿度などを測定することなく、高精度に液滴を吐出することが可能となるので、製造コストを抑えながら高精度な製品を提供することができる。また、本実施形態の吐出タイミング生成方法における補正処理は、基板5をステージ4にアライメントする動作の中で実行することができる。そこで、本実施形態によれば、製造時間及び手間が増大することを回避しながら、精密に基板5の所望位置に液滴を吐出することができる。
(誤差補正処理の対象例)
次に、上記のようにして求めた実エンコーダ値を用いて液滴の吐出タイミングを補正する誤差補正処理の具体的な対象例について説明する。本実施形態の誤差補正処理は、吐出ヘッド3aからの液滴吐出による描画分解能がエンコーダ4cの分解能の整数倍でない場合に生じる端数(誤差)を、エンコーダ4cの分解能以下に補正する処理である。例えば、以下に示す4つの場合に誤差補正処理を行う。
(1)エンコーダ4cがメートル系単位で製造され、基板5に描画しようとするパターンがDPI系単位で設計されている場合に誤差補正処理を行う。例えば、180DPI(画素間隔が141.11…μm)で設計されたパターンを0.5μmの分解能を持つエンコーダ4cで描画する場合を考える。液滴吐出タイミング制御部44で生成されるラッチ信号はエンコーダ4cから出力されるパルス(エンコーダパルス)を分周して生成される。そこで、この場合、ラッチ信号のパルス間隔(周期)は、(141.11…μm)÷(0.5μm)=282.22…μmとなり、端数(少数点以下の数字)が生じる。分周回路の構成上の都合などによりこの端数を切り捨てて282とすると、その切り捨てられた0.22…が誤差となる。この誤差を、上記実エンコーダ値を用いて補正する。
(2)上述したように、基板5の材質とエンコーダ4cのスケール15の材質とが異なり、基板5とスケール15との伸縮率が異なる場合に誤差補正処理を行う。基板5に対する液滴吐出による描画はスケール15を基準として行うので、前記伸縮率が異なる場合は着弾位置もずれてくる。例えばカラーフィルタの画素のように、各画素を囲むバンクが設けられている基板について液滴を吐出すると、その着弾位置のずれは大きな問題となる。この伸縮率の相違によって生じる誤差を補正するためには、上述のように実エンコーダ値を算出し、その実エンコーダ値で印字分解能(例えば、180DPIの場合、画素間隔141.11…μm)を割り、その算出結果における端数分(誤差)を補正する。
(3)基板5の完成体に要求される寸法になるように吐出形成する描画を拡大又は縮小する場合に誤差補正処理を行う。基板5に対して液滴を吐出して所望パターンを描画し、次いでその基板5について焼成すると、そのパターンは縮小する。この場合、かかる縮小する分だけ、予め描画するパターンを拡大して基板5に描画し、焼結後に所望の寸法とする。ここで、パターンを拡大するときに、上述の実エンコーダ値に係る拡大率を掛け、その計算結果で印字分解能(例えば、180DPIの場合、画素間隔141.11…μm)を割り、その算出結果における端数分(誤差)を補正する。
(4)レーザ測長器を用いる場合に誤差補正処理を行う。レーザ測長器の分解能は例えば0.079μmである。このレーザ測長器から出力される信号(周期が0.079μm)について分周してラッチ信号を生成しようとしても、その分周結果は印字分解能(例えば、180DPIの場合、画素間隔141.11…μm)の整数分の1にはなり得ない。そこで、かかる分周結果が印字分解能の整数分の1になるようにして、そのときに生じる端数分(誤差)を補正する。
(誤差補正処理の基本原理)
次に、本実施形態に係る誤差補正処理の基本原理について、具体例を挙げるとともに、図4を参照して説明する。図4は、エンコーダ4cから出力されるエンコーダパルスE1,E2,E3と、液滴吐出タイミング制御部44で生成されるラッチ(LAT)信号L1,L2,L3との関係を示す波形図である。ラッチ信号L1,L2,L3は、エンコーダパルスE1,E2,E3を分周することで生成される。
エンコーダ4cのカタログに記載されている分解能(設計値)を「0.5μm」とする。基板5に描画しようとするパターンについての分解能(印字分解能)を「1μm」とする。この印字分解能は、吐出ヘッド群3を走査させながら基板5に連続的に液滴を吐出したときの着弾位置の間隔であり、液滴吐出装置1についての設計値の一つである。そして、上述のようにして測定した実エンコーダ値が「0.4μm」であったとする。これは、例えば、基板5は変化せず、エンコーダ4cのリニアスケール15が温度変化などにより縮んだことを想定したものである。なお、図4について以下に説明するところの「周期」は、基板5又は吐出ヘッド群3を一定速度で移動させたときにかかる「周期」で液滴を吐出させたときの着弾間隔(長さ)として表している。
エンコーダ4cの分解能が設計値どおりの0.5μmだとする。すなわち、図4に示すエンコーダパルスE1の周期d1が0.5μmだとする。すると、液滴吐出タイミング制御部44がラッチ信号L1を生成するための分周比であるLAT間隔は次式により求めることができる。
LAT間隔=(印字分解能)÷(エンコーダの分解能)
=1μm÷0.5μm
=2パルス
したがって、エンコーダパルスE1の2発ごとにラッチ信号L1のパルスを1発だけ発生させることで、1μmの分解能で所望のパターンを基板5に描画できることとなる。すなわち、図4の「理想波形」に示すように、ラッチ信号L1の周期d10は、1μmとなる。
次に、図4の「補正なし波形」について説明する。温度変化などにより、エンコーダ4cの実際の分解能が0.4μmになったものとする。すなわち、エンコーダパルスE2の周期d2が0.4μmになったとする。この場合、上記「理想波形」のときと同じようにエンコーダパルスE2の2発ごとにラッチ信号L2を発生させると、図4の「補正なし波形」のようになる。すなわち、設計値に係るラッチ信号L1が9発で良いところを、補正なし波形のラッチ信号L2は12発も出てしまっている。このような場合は、基板5に描画されたパターンが結果的に短くなってしまう。
次に、図4の「補正あり波形」について説明する。ここでも、温度変化などにより、エンコーダ4cの実際の分解能が0.4μmになったものとする。すなわち、エンコーダパルスE3の周期d2が0.4μmになったとする。この場合に、ラッチ信号L1のように印字分解能を1μmとするために、下記の計算してみる。
LAT間隔=(印字分解能)÷(エンコーダの分解能)
=1μm÷0.4μm
=2.5パルス
しかし、ラッチ信号は、エンコーダパルスを分周して生成するので、LAT間隔は整数である必要がある。さらには、LAT間隔を四捨五入で丸めてしまうとLAT間隔が伸びる場合がある。その伸びる場合は行き過ぎた分を戻すという補正処理が必要になるが、原理的に不可能である。そこで、上記の計算でだされたLAT間隔についての小数点以下の値は切り捨てることとする。
これらより、LAT間隔は2パルスとする。すると、実際の印字分解能は下記のようになる。
印字分解能=0.4μm×2パルス
=0.8μm
ここで、理想的な印字分解能は1μmであるのに対して、実際の印字分解能が0.8μmであるとすると、1発の吐出ごとに0.2μmパターンが短くなってしまう。したがって、エンコーダパルスE3の1パルスごとに0.1μm不足し誤差が生じることとなる。この1パルスごとの不足分(誤差)をエンコーダの1パルスごとに積算していき、その誤差の積算値が1パルスの分解能を超えたときに、図4の補正あり波形のように、エンコーダパルスE3の1パルスを無視する。
ここで、エンコーダパルスを無視する間隔は、(実際のエンコーダの分解能)÷(1パルス当たりの誤差)で求めることができる。本例では、0.4μm÷0.1μm=4となり、エンコーダパルスE3について4発に1回無視(間引く処理)することとする。これにより、印字分解能1μmに対して、誤差の最大値を0.4μm以下にする補正を行うことができる。このような補正を行った場合の様子を図4の「補正あり波形」が示している。この「補正あり波形」のラッチ信号L3と、「補正なし波形」のラッチ信号L2とを比べてみると、ラッチ信号L3の方が明らかに「理想波形」のラッチ信号L1に近い、すなわち誤差の小さい波形であることがわかる。
次に、図5を参照して、さらに具体的に誤差補正処理を説明する。図5は、本実施形態に係る誤差補正処理についての具体的な計算例を示す図である。この計算例では、印字分解能を90DPI(図5の第1行)として、理想的なエンコーダ4cの分解能(実エンコーダ)を5μmとしている(図5の第3行)。90DPIをメートル系に変換すると、282.22000000μmとなる(図5の第2行)。なお、有効桁数は、6桁としているが(図5の第11行)、以下の計算結果では適宜省略して表示する。また、以下では、μm系(メートル系)の計算例について示す。
すると、LAT間隔は、
(印字分解能)÷(実エンコーダ)=282.22000000÷0.50000000=564.44000000
となる(図5の第4行)。
このように算出したLAT間隔について、少数点以下を切り捨てて、564とする(図5の第5行)。
このLAT間隔である564に実エンコーダの値(0.5)を掛けることにより、論理印字分解能(282)を求める(図5の第6行)。この論理印字分解能は、図4におけるラッチ信号L2の周期、すなわちラッチ信号L3の第1パルスと第2パルスとの間隔に相当する。すると、エンコーダパルスの1発ごとの不足分である「1印字分解能当たりの不足分」は、論理印字分解能(282)から印字分解能(282.22)を引いた値(−0.22)となる(図5の第7行)。
次いで、論理的にほしいエンコーダの分解能である論理分解能について計算する。伸長率(図5の第8行)を考慮しない場合は、論理分解能は以下のようになる(図5の第9行)。
論理分解能=(実エンコーダ)−{(1印字分解能当たりの不足分)÷(切り捨て後のLAT間隔)}=0.5−(−0.22)÷564
=0.50039007
この論理分解能についての誤差値は、
(実エンコーダ)−(論理分解能)=0.5−0.50039007
=−0.00039007
となる(図5の第10行)。
次いで、実エンコーダ(0.5)を誤差値(0.000390)で割ることにより、補正間隔(1282.05128205)を得る(図5の第13行)。この補正間隔は、図4におけるエンコーダパルスE3について無視する間隔(間引く処理の周期)に該当するものである。すなわち、エンコーダパルス1282発に1パルスだけ、そのエンコーダパルスを無視し、そのエンコーダパルスを分周してラッチ信号を生成する。
これらにより、本実施形態によれば、印字分解能が90DPIであって、実エンコーダ(エンコーダパルスの間隔)が0.5μmの場合、LAT間隔を564として、エンコーダパルス1282発に1パルスだけ、上記の間引く処理をすることで、図4の補正あり波形に示すように、補正することができる。すなわち、本実施形態では、ラッチ信号の生成するときのエンコーダパルスの分周において、設計したエンコーダパルスの1周期と実際のエンコーダパルスの1周期との差(誤差値)の値が累積され、該累積値が実エンコーダ(0.5μm)を超える前に、実際のエンコーダパルスを1発だけ間引く処理をする。これにより、本実施形態によれば、基板5がどんなに大きな基板であっても、吐出位置についての誤差が0.5μm以上となることを回避することができ、大きな基板5の全体について高精度に描画することができる。
また、本実施形態の誤差補正処理は、図5に示すように、DPI系単位とμm系単位との間の換算処理などによって生じる誤差についても、上記の計算例と同様にして補正することができる。したがって、基板5に形成する薄膜パターンがDPI系単位で設計され、エンコーダ4cのリニアスケール15がメートル系単位で製造されている場合、このような単位系の相違によって生じる誤差が累積されることを回避することができる。
また、本実施形態の誤差補正処理において、図5に示す伸長率を設定して、その伸長率を論理分解能に掛ける処理をすることにより、簡便に描画パターンを所望の伸長率で拡大又は縮小しながら、その拡大又は縮小によって生じる誤差が累積されることを回避することができる。したがって、本実施形態によれば、基板5に液滴を吐出して描画パターンを形成した後に乾燥・焼結処理をすることなどで生じる描画パターンの縮小などについて考慮して、所望のサイズの描画パターンをより高精度にかつ簡便に形成することができる。
(液滴吐出タイミング制御部)
次に、上記の誤差補正処理を実行する液滴吐出タイミング制御部44の具体的な回路構成について、図6を参照して説明する。図6は、液滴吐出タイミング制御部44の構成例を示すブロック図である。液滴吐出タイミング制御部44は、エンコーダアップダウンカウンタ102、分周カウンタ103、印字終了回路104、逆パルス補正用アップダウンカウンタ111、誤差補正回路112および選択回路113を備えている。誤差補正回路112が上記の図4及び図5に示すような誤差補正処理を行う回路である。
エンコーダ101は、エンコーダ4cに相当し、吐出ヘッド位置検出部42に相当することとしてもよい。エンコーダ101は、A相およびB相の2相パルスを出力し、このA相およびB相のパルス波形により移動方向(前後)とその移動距離とを検出することができる。エンコーダアップダウンカウンタ102は、エンコーダ101から出力されたA相およびB相のパルス波形を入力し、そのパルスをカウントして該カウント値に基づいて、液滴の吐出範囲を規定する信号である印字範囲信号を生成して出力する。ここで、エンコーダアップダウンカウンタ102がカウントする値すなわち吐出範囲を規定するデータは、液滴吐出データ転送部32などからエンコーダアップダウンカウンタ102に転送される。そして、エンコーダアップダウンカウンタ102が出力する印字範囲信号は、分周カウンタ103の分周動作の有効/無効を制御するイネーブル信号とされる。印字終了回路104は、エンコーダアップダウンカウンタ102から出力された印字範囲信号に基づいて、所定の印字範囲についての液滴吐出が終了したか否か、すなわち印字が終了したか判断する。印字が終了したと判断した印字終了回路104は、印字終了信号を液滴吐出データ作成部30などに送る。この印字終了信号を受信した液滴吐出データ作成部30は、新たな印字吐出範囲を規定するデータについて、液滴吐出データ転送部32を介してエンコーダアップダウンカウンタ102に送る。
逆パルス補正用アップダウンカウンタ111は、エンコーダ101から出力されたA相およびB相のパルス波形を入力し、そのパルスにおけるノイズ成分を除去する。例えば、基板5に対して吐出ヘッド群3が一定方向に移動しているときに、エンコーダ101から出力されるパルスにおいて、その一定方向を示すパルス群に、逆方向を示すパルスが混じる場合がある。この逆方向を示すパルスがノイズ成分である。そこで、逆パルス補正用アップダウンカウンタ111は、かかる一定方向を示すパルス群のみをカウントすることなどにより、ノイズ成分を除去し、ノイズのないパルス群を出力する。
誤差補正回路112は、図4から図5に示すとともに上述した本実施形態の誤差補正処理の主要部分について実行する回路である。すなわち、誤差補正回路112は、図5に示すような計算処理を行う。具体的には誤差補正回路112は、エンコーダ101から出力されたパルス波形であって逆パルス補正用アップダウンカウンタ111でノイズを除去されたパルス波形を入力し、そのパルス波形について図4に示すような間引く処理を行い、その間引かれたパルス波形をエンコーダパルスとして出力するものである。したがって、誤差補正回路112から出力されるエンコーダパルスが図4におけるエンコーダパルスE3に相当する。
選択回路113は、誤差補正回路112で補正されたエンコーダパルスと逆パルス補正用アップダウンカウンタ111から出力されたエンコーダパルスとのうちの一方を選択して、出力するものである。選択回路113は、通常時(すなわち精密に吐出する場合)は誤差補正回路112で補正されたエンコーダパルスを選択して出力するが、デバック時などは逆パルス補正用アップダウンカウンタ111から出力されたエンコーダパルスを選択して出力する。また、基板5が比較的小さな基板であって吐出誤差の累積が問題とならない場合などは、選択回路113は逆パルス補正用アップダウンカウンタ111から出力されたエンコーダパルスを選択して出力することとしてもよい。
分周カウンタ103は、印字範囲信号を受けているときにおいて、選択回路113から出力されたエンコーダパルス(誤差補正回路112で補正されたエンコーダパルス)を入力してこのエンコーダパルスを分周し、その分周結果をラッチ信号として出力する。このラッチ信号が図4におけるラッチ信号L3に相当し、誤差が累積されない精密な信号となる。
これらにより、本実施形態の液滴吐出装置1は、液滴吐出タイミング制御部44から出力されるラッチ信号により、吐出ヘッド3aから液滴を吐出させるタイミングを、誤差が累積されることなく精密に制御することができる。そこで、液滴吐出装置1は、基板5がどんなに大きくても、またその基板5に描画するパターンがどんなに大きくても、その描画パターン全体を高精度に形成することができる。
なお、図6における1つのエンコーダアップダウンカウンタ102と1つの分周カウンタ103との組が1つの吐出ヘッド3aに対応する。そこで、例えば吐出ヘッド群3が24個の吐出ヘッド3aから構成されている場合、各吐出ヘッド3aについてラッチ信号を出力すべく、24組のエンコーダアップダウンカウンタ102及び分周カウンタ103が設けられる。
(電気光学装置)
次に、上記実施形態の液滴吐出装置1を用いて製造される電気光学装置の一例について図7から図9を参照して説明する。本実施形態では、電気光学装置の一例として有機EL装置を挙げて説明する。図7は、本発明の実施形態に係る有機EL装置の製造工程を示す主要断面図である。
図7(d)に示すように、有機EL装置201は、透明基板204上に画素電極202を形成し、各画素電極202間にバンク205を矢印G方向から見て格子状に形成する。それらの格子状凹部の中に、正孔注入層220を形成し、矢印G方向から見てストライプ配列などといった所定の配列となるようにR色発光層203R、G色発光層203GおよびB色発光層203Bを各格子状凹部の中に形成する。さらに、それらの上に対向電極213を形成することによって有機EL装置201が形成される。
上記画素電極202をTFD(Thin Film Diode:薄膜ダイオード)素子などといった2端子型のアクティブ素子によって駆動する場合には、上記対向電極213は矢印G方向から見てストライプ状に形成される。また、画素電極202をTFT(Thin Film Transistor:薄膜トランジスタ)などといった3端子型のアクティブ素子によって駆動する場合には、上記対向電極213は単一な面電極として形成される。
各画素電極202と各対向電極213とによって挟まれる領域が1つの絵素ピクセルとなり、R、G、B3色の絵素ピクセルが1つのユニットとなって1つの画素を形成する。各絵素ピクセルを流れる電流を制御することにより、複数の絵素ピクセルにおける希望するものを選択的に発光させ、これにより、矢印H方向に希望するフルカラー像を表示することができる。
上記有機EL装置201は、例えば、次に示す製造方法によって製造される。すなわち図7(a)のように、透明基板204の表面にTFD素子又はTFT素子といった能動素子を形成し、さらに画素電極202を形成する。形成方法としては、例えばフォトリソグラフィー法、真空蒸着法、スパッタリング法、パイロゾル法などを用いることができる。画素電極202の材料としてはITO(Indium-Tin Oxide)、酸化スズ、酸化インジウムと酸化亜鉛との複合酸化物などを用いることができる。
次に、図7(a)に示すように、隔壁すなわちバンク205を周知のパターンニング手法、例えばフォトリソグラフィー法を用いて形成し、このバンク205によって各透明な画素電極202の間を埋める。これにより、コントラストの向上、発光材料の混色の防止、画素と画素との間からの光漏れなどを防止することができる。バンク205の材料としては、EL発光材料の溶媒に対して耐久性を有するものであれば特に限定されないが、フロロカーボンガスプラズマ処理によりテフロン(登録商標)化できること、例えば、アクリル樹脂、エポキシ樹脂、感光性ポリイミドなどといった有機材料が好ましい。
次に、機能性液状体としての正孔注入層用インクを塗布する直前に、透明基板204に酸素ガスとフロロカーボンガスプラズマの連続プラズマ処理を行う。これにより、ポリイミド表面は撥水化され、ITO表面は親水化され、液滴を微細にパターニングするための基板側の濡れ性の制御ができる。プラズマを発生する装置としては、真空中でプラズマを発生する装置でも、大気中でプラズマを発生する装置でも同様に用いることができる。
次に、図7(a)に示すように、正孔注入層用インクの液滴258を図1に示す液滴吐出装置1の吐出ヘッド3aから吐出し、各画素電極202の上にパターニング塗布を行う。この液滴258の吐出タイミングすなわち吐出位置は、上述の誤差補正処理すなわち本発明に係る吐出タイミング生成方法で補正される。したがって、液滴258は、バンク205で囲まれた所望の吐出領域すなわち各フィルタエレメント形成領域内に正確に着弾する。その塗布後、真空(1torr)中、室温、20分という条件で溶媒を除去する。この後、大気中、200℃(ホットプレート上)、10分の熱処理により、発光層用インクと相溶しない正孔注入層220を形成する。上記条件では、膜厚は40nmであった。
次に、図7(b)に示すように、各フィルタエレメント形成領域内の正孔注入層220の上に、機能性液状体であるEL発光材料としてのR発光層用インクおよび機能性液状体であるEL発光材料としてのG発光層用インクを塗布する。ここでも、各発光層用インクは、図1に示す液滴吐出装置1の吐出ヘッド3aから液滴258として吐出されて各フィルタエレメント形成領域内に着弾する。そして、この液滴258の吐出タイミングも本発明に係る吐出タイミング生成方法で補正されるので、各液滴258は各フィルタエレメント形成領域内に正確に着弾する。
発光層用インクの塗布後、真空(1torr)中、室温、20分などという条件で溶媒を除去する。続けて、窒素雰囲気中、150℃、4時間の熱処理により共役化させてR色発光層203RおよびG色発光層203Gを形成する。上記条件により、膜厚は50nmであった。熱処理により共役化した発光層は溶媒に不溶である。
なお、発光層を形成する前に正孔注入層220に酸素ガスとフロロカーボンガスプラズマの連続プラズマ処理を行ってもよい。これにより、正孔注入層220上にフッ素化物層が形成され、イオン化ポテンシャルが高くなることにより正孔注入効率が増し、発光効率の高い有機EL装置を提供できる。
次に、図7(c)に示すように、機能性液状体であるEL発光材料としてのB色発光層203Bを各絵素ピクセル内のR色発光層203R、G色発光層203Gおよび正孔注入層220の上に重ねて形成する。これにより、R、G、Bの3原色を形成するのみならず、R色発光層203RおよびG色発光層203Gとバンク205との段差を埋めて平坦化することができる。これにより、上下電極間のショートを確実に防ぐことができる。B色発光層203Bの膜厚を調整することで、B色発光層203BはR色発光層203RおよびG色発光層203Gとの積層構造において、電子注入輸送層として作用してB色には発光しない。
以上のようなB色発光層203Bの形成方法としては、例えば湿式法として一般的なスピンコート法を採用することもできるし、あるいは、R色発光層203RおよびG色発光層203Gの形成法と同様のインクジェット法を採用することもできる。
その後、図7(d)に示すように、対向電極213を形成することにより、目標とする有機EL装置201が製造される。対向電極213はそれが面電極である場合には、例えば、Mg、Ag、Al、Liなどを材料として、蒸着法、スパッタ法などといった成膜法を用いて形成できる。また、対向電極213がストライプ状電極である場合には、成膜された電極層をフォトリソグラフィー法などといったパターニング手法を用いて形成できる。
以上に説明した有機EL装置201の製造方法によれば、正孔注入層用インクおよび各発光層用インクについて、図1に示す液滴吐出装置1の吐出ヘッド3aから液滴258として吐出されて各フィルタエレメント形成領域内に着弾させることができる。したがって本製造方法によれば、正孔注入層用インク又は各発光層用インクがバンク205上に塗布されるなどの所望領域以外に塗布されることを回避でき、大きな画面の全体について高精細で高品質な画像を表示できる大画面の有機EL装置201を簡便に製造することができる。
また、本実施形態の有機EL装置の製造方法では、液滴吐出装置1を用いることにより、吐出ヘッド3aを用いたインク吐出によってR、G、Bの各色絵素ピクセルを形成するので、フォトリソグラフィー法を用いる方法のような複雑な工程を経る必要もなく、またインクなどの材料を浪費することもない。
次に、本実施形態のEL装置の回路構成について図8および図9を参照して説明する。図8は、図7に示す製造方法で製造された有機EL装置を構成要素とした表示装置の一部を示す回路図である。図9は図8に示す表示装置における画素領域の平面構造を示す拡大平面図である。
図8において、表示装置501は有機EL装置であるEL表示素子を用いたアクティブマトリックス型の表示装置である。この表示装置501は、透明な表示基板502上に、複数の走査線503と、これら走査線503に対して交差する方向に延びる複数の信号線504と、これら信号線504に並列に延びる複数の共通給電線505とがそれぞれ配線された構成を有している。そして、走査線503と信号線504との各交点には、画素領域501Aが設けられている。
信号線504に対しては、シフトレジスタ、レベルシフタ、ビデオライン、アナログスイッチを有したデータ側駆動回路507が設けられている。また、走査線503に対しては、シフトレジスタおよびレベルシフタを有した走査側駆動回路508が設けられている。そして、画素領域501Aのそれぞれには、走査線503を介して走査信号がゲート電極に供給されるスイッチング薄膜トランジスタ509と、このスイッチング薄膜トランジスタ509を介して信号線504から供給される画像信号を蓄積して保持する蓄積容量capと、この蓄積容量capによって保持された画像信号がゲート電極に供給されるカレント薄膜トランジスタ510と、このカレント薄膜トランジスタ510を介して共通給電線505に電気的に接続したときに共通給電線505から駆動電流が流れ込む画素電極511と、この画素電極511および反射電極512間に挟み込まれる発光素子513とが設けられている。
この構成により、走査線503が駆動されてスイッチング薄膜トランジスタ509がオンすると、その時の信号線504の電位が蓄積容量capに保持される。この蓄積容量capの状態に応じて、カレント薄膜トランジスタ510のオン・オフ状態が決まる。そして、カレント薄膜トランジスタ510のチャネルを介して、共通給電線505から画素電極511に電流が流れ、さらに発光素子513を通じて反射電極512に電流が流れる。このことにより、発光素子513は、これを流れる電流量に応じて発光する。
ここで、画素領域501Aは、反射電極512および発光素子513を取り除いた状態の表示装置501の拡大平面図である図9に示すように、平面状態が長方形の画素電極511の4辺が、信号線504、共通給電線505、走査線503および図示しない他の画素電極511用の走査線503によって囲まれた配置となっている。
このような構成の表示装置501は、上述の有機EL装置の製造方法を用いて製造されているので、比較的安価でありながら、大きな画面の全体について高精細で高品質な画像を表示することができる。
(電子機器)
次に、上記実施形態の電気光学装置を備えた電子機器について説明する。
図10(a)は、携帯電話の一例を示した斜視図である。図10(a)において、符号1000は携帯電話本体を示し、符号1001は上記実施形態の電気光学装置からなる表示部を示している。図10(b)は、腕時計型電子機器の一例を示した斜視図である。図10(b)において、符号1100は時計本体を示し、符号1101は上記実施形態の電気光学装置からなる表示部を示している。図10(c)は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。図10(c)において、符号1200は情報処理装置、符号1202はキーボードなどの入力部、符号1204は情報処理装置本体、符号1206は上記実施形態の電気光学装置からなる表示部を示している。
図10に示す電子機器は、上記実施形態の電気光学装置を備えているので、表示部を大画面化しても、その表示部において高精細で高品質な画像を表示することができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能であり、実施形態で挙げた具体的な材料や層構成などはほんの一例に過ぎず、適宜変更が可能である。例えば、上記実施形態では電気光学装置の一例として有機EL装置を挙げているが、本発明はこれに限定されるものではなく、プラズマディスプレイ装置、液晶装置などの各種電気光学装置に本発明を適用でき、カラーフィルタの着色材料の塗布などに本発明を適用することもできる。また本発明に係る液滴吐出装置による形成物は、画素などに限定されるものではなく、配線パターン、電極、各種半導体素子などを、本発明に係る液滴吐出装置を用いて形成することができる。
本発明の実施形態に係る液滴吐出装置の構成を示す斜視図である。 同上の液滴吐出装置における制御装置の機能を示すブロック図である。 本発明の実施形態に係る吐出タイミング生成方法を示す模式平面図である。 同上の液滴吐出装置のエンコーダパルスとラッチ信号を示す波形図である。 同上の液滴吐出装置による誤差補正処理の計算例を示す図である。 同上の液滴吐出装置の液滴吐出タイミング制御部を示すブロック図である。 本発明の実施形態に係る有機EL装置の製造工程を示す主要断面図である。 同上の製造工程を用いて製造された表示装置の回路図である。 同上表示装置における画素領域の平面構造を示す拡大平面図である。 同上の表示装置を備えた電子機器を示す斜視図である。
符号の説明
1…液滴吐出装置、2…制御装置、3…吐出ヘッド群、3a…吐出ヘッド、3b…カメラ、4…ステージ、4c…エンコーダ、5…基板、101…エンコーダ、102…エンコーダアップダウンカウンタ、103…分周カウンタ、104…印字終了回路、111…逆パルス補正用アップダウンカウンタ、112…誤差補正回路、113…選択回路、C1,C2…視野、L…設計間隔、M1,M2…アライメントマーク、N1,N2…パルス値

Claims (15)

  1. 予め規定した設計間隔を互いに持って配置されるように少なくとも2つのアライメントマークを基板に設け、
    前記2つのアライメントマークの間隔を、エンコーダを用いて計測して該計測結果をパルス数とし、
    前記設計間隔を前記パルス数で割り、該割り算の結果を実エンコーダ値とし、
    前記実エンコーダ値を用いて、前記基板に液滴を吐出するタイミングを制御することを特徴とする吐出タイミング生成方法。
  2. 前記2つのアライメントマークの間隔は、少なくとも1つのカメラと、前記基板又はカメラを搭載して移動するステージと、前記エンコーダとを用いて計測することを特徴とする請求項1に記載の吐出タイミング生成方法。
  3. 前記2つのアライメントマークの間隔は、
    前記カメラの視野内に該2つのアライメントマークにおける一方を入れ、該視野内における該アライメントマークの第1座標を特定する処理と、
    前記ステージを第1移動させて、該2つのアライメントマークにおける他方を、前記カメラの視野内に入れ、該視野内の該アライメントマークの第2座標を特定する処理と、
    前記第1座標におけるX軸要素又はY軸要素と前記第2座標における該X軸要素又はY軸要素とが一致するように、前記ステージを第2移動させる処理と、
    前記第1移動及び第2移動で移動したステージの距離を前記エンコーダのパルス数(N)として計測する処理と、を用いて計測することを特徴とする請求項2に記載の吐出タイミング生成方法。
  4. 前記実エンコーダ値の算出は、前記液滴を吐出する装置である液滴吐出装置に、前記基板をアライメントするときに、該アライメントとともに行うことを特徴とする請求項1から3のいずれか一項に記載の吐出タイミング生成方法。
  5. 前記エンコーダは、前記液滴を吐出する吐出ヘッドが前記基板に対して移動した量に応じた数のエンコーダパルスを出力するものであり、
    前記液滴を吐出するタイミングは、前記エンコーダパルスを分周して生成されるラッチ信号を用いて制御し、
    前記分周において、設計したエンコーダパルスの1周期と実際のエンコーダパルスの1周期との差の値が累積され、該累積値が所定値以上となる前に、該実際のエンコーダパルスを間引く処理を有することを特徴とする請求項1から4のいずれか一項に記載の吐出タイミング生成方法。
  6. 前記エンコーダパルスを間引く間隔は、前記実エンコーダ値を前記差の値で割ったときの算出結果を用いて求めることを特徴とする請求項5に記載の吐出タイミング生成方法。
  7. 前記所定の値は、前記実エンコーダ値であることを特徴とする請求項5又は6に記載の吐出タイミング生成方法。
  8. 前記実エンコーダ値から所望の桁以下の値を切り捨て、残った値を周期とするエンコーダパルス信号を生成し、
    該エンコーダパルス信号に基づいて、前記ラッチ信号を生成することを特徴とする請求項5から7のいずれか一項に記載の吐出タイミング生成方法。
  9. 前記エンコーダのスケールは、メートル系単位で製造されており、
    前記基板における液滴の吐出位置は、DPI系単位で規定されていることを特徴とする請求項1から8のいずれか一項に記載の吐出タイミング生成方法。
  10. 液滴の吐出によって形成する描画パターンを拡大縮小する場合、拡大縮小値に応じて、前記実エンコーダ値と前記間引く処理における間引くパルス数とのうちの少なくとも一方を変更することを特徴とする請求項5から9のいずれか一項に記載の吐出タイミング生成方法。
  11. 請求項1から10のいずれか一項に記載の吐出タイミング生成方法を用いて液滴を吐出するタイミングを制御する制御手段と、前記制御手段によって制御されて前記液滴を吐出する吐出ヘッドとを有することを特徴とする液滴吐出装置。
  12. 前記制御手段は、
    エンコーダから出力されたパルスについて前記間引く処理を行い、該間引かれたパルスをエンコーダパルスとして出力する誤差補正回路と、
    該誤差補正回路から出力されたエンコーダパルスを分周して前記ラッチ信号を生成する分周カウンタとを有することを特徴とする請求項11に記載の液滴吐出装置。
  13. 前記制御手段は、
    エンコーダから出力されたパルスについてカウントして該カウント値に基づいて、液滴の吐出範囲を規定する信号である印字範囲信号を生成して出力するエンコーダアップダウンカウンタと、
    前記エンコーダから出力されたパルスにおけるノイズ成分を除去する逆パルス補正用アップダウンカウンタとを有し、
    前記分周カウンタは、前記印字範囲信号により前記分周動作の有効/無効が制御されるものであり、
    前記誤差補正回路は、前記逆パルス補正用アップダウンカウンタによってノイズ成分が除去されたパルスを、前記間引く処理の対象とするものであることを特徴とする請求項12に記載の液滴吐出装置。
  14. 請求項11から13のいずれか一項に記載の液滴吐出装置を用いて電気光学装置を製造することを特徴とする電気光学装置の製造方法。
  15. 請求項14に記載の電気光学装置の製造方法を用いて製造された電気光学装置を備えたことを特徴とする電子機器。
JP2004056098A 2004-03-01 2004-03-01 吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器 Withdrawn JP2005246123A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056098A JP2005246123A (ja) 2004-03-01 2004-03-01 吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056098A JP2005246123A (ja) 2004-03-01 2004-03-01 吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器

Publications (1)

Publication Number Publication Date
JP2005246123A true JP2005246123A (ja) 2005-09-15

Family

ID=35027128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056098A Withdrawn JP2005246123A (ja) 2004-03-01 2004-03-01 吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器

Country Status (1)

Country Link
JP (1) JP2005246123A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130606A (ja) * 2005-11-11 2007-05-31 Seiko Epson Corp 液滴配置方法および液滴吐出装置
JPWO2007111261A1 (ja) * 2006-03-27 2009-08-13 パイオニア株式会社 電子ビーム記録装置及びビーム調整方法
WO2009116255A1 (ja) * 2008-03-17 2009-09-24 大日本スクリーン製造株式会社 画像記録装置
JP2010099570A (ja) * 2008-10-22 2010-05-06 Seiko Epson Corp 液滴吐出装置
JP2010120215A (ja) * 2008-11-18 2010-06-03 Seiko Epson Corp 液滴吐出装置の吐出パターンデータ補正方法および液滴吐出装置
WO2012055365A1 (zh) * 2010-10-29 2012-05-03 北大方正集团有限公司 喷印位置控制方法和装置
JP2013244449A (ja) * 2012-05-25 2013-12-09 Seiko Epson Corp 描画装置、及び描画方法
US9162445B2 (en) 2007-08-09 2015-10-20 Seiko Epson Corporation Liquid material discharge control method and droplet discharge device
WO2017203018A1 (fr) * 2016-05-27 2017-11-30 MGI Digital Technology Dispositif et procédé de transport de substrats dans une machine d'impression
JP2020124824A (ja) * 2019-02-01 2020-08-20 株式会社リコー 位置情報調整装置、該位置情報調整装置を含むハンディ型液滴吐出装置、ハンディ装置における位置情報調整方法、及びハンディ装置における位置情報調整プログラム
WO2023176113A1 (ja) * 2022-03-14 2023-09-21 東レエンジニアリング株式会社 基板処理装置及びスケール補正方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130606A (ja) * 2005-11-11 2007-05-31 Seiko Epson Corp 液滴配置方法および液滴吐出装置
JPWO2007111261A1 (ja) * 2006-03-27 2009-08-13 パイオニア株式会社 電子ビーム記録装置及びビーム調整方法
US9162445B2 (en) 2007-08-09 2015-10-20 Seiko Epson Corporation Liquid material discharge control method and droplet discharge device
WO2009116255A1 (ja) * 2008-03-17 2009-09-24 大日本スクリーン製造株式会社 画像記録装置
JP4713689B2 (ja) * 2008-03-17 2011-06-29 大日本スクリーン製造株式会社 画像記録装置
JP2010099570A (ja) * 2008-10-22 2010-05-06 Seiko Epson Corp 液滴吐出装置
JP2010120215A (ja) * 2008-11-18 2010-06-03 Seiko Epson Corp 液滴吐出装置の吐出パターンデータ補正方法および液滴吐出装置
EP2633996A1 (en) * 2010-10-29 2013-09-04 Peking University Founder Group Co., Ltd Method and device for controlling inkjet printing position
CN102463752A (zh) * 2010-10-29 2012-05-23 北大方正集团有限公司 喷印位置控制方法和装置
JP2014500810A (ja) * 2010-10-29 2014-01-16 北大方正集▲団▼有限公司 インクジェット印刷位置制御方法及びインクジェット印刷位置制御装置
EP2633996A4 (en) * 2010-10-29 2014-08-27 Univ Peking Founder Group Co METHOD AND DEVICE FOR CONTROLLING INK JET PRINTING POSITION
US8974023B2 (en) 2010-10-29 2015-03-10 Peking University Founder Group Co., Ltd. Method and device for controlling inkjet printing position
WO2012055365A1 (zh) * 2010-10-29 2012-05-03 北大方正集团有限公司 喷印位置控制方法和装置
JP2013244449A (ja) * 2012-05-25 2013-12-09 Seiko Epson Corp 描画装置、及び描画方法
WO2017203018A1 (fr) * 2016-05-27 2017-11-30 MGI Digital Technology Dispositif et procédé de transport de substrats dans une machine d'impression
JP2020124824A (ja) * 2019-02-01 2020-08-20 株式会社リコー 位置情報調整装置、該位置情報調整装置を含むハンディ型液滴吐出装置、ハンディ装置における位置情報調整方法、及びハンディ装置における位置情報調整プログラム
JP7127564B2 (ja) 2019-02-01 2022-08-30 株式会社リコー 位置情報調整装置、該位置情報調整装置を含むハンディ型液滴吐出装置、ハンディ装置における位置情報調整方法、及びハンディ装置における位置情報調整プログラム
WO2023176113A1 (ja) * 2022-03-14 2023-09-21 東レエンジニアリング株式会社 基板処理装置及びスケール補正方法

Similar Documents

Publication Publication Date Title
KR100583291B1 (ko) 성막 방법, 성막 장치, 컬러 필터 기판의 제조 방법 및제조 장치, 일렉트로루미네선스 장치용 기판의 제조 방법및 제조 장치, 표시 장치의 제조 방법, 표시 장치, 및전자 기기
TW587023B (en) Method of generating ejection pattern data and head motion pattern data; apparatus for generating ejection pattern data; apparatus for ejecting functional liquid droplet; drawing system; method of manufacturing organic EL device, electron emitting device
JP4289391B2 (ja) 液状体の描画方法、カラーフィルタの製造方法、有機el素子の製造方法
US7182815B2 (en) Apparatus and method for producing color filters by discharging material
TWI258721B (en) Full-color organic electroluminescence device
US7535546B2 (en) Liquid droplet discharging method, and liquid droplet discharging apparatus
KR20080054344A (ko) 화소 관찰 시스템, 묘화 시스템, 액상체의 묘화 방법, 컬러필터의 제조 방법, 유기 el 소자의 제조 방법
JP2005502455A (ja) インクジェット堆積装置および方法
JP2008145625A (ja) 描画システム、液状体の描画方法、カラーフィルタの製造方法、有機el素子の製造方法
JP2005246123A (ja) 吐出タイミング生成方法、液滴吐出装置、電気光学装置の製造方法および電子機器
TW201111047A (en) Coating device and method for producing a coating layer using the same
JP4552804B2 (ja) 液滴吐出方法
JP5187124B2 (ja) 液状体の吐出方法、カラーフィルタの製造方法および有機el装置の製造方法
JP3918601B2 (ja) 描画システム
JP4792701B2 (ja) 液滴吐出装置、液滴吐出方法
JP5055692B2 (ja) 液滴吐出方法及び電気光学装置の製造方法
JP2007130605A (ja) 描画方法、および電気光学装置の製造方法、電気光学装置、ならびに電子機器
JP5707019B2 (ja) 電気光学装置および電子機器
JP2008268558A (ja) 液滴吐出ヘッドの吐出制御方法、液状体の吐出方法、カラーフィルタの製造方法、有機el素子の製造方法、配向膜の製造方法、
JP2013172060A (ja) 機能膜の塗布装置とこれを用いる製造方法
JP2009198858A (ja) 液滴吐出装置、液状体の吐出方法、カラーフィルタの製造方法
JP2008225302A (ja) 液状体の吐出方法、カラーフィルタの製造方法、有機el素子の製造方法、電気光学装置の製造方法
JP2006130436A (ja) 液滴吐出装置、液滴吐出方法、電気光学装置の製造方法及び電子機器
JP2005153393A (ja) 液滴吐出装置、電気光学装置、液滴吐出方法、電気光学装置の製造方法および電子機器
CN100450774C (zh) 液滴喷出方法、电光学装置的制造方法和电子仪器

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501