JP2005227867A - 圧力調整弁 - Google Patents

圧力調整弁 Download PDF

Info

Publication number
JP2005227867A
JP2005227867A JP2004033639A JP2004033639A JP2005227867A JP 2005227867 A JP2005227867 A JP 2005227867A JP 2004033639 A JP2004033639 A JP 2004033639A JP 2004033639 A JP2004033639 A JP 2004033639A JP 2005227867 A JP2005227867 A JP 2005227867A
Authority
JP
Japan
Prior art keywords
pressure
flow path
valve body
fluid
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033639A
Other languages
English (en)
Other versions
JP4367160B2 (ja
Inventor
Goji Katano
剛司 片野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004033639A priority Critical patent/JP4367160B2/ja
Publication of JP2005227867A publication Critical patent/JP2005227867A/ja
Application granted granted Critical
Publication of JP4367160B2 publication Critical patent/JP4367160B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

【課題】 本発明は圧力調整弁に関し、流量の増大に応じて調圧値が増大するような調圧特性を外部からの制御圧の供給を必要とすることなく単独で実現できるようにする。
【解決手段】 内部の流体の圧力を閉方向の推力として弁体8に作用させるバランス室18を一次側流路30及び二次側流路38とは隔離して設ける。そして、一次側流路30に形成された絞り部40とバランス室18とを連通路42によって連通させ、バランス室18に絞り部40を流れる流体の静圧を導入する。
【選択図】 図1

Description

本発明は、一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁に関し、特に、燃料電池のアノードに水素を供給するための水素供給管に配置して好適な圧力調整弁に関する。
燃料電池は、電解質膜を挟んでアノードとカソードが配置された構造を有し、アノードに水素を含む燃料ガスが接触しカソードに空気などの酸素を含む酸化ガスが接触することにより両電極で電気化学反応が起こり、起電力が発生する仕組みになっている。このような燃料電池を備えた従来の燃料電池システムでは、一般に、高圧水素タンクから供給される燃料ガスを燃料電池のアノードに供給するとともに、コンプレッサにより取り込んだ空気をカソードに供給している。
従来の燃料電池システムでは、カソードに供給される空気の圧力はコンプレッサによる空気の供給量を制御することで燃料電池の要求出力に応じた圧力に調整される。一方、アノードに供給される燃料ガスの圧力は、例えば特許文献1に記載されるように、燃料ガスの供給ラインに設けられた圧力調整弁によってカソードへの供給空気圧に応じた圧力に調整される。特許文献1に記載される圧力調整弁は空気式の比例圧力制御弁であり、これは、コンプレッサから供給される空気の圧力を信号圧とし、圧力調整弁の出口圧が信号圧に応じた圧力になるように燃料ガスの圧力を減圧制御するものである。
特開2002−373682号公報
しかしながら、上記従来技術のような圧力調整弁では、圧力調整弁に空気圧を供給するための経路をカソード側から配管する必要があり装置構成が複雑化してしまう。特に車載用燃料電池システムの場合には、設置スペースの制約上、装置構成は可能なかぎり簡略化したい。また、外部から取り込まれる空気には油脂類等の不純物が混入する可能性があるため、不純物の堆積によって圧力調整弁が故障するおそれもある。さらに、従来の圧力調整弁では、燃料電池の要求出力の変化に応じて空気流量が調整され、空気流量の調整により空気圧が変化してから燃料ガスの圧力調整が行われることになるため、燃料電池の要求出力が変化してから燃料ガスの圧力が調整されるまで時間遅れが生じてしまう。
従来の圧力調整弁における上記のような不都合は、カソードに供給される空気の圧力を圧力調整弁の調圧値を制御するための制御圧として用いていることに起因する。カソードへの供給空気を用いることなく単独で調圧値を制御可能な圧力調整弁を実現できるならば、上記のような不都合は回避できると考えられる。ただし、燃料電池の運転性能を考慮するならば、燃料ガスの流量の増大に応じて調圧値も増大するような調圧特性は得られるようにしたい。このような調圧特性によれば、常時一定圧に制御する場合に比較して燃料電池の発電効率と耐久性を向上させることが可能になるからである。また、高流量時に高圧化されることで燃料ガスの流路を小径化できるという利点もある。さらに、排気弁を開いてのパージ時には燃料ガスの流量が増大するが、その際の調圧値が増大することで、小型の排気弁でも必要量の燃料ガスを必要時間内にパージすることが可能になるという利点もある。なお、以上の要求を満たす圧力調整弁としては調圧値を電気的に制御可能な電磁弁が考えられるが、装置の信頼性の観点からは、そのような電気的手段を用いるものではなく純粋に機械的な手段のみによって調圧値を制御できるものが望ましい。
本発明は、上述のような課題を解決するためになされたもので、流量の増大に応じて調圧値が増大するような調圧特性を外部からの制御圧の供給を必要とすることなく単独で実現できるようにした機械式の圧力調整弁を提供することを目的とする。
第1の発明は、上記の目的を達成するため、一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁において、
前記一次側流路と前記二次側流路との間の開口部に設けられた弁座と、
前記弁座に対し変位可能に配置された弁体と、
前記弁体に連結され前記弁体の変位量に応じた開方向の推力を前記弁体に作用させるスプリングと、
前記弁体に連結され前記二次側流路の流体の圧力を受けて閉方向の推力を前記弁体に作用させるダイヤフラムと、
前記一次側流路及び前記二次側流路とは隔離して設けられ内部の流体の圧力を閉方向の推力として前記弁体に作用させるバランス室と、
前記一次側流路に形成された絞り部と、
前記絞り部と前記バランス室とを連通させる連通路と、
を備えることを特徴としている。
第2の発明は、上記の目的を達成するため、一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁において、
前記一次側流路と前記二次側流路との間の開口部に設けられた弁座と、
前記弁座に対し変位可能に配置された弁体と、
前記弁体に連結され前記弁体の変位量に応じた開方向の推力を前記弁体に作用させるスプリングと、
前記一次側流路及び前記二次側流路とは隔離して設けられた圧力室と、
前記弁体に連結され前記圧力室の流体の圧力を受けて閉方向の推力を前記弁体に作用させるダイヤフラムと、
前記二次側流路に形成された絞り部と、
前記絞り部と前記圧力室とを連通させる連通路と、
を備えることを特徴としている。
第3の発明は、上記の目的を達成するため、一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁において、
前記一次側流路と前記二次側流路との間の開口部に設けられた弁座と、
前記弁座に対し変位可能に配置された弁体と、
前記弁体に連結され前記弁体の変位量に応じた開方向の推力を前記弁体に作用させるスプリングと、
前記弁体に連結され前記二次側流路の流体の圧力を受けて閉方向の推力を前記弁体に作用させるダイヤフラムと、
前記一次側流路及び前記二次側流路とは隔離して設けられ内部の流体の圧力を閉方向の推力として前記弁体に作用させるバランス室と、
前記二次側流路に形成された絞り部と、
前記絞り部と前記バランス室とを連通させる連通路と、
を備えることを特徴としている。
また、第4の発明は、水素を含む燃料ガスの供給を受けて発電する燃料電池と、前記燃料電池のアノードに燃料ガスを供給するための燃料ガス通路とを備えた燃料電池システムにおいて、
前記燃料ガス通路に上記の第1乃至第3の何れか1つの発明にかかる圧力調整弁が配置されていることを特徴としている。
第1の発明によれば、一次側流路に流入する流体の流量が増大したときには、絞り部での流体の流速が増大することにより、連通路によって絞り部に連通しているバランス室内の流体の圧力は低下する。弁体はスプリングから受ける開方向の推力と、ダイヤフラムを介して二次側流路の流体から受ける閉方向の推力と、バランス室の流体から受ける閉方向の推力とが釣り合う位置に変位するので、バランス室の流体から受ける閉方向の推力の低下によって弁体は開方向に駆動され、これにより二次側流路の流体の圧力は上昇する。このように、第1の発明によれば、流量の増大に応じて調圧値が増大するような調圧特性を機械的な手段によって、しかも、外部からの制御圧の供給を必要とすることなく単独で実現することができる。
第2の発明によれば、一次側流路に流入する流体の流量が増大したときには、二次側流路に排出される流体の流量も増大して絞り部での流体の流速が増大することにより、連通路によって絞り部に連通している圧力室内の流体の圧力は低下する。弁体はスプリングから受ける開方向の推力と、ダイヤフラムを介して圧力室の流体から受ける閉方向の推力とが釣り合う位置に変位するので、ダイヤフラムを介して圧力室の流体から受ける閉方向の推力の低下によって弁体は開方向に駆動され、これにより二次側流路の流体の圧力は上昇する。このように、第2の発明によれば、流量の増大に応じて調圧値が増大するような調圧特性を機械的な手段によって、しかも、外部からの制御圧の供給を必要とすることなく単独で実現することができる。
第3の発明によれば、一次側流路に流入する流体の流量が増大したときには、二次側流路に排出される流体の流量も増大して絞り部での流体の流速が増大することにより、連通路によって絞り部に連通しているバランス室内の流体の圧力は低下する。弁体はスプリングから受ける開方向の推力と、ダイヤフラムを介して二次側流路の流体から受ける閉方向の推力と、バランス室の流体から受ける閉方向の推力とがバランスする位置に変位するので、バランス室の流体から受ける閉方向の推力の低下によって弁体は開方向に駆動され、これにより二次側流路の流体の圧力は上昇する。このように、第3の発明によれば、流量の増大に応じて調圧値が増大するような調圧特性を機械的な手段によって、しかも、外部からの制御圧の供給を必要とすることなく単独で実現することができる。
第4の発明によれば、上記のような機械式の圧力調整弁が燃料ガス通路に配置されることで信頼性の高い燃料電池システムを実現することができる。しかも、上記の圧力調整弁は流量の増大に応じて調圧値が増大するような調圧特性を有しているので、常時一定圧に制御する場合に比較して燃料電池の発電効率と耐久性を向上させることが可能になる等、燃料電池の運転において有利になるという利点もある。
実施の形態1.
以下、図1乃至図3を参照して、本発明の実施の形態1について説明する。
図1は、本発明の実施の形態1としての圧力調整弁2Aの構成を示す概略断面図である。圧力調整弁2Aは、外殻を構成する第1ケーシング4と第2ケーシング6とを有している。第1ケーシング4と第2ケーシング6との間にはダイヤフラム10が挟まれており、第1ケーシング4と第2ケーシング6とにより形成される内部空間14,38はダイヤフラム10によって仕切られている。
第1ケーシング4とダイヤフラム10とにより形成される空間14は、大気圧が導入される背圧室になっている。背圧室14にはスプリング16が配置され、第1ケーシング4とダイヤフラム10とを接続している。スプリング16は流体の調圧値の基準値を設定するために用いられ、ダイヤフラム10を背圧室14とは逆側に付勢している。
一方、第2ケーシング6とダイヤフラム10とにより形成される空間38は、調圧される流体の二次側流路を構成している。二次側流路38は第2ケーシング6の側面に形成された流体出口39に接続されている。ダイヤフラム10には、この二次側流路38の流体の圧力と背圧室14の大気圧との差圧による力がダイヤフラム10を変位させる推力として作用するようになっている。
第2ケーシング6には、調圧される流体の一次側流路30も形成されている。一次側流路30は二次側流路38に関し背圧室14とは逆側に設けられている。一次側流路30と二次側流路38との間は隔壁36によって仕切られているが、隔壁36には一次側流路30と二次側流路38とを連通させる開口部34が形成されている。一次側流路30は第2ケーシング6の側面に形成された流体入口32に接続されており、流体入口32から一次側流路30に流入した流体が開口部34を通って二次側流路38に流入し、流体出口32から外部に排出されるようになっている。
また、第2ケーシング6には、一次側流路30から二次側流路38に流入する流体を調圧するための弁機構が設けられている。弁機構は開口部34に形成された弁座24と弁座24に対して変位可能な弁体8とからなる。弁座24は開口部34の一次側流路30側の周縁に形成され、弁体8は弁座24に対して一次側流路30側から接近/離隔できるように第2ケーシング6に軸受け22を介して支持されている。軸受け22は弁体8を軸方向に移動可能に支持しており、弁体8の軸方向への移動によって弁体8の弁座24に対する変位量、すなわち弁体8の開度が変化するようになっている。
弁体8には、弁座24側に延びる連結棒12が備えられている。この連結棒12は開口部34を通り、二次側流路38に面しているダイヤフラム10の中心部に連結されている。これにより弁体8とダイヤフラム10とは一体化され、弁体8には、スプリング16の付勢力とダイヤフラム10が二次側流路38の流体から受ける力とが連結棒12を介して作用する。
また、第2ケーシング6には、弁体8に関し一次側流路30と反対側にバランス室18が形成されている。弁体8はその弁座24に接する面と反対側の面をバランス室18内に露出している。バランス室18内には流体が充填されており、その流体の圧力が弁体8を閉方向に駆動する推力として弁体8に作用している。さらに、バランス室18内にはスプリング20が配置され、第2ケーシング4と弁体8とを接続している。スプリング20は流体の調圧値の基準値を調整するために用いられ、弁体8を閉方向に付勢している。なお、このスプリング20はスプリング16が弁体8に作用させている付勢力を調整するために設けられているので、スプリング16のバネ定数の設定等、設計によりスプリング20を省略することは可能である。
バランス室18は一次側流路30や二次側流路38から隔離された密閉空間として構成されている。バランス室18には、圧力を導入するための連通路42が接続されており、連通路42の反対側の端部は一次側流路30に接続されている。より具体的には、一次側流路30には流路面積が絞られたオリフィス(絞り部)40が形成されており、連通路42はこのオリフィス40に接続されてオリフィス40を通過する流体の静圧をバランス室18に導入している。したがって、オリフィス40における静圧が変化すればバランス室18の流体の圧力も変化し、バランス室18の流体から弁体8に作用する閉方向の推力も変化するようになっている。
以上のような構成により、弁体8には、スプリング16から受ける開方向の推力、ダイヤフラム10を介して二次側流路38の流体から受ける閉方向の推力、スプリング20から受ける閉方向の推力、及び、バランス室18の流体から受ける閉方向の推力が作用する。スプリング16とスプリング20とでは、スプリング16のほうのバネ力が大きいので、弁体8には両スプリング16,20のバネ力差と弁体8の変位量に応じた大きさの推力(弾性力)が開方向に作用している。弁体8に作用するこれらの推力がバランスすることにより、二次側流路38の流体の圧力を略一定圧に維持する自動調圧機能が圧力調整弁2Aに具備されることになる。例えば、二次側流路38の流体の圧力が低下したときには、ダイヤフラム10が二次側流路38の流体から受ける力が低下するので、弁体8の閉方向への推力が低下して弁体8は開方向に駆動される。その結果、二次側流路38の流体の圧力は弁体8の開度の増大に伴い上昇し、再び一定圧に維持されるようになる。逆に二次側流路38の流体の圧力が上昇したときには、ダイヤフラム10が二次側流路38の流体から受ける力が増大するのに伴い弁体8は閉方向に駆動され、その結果、二次側流路38の流体の圧力は弁体8の開度の減少に伴い低下し、再び一定圧に維持されるようになる。
また、上記のように構成された圧力調整弁2Aには、上記の自動調圧機能に加え、流量に応じて調圧値を変化させる機能も具備される。具体的に説明すると、一次側流路30に流入する流体の流量が増大すると、オリフィス40での流体の流速が増大し、これに伴いオリフィス40における静圧は低下する。オリフィス40は連通路42によってバランス室18に接続されているので、オリフィス40における静圧が低下するとバランス室18の流体の圧力も低下する。弁体8はスプリング16,20から受ける開方向の推力と、ダイヤフラム10を介して二次側流路38の流体から受ける閉方向の推力と、バランス室18の流体から受ける閉方向の推力とが釣り合う位置に変位するので、バランス室18の流体から受ける閉方向の推力の低下によって弁体8は開方向に駆動され、二次側流路38の流体の圧力は弁体8の開度の増大に伴い上昇する。
このように、本実施形態にかかる圧力調整弁2Aによれば、流量の増大に応じて調圧値が増大するような調圧特性(右肩上がりの調圧特性)を実現することができる。しかも、電磁弁のような電気的手段を用いることなく、純粋に機械的な手段のみを用いることで高い信頼性が担保されており、さらに、従来技術のように外部からの制御圧の供給を必要としないので、装置構成の簡略化による信頼性の向上も期待できる。
本実施形態にかかる圧力調整弁2Aの用途としては、燃料電池システムにおいて燃料電池のアノードに供給される燃料ガス圧力調整手段として用いるのが好適である。図2は、本実施形態にかかる圧力調整弁2Aが適用される燃料電池システムの構成を示す概略図である。
燃料電池システムは、燃料電池の単セルが複数枚積層されて構成された燃料電池スタック80を備えている。燃料電池スタック80には、各単セルのアノードに水素を含む燃料ガスを供給するための燃料ガス供給管92が接続されている。燃料ガス供給管92の上流側には水素タンクや改質器等の図示しない水素供給装置が接続されている。圧力調整弁2Aは、この燃料ガス供給管92に配置され、水素タンク等から供給される燃料ガスは圧力調整弁2Aで減圧され所望の圧力に調整されてから燃料電池スタック80に供給される。また、燃料電池スタック80には、各単セルのカソードに空気を供給するためのエア供給管94が接続されている。エア供給管94にはエアポンプ82が配置されており、エアポンプ82の作動によって外部からエア供給管94に空気が取り込まれカソードに供給される。
燃料ガス供給管92を流れる燃料ガスの流量は、燃料電池スタック80の発電負荷によって変化する。高負荷時には燃料ガスの流量は増大するが、右肩上がりの調圧特性を有する圧力調整弁2Aが燃料ガス供給管92に配置されていることにより、流量の増大に伴い燃料電池スタック80に供給される燃料ガスの圧力は上昇することになる。これにより高出力時には高圧力の燃料ガスを供給することが可能になり、従来のように常時一定圧の燃料ガスを供給する場合に比較して燃料電池スタック80の発電効率と耐久性を向上させることが可能になる。また、燃料ガスの高流量時に高圧化されることで燃料ガス供給管92を小径化することもできる。
さらに、図示は省略するが、アノードから排出される燃料オフガスの通路に排気弁(遮断弁)が設けられている燃料電池システムがある。このようなシステムでは、アノード系内に蓄積される不純物を排出するために所定の時期がきたら排気弁を開いて燃料オフガスを系外に排出(パージ)する制御が行われる。このとき排気弁が開かれることで燃料ガスの流量が増大するが、圧力調整弁2Aが設けられていればその際の調圧値が増大するので、小型の排気弁を用いても必要量の燃料ガスを必要時間内にパージすることが可能になるという利点もある。
ところで、燃料電池システムでは、燃料電池の電解質膜の破損を回避するために、アノードに供給される燃料ガスの圧力とカソードに供給される空気の圧力との差圧(極間差圧)を規定値以下に抑えて運転する必要がある。本実施形態にかかる燃料電池システムでは、燃料ガス圧は圧力調整弁2Aによって機械的に調圧されるため、極間差圧を調整するためには空気圧を制御する必要がある。
空気圧の制御は、ECU(Electronic Control Unit)90によるエアポンプ82の制御によって行われる。ECU90は、圧力調整弁2Aの入口温度を検出する温度計84の検出温度に基づき、図3に示すマップに従い目標空気圧を設定する。マップでは、燃料電池スタック80の発電電流と目標空気圧との関係が温度毎に設定されている。より具体的には、目標空気圧は発電電流が増大するほど大きくなるように設定され、圧力調整弁2Aの入口温度が上昇するほど目標空気圧が大きくなるように設定されている。ECU90は、エアポンプ82の出口で検出される空気圧が目標空気圧になるように、エアポンプ82の回転数を制御する。
以上のような制御が行われることで、燃料電池の極間差圧は規定圧を超えないように管理され、電解質膜の破損は確実に防止される。なお、圧力調整弁2Aの入口温度を検出する温度計84の代わりに大気温度を検出する温度計88を備え、大気温度に基づいて目標空気圧を設定してもよい。また、マップの代わりに下記のような数式によって目標空気圧を求めてもよい。下記の数式におけるC1、C2、C3は定数であり、Tは検出温度である。
目標空気圧 = C1×(1+C2×T)C3
実施の形態2.
次に、図4を参照して、本発明の実施の形態2について説明する。
図4は、本発明の実施の形態2としての圧力調整弁2Bの構成を示す概略断面図である。図4において図1の実施の形態1にかかる圧力調整弁2Aと同一の部位については、同一の符号を付して示している。
圧力調整弁2Bは、外殻を構成する第1ケーシング4と第2ケーシング6とを有している。第1ケーシング4と第2ケーシング6との間にはダイヤフラム10が挟まれており、第1ケーシング4と第2ケーシング6とにより形成される内部空間14,54はダイヤフラム10によって仕切られている。
第1ケーシング4とダイヤフラム10とにより形成される空間14は、大気圧が導入される背圧室になっている。背圧室14にはスプリング16が配置され、第1ケーシング4とダイヤフラム10とを接続している。スプリング16は流体の調圧値の基準値を設定するために用いられ、ダイヤフラム10を背圧室14とは逆側に付勢している。
一方、第2ケーシング6とダイヤフラム10とにより形成される空間54は、圧力流体が充填された圧力室になっている。この圧力室54の内部の流体の圧力と背圧室14の大気圧との差圧による力がダイヤフラム10を変位させる推力として作用するようになっている。
第2ケーシング6には、調圧される流体が流れる一次側流路30と調圧された流体が流れる二次側流路60が形成されている。本実施形態では、二次側流路60は圧力室54に関し背圧室14とは逆側に設けられている。圧力室54と二次側流路60との間は隔壁58によって仕切られている。一次側流路30は二次側流路60に関し圧力室54とは逆側に設けられている。一次側流路30と二次側流路60との間は隔壁36によって仕切られているが、隔壁36には一次側流路30と二次側流路60とを連通させる開口部34が形成されている。一次側流路30は第2ケーシング6の側面に形成された流体入口32に接続されており、流体入口32から一次側流路30に流入した流体が開口部34を通って二次側流路60に流入し、流体出口32から外部に排出されるようになっている。
また、第2ケーシング6には、一次側流路30から二次側流路60に流入する流体を調圧するための弁機構が設けられている。弁機構は開口部34に形成された弁座24と弁座24に対して変位可能な弁体8とからなる。弁座24は開口部34の一次側流路30側の周縁に形成され、弁体8は弁座24に対して一次側流路30側から接近/離隔できるように第2ケーシング6に軸受け22を介して支持されている。軸受け22は弁体8を軸方向に移動可能に支持しており、弁体8の軸方向への移動によって弁体8の弁座24に対する変位量、すなわち弁体8の開度が変化するようになっている。
弁体8には、弁座24側に延びる連結棒12が備えられている。この連結棒12は開口部34を通り、隔壁58を貫通して圧力室54に面しているダイヤフラム10の中心部に連結されている。連結棒12が隔壁58を貫通する貫通部は、圧力室54と二次側流路60との間で圧力が漏れないようにシールされている。また、隔壁58の貫通部には軸受け56が設けられ、連結棒12は軸受け56によって軸方向への移動可能に支持されている。これにより弁体8とダイヤフラム10とは一体化され、弁体8には、スプリング16の付勢力とダイヤフラム10が圧力室54の流体から受ける力とが連結棒12を介して作用するようになっている。
また、第2ケーシング6には、弁体8に関し一次側流路30と反対側にバランス室62が形成されている。本実施形態では、バランス室62には大気圧が導入されている。バランス室62内にはスプリング20が配置され、第2ケーシング4と弁体8とを接続している。スプリング20は流体の調圧値の基準値を調整するために用いられ、弁体8を閉方向に付勢している。
圧力室54は一次側流路30や二次側流路60から隔離された密閉空間として構成されている。圧力室54には、圧力を導入するための連通路52が接続されており、連通路52の反対側の端部は二次側流路60に接続されている。より具体的には、二次側流路60には流路面積が絞られたオリフィス(絞り部)50が形成されており、連通路52はこのオリフィス50に接続されてオリフィス50における静圧を圧力室54に導入している。したがって、オリフィス50における静圧が変化すれば圧力室54の流体の圧力も変化し、圧力室54の流体からダイヤフラム10に作用する推力も変化するようになっている。
以上のような構成により、弁体8には、スプリング16から受ける開方向の推力、ダイヤフラム10を介して圧力室54の流体から受ける閉方向の推力、スプリング20から受ける閉方向の推力が作用する。スプリング16とスプリング20とでは、スプリング16のほうのバネ力が大きいので、弁体8には両スプリング16,20のバネ力差と弁体8の変位量に応じた大きさの推力(弾性力)が開方向に作用している。弁体8に作用するこれらの推力がバランスすることにより、二次側流路60の流体の圧力を略一定圧に維持する自動調圧機能が圧力調整弁2Aに具備されることになる。例えば、二次側流路60の流体の圧力が低下したときには、オリフィス50における静圧も低下し、圧力室54の流体の圧力も低下する。これにより、ダイヤフラム10が圧力室54の流体から受ける力が低下するので、弁体8の閉方向への推力が低下して弁体8は開方向に駆動される。その結果、二次側流路60の流体の圧力は弁体8の開度の増大に伴い上昇し、再び一定圧に維持されるようになる。逆に二次側流路60の流体の圧力が上昇したときには、ダイヤフラム10が圧力室54の流体から受ける力が増大するのに伴い弁体8は閉方向に駆動され、その結果、二次側流路60の流体の圧力は弁体8の開度の減少に伴い低下し、再び一定圧に維持されるようになる。
また、上記のように構成された圧力調整弁2Bには、上記の自動調圧機能に加え、実施の形態1にかかる圧力調整弁2Aと同様、流量に応じて調圧値を変化させる機能も具備される。具体的に説明すると、一次側流路30に流入する流体の流量が増大すると、一次側流路30から二次側流路60に排出される流体の流量が増大する。これによりオリフィス50での流体の流速が増大し、流速の増大に伴いオリフィス50における静圧は低下する。オリフィス50は連通路52によって圧力室54に接続されているので、オリフィス50における静圧が低下すると圧力室54の流体の圧力も低下する。弁体8はスプリング16,20から受ける開方向の推力と、ダイヤフラム10を介して圧力室54の流体から受ける閉方向の推力とが釣り合う位置に変位するので、圧力室54の流体から受ける閉方向の推力の低下によって弁体8は開方向に駆動され、二次側流路60の流体の圧力は弁体8の開度の増大に伴い上昇する。
このように、本実施形態にかかる圧力調整弁2Bによれば、実施の形態1にかかる圧力調整弁2Aと同様、流量の増大に応じて調圧値が増大するような調圧特性(右肩上がりの調圧特性)を実現することができる。しかも、実施の形態1にかかる圧力調整弁2Aと同様、電磁弁のような電気的手段を用いることなく、純粋に機械的な手段のみを用いることで高い信頼性が担保されており、さらに、従来技術のように外部からの制御圧の供給を必要としないので、装置構成の簡略化による信頼性の向上も期待できる。
なお、本実施形態にかかる圧力調整弁2Bも、実施の形態1にかかる圧力調整弁2Aと同様、燃料電池システムにおいて燃料電池のアノードに供給される燃料ガス圧力調整手段として用いて好適である。
実施の形態3.
次に、図5を参照して、本発明の実施の形態3について説明する。
図5は、本発明の実施の形態3としての圧力調整弁2Cの構成を示す概略断面図である。図5において図1の実施の形態1にかかる圧力調整弁2Aと同一の部位については、同一の符号を付して示している。また、実施の形態1にかかる圧力調整弁2Aと同一の部位については、その詳細な説明は省略するものとする。
本実施形態にかかる圧力調整弁2Cは、実施の形態1にかかる圧力調整弁2Aとは、バランス室18に圧力を導入する導入元が異なっている。圧力調整弁2Aでは、バランス室18は一次側流路30に形成されたオリフィス40に連通しているが、本実施形態にかかる圧力調整弁2Cでは、バランス室18は二次側流路38に接続されている。より具体的には、二次側流路38には流路面積が絞られたオリフィス(絞り部)70が形成されており、バランス室18はオリフィス70と連通路72によって接続されている。連通路72はオリフィス70を流れる流体の静圧をバランス室18に導入している。したがって、オリフィス70における静圧が変化すればバランス室18の流体の圧力も変化し、バランス室18の流体から弁体8に作用する閉方向の推力も変化するようになっている。
このような構成により、本実施形態にかかる圧力調整弁2Cにも流量に応じて調圧値を変化させる機能が具備されている。具体的に説明すると、一次側流路30に流入する流体の流量が増大すると、一次側流路30から二次側流路38に排出される流体の流量が増大する。これによりオリフィス70での流体の流速が増大し、流速の増大に伴いオリフィス70における静圧は低下する。オリフィス70は連通路72によってバランス室18に接続されているので、オリフィス70における静圧が低下するとバランス室18の流体の圧力も低下する。弁体8はスプリング16,20から受ける開方向の推力と、ダイヤフラム10を介して二次側流路38の流体から受ける閉方向の推力と、バランス室18の流体から受ける閉方向の推力とが釣り合う位置に変位するので、バランス室18の流体から受ける閉方向の推力の低下によって弁体8は開方向に駆動され、二次側流路38の流体の圧力は弁体8の開度の増大に伴い上昇する。
このように、本実施形態にかかる圧力調整弁2Cによれば、実施の形態1にかかる圧力調整弁2Aと同様、流量の増大に応じて調圧値が増大するような調圧特性(右肩上がりの調圧特性)を実現することができる。しかも、実施の形態1にかかる圧力調整弁2Aと同様、電磁弁のような電気的手段を用いることなく、純粋に機械的な手段のみを用いることで高い信頼性が担保されており、さらに、従来技術のように外部からの制御圧の供給を必要としないので、装置構成の簡略化による信頼性の向上も期待できる。
また、本実施形態にかかる圧力調整弁2Cも、実施の形態1にかかる圧力調整弁2Aと同様、燃料電池システムにおいて燃料電池のアノードに供給される燃料ガス圧力調整手段として用いて好適である。
なお、二次側流路38の流体は一次側流路30の流体に対して減圧されているため、オリフィス70からバランス室18に導入される圧力は、実施の形態1においてオリフィス40からバランス室18に導入される圧力よりも小さい。このため、バランス室18内の流体から弁体8に作用する推力は圧力調整弁2Cよりも実施の形態1にかかる圧力調整弁2Aの方が大きい。したがって、一次側流路30に流入する流体の流量変化に対する調圧値の調整代は、圧力調整弁2Cよりも実施の形態1にかかる圧力調整弁2Aの方が大きくとることができる。
実施の形態2にかかる圧力調整弁2Bと圧力調整弁2Cとを比較した場合は、何れも二次側流路60,38に形成されたオリフィス50,70から圧力室54、或いはバランス室18に静圧を導入している。しかしながら、圧力調整弁2Cにおける弁体8のバランス室18内での露出面の面積よりも、圧力調整弁2Bにおけるダイヤフラム10の圧力室54内での露出面の面積の方が大きいため、弁体8に作用する推力は実施の形態2にかかる圧力調整弁2Bの方が大きい。したがって、一次側流路30に流入する流体の流量変化に対する調圧値の調整代は、圧力調整弁2Cよりも実施の形態2にかかる圧力調整弁2Bの方が大きくとることができる。
その他.
以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、次のように変形して実施してもよい。
実施の形態2及び3では、圧力調整弁2B,2C内の二次側流路60,38にオリフィス50,70を形成し、圧力室54、或いはバランス室18に静圧を導入しているが、オリフィスを設ける場所は圧力調整弁内に限定されない。例えば、図6に示すように、圧力調整弁2Dが燃料電池システムの燃料ガス供給管92に配置されており、しかもエジェクタ96を介して燃料ガスが循環する循環型システムになっている場合には、エジェクタ96の内部にあるオリフィスと圧力調整弁2Dの圧力室、或いはバランス室を圧力導入管(連通路)98によって連通させるようにしてもよい。また、燃料ガスが循環しない非循環型システムの場合には、図7に示すように燃料電池スタック80の出口にオリフィス100を設け、オリフィス100を流れる燃料オフガスの静圧を圧力導入管102によって圧力調整弁2Eの圧力室、或いはバランス室に導入するようにしてもよい。ただし、図6,図7に示す構成を採る場合には、燃料オフガスに含まれる水分を除去するための疎水フィルタを圧力導入管98,102に設けるようにする。なお、圧力調整弁2D,2Eとしては、実施の形態2にかかる圧力調整弁2B、或いは、実施の形態2にかかる圧力調整弁2Cの何れも用いることができる。
本発明の実施の形態1としての圧力調整弁の構成を示す概略断面図である。 図1の圧力調整弁が適用される燃料電池システムの概略構成図である。 図2の燃料電池システムにおいて目標空気圧を設定するためのマップである。 本発明の実施の形態2としての圧力調整弁の構成を示す概略断面図である。 本発明の実施の形態3としての圧力調整弁の構成を示す概略断面図である。 実施の形態2或いは3の変形例を示す燃料電池システムの概略構成図である。 実施の形態2或いは3の変形例を示す燃料電池システムの概略構成図である。
符号の説明
2A,2B,2C,2D,2E 圧力調整弁
4 第1ハウジング
6 第2ハウジング
8 弁体
10 ダイヤフラム
12 連結部材
14 圧力室
16,20 圧力設定スプリング
18 バランス室
22,56 軸受け
30 一次側ガス流路
38,60 二次側ガス流路
40,50,70 オリフィス
42,52,72 連通路
54 圧力室
58 隔壁
82 ポンプ
84,88 温度計
86 圧力計
90 ECU
92 燃料ガス供給管
94 エア供給管
96 エジェクタ

Claims (4)

  1. 一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁において、
    前記一次側流路と前記二次側流路との間の開口部に設けられた弁座と、
    前記弁座に対し変位可能に配置された弁体と、
    前記弁体に連結され前記弁体の変位量に応じた開方向の推力を前記弁体に作用させるスプリングと、
    前記弁体に連結され前記二次側流路の流体の圧力を受けて閉方向の推力を前記弁体に作用させるダイヤフラムと、
    前記一次側流路及び前記二次側流路とは隔離して設けられ内部の流体の圧力を閉方向の推力として前記弁体に作用させるバランス室と、
    前記一次側流路に形成された絞り部と、
    前記絞り部と前記バランス室とを連通させる連通路と、
    を備えることを特徴とする圧力調整弁。
  2. 一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁において、
    前記一次側流路と前記二次側流路との間の開口部に設けられた弁座と、
    前記弁座に対し変位可能に配置された弁体と、
    前記弁体に連結され前記弁体の変位量に応じた開方向の推力を前記弁体に作用させるスプリングと、
    前記一次側流路及び前記二次側流路とは隔離して設けられた圧力室と、
    前記弁体に連結され前記圧力室の流体の圧力を受けて閉方向の推力を前記弁体に作用させるダイヤフラムと、
    前記二次側流路に形成された絞り部と、
    前記絞り部と前記圧力室とを連通させる連通路と、
    を備えることを特徴とする圧力調整弁。
  3. 一次側流路に流入する流体を調圧して二次側流路に排出する圧力調整弁において、
    前記一次側流路と前記二次側流路との間の開口部に設けられた弁座と、
    前記弁座に対し変位可能に配置された弁体と、
    前記弁体に連結され前記弁体の変位量に応じた開方向の推力を前記弁体に作用させるスプリングと、
    前記弁体に連結され前記二次側流路の流体の圧力を受けて閉方向の推力を前記弁体に作用させるダイヤフラムと、
    前記一次側流路及び前記二次側流路とは隔離して設けられ内部の流体の圧力を閉方向の推力として前記弁体に作用させるバランス室と、
    前記二次側流路に形成された絞り部と、
    前記絞り部と前記バランス室とを連通させる連通路と、
    を備えることを特徴とする圧力調整弁。
  4. 水素を含む燃料ガスの供給を受けて発電する燃料電池と、前記燃料電池のアノードに燃料ガスを供給するための燃料ガス通路とを備えた燃料電池システムにおいて、
    前記燃料ガス通路に請求項1乃至3項の何れか1項に記載の圧力調整弁が配置されていることを特徴とする燃料電池システム。
JP2004033639A 2004-02-10 2004-02-10 圧力調整弁 Expired - Fee Related JP4367160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033639A JP4367160B2 (ja) 2004-02-10 2004-02-10 圧力調整弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033639A JP4367160B2 (ja) 2004-02-10 2004-02-10 圧力調整弁

Publications (2)

Publication Number Publication Date
JP2005227867A true JP2005227867A (ja) 2005-08-25
JP4367160B2 JP4367160B2 (ja) 2009-11-18

Family

ID=35002559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033639A Expired - Fee Related JP4367160B2 (ja) 2004-02-10 2004-02-10 圧力調整弁

Country Status (1)

Country Link
JP (1) JP4367160B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026753A1 (en) * 2006-08-29 2008-03-06 Canon Kabushiki Kaisha Connection mechanism for fluid pipings, manufacturing method for the same, and fuel cell system including connection mechanism for fluid pipings
JP2010026825A (ja) * 2008-07-22 2010-02-04 Nachi Fujikoshi Corp ポペット形減圧弁
WO2012056647A1 (ja) * 2010-10-25 2012-05-03 川崎重工業株式会社 減圧弁
WO2013099694A1 (ja) * 2011-12-27 2013-07-04 川崎重工業株式会社 燃料電池システムの圧力調整装置
JP2014078280A (ja) * 2007-11-13 2014-05-01 Hydac Fluidtechnik Gmbh 弁装置
CN105387726A (zh) * 2015-12-21 2016-03-09 湖南顶立科技有限公司 一种气压平衡调节装置
CN109340446A (zh) * 2018-11-26 2019-02-15 乐山川天燃气输配设备有限公司 一种间接作用式调压器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8256740B2 (en) 2006-08-29 2012-09-04 Canon Kabushiki Kaisha Connection mechanism for fluid pipings, manufacturing method for the same, and fuel cell system including connection mechanism for fluid pipings
KR101120340B1 (ko) 2006-08-29 2012-02-24 캐논 가부시끼가이샤 유체배관의 접속기구, 그 제조방법, 및 유체배관의 접속기구를 가진 연료전지시스템
WO2008026753A1 (en) * 2006-08-29 2008-03-06 Canon Kabushiki Kaisha Connection mechanism for fluid pipings, manufacturing method for the same, and fuel cell system including connection mechanism for fluid pipings
JP2014078280A (ja) * 2007-11-13 2014-05-01 Hydac Fluidtechnik Gmbh 弁装置
JP2010026825A (ja) * 2008-07-22 2010-02-04 Nachi Fujikoshi Corp ポペット形減圧弁
WO2012056647A1 (ja) * 2010-10-25 2012-05-03 川崎重工業株式会社 減圧弁
CN102959485A (zh) * 2010-10-25 2013-03-06 川崎重工业株式会社 减压阀
KR101378225B1 (ko) * 2010-10-25 2014-03-27 카와사키 주코교 카부시키 카이샤 감압 밸브
JP2012093809A (ja) * 2010-10-25 2012-05-17 Kawasaki Heavy Ind Ltd 減圧弁
US9141115B2 (en) 2010-10-25 2015-09-22 Kawasaki Jukogyo Kabushiki Kaisha Pressure reducing valve
WO2013099694A1 (ja) * 2011-12-27 2013-07-04 川崎重工業株式会社 燃料電池システムの圧力調整装置
CN105387726A (zh) * 2015-12-21 2016-03-09 湖南顶立科技有限公司 一种气压平衡调节装置
CN105387726B (zh) * 2015-12-21 2017-11-07 湖南顶立科技有限公司 一种气压平衡调节装置
CN109340446A (zh) * 2018-11-26 2019-02-15 乐山川天燃气输配设备有限公司 一种间接作用式调压器
CN109340446B (zh) * 2018-11-26 2023-12-22 乐山川天燃气输配设备有限公司 一种间接作用式调压器

Also Published As

Publication number Publication date
JP4367160B2 (ja) 2009-11-18

Similar Documents

Publication Publication Date Title
US8323852B2 (en) Ejector and fuel cell system using the same
KR101126665B1 (ko) 연료전지 시스템
US7341074B2 (en) Multi-stage pressure regulator
US8439328B2 (en) Fluid control valve and fuel cell system
JP4814965B2 (ja) エゼクタおよびこのエゼクタを用いた燃料電池システム
WO2005088757A1 (ja) 燃料電池システムおよびその制御方法
US8343680B2 (en) Fuel cell system
JP4367160B2 (ja) 圧力調整弁
WO2005124493A1 (en) Pressure reducing device and pressure reducing system
JP4338914B2 (ja) 燃料循環式燃料電池システム
JP2008218072A (ja) 燃料電池システム
US9523440B2 (en) Fuel cell system
JP2010053983A (ja) 開閉弁
JP2006331850A (ja) 燃料電池の反応ガス供給装置
JP5215714B2 (ja) 弁装置
JP5379411B2 (ja) 燃料電池用レギュレータユニット
JP4319494B2 (ja) 燃料電池
JP2007113641A (ja) 燃料ガス供給装置
JP2007515726A (ja) 運転停止時のプロセスガス圧力減衰制御
CN114520352B (zh) 气体压力控制装置及电堆测试平台
JP2005347189A (ja) 燃料電池システム
JP2018084278A (ja) バルブモジュール
JP2007207743A (ja) 燃料電池システム
JP5363763B2 (ja) 燃料電池用レギュレータ
JP2006302612A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees