JP2005223124A - Heat sink and electronic apparatus equipped with the same - Google Patents

Heat sink and electronic apparatus equipped with the same Download PDF

Info

Publication number
JP2005223124A
JP2005223124A JP2004029098A JP2004029098A JP2005223124A JP 2005223124 A JP2005223124 A JP 2005223124A JP 2004029098 A JP2004029098 A JP 2004029098A JP 2004029098 A JP2004029098 A JP 2004029098A JP 2005223124 A JP2005223124 A JP 2005223124A
Authority
JP
Japan
Prior art keywords
heat
impeller
radiating
noses
nose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004029098A
Other languages
Japanese (ja)
Inventor
Shiyougo Takeo
升吾 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004029098A priority Critical patent/JP2005223124A/en
Publication of JP2005223124A publication Critical patent/JP2005223124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat sink of high heat radiation capacity and cooling efficiency, having low noise, and to provide an electronic apparatus with the heat sink mounted thereon. <P>SOLUTION: In the heatsink, the heat of a cooled object is received by a heat-receiving part through a refrigerant liquid and is sent to a heat radiating part for heat radiation. The heat radiating part 3 comprises a centrifugal fan 4 provided with a pair of noses facing, and protruding toward an impeller and with a double volute for discharging in the facing direction, and a pair of heat radiation fin arrays which are provided to discharge the paths of the double volute with a plurality of heat radiation fins, arranged along a discharge flow for radiating the heat of the refrigerant liquid. Thus, the center of the impeller is not aligned with the straight line connecting the pair of noses, and the phase of pressure fluctuation, generated by each nose when the impeller spins, is distributed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、冷媒を循環させながら半導体集積回路等の発熱部品の熱をファンと放熱フィン列で放熱する放熱装置、及びそれを備えた電子機器に関するものである。   The present invention relates to a heat dissipating device that dissipates heat of a heat-generating component such as a semiconductor integrated circuit by a fan and a heat dissipating fin array while circulating a refrigerant, and an electronic apparatus including the heat dissipating device.

最近のコンピュータにおける高速化の動きはきわめて急速である。このため、中央演算処理装置(CPU)の発熱量が増し、従来のようにヒートシンクで空冷し、筐体内部の空気と外部の空気とを換気するだけでは冷却能力不足で、高効率で高出力の冷却装置が不可欠になっている。そこで従来、発熱部品を冷却するための装置として、受熱部と放熱部との間で冷媒液が循環する流路を設け、受熱部において、発熱部品からの熱を冷媒液に吸収させて、温度の高くなった冷媒液を放熱部に搬送し、放熱部において、冷媒液の熱を放出することで、冷媒液の温度を下げ、再び冷媒液を発熱部品に搬送して、冷却を繰り返す循環式の放熱装置が提案された(例えば特許文献1参照)。   The recent trend of speeding up in computers is extremely rapid. For this reason, the amount of heat generated by the central processing unit (CPU) increases, and it is air-cooled with a heat sink as before, and simply ventilating the air inside the housing and the outside air, the cooling capacity is insufficient, high efficiency and high output The cooling system is indispensable. Therefore, conventionally, as a device for cooling the heat generating component, a flow path through which the refrigerant liquid circulates between the heat receiving portion and the heat radiating portion is provided, and in the heat receiving portion, the heat from the heat generating component is absorbed by the refrigerant liquid, and the temperature is increased. The refrigerant liquid that has become higher is transported to the heat radiating part, and the heat of the refrigerant liquid is released in the heat radiating part, so that the temperature of the refrigerant liquid is lowered, the refrigerant liquid is transported to the heat-generating parts again, and the cooling is repeated. (See, for example, Patent Document 1).

この従来の放熱装置においては、放熱部では冷媒液の熱を表面に伝達し、その表面に空気を流し、大気中に放熱していた。放熱部での大気への放熱の構造としては、冷媒液の通るパイプに多数の板状のフィンを設け、ファンによって送風する構成になっていた。   In this conventional heat radiating device, the heat of the refrigerant liquid is transmitted to the surface in the heat radiating section, and air is flowed to the surface to radiate heat to the atmosphere. As a structure of heat radiation to the atmosphere in the heat radiation portion, a large number of plate-like fins are provided on the pipe through which the refrigerant liquid passes, and air is blown by a fan.

また、一般に、ファンにおいて、ファンの回転音を低下するためにケーシング内の2箇所で発生する圧力波の波長を、半波長ずらして干渉させ、打ち消し合わせることにより騒音低下を行う技術があった。
特開平07−142886号公報
In general, in a fan, there has been a technique for reducing noise by causing the wavelengths of pressure waves generated at two locations in a casing to interfere with each other by shifting by half a wavelength in order to reduce the rotational sound of the fan.
Japanese Patent Laid-Open No. 07-142886

しかしながら、板状のフィンに対して送風するとフィンの表面において気流は層流となり、効率的に放熱することができなかった。すなわち、フィンの表面の熱はフィン表面を流れる層流の薄い境界層部分の空気にのみ伝達され、フィン表面から離れた主流の流れは単に通過するだけで熱を受け取らず、放熱に寄与しない。そこで、ファンの回転数を上げて送風量を増加させようとすると、概ね回転数の4乗に比例してファンの騒音が発生し、電子機器に使用するときに耳障りな音となる。   However, when the air is blown to the plate-like fins, the airflow becomes laminar on the surface of the fins, and the heat cannot be efficiently radiated. That is, the heat on the surface of the fin is transmitted only to the air in the thin boundary layer portion of the laminar flow that flows on the fin surface, and the main flow away from the fin surface simply passes through and does not receive heat and does not contribute to heat dissipation. Therefore, if the rotational speed of the fan is increased to increase the amount of air blown, fan noise is generated approximately in proportion to the fourth power of the rotational speed, resulting in an annoying sound when used in an electronic device.

このように、回転数を上げて送風量を増加するだけでは騒音の増加を招くことになり、しかもフィン表面の層流境界層を乱流化できないため冷却効率が悪い。回転数を下げて送風量を減少させると、騒音は減少するが放熱能力が低下するし、放熱能力を上げようとすると騒音が増大する。さらに、このような放熱装置に従来の半波長ずらして打ち消し合わせるという技術を施しても、冷却効率、放熱能力の向上には結びつかず、騒音低下が図れるにすぎない。   Thus, increasing the number of rotations and increasing the amount of air flow will cause an increase in noise, and the laminar boundary layer on the fin surface cannot be turbulent, resulting in poor cooling efficiency. When the rotational speed is lowered to reduce the air flow rate, the noise is reduced, but the heat dissipation capability is reduced, and when the heat dissipation capability is increased, the noise increases. Furthermore, even if such a heat dissipation device is subjected to a conventional technique of canceling with a half-wave shift, it does not lead to an improvement in cooling efficiency and heat dissipation capability, and only a reduction in noise can be achieved.

従って、ファンの騒音を低下させつつ、大風量、高放熱能力、高効率の冷却を実現するということは、いわば矛盾を孕んだ課題であった。   Therefore, realizing a large air volume, a high heat radiation capacity, and a high efficiency cooling while reducing the noise of the fan has been a problem with a contradiction.

そこで、本発明は、放熱能力が高く、高冷却効率で低騒音の放熱装置と、それを搭載した電子機器を提供することを目的とする。   Accordingly, an object of the present invention is to provide a heat dissipating device having high heat dissipating capability, high cooling efficiency and low noise, and an electronic device equipped with the heat dissipating device.

本発明の放熱装置は、冷媒液によって冷却対象物の熱を受熱部で受熱し、受熱した熱を
放熱するためのファンと放熱フィン列とが設けられた放熱部に冷媒液を送って放熱する放熱装置であって、ファンが、遠心型の羽根車と、該羽根車に向けて対向して突出する一対のノーズが形成されたダブルボリュートを備え、ダブルボリュートの各吐出路には放熱フィン列が設けられるとともに、その複数の放熱フィンが吐出流れに沿って配列され、羽根車の中心がノーズ間を結ぶ直線上の位置から外され、羽根車が回転したときに各ノーズで発生する圧力変動の位相が分散されることを主要な特徴とする。
The heat radiating device of the present invention receives the heat of the object to be cooled by the refrigerant liquid at the heat receiving part, and sends the refrigerant liquid to the heat radiating part provided with the fan and the radiating fin row for radiating the received heat to radiate the heat. A heat dissipating device, wherein the fan includes a centrifugal impeller and a double volute formed with a pair of noses projecting toward the impeller, and each discharge path of the double volute has a row of heat dissipating fins. Pressure fluctuations that occur at each nose when the impeller rotates, with the plurality of radiating fins arranged along the discharge flow, the center of the impeller removed from the position on the straight line connecting the noses The main feature is that the phase of each is dispersed.

本発明によれば、放熱能力が高く、高効率の冷却を実現することができるとともに、あわせて低騒音の放熱装置と、それを搭載した電子機器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to implement | achieve highly efficient cooling with high heat dissipation capability, the low noise heat radiating device and the electronic device carrying it can be provided.

上記課題を解決するためになされた第1の発明は、冷媒液によって冷却対象物の熱を受熱部で受熱し、受熱した熱を放熱するためのファンと放熱フィン列とが設けられた放熱部に冷媒液を送って放熱する放熱装置であって、ファンが、遠心型の羽根車と、該羽根車に向けて対向して突出する一対のノーズが形成されたダブルボリュートを備え、ダブルボリュートの各吐出路には放熱フィン列が設けられるとともに、その複数の放熱フィンが吐出流れに沿って配列され、羽根車の中心がノーズ間を結ぶ直線上の位置から外され、羽根車が回転したときに各ノーズで発生する圧力変動の位相が分散される放熱装置であり、放熱能力が高く、高効率の冷却を実現することができるとともに、あわせて低騒音の放熱装置を実現できる。   A first invention made to solve the above problems is a heat radiating portion provided with a fan and a radiating fin array for receiving heat of a cooling object by a refrigerant liquid at the heat receiving portion and radiating the received heat. A heat dissipating device for sending a refrigerant liquid to dissipate heat, wherein the fan comprises a centrifugal impeller and a double volute formed with a pair of noses protruding opposite to the impeller, and the double volute Each discharge path is provided with a row of radiating fins, and the plurality of radiating fins are arranged along the discharge flow. When the impeller rotates when the center of the impeller is removed from the position on the straight line connecting the noses In addition, a heat radiating device in which the phase of the pressure fluctuation generated at each nose is dispersed, has a high heat radiating capability, can realize highly efficient cooling, and can also realize a low noise heat radiating device.

本発明の第2の発明は、第1の発明に従属する発明であって、ノーズで発生するそれぞれの圧力変動の位相差が120°となるように羽根車の中心を設定し、各ノーズで発生する圧力変動のピークの位相が均等に分散された放熱装置であり、確実に高放熱能力、高効率で、低騒音の放熱装置とすることができる。   A second invention of the present invention is an invention dependent on the first invention, wherein the center of the impeller is set so that the phase difference of each pressure fluctuation generated in the nose is 120 °, and each nose is This is a heat dissipation device in which the phase of the peak of the generated pressure fluctuation is evenly distributed, and can be surely made into a heat dissipation device with high heat dissipation capability, high efficiency and low noise.

本発明の第3の発明は、第1または2の放熱装置を搭載するとともに、受熱部が発熱電子部品に接触された電子機器であり、放熱能力が高く、高効率の冷却を実現することができるとともに、あわせて低騒音で、信頼性の高い電子機器にすることができる。   The third invention of the present invention is an electronic device in which the first or second heat dissipation device is mounted and the heat receiving portion is in contact with the heat generating electronic component, has a high heat dissipation capability, and realizes high-efficiency cooling. At the same time, it is possible to make electronic devices with low noise and high reliability.

(実施例1)
本発明の実施例1は電子機器としてコンピュータ装置に関するものであり、このコンピュータ装置に搭載する放熱装置に関するものである。図1は本発明の実施例1における放熱装置を搭載したコンピュータ装置の構成図である。
(Example 1)
Embodiment 1 of the present invention relates to a computer device as an electronic apparatus, and relates to a heat dissipation device mounted on the computer device. FIG. 1 is a configuration diagram of a computer device equipped with a heat dissipation device in Embodiment 1 of the present invention.

図1において、1はコンピュータ装置の発熱部品であるCPUであり、動作のためのクロック周波数に比例して発熱する。最近では1GHz〜3GHzクラスの高い周波数で動作するコンピュータ装置が出現し、発熱量はきわめて大きく、コンピュータ装置の筐体はコンパクトで熱がこもり易い構造となっている。   In FIG. 1, reference numeral 1 denotes a CPU which is a heat generating component of a computer device, and generates heat in proportion to a clock frequency for operation. Recently, computer devices operating at a high frequency of 1 GHz to 3 GHz class have appeared, and the amount of heat generation is extremely large, and the housing of the computer device has a structure that is compact and easily traps heat.

2は受熱部が側面に設けられてCPU1から熱を吸収し冷媒との間で熱交換して冷媒を循環させ、ポンプを駆動するモータが設けられた受熱部一体型ポンプである。この受熱部一体型ポンプ2は、図示はしないが遠心型ポンプや渦流ポンプ等のターボ型ポンプであり、CPU1面上に載置できるように、ポンプの諸元は、厚さ3mm〜20mm、半径方向代表寸法10mm〜70mm、回転数は600rpm〜4000rpm、流量が0.01L/分〜1.5L/分、ヘッド0.1m〜2m、比速度でいうと、12〜200(単位:m、m3/分、rpm)程度のきわめて小型のものである。また、高効率の伝熱が可能になるように、受熱部一体型ポンプ2のモータの設置側とは反対側の側面が発熱部品と相補形状に形成されている。 Reference numeral 2 denotes a heat receiving unit-integrated pump provided with a motor that drives the pump by providing a heat receiving unit on a side surface, absorbing heat from the CPU 1 and exchanging heat with the refrigerant to circulate the refrigerant. The heat receiving unit integrated pump 2 is a turbo pump such as a centrifugal pump or a vortex pump (not shown), and the specifications of the pump have a thickness of 3 mm to 20 mm and a radius so that the pump 1 can be placed on the surface of the CPU 1. Direction representative dimensions 10 mm to 70 mm, rotation speed 600 rpm to 4000 rpm, flow rate 0.01 L / min to 1.5 L / min, head 0.1 m to 2 m, specific speed 12 to 200 (unit: m, m 3 / min, rpm). Further, the side surface opposite to the motor installation side of the heat receiving part integrated pump 2 is formed in a complementary shape with the heat generating component so that heat transfer with high efficiency is possible.

3はアルミニウムや銅等の熱伝導性の良好な金属で形成されて冷媒から熱を奪う放熱部、4は放熱部3に設けられて放熱部3を強制冷却する遠心型のファンである。ファン4を駆動することによって空気を放熱部3で流動させ、その外表面から熱を大気中に放出させる。放熱部3には冷媒液の流路となる金属管に多数のフィンが設けられており、ファン4によって空気をフィンに当てることにより、フィンの熱を大気中に放出させる。5は冷媒液の減少時に冷媒液を補充するためにこれを蓄えておくリザーブタンク、7はこれらを接続し循環路を形成するフレキシブルな配管である。実施例1の受熱部一体型ポンプ2は、600rpm〜4000rpmで設定された所定の設定回転数で駆動され、CPU1に接触させた受熱部を介して熱を奪い、所定の流量の冷媒を循環させる。   Reference numeral 3 denotes a heat dissipating part that is made of a metal having good thermal conductivity such as aluminum or copper and takes heat from the refrigerant, and 4 is a centrifugal fan that is provided in the heat dissipating part 3 and forcibly cools the heat dissipating part 3. By driving the fan 4, air is caused to flow in the heat radiating unit 3, and heat is released from the outer surface to the atmosphere. The heat radiating section 3 is provided with a large number of fins in a metal tube serving as a flow path for the refrigerant liquid. By applying air to the fins by the fan 4, the heat of the fins is released into the atmosphere. Reference numeral 5 denotes a reserve tank that stores the refrigerant liquid to be replenished when the refrigerant liquid is reduced, and 7 is a flexible pipe that connects these to form a circulation path. The heat receiving unit integrated pump 2 of the first embodiment is driven at a predetermined set rotational speed set at 600 rpm to 4000 rpm, takes heat through the heat receiving unit brought into contact with the CPU 1, and circulates a refrigerant having a predetermined flow rate. .

続いて、実施例1の放熱部3の詳細な構成について説明する。図2は本発明の実施例1における放熱部の一部分解した斜視図である。図2において、21はパイプであり、配管7を使って送られてきた冷媒液を放熱部3内部で循環させるため設けられる。CPU1の熱を吸収して温度が上昇した冷媒液は受熱一体ポンプ2から吐出され、図2のように放熱部3に入る。放熱部3で放熱して温度が下がった冷媒液は放熱部3から排出され、配管7により再び受熱部一体型ポンプ2に戻る。   Then, the detailed structure of the thermal radiation part 3 of Example 1 is demonstrated. FIG. 2 is a partially exploded perspective view of the heat dissipating part in the first embodiment of the present invention. In FIG. 2, reference numeral 21 denotes a pipe, which is provided to circulate the refrigerant liquid sent using the pipe 7 inside the heat radiating unit 3. The refrigerant liquid whose temperature has increased by absorbing the heat of the CPU 1 is discharged from the heat receiving integrated pump 2 and enters the heat radiating section 3 as shown in FIG. The refrigerant liquid that has radiated heat at the heat radiating unit 3 and has fallen in temperature is discharged from the heat radiating unit 3, and returns to the heat receiving unit integrated pump 2 again through the pipe 7.

22a,22bは複数枚のアルミ板を並べた一対の放熱フィン列で、パイプ21が貫通され、両者は熱的に結合されている。吐出口では放熱フィン列22a,22bの放熱フィンが流れに沿った向きに配列される。パイプ21を通る冷媒液の熱がパイプ21の外表面から放熱フィン列22に伝わり、その熱は大気中に放出される。放熱フィン列22a,22bの各長さは、ファン4の直径よりも長尺に形成される。   22a and 22b are a pair of radiating fin rows in which a plurality of aluminum plates are arranged, the pipe 21 is penetrated, and both are thermally coupled. At the discharge port, the radiating fins of the radiating fin rows 22a and 22b are arranged in the direction along the flow. The heat of the refrigerant liquid passing through the pipe 21 is transmitted from the outer surface of the pipe 21 to the radiating fin row 22, and the heat is released to the atmosphere. Each length of the radiation fin rows 22 a and 22 b is formed longer than the diameter of the fan 4.

23は放熱部3のケースである。ケース23には遠心型のファン3と後述の放熱フィン列22a,22bが固定される。24はモータが中央に配置されたファン3の羽根車である。ケース23は逆向き2方向の吐出が行えるダブルボリュートであり、各吐出口の中間に羽根車24は設けられる。25はケース23の下面に開けられた空気の流入口、26は羽根車24を覆うためのカバー、27はカバー26に設けられた流入口、28はケース23に設けられたダブルボリュートの流路を構成するリブである。   Reference numeral 23 denotes a case of the heat radiating portion 3. The case 23 is fixed with a centrifugal fan 3 and radiating fin rows 22a and 22b described later. Reference numeral 24 denotes an impeller of the fan 3 having a motor disposed in the center. The case 23 is a double volute capable of discharging in two opposite directions, and an impeller 24 is provided in the middle of each discharge port. Reference numeral 25 denotes an air inlet opened on the lower surface of the case 23, 26 a cover for covering the impeller 24, 27 an inlet provided in the cover 26, and 28 a flow path of a double volute provided in the case 23. It is the rib which comprises.

ケース23とカバー26の流入口25、27から吸い込まれた空気は、羽根車24の回転によって遠心方向に向きを変え、運動量を得て昇圧される。羽根車24はダブルボリュートの数(後述するようにノーズの数と同数であり、ダブルボリュートの場合は2個)と公約数をもたない素数の羽根数にされる。例えば図2では13枚の羽根数が採用されている。これはダブルボリュートの2箇所で、同時に、圧力波を発生させないためである。すなわち、羽根が2箇所で同位相の圧力波を発生すると、この2つの圧力波が伝播して干渉を起こすからである。しかし、素数の羽根数の場合はダブルボリュートの数と公約数をもたず、従って同時に圧力波を発生することがなく、干渉しない。羽根車24から吐出された空気は、ケース23に設けられたリブ28に沿ってダブルボリュートの各吐出口に設けられた放熱フィン列22a,22bに流入する。この放熱フィン列22a,22bを空気が通過するとき放熱フィン列22a,22bの熱を奪って冷媒液を冷却する。   The air sucked from the inlets 25 and 27 of the case 23 and the cover 26 changes its direction in the centrifugal direction by the rotation of the impeller 24, obtains momentum, and is pressurized. The impeller 24 has a number of double volutes (which is the same as the number of noses as will be described later, two in the case of double volute) and a prime number of blades having no common divisor. For example, in FIG. 2, the number of 13 blades is adopted. This is because pressure waves are not generated simultaneously at two locations of the double volute. That is, if the blades generate pressure waves having the same phase at two locations, the two pressure waves propagate and cause interference. However, the prime number of blades does not have the number of double volutes and the common divisor, and therefore does not generate pressure waves at the same time and does not interfere. The air discharged from the impeller 24 flows along the ribs 28 provided in the case 23 into the radiating fin rows 22a and 22b provided in the discharge ports of the double volute. When air passes through the radiating fin rows 22a and 22b, the heat is taken from the radiating fin rows 22a and 22b to cool the refrigerant liquid.

図3は本発明の実施例1におけるケースとそれに設けられた羽根車の平面図、図4は本発明の実施例1における第1のノーズに第1の羽根が最も接近した状態の平面図、図5は本発明の実施例1における第2のノーズに第2の羽根が最も接近した状態の平面図である。図3において、31,32は羽根車24に向けて対向して突出する一対のダブルボリュートのノーズである。ノーズ31,32はそれぞれ羽根車24との距離が最も近い点となる最接近点である。このノーズ31,32から圧力回復させるためのそれぞれのボリュートが形成される。羽根車24が矢印のように反時計回りで回転すると、リブ28に沿って
空気は遠心方向に吐出され、左右2方向に流出される。そして実施例1では、ノーズ31,32を結ぶ直線上から外れた位置に羽根車24の中心がくるように配置される。また、図4,5に示す24a,24b,24c,24dはそれぞれ13枚の羽根車24の羽根である。
FIG. 3 is a plan view of a case and an impeller provided thereon in Embodiment 1 of the present invention, and FIG. 4 is a plan view of a state in which the first blade is closest to the first nose in Embodiment 1 of the present invention. FIG. 5 is a plan view showing a state in which the second blade is closest to the second nose in the first embodiment of the present invention. In FIG. 3, reference numerals 31 and 32 denote a pair of double volute noses protruding opposite to the impeller 24. The noses 31 and 32 are closest points that are closest to the impeller 24. Each volute for pressure recovery from the noses 31 and 32 is formed. When the impeller 24 rotates counterclockwise as indicated by the arrow, the air is discharged along the ribs 28 in the centrifugal direction and flows out in the left and right directions. And in Example 1, it arrange | positions so that the center of the impeller 24 may come to the position which remove | deviated from the straight line which connects the noses 31 and 32. FIG. Moreover, 24a, 24b, 24c, and 24d shown in FIGS. 4 and 5 are blades of 13 impellers 24, respectively.

図4はノーズ32に羽根車24の一枚の羽根24aが最も接近した状態を示す。この状態では、羽根24bと羽根24cとの間にノーズ31が位置する。この位置は、正確には、羽根24bと羽根24cとの中央ではなく、羽根24cと羽根24bとの間を略1/3と略2/3に分けるところである。また、図5は図4の状態から羽根車24が少し回転してノーズ31に羽根車24の一枚の羽根24bが最も接近した状態を示す。この状態では、ノーズ32は羽根24aと羽根24dとの間に位置する。この位置は、正確には、羽根24aと羽根24dとの中央ではなく、羽根24dと羽根24aとの間を略1/3と略2/3に分けるところである。   FIG. 4 shows a state in which one blade 24 a of the impeller 24 is closest to the nose 32. In this state, the nose 31 is located between the blade 24b and the blade 24c. More precisely, this position is not the center of the blades 24b and 24c, but the portion between the blades 24c and 24b is divided into approximately 1/3 and approximately 2/3. FIG. 5 shows a state in which the impeller 24 is slightly rotated from the state of FIG. 4 and one blade 24 b of the impeller 24 is closest to the nose 31. In this state, the nose 32 is located between the blades 24a and 24d. More precisely, this position is not the center of the blades 24a and 24d, but the portion between the blades 24d and 24a is divided into approximately 1/3 and approximately 2/3.

そこで、以上説明したノーズで発生する圧力変動について具体的に説明する。図6は本発明の実施例1における第1及び第2のノーズと羽根車の圧力変化を示すグラフである。図6において、P31はノーズ31での圧力変化を示し、P32はノーズ32での圧力変化である。波形P31,P32は正弦波形状で、波形P31,P32の1波長は羽根車24のある羽根がノーズ31またはノーズ32の近傍を通過してから次の羽根が通過するまでの期間である。そして、上述したように、羽根の1枚がノーズ31,32の一方に差し掛かったときに、ノーズ31,32の他方は2枚の羽根間を略1/3と略2/3に分けるところに位置するため、図6に示すように波形P31,P32は位相が3分の1ずれることになる。このため、P31のピークとP32のピークが同時に出現することはなく、波形P31,P32が同位相のために干渉し、回転数N、羽根数Zとしたとき、周波数NZとその高周波成分の強い騒音となって伝播することはない。   Therefore, the pressure fluctuation generated at the nose described above will be specifically described. FIG. 6 is a graph showing pressure changes in the first and second noses and the impeller in Example 1 of the present invention. In FIG. 6, P 31 indicates a pressure change at the nose 31, and P 32 is a pressure change at the nose 32. The waveforms P31 and P32 are sinusoidal, and one wavelength of the waveforms P31 and P32 is a period from when a blade with the impeller 24 passes through the nose 31 or the vicinity of the nose 32 until the next blade passes. As described above, when one of the blades reaches one of the noses 31 and 32, the other of the noses 31 and 32 divides the space between the two blades into approximately 1/3 and approximately 2/3. Therefore, as shown in FIG. 6, the waveforms P31 and P32 are out of phase by one third. For this reason, the peak of P31 and the peak of P32 do not appear at the same time, and when the waveforms P31 and P32 interfere with each other due to the same phase and the rotation speed is N and the number of blades is Z, the frequency NZ and its high-frequency component are strong. It does not propagate as noise.

このように実施例1においては、羽根車24の干渉音を低減させるため、少なくとも、羽根数Zとノーズの数(ダブルボリュートであるから2個)との間に公約数が存在いないようにしている。さらに実施例1においては、ノーズ31,32の先端を結ぶ直線上に羽根車24の中心をおかず、これから少し外れた位置にこの中心を配置している。これにより、ノーズ31,32の一方を1枚の羽根が通過しているとき、同時にノーズ31,32の他方を別の羽根が通過するということを防止する。中でも、波形P31,P32の位相差が約120°になるように羽根車24とノーズ31,32とを配置するのが好適である。すなわち、このような配置にするときには、図6に示すようにノーズ31,32における圧力変動の合計4つの正負のピークの出現時期を均等に分散させることができるからである。   Thus, in the first embodiment, in order to reduce the interference sound of the impeller 24, at least a common divisor is not present between the number of blades Z and the number of noses (two because it is a double volute). Yes. Further, in the first embodiment, the center of the impeller 24 is not placed on a straight line connecting the tips of the noses 31 and 32, and the center is arranged at a position slightly deviated from the center. Thus, when one blade passes through one of the noses 31 and 32, it is prevented that another blade passes through the other of the noses 31 and 32 at the same time. In particular, it is preferable to arrange the impeller 24 and the noses 31 and 32 so that the phase difference between the waveforms P31 and P32 is about 120 °. That is, when such an arrangement is made, the appearance time of a total of four positive and negative peaks of pressure fluctuations in the noses 31 and 32 can be evenly distributed as shown in FIG.

ところで、従来、2つの圧力波の波長を半波長(180°)ずらし、両者を打ち消しあわせて騒音を低下することが騒音対策の1つの手段として提案されている。しかし、この方法では、放熱フィン列22a,22bのフィン表面の層流境界層を乱流化できず、少なくとも放熱能力や冷却効率の向上に結びつけることはできない。   By the way, conventionally, as one means for noise countermeasures, it has been proposed to shift the wavelengths of two pressure waves by half a wavelength (180 °) and cancel the two to reduce noise. However, with this method, the laminar boundary layer on the fin surfaces of the heat dissipating fin rows 22a and 22b cannot be turbulent, and at least cannot be improved in heat dissipating capacity and cooling efficiency.

そこで、本発明の実施例1の放熱部3においては、ダブルボリュートの各吐出口の中に、複数のフィン表面を流れの方向に沿わせて放熱フィン列22a,22bを配列する。この構成の場合、圧力変動を打ち消すのではなく、逆に圧力変動を利用して放熱フィンの層流境界層を乱流化し(これにより放熱能力、放熱効率が向上する)、放熱フィン列22a,22bから吐出する時点では整流作用で騒音を減少させることが可能になる。干渉までは起こさず、適度に管理されたノーズ31,32から発生する圧力変動と、放熱フィン列22a,22bとにより、低層音、大風量、高放熱能力、高効率の放熱が実現できる。   Therefore, in the heat dissipating section 3 of the first embodiment of the present invention, the heat dissipating fin rows 22a and 22b are arranged in the discharge ports of the double volute so that the plurality of fin surfaces are aligned in the flow direction. In this configuration, instead of canceling the pressure fluctuation, the laminar flow boundary layer of the radiating fin is turbulent using the pressure fluctuation (this improves the heat radiating capability and the heat radiating efficiency), and the radiating fin row 22a, At the time of discharging from 22b, noise can be reduced by the rectifying action. Due to pressure fluctuations generated from the moderately controlled noses 31 and 32 and the radiation fin rows 22a and 22b without causing interference, low-rise sound, large air volume, high heat radiation capability, and high efficiency heat radiation can be realized.

これに対して、波形P31,P32の圧力波を同位相で干渉させた場合には、圧力変動は大きく放熱部3の外部に伝播し、騒音が低下することはない。   On the other hand, when the pressure waves of the waveforms P31 and P32 are caused to interfere with each other in the same phase, the pressure fluctuation is greatly propagated to the outside of the heat radiating unit 3 and noise is not reduced.

ノーズ31,32で発生する圧力変動を干渉しないで適度に変化する圧力変動にするには、波形P31,P32の4つのピークの出現時期を均等に分散させ、羽根とノーズ31,32との距離を調整することにより強さをコントロールすればよい。このとき規則的で適度な大きさの圧力波が発生し、放熱フィン列22a,22bで高効率の放熱と整流ができ、全体として、騒音低下、高放熱能力、高効率の放熱部3にすることができる。実施例1においては、上述のように羽根車24の中心をノーズ31,32の先端を結ぶ直線から外してピークの位置を分散させ、波形P31,P32の位相差が約120°になるように構成するものである。   In order to make the pressure fluctuations that change moderately without interfering with the pressure fluctuations generated at the noses 31 and 32, the appearance times of the four peaks of the waveforms P31 and P32 are evenly distributed, and the distance between the blades and the noses 31 and 32 The strength can be controlled by adjusting. At this time, a regular and moderately large pressure wave is generated, and heat radiation fin arrays 22a and 22b can perform heat radiation and rectification with high efficiency. As a whole, noise reduction, high heat radiation capacity, and high efficiency heat radiation section 3 are obtained. be able to. In the first embodiment, as described above, the center of the impeller 24 is removed from the straight line connecting the tips of the noses 31 and 32, the peak positions are dispersed, and the phase difference between the waveforms P31 and P32 is about 120 °. It constitutes.

このように実施例1の放熱装置とそれを搭載した電子機は、放熱能力が高く、高効率の冷却を実現することができるとともに、あわせて低騒音も実現できる。   As described above, the heat dissipating device of the first embodiment and the electronic device on which the heat dissipating device is mounted have high heat dissipating capability, can realize highly efficient cooling, and can also realize low noise.

本発明は、放熱能力が高く、高効率の冷却を実現することができるとともに、あわせて低騒音の放熱装置、またそれを搭載した電子機器に適用することができる。   INDUSTRIAL APPLICABILITY The present invention has a high heat dissipation capability and can realize high-efficiency cooling. In addition, the present invention can be applied to a low-noise heat dissipation device and an electronic device equipped with the same.

本発明の実施例1における放熱装置を搭載したコンピュータ装置の構成図1 is a configuration diagram of a computer device equipped with a heat dissipation device in Embodiment 1 of the present invention. 本発明の実施例1における放熱部の一部分解した斜視図1 is a partially exploded perspective view of a heat radiating portion in Embodiment 1 of the present invention. 本発明の実施例1におけるケースとそれに設けられた羽根車の平面図The top view of the case in Example 1 of this invention and the impeller provided in it 本発明の実施例1における第1のノーズに第1の羽根が最も接近した状態の平面図The top view of the state in which the 1st blade | wing came closest to the 1st nose in Example 1 of this invention 本発明の実施例1における第2のノーズに第2の羽根が最も接近した状態の平面図The top view of the state in which the 2nd blade | wing approached the 2nd nose in Example 1 of this invention most closely 本発明の実施例1における第1及び第2のノーズと羽根車の圧力変化を示すグラフThe graph which shows the pressure change of the 1st and 2nd nose and impeller in Example 1 of this invention

符号の説明Explanation of symbols

1 CPU
2 受熱部一体型ポンプ
3 放熱部
4 ファン
5 リザーブタンク
7 配管
21 パイプ
22a,22b 放熱フィン列
23 ケース
24 羽根車
25 流入口
26 カバー
27 流入口
28 リブ
31,32 ノーズ
1 CPU
DESCRIPTION OF SYMBOLS 2 Heat receiving part integrated type pump 3 Heat radiation part 4 Fan 5 Reserve tank 7 Piping 21 Pipe 22a, 22b Radiation fin row 23 Case 24 Impeller 25 Inlet 26 Cover 27 Inlet 28 Rib 31, 32 Nose

Claims (3)

冷媒液によって冷却対象物の熱を受熱部で受熱し、受熱した熱を放熱するためのファンと放熱フィン列とが設けられた放熱部に前記冷媒液を送って放熱する放熱装置であって、前記ファンが、遠心型の羽根車と、該羽根車に向けて対向して突出する一対のノーズが形成されたダブルボリュートを備え、前記ダブルボリュートの各吐出路には前記放熱フィン列が設けられるとともに、その複数の放熱フィンが吐出流れに沿って配列され、前記羽根車の中心が前記ノーズ間を結ぶ直線上の位置から外され、前記羽根車が回転したときに各ノーズで発生する圧力変動の位相が分散されることを特徴とする放熱装置。 A heat radiating device that receives heat of a cooling object by a refrigerant liquid at a heat receiving part, and dissipates heat by sending the refrigerant liquid to a heat radiating part provided with a fan and a radiating fin row for radiating the received heat, The fan includes a centrifugal impeller and a double volute formed with a pair of noses protruding to face the impeller, and the radiating fin row is provided in each discharge path of the double volute. In addition, the plurality of radiating fins are arranged along the discharge flow, the center of the impeller is removed from the position on the straight line connecting the noses, and the pressure fluctuation generated in each nose when the impeller rotates The heat dissipating device is characterized in that the phase is dispersed. 前記ノーズで発生するそれぞれの圧力変動の位相差が120°となるように前記羽根車の中心を設定し、各ノーズで発生する圧力変動のピークの位相が均等に分散されたことを特徴とする請求項1記載の放熱装置。 The center of the impeller is set so that the phase difference of each pressure fluctuation generated at the nose is 120 °, and the phase of the peak of pressure fluctuation generated at each nose is evenly distributed. The heat dissipation device according to claim 1. 請求項1または2に記載の放熱装置を搭載し、前記受熱部が発熱電子部品に接触されたことを特徴とする電子機器。 An electronic apparatus comprising the heat dissipation device according to claim 1 or 2, wherein the heat receiving portion is in contact with a heat generating electronic component.
JP2004029098A 2004-02-05 2004-02-05 Heat sink and electronic apparatus equipped with the same Pending JP2005223124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029098A JP2005223124A (en) 2004-02-05 2004-02-05 Heat sink and electronic apparatus equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029098A JP2005223124A (en) 2004-02-05 2004-02-05 Heat sink and electronic apparatus equipped with the same

Publications (1)

Publication Number Publication Date
JP2005223124A true JP2005223124A (en) 2005-08-18

Family

ID=34998517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029098A Pending JP2005223124A (en) 2004-02-05 2004-02-05 Heat sink and electronic apparatus equipped with the same

Country Status (1)

Country Link
JP (1) JP2005223124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473925B1 (en) * 2008-12-16 2010-06-02 株式会社東芝 Loop heat pipe and electronic equipment
TWI397666B (en) * 2010-12-31 2013-06-01 Giga Byte Tech Co Ltd Heat-dissipating device and display device with a dust removal function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473925B1 (en) * 2008-12-16 2010-06-02 株式会社東芝 Loop heat pipe and electronic equipment
JP2010144950A (en) * 2008-12-16 2010-07-01 Toshiba Corp Loop heat pipe and electronic device
US7916482B2 (en) 2008-12-16 2011-03-29 Kabushiki Kaisha Toshiba Loop heat pipe and electronic device
TWI397666B (en) * 2010-12-31 2013-06-01 Giga Byte Tech Co Ltd Heat-dissipating device and display device with a dust removal function

Similar Documents

Publication Publication Date Title
JP3994948B2 (en) Cooling device and electronic equipment
JP3979143B2 (en) Cooling device for information processing equipment
JP3690658B2 (en) Heat sink, cooling member, semiconductor substrate cooling apparatus, computer, and heat dissipation method
JP3757200B2 (en) Electronic equipment with cooling mechanism
TWI439609B (en) Centrifugal fan module, heat sink device having the same and electric device having the heat sink device
JP4532422B2 (en) Heat sink with centrifugal fan
TWI496992B (en) Heat dissipation device
JP2005321287A (en) Cooling device, electronic apparatus, heat sink, and radiation fin
JP7238400B2 (en) Cooling system
US7463484B2 (en) Heatsink apparatus
JP2003258472A (en) Heat sink device and information processing unit
JP5117287B2 (en) Electronic equipment cooling system
JP2007281213A (en) Heat sink module and cooling apparatus having the same
JP4682858B2 (en) Cooling device for electronic equipment
JP5609442B2 (en) Radiators and electronic devices
JP7309842B2 (en) Electronics, cooling modules and heat sinks
JP2005223124A (en) Heat sink and electronic apparatus equipped with the same
JP5127902B2 (en) Electronic device heat dissipation device and electronic device
KR100513010B1 (en) Cooler of notebook personal computer and fabricating method of the same
JP2007240075A (en) Heat transport device, and liquid cooling system using the same
JP2010022711A (en) Water pillow for heat radiation
JP2005203660A (en) Heat dissipating device
TW201223430A (en) Heat sink, liquid cooling unit, and electronic apparatus
JP2009088051A (en) Cooling device for electronic instrument
JP4875453B2 (en) Heat sink with centrifugal fan for heat dissipation