TW201223430A - Heat sink, liquid cooling unit, and electronic apparatus - Google Patents

Heat sink, liquid cooling unit, and electronic apparatus Download PDF

Info

Publication number
TW201223430A
TW201223430A TW100128193A TW100128193A TW201223430A TW 201223430 A TW201223430 A TW 201223430A TW 100128193 A TW100128193 A TW 100128193A TW 100128193 A TW100128193 A TW 100128193A TW 201223430 A TW201223430 A TW 201223430A
Authority
TW
Taiwan
Prior art keywords
heat sink
heat
sink portion
electronic module
coolant
Prior art date
Application number
TW100128193A
Other languages
Chinese (zh)
Inventor
Michimasa Aoki
Masumi Suzuki
Yosuke Tsunoda
Masaru Sugie
Shinichirou Kouno
Hiroshi Muto
Kenji Katsumata
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of TW201223430A publication Critical patent/TW201223430A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops

Abstract

A heat sink for absorbing heat which is generated by an electronic module by a coolant which flows through its internal portion, provided with a first heat sink part which is contiguous with the electronic module, a second heat sink part which is contiguous with the electronic module, and a heat discharger which is arranged spaced from the first heat sink part and second heat sink part at an opposite side from the electronic module and which is arranged in a flow path between the first heat sink part and second heat sink part.

Description

201223430 六、發明說明: 【發明戶斤屬之技術領域3 發明領域 本發明係有關於一種用以吸收一電子模組所產生的熱 之散熱器,以及一種設置有散熱器之液態冷卻單元及電子 裝置。 【先前技術3 發明背景 筆記型個人電腦及其他電子裝置將印刷電路板安裝於 内。例如,於印刷電路板上,安裝有LSI(大型積體電路)晶 片及其他電子模組。為吸收這些電子模組所產生的熱,將 設置有散熱器之液態冷卻單元設置在印刷電路板上。 如習知日本早期公開專利公告號2005-229033。 【發明内容】 發明概要 技術問題 當將液態冷卻單元設置於筆記型個人電腦或其他電子 裝置時,由於電子裝置的内部佈置的設計,有時可供該液 態冷卻單元設置之空間是有限的。一般而言,當該液態冷 卻單元的散熱器的面積變得更小時,該液態冷卻單元的冷 卻效率會降低。因此,當可供該散熱器設置的部位面積受 限時,則無法充分地提高該液態冷卻單元的冷卻效率。 因此,本發明目的在於增進習知當可供液態冷卻單元 的散熱器設置的部位面積受限時之冷卻效率。 3 201223430 問題的技術解決方案 為解決此問題,根據第-觀點,其提供一種散熱器, 用以藉將-冷卻液流過-電子模組内部,來吸收電子模組 所產生之熱’包括—與該電子模組鄰接之第—散熱部件、 一與該電子模組鄰接之第二散熱部件,及—排熱件,其配 置與4第-散熱部件及第二散熱部件於該電子模組的相對 側相間隔’且其配置於該第—散熱部件與第三散熱部件之 間的一流動路徑上。 另’於第二觀點,其提供一種設置有上述散熱器之液 態冷卻單元。 此外,於第三觀點,其提供一種設置有上述散熱器之 電子裝置。 本發明之有利功效 根據揭露的散熱器,藉由一排熱件之設置,相較 知,可增進冷卻效率。 、 圖式簡單說明 第1圖是顯示第一實施例的筆記型p c的—例之透視圖; 第2圖是顯示第一實施例的一殼本體内部結構的 之透視圖; 第3圖是顯示根據第一實施例的液態冷卻單元的一 之平面圖; 1 第4圖疋顯示根據第一實施例的散熱器的—例之透 圖; 第5圖是顯示根據第一實施例的散熱器的—例之透視 201223430 橫剖圖; 第6圖是顯示根據第一實施例的散熱器的變化例之透 視圖, 第7 A圖是顯示根據第二實施例的散熱器的一例之透視 圖,而第7B圖是沿第7A圖的剖線A-A所取之橫剖圖; 第8A圖是顯示根據第三實施例的散熱器的一例之透視 圖,而第8B圖是由第8A圖的箭頭方向所視之橫剖圖;及 第9圖是顯示根據第四實施例的散熱器的一例之透視 圖。 【實施方式3 較佳實施例之詳細說明 (1)第一實施例 首先,參考第1圖,將根據第一實施例,以一筆記型個 人電腦(筆記型PC)10作為一電子裝置為例來說明。第1圖是 顯示根據第一實施例的筆記型PC 10的一例之透視圖。如第 1圖所示,該筆記型PC 10設有一殼本體20及一顯示用殼體 30。該顯示用殼體30與該殼本體20耦接以使其可開啟/關 閉。 該殼本體20設有一基體22及一蓋體24。該蓋體24可自 該基體22卸離。另,在該蓋體24的表面上,設置有一鍵盤 26、一指示裝置28,及其他輸入裝置。 該顯示用殼體30設有一液晶面板模組32。該液晶面板 模組32可顯示文字、圖形等。 其次,參考第2圖,將說明該殼本體20的内部結構。第 201223430 2圖是顯示第一實施例的殼本體20内部結構的一例之透視 圖。如第2圖所示,第—實施例之殼本體2〇設有一印刷電路 板單元40、一DVD(數位多功能光碟)驅動裝置46、一硬碟 驅動裝置48、一卡單元5〇,及一液態冷卻單元1 〇〇。 該印刷電路板單元40設有一印刷電路板42及一電子模 組44。該電子模组44安裝於該印刷電路板42的表面上。例 如,該電子模組44是一LSI電路。例如,於該[si電路或其 他電子模組44上,安裝有一 CPU(中央處理單元)晶片。該 CPU晶片根據一作業系統及應用程式執行預定程序。當該 CPU晶片執行該程序時,該LSI電路或其他電子模組44會產 生熱量。 為吸收因該電子模組44產生的熱量,將一液態冷卻單 元100附接於該印刷電路板單元4〇。之後將說明該液態冷卻 單元100之細部構形。 該DVD驅動裝置46自一 DVD或其他記錄媒體讀取資料 及將資料寫入於該DVD或其他記錄媒體。例如,該硬碟驅 動裝置48儲存上述之該作業系統及應用軟體。 另,該卡單元50是安裝於該印刷電路板42上。例如, 於該卡單元5〇内,插置有一記憶卡或LAN(局部區域網路) 卡。 在此,參考第3圖,將說明第一實施例之液態冷卻單元 1〇〇。第3圖是顯示根據第一實施例的液態冷卻單元1〇〇的一 例之平面圖。如第3圖所示,第一實施例的液態冷卻單元1 〇〇 設有一熱交換器110、風扇單元丨20、槽體130、泵浦14〇 , 201223430 及散熱器150 °組構成該液態冷卻單元1〇〇的構件是由數個 管體102及數個接合件1〇4所連接以形成一循環路線。藉由 冷卻劑流過此循環路線,該電子模組44所產生的熱可排出 於該筆記型PC 10外。例如,可以丙二醇為基底之抗凍劑作 為該冷卻劑。 該熱交換器110將熱自流入於該熱交換器110内的冷卻 劑中取走。該熱交換器110是設置鄰近於形成在該殼本體2〇 側面處的一排出口 52(見第2圖)。另,該風扇單元120是設置 於鄰近該熱交換器110。該風扇單元120產生一自該熱交換 器110向該排出口52之氣流。為此,被該液態冷卻單元1〇〇 自該冷卻劑取出之熱可經由該排出口 52排出於該筆記型PC 10外。 該風扇單元120設有一風扇殼體122及一風扇126。於該 風扇殼體122的底板及頂板上,形成有一進氣開口 124。該 進氣開口 124連接該風扇殼體122的内部空間與該風扇殼體 122的外側空間。 該槽體130設置於該熱交換器110的下游。該槽體130可 儲存由該熱交換器110除去熱之冷卻劑。 該泵浦140設置於該槽體130的下游。該泵浦140將儲存 於該槽體130内的冷卻劑排出以產生冷卻劑之流動,其流過 該循環路線。例如,該泵浦140為一壓電泵浦。 該散熱器150設置於該泵浦140的下游。如第2圖所示, 該散熱器150設置於產生熱之該電子模組144上方。該散熱 器150可吸收該電子模組44產生的熱量。之後將說明該散熱 201223430 器150的細部構形。 上述該熱交換器110是安置於該散熱器150的下游。於 該液態冷卻單元100内,形成有如上所述的循環路線。 其次,將參考第4圖及第5圖詳細說明第一實施例之散 熱器150的結構。第4圖是顯示根據第一實施例的散熱器150 的一例之透視圖。第4圖中的箭頭是顯示該冷卻劑流經該散 熱器150之流動路徑。第5圖是顯示根據第一實施例的散熱 器150的一例之透視橫剖圖。 如第4圖所示,第一實施例的散熱器150設有一第一散 熱器部152、一第二散熱器部154,及一排熱件156。該第二 散熱器部154是配置與該第一散熱器部152對齊。另,於第 一實施例中,該第一散熱器部152及該第二散熱器部154兩 者與該電子模組44的相同表面相鄰接。注意的是該第一散 熱器部152、該第二散熱器部154,及該電子模組44亦可具 有導熱油脂介於其間。 於該第一散熱器部152的二端處,設置有流動管體170 及172。另,於該第二散熱器部154的二端處,設置有流動 管體174及176。另,該等流動管體172及174是以該排熱件 156連接。 在此,如第5圖所示,將說明該散熱器150的内部結構。 如第5圖所示,該第一散熱器部152及該第二散熱器部154是 以一隔板155間隔。另,該第一散熱器部152、該第二散熱 器部154,及該排熱件156之内側設有鰭片158。於第5圖所 示的例子中,該第一散熱器部152、該第二散熱器部154, 201223430 及該排熱件156各沿冷卻劑的流動方向上設有九個鰭片 158。例如,該等鰭片158是以具有高導熱性的鋁或其他金 屬材質所形成。為此,該電子模組44產生的熱可傳送至形 成該第一散熱器部152及該第二散熱器部154之該等殼體及 鶴片158,且熱可被該冷卻劑吸收。 該排熱件156是配置成與該第一散熱器部152及該第二 散熱器部154,於該電子模組44的相對側處相間隔。另,該 排熱件156是配置於該第一散熱器部丨52與該第二散熱器部 154之間的流動路徑上。為此,如第4圖中的箭頭所示,自 該接合件104流入至該散熱器丨50之該冷卻劑會通過該流動 管體170、該第一散熱器部152、該流動管體172、該排熱件 156、該流動管體174、該第二散熱器部154,及該流動管體 176,並流出該散熱器15〇外。 在此,將說明藉由第一實施例的散熱器150吸收該電子 模組44產生的熱之作用。首先,流入於該散熱器150内之該 冷卻劑會通過該流動管體17〇且流過該第一散熱器部152。 該電子模組44產生的熱之一部分被傳導至該第一散熱器部 152的殼體及該等鰭片158,且被流過該第一散熱器部152的 冷卻劑吸收。因此,流過該第一散熱器部152的該冷卻劑之 溫度會上升。流過該第一散熱器部152且溫度上升之該冷卻 劑會通過該流動管體172並流過該排熱件156。因該排熱件 156是配置與該第一散熱器部152及第二散熱器部154相間 隔,因此流過該排熱件156之該冷卻劑的溫度會下降。流過 該排熱件156且溫度下降之該冷卻劑會通過該流動管體174 201223430 且流過該第二散熱器部154。該電子模組44產生的熱之一部 分被傳導至該第二散熱器部154的殼體及該等鰭片158 ’且 被流過該第二散熱器部154的冷卻劑吸收。流過該第二散熱 器部154的該冷卻劑通過該流動管體176,並流出該散熱器 150 外。 因此,根據第一實施例的散熱器150,由於因流過該排 熱件15 6而使溫度下降之該冷卻劑會流過該第二散熱器部 154,因此該散熱器150的散熱效率得以增進。另,第一實 施例的排熱件156是配置與該第一散熱器部152及第二散熱 器部154於該電子模組44的相對側相間隔,因此即使當從一 平面視之可供該散熱器150設置的部分的面積是有限時,仍 可增進該該散熱器150的散熱效率。 要注意的是’在該殼本體20内,如參考第2圖所述,一 氣流是由該風扇單元120形成。由於該氣流會流過該殼本體 20的内側,因此流過該排熱件156之該冷卻劑會更有效率地 冷卻,因此該散熱器150宜配置鄰近於該風扇單元12〇處。 另,該排熱件156的面積愈大,流過該排熱件156之該 冷卻劑的冷卻效率更加增進。因此,如第4圖所示的例子, 該排熱件156宜相對於相互對齊配置之該第一散熱器部152 與該第二散熱器部154,成傾斜配置。 要注意的是於上述實施例中,是舉該散熱器150設有單 一排熱件156為例,但該散熱器15〇亦可設有多數個排熱件 156。在此,如第6圖所示,將說明該散熱器15〇設有多數個 排熱件156之例子。第6圖是顯示該散熱器15〇設有二個排熱 10 201223430 件156的例子之透視圖。於第6圖所示的例子中,該二排熱 件156是配置成與該第—散熱器部152及第二散熱器部154 於5玄電子模組44的相對側相間隔。 於如第6圖所示的例子中,當該散熱器150設有二排熱 件156時’相較於該散熱器15〇僅設有一排熱件156之例,可 更加增進流過該排熱件15 6之冷卻劑的冷卻效率。 (2)第二實施例 其後’將說明第二實施例。第二實施例的該散熱器150 之構形與第一實施例不同。因構形的其他部分與第一實施 例皆相似,因此省略說明。以下,將參考第7A及7B圖說明 第二實施例的散熱器150之構形。第7A圖是顯示第二實施例 的散熱器150的例子之透視圖’而第7B圖是沿第7A圖的別 線A-A所取之橫剖圖。 如第7A圖所示’第二實施例之該排熱件156形狀是如一 平行六邊形。另,如第7B圖所示’該排熱件156的表面中最 大面積的表面之法線(normal)是相對於該第一散熱器部152 的表面中最大面積的表面之法線(normal)成傾斜。亦即,該 排熱件156的表面中最大面積的表面是相對於該第一散熱 器部152的表面中最大面積的表面成傾斜。 於第7A及7B圖所示的例子中’該排熱件156的設置是 使該排熱件156的表面中最大面積的表面是相對於該第一 散熱器部152的表面中最大面積的表面成傾斜。因此’相較 於如參考第4圖所說明的第一實施例,此例子中該排熱件 156的表面中最大面積的表面是與該第一散熱器部152的表 11 201223430 面中最大面積的表面平行’於第二實施例,可增加該排熱 件156的表面積。藉此’得以增進流過該排熱件156的冷卻 劑之冷卻效率。 另,藉該排熱件156之設置是使該排熱件156的表面中 最大面積的表面相對於該第一散熱器部152的表面中最大 面積的表面成傾斜,通過該殼本體2〇内側的氣流會較第一 實施例,更有效率地接觸到該排熱件156的表面。因此,得 以增進流過該排熱件156的冷卻劑之冷卻效率。 (3)第三實施例 接著,將說明第三實施例。第三實施例的該散熱器15〇 之構形與第一實施例不同。因構形的其他部分與第一實施 例皆相似’因此省略說明。以下,將參考第8A&8B圖說明 第三實施例的散熱器150之構形。第8A圖是顯示根據第三實 施例的散熱器150的例子之平面圖,而第8B圖是由第8八圖 的箭頭B方向所視之前視圖。 如第8A及8B圖所示,第三實施例的散熱器150於該第 一散熱器部152與該排熱件156之間或於該第二散熱器部 154與該排熱件156之間設有鰭片160。於第8A圖所示的例子 中’五個鰭片160沿該冷卻劑的流動方向設置於該排熱件 156 内。 於第三實施例中,該電子模組44產生的熱被傳導至形 成該第一散熱器部152及該第二散熱器部154之該等殼體與 韓片160二者。除了上述實施例之功效外,熱亦可自該等鰭 片160排出。因此,根據第三實施例,可進一步增進該散熱 12 201223430 器150的冷卻效率。 (4)第四實施例 接著,將說明第四實施例。第四實施例的該散熱器150 之構形與第一實施例不同。因構形的其他部分與第一實施 例皆相似,因此省略說明。以下,將參考第9圖說明第四實 施例的散熱器150之構形。第9圖是顯示根據第四實施例的 散熱器150的例子之透視圖。第9圖的箭頭是顯示該冷卻劑 通過該散熱器150的流動。 如第9圖所示’第四實施例的散熱器15〇設有一第一散 熱器部152、一第二散熱器部154、一第三散熱器部162、一 排熱件156,及一額外排熱件164。該第一散熱器部152、第 二散熱器部154與第三散熱器部162相互鄰接配置而對齊, 但其内部分別形成獨立的流動路徑。上述構件的鄰接部件 内部並不連通。另,該第一散熱器部152、第二散熱器部154 及第三散熱器部162皆與該電子模組44鄰接。 在該第一散熱器部152的兩端處,設置有流動管體18〇 及182。另,在該第二散熱器部154的兩端處,設置有流動 營體184及188。另,在該第三散熱器部162的兩端處,設置 有流動管體186及188。另,該等流動管體182及184是以該 排熱件156連接。另,該等流動管體182及186是以該額外排 熱件164連接。 該第三散熱器部162的内部結構與上述第一實施例的 第—散熱器部152之内部結構相似。另,該額外排熱件164 的内部結構與上述第一實施例的排熱件丨5 6之内部結構相 13 201223430 似。 以如上述實施例相同方式,該排熱件156是配置於與該 電子模組44的相對側處與該第-散熱器部152及該第二散 熱器部154相間隔°賴外排熱件164是Si置於與該電子模 組4 4的相對側處與該第一散熱器部15 2及該第三散熱器部 162相間隔》 另,以如上述實施例相同方式,該排熱件156是配置於 該第一散熱器部152與該第二散熱器部154之間的流動路徑 中。s玄額外排熱件164是配置於該第一散熱器部152與該第 三散熱器部162之間的流動路徑中。 因此’如第9圖的箭頭所示,流入於該散熱器ι5〇内的 冷卻劑流過該流動管體180、該第一散熱器部152、該流動 管體182、該排熱件156、該流動管體184、該第二散熱器部 154,及該流動管體188,並流出該散熱器15〇外,且同時, 該冷卻劑會流過該流動管體180、該第一散熱器部152、該 流動管體182、該額外排熱件164、該流動管體186、該第三 散熱器部162,及該流動管體188,且流出於該散熱器150外。 於第四實施例中,流過該第一散熱器部152的冷卻劑藉 由流入於該排熱件156與該額外排熱件164二者内冷卻,因 此可進一步增進該散熱器150的冷卻效率。 以上已對本發明的散熱器、液態冷卻單元及電子裝置 詳細說明,但本發明並不局限於以上所述實施例。另,以 上所說明的實施例亦可適意地合併。另,可於本發明的範 圍中作各種不同的變更及改變。 201223430 在此所提的所有例子及條件表達文字是為了教示說明 目的,以幫助讀者了解本發明。 L圖式簡單說明3 第1圖是顯示第一實施例的筆記型PC的一例之透視圖; 第2圖是顯示第一實施例的一殼本體内部結構的一例 之透視圖; 第3圖是顯示根據第一實施例的液態冷卻單元的一例 之平面圖; 第4圖是顯示根據第一實施例的散熱器的一例之透視 圖; 第5圖是顯示根據第一實施例的散熱器的一例之透視 橫剖圖; 第6圖是顯示根據第一實施例的散熱器的變化例之透 視圖; 第7A圖是顯示根據第二實施例的散熱器的一例之透視 圖,而第7B圖是沿第7A圖的剖線A-A所取之橫剖圖; 第8 A圖是顯示根據第三實施例的散熱器的一例之透視 圖,而第8B圖是由第8A圖的箭頭方向所視之橫剖圖;及 第9圖是顯示根據第四實施例的散熱器的一例之透視 圖。 【主要元件符號說明】 10…筆記型PC 24..·蓋體 20…殼本體 26···鍵盤 22…基體 28.··指示裝置 15 201223430 30…顯示用殼體 32…液晶面板模組 40…印刷電路板單元 42…印刷電路板 44…電子模組 46…DVD驅動裝置 48…硬碟驅動裝置 50…卡單元 52…排出口 100···液態冷卻單元 102…管體 104···接合件 110···熱交換器 120…風扇單元 122…風扇殼體 124···進氣開口 126…風扇 130…槽體 140…泵浦 150…散熱器 152···第一散熱器部 154…第二散熱器部 155···隔板 156…排熱件 158,160···鰭片 162··.第三散熱器部 164…排熱件 170,172…流動管體 174,176…流動管體 180,182…流動管體 184,186,188···流動管體 16201223430 VI. INSTRUCTIONS: [Technical Field of Invention] 3 FIELD OF THE INVENTION The present invention relates to a heat sink for absorbing heat generated by an electronic module, and a liquid cooling unit and electrons provided with a heat sink Device. [Prior Art 3 Background of the Invention A notebook type personal computer and other electronic devices mount a printed circuit board therein. For example, an LSI (Large Integrated Circuit) wafer and other electronic modules are mounted on a printed circuit board. To absorb the heat generated by these electronic modules, a liquid cooling unit provided with a heat sink is placed on the printed circuit board. For example, Japanese Laid-Open Patent Publication No. 2005-229033 is known. SUMMARY OF THE INVENTION Technical Problem When a liquid cooling unit is provided in a notebook type personal computer or other electronic device, the space available for the liquid cooling unit is sometimes limited due to the design of the internal arrangement of the electronic device. In general, when the area of the heat sink of the liquid cooling unit becomes smaller, the cooling efficiency of the liquid cooling unit is lowered. Therefore, when the area of the portion where the heat sink is provided is limited, the cooling efficiency of the liquid cooling unit cannot be sufficiently improved. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a cooling efficiency which is conventionally limited when the area of a portion to which a heat sink of a liquid cooling unit is disposed is limited. 3 201223430 The technical solution to the problem is to solve this problem. According to the first point of view, it provides a heat sink for absorbing the heat generated by the electronic module by flowing the coolant into the interior of the electronic module. a first heat dissipating member adjacent to the electronic module, a second heat dissipating member adjacent to the electronic module, and a heat dissipating member disposed between the 4th heat dissipating member and the second heat dissipating member in the electronic module The opposite side is spaced apart and disposed on a flow path between the first heat dissipating member and the third heat dissipating member. Further, in a second aspect, there is provided a liquid cooling unit provided with the above heat sink. Further, in a third aspect, there is provided an electronic device provided with the above heat sink. Advantageous Effects of Invention According to the disclosed heat sink, the cooling efficiency can be improved by the arrangement of a row of heat members. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an example of a notebook PC of the first embodiment; Fig. 2 is a perspective view showing an internal structure of a casing body of the first embodiment; A plan view of a liquid cooling unit according to the first embodiment; 1 Fig. 4 is a perspective view showing a heat sink according to the first embodiment; Fig. 5 is a view showing a heat sink according to the first embodiment - Example perspective view of a view of a heat sink according to the first embodiment, and FIG. 7B is a cross-sectional view taken along line AA of FIG. 7A; FIG. 8A is a perspective view showing an example of the heat sink according to the third embodiment, and FIG. 8B is an arrow direction of FIG. 8A. FIG. 9 is a perspective view showing an example of a heat sink according to a fourth embodiment. [Embodiment 3] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT (1) First Embodiment First, referring to FIG. 1, a notebook type personal computer (note type PC) 10 will be taken as an electronic device according to a first embodiment. To illustrate. Fig. 1 is a perspective view showing an example of the notebook PC 10 according to the first embodiment. As shown in Fig. 1, the notebook PC 10 is provided with a case body 20 and a display case 30. The display casing 30 is coupled to the casing body 20 so that it can be opened/closed. The shell body 20 is provided with a base body 22 and a cover body 24. The cover 24 is detachable from the base 22. Further, on the surface of the cover body 24, a keyboard 26, a pointing device 28, and other input means are provided. The display housing 30 is provided with a liquid crystal panel module 32. The liquid crystal panel module 32 can display characters, graphics, and the like. Next, referring to Fig. 2, the internal structure of the case body 20 will be explained. The figure 201223430 2 is a perspective view showing an example of the internal structure of the case body 20 of the first embodiment. As shown in FIG. 2, the shell body 2 of the first embodiment is provided with a printed circuit board unit 40, a DVD (digital versatile optical disc) driving device 46, a hard disk drive device 48, a card unit 5A, and A liquid cooling unit 1 〇〇. The printed circuit board unit 40 is provided with a printed circuit board 42 and an electronic module 44. The electronic module 44 is mounted on a surface of the printed circuit board 42. For example, the electronic module 44 is an LSI circuit. For example, a CPU (Central Processing Unit) chip is mounted on the [si circuit or other electronic module 44. The CPU chip executes a predetermined program in accordance with an operating system and an application. When the CPU chip executes the program, the LSI circuit or other electronic module 44 generates heat. To absorb the heat generated by the electronic module 44, a liquid cooling unit 100 is attached to the printed circuit board unit 4''. The detailed configuration of the liquid cooling unit 100 will be described later. The DVD drive unit 46 reads data from a DVD or other recording medium and writes the material to the DVD or other recording medium. For example, the hard disk drive unit 48 stores the above-described operating system and application software. In addition, the card unit 50 is mounted on the printed circuit board 42. For example, a memory card or a LAN (Local Area Network) card is inserted in the card unit 5A. Here, referring to Fig. 3, the liquid cooling unit 1 of the first embodiment will be explained. Fig. 3 is a plan view showing an example of the liquid cooling unit 1A according to the first embodiment. As shown in FIG. 3, the liquid cooling unit 1 of the first embodiment is provided with a heat exchanger 110, a fan unit 20, a tank 130, a pump 14A, a 201223430, and a radiator 150° to form the liquid cooling unit. The member of unit 1 is connected by a plurality of tubes 102 and a plurality of joint members 1〇4 to form a circulation path. The heat generated by the electronic module 44 can be discharged outside the notebook PC 10 by the coolant flowing through the circulation route. For example, a propylene glycol-based antifreeze can be used as the coolant. The heat exchanger 110 removes heat from the coolant flowing into the heat exchanger 110. The heat exchanger 110 is disposed adjacent to a row of outlets 52 formed at the sides of the casing body 2 (see Fig. 2). In addition, the fan unit 120 is disposed adjacent to the heat exchanger 110. The fan unit 120 generates a flow of air from the heat exchanger 110 to the discharge port 52. To this end, the heat taken out by the liquid cooling unit 1 from the coolant can be discharged outside the notebook PC 10 via the discharge port 52. The fan unit 120 is provided with a fan housing 122 and a fan 126. An air inlet opening 124 is formed in the bottom plate and the top plate of the fan casing 122. The intake opening 124 connects the internal space of the fan casing 122 to the outer space of the fan casing 122. The tank body 130 is disposed downstream of the heat exchanger 110. The tank 130 can store a coolant that removes heat from the heat exchanger 110. The pump 140 is disposed downstream of the tank 130. The pump 140 discharges the coolant stored in the tank 130 to produce a flow of coolant that flows through the circulation path. For example, the pump 140 is a piezoelectric pump. The heat sink 150 is disposed downstream of the pump 140. As shown in FIG. 2, the heat sink 150 is disposed above the electronic module 144 that generates heat. The heat sink 150 can absorb the heat generated by the electronic module 44. The detailed configuration of the heat sink 201223430 will be described later. The heat exchanger 110 described above is disposed downstream of the heat sink 150. In the liquid cooling unit 100, a circulation route as described above is formed. Next, the structure of the heat radiator 150 of the first embodiment will be described in detail with reference to Figs. 4 and 5. Fig. 4 is a perspective view showing an example of the heat sink 150 according to the first embodiment. The arrow in Fig. 4 is a flow path showing the flow of the coolant through the radiator 150. Fig. 5 is a perspective cross-sectional view showing an example of the heat sink 150 according to the first embodiment. As shown in Fig. 4, the heat sink 150 of the first embodiment is provided with a first heat sink portion 152, a second heat sink portion 154, and a row of heat members 156. The second heat sink portion 154 is disposed in alignment with the first heat sink portion 152. In the first embodiment, the first heat sink portion 152 and the second heat sink portion 154 are adjacent to the same surface of the electronic module 44. It is noted that the first heat sink portion 152, the second heat sink portion 154, and the electronic module 44 may also have thermal grease therebetween. Flow tube bodies 170 and 172 are provided at the two ends of the first heat sink portion 152. Further, at both ends of the second heat sink portion 154, flow tube bodies 174 and 176 are provided. Further, the flow tubes 172 and 174 are connected by the heat exhausting member 156. Here, as shown in Fig. 5, the internal structure of the heat sink 150 will be described. As shown in Fig. 5, the first heat sink portion 152 and the second heat sink portion 154 are spaced apart by a partition 155. Further, the first heat sink portion 152, the second heat sink portion 154, and the heat radiating member 156 are provided with fins 158 inside. In the example shown in Fig. 5, the first heat sink portion 152, the second heat sink portion 154, 201223430, and the heat exhaust member 156 are each provided with nine fins 158 in the flow direction of the coolant. For example, the fins 158 are formed of aluminum or other metal materials having high thermal conductivity. To this end, the heat generated by the electronic module 44 can be transferred to the housings and the fins 158 forming the first heat sink portion 152 and the second heat sink portion 154, and heat can be absorbed by the coolant. The heat absorbing member 156 is disposed to be spaced apart from the first heat sink portion 152 and the second heat sink portion 154 at an opposite side of the electronic module 44. Further, the heat exhausting member 156 is disposed in a flow path between the first heat sink portion 52 and the second heat sink portion 154. To this end, as indicated by the arrow in FIG. 4, the coolant flowing from the joint member 104 to the radiator bore 50 passes through the flow tube body 170, the first heat sink portion 152, and the flow tube body 172. The heat exhausting member 156, the flow tube body 174, the second heat sink portion 154, and the flow tube body 176 flow out of the heat sink 15 . Here, the effect of the heat generated by the electronic module 44 by the heat sink 150 of the first embodiment will be explained. First, the coolant flowing into the heat sink 150 passes through the flow tube body 17 and flows through the first heat sink portion 152. A portion of the heat generated by the electronic module 44 is conducted to the housing of the first heat sink portion 152 and the fins 158 and is absorbed by the coolant flowing through the first heat sink portion 152. Therefore, the temperature of the coolant flowing through the first heat sink portion 152 rises. The coolant flowing through the first heat sink portion 152 and having a temperature rise passes through the flow tube 172 and flows through the heat exhaust member 156. Since the heat-dissipating member 156 is disposed apart from the first heat sink portion 152 and the second heat sink portion 154, the temperature of the coolant flowing through the heat-dissipating member 156 is lowered. The coolant flowing through the heat vent 156 and having a lowered temperature passes through the flow tube 174 201223430 and flows through the second heat sink portion 154. A portion of the heat generated by the electronic module 44 is conducted to the housing of the second heat sink portion 154 and the fins 158' and is absorbed by the coolant flowing through the second heat sink portion 154. The coolant flowing through the second radiator portion 154 passes through the flow tube body 176 and flows out of the radiator 150. Therefore, according to the heat sink 150 of the first embodiment, since the coolant having a temperature drop due to the flow of the heat exhausting member 16 flows through the second heat sink portion 154, the heat dissipation efficiency of the heat sink 150 can be improved. enhance. In addition, the heat exhausting member 156 of the first embodiment is disposed to be spaced apart from the opposite side of the electronic module 44 by the first heat sink portion 152 and the second heat sink portion 154, so that even when viewed from a plane When the area of the portion where the heat sink 150 is disposed is limited, the heat dissipation efficiency of the heat sink 150 can still be improved. It is to be noted that 'in the case body 20, as described with reference to Fig. 2, a gas flow is formed by the fan unit 120. Since the airflow will flow through the inside of the casing body 20, the coolant flowing through the heat exhausting member 156 will be cooled more efficiently, so that the heat sink 150 is preferably disposed adjacent to the fan unit 12b. Further, the larger the area of the heat exhausting member 156, the more efficient the cooling efficiency of the coolant flowing through the heat exhausting member 156. Therefore, as in the example shown in FIG. 4, the heat-dissipating member 156 is preferably disposed obliquely with respect to the first heat sink portion 152 and the second heat sink portion 154 which are arranged in alignment with each other. It should be noted that in the above embodiment, the heat sink 150 is provided with a single heat-dissipating member 156, but the heat sink 15 can also be provided with a plurality of heat-dissipating members 156. Here, as shown in Fig. 6, an example in which a plurality of heat discharge members 156 are provided in the heat sink 15 will be described. Fig. 6 is a perspective view showing an example in which the heat sink 15 is provided with two heat exhausting 10 201223430 pieces 156. In the example shown in Fig. 6, the two rows of heat members 156 are disposed to be spaced apart from the opposite sides of the fifth heat sink portion 152 and the second heat sink portion 154. In the example shown in FIG. 6, when the heat sink 150 is provided with two rows of heat members 156, 'only one row of heat members 156 is provided compared to the heat sink 15 ,, which can further improve the flow through the row. The cooling efficiency of the coolant of the heat member 156. (2) Second Embodiment Hereinafter, the second embodiment will be explained. The configuration of the heat sink 150 of the second embodiment is different from that of the first embodiment. Since the other parts of the configuration are similar to those of the first embodiment, the description is omitted. Hereinafter, the configuration of the heat sink 150 of the second embodiment will be described with reference to Figs. 7A and 7B. Fig. 7A is a perspective view showing an example of the heat sink 150 of the second embodiment, and Fig. 7B is a cross-sectional view taken along line A-A of Fig. 7A. The heat-dissipating member 156 of the second embodiment as shown in Fig. 7A is shaped like a parallel hexagon. Further, as shown in FIG. 7B, the normal of the surface of the largest area in the surface of the heat radiation member 156 is the normal to the surface of the largest area in the surface of the first heat sink portion 152. Slanted. That is, the surface of the largest area of the surface of the heat radiation member 156 is inclined with respect to the surface of the largest area of the surface of the first heat sink portion 152. In the example shown in FIGS. 7A and 7B, the heat-dissipating member 156 is disposed such that the surface of the largest area of the surface of the heat-dissipating member 156 is the largest area of the surface of the first heat-dissipating portion 152. Slanted. Therefore, the surface of the largest area of the surface of the heat exhausting member 156 in this example is the largest area of the surface of the table 11 201223430 of the first heat sink portion 152 as compared with the first embodiment as explained with reference to FIG. The surface is parallel to the second embodiment, and the surface area of the heat exhaust member 156 can be increased. Thereby, the cooling efficiency of the coolant flowing through the heat exhausting member 156 is enhanced. In addition, the heat dissipating member 156 is disposed such that the surface of the largest area of the surface of the heat dissipating member 156 is inclined with respect to the surface of the largest area of the surface of the first heat sink portion 152, through the inner side of the shell body 2 The air flow will contact the surface of the heat exhaust member 156 more efficiently than the first embodiment. Therefore, the cooling efficiency of the coolant flowing through the heat exhausting member 156 is improved. (3) Third Embodiment Next, a third embodiment will be explained. The configuration of the heat sink 15A of the third embodiment is different from that of the first embodiment. The other parts of the configuration are similar to those of the first embodiment, and thus the description is omitted. Hereinafter, the configuration of the heat sink 150 of the third embodiment will be described with reference to Figs. 8A & 8B. Fig. 8A is a plan view showing an example of the heat sink 150 according to the third embodiment, and Fig. 8B is a front view taken from the direction of the arrow B of the eighth figure. As shown in FIGS. 8A and 8B, the heat sink 150 of the third embodiment is between the first heat sink portion 152 and the heat exhaust member 156 or between the second heat sink portion 154 and the heat exhaust member 156. A fin 160 is provided. In the example shown in Fig. 8A, the five fins 160 are disposed in the heat exhausting member 156 in the flow direction of the coolant. In the third embodiment, the heat generated by the electronic module 44 is conducted to both the housing and the Korean wafer 160 that form the first heat sink portion 152 and the second heat sink portion 154. In addition to the effects of the above embodiments, heat may also be expelled from the fins 160. Therefore, according to the third embodiment, the cooling efficiency of the heat sink 12 201223430 can be further improved. (4) Fourth Embodiment Next, a fourth embodiment will be explained. The configuration of the heat sink 150 of the fourth embodiment is different from that of the first embodiment. Since the other parts of the configuration are similar to those of the first embodiment, the description is omitted. Hereinafter, the configuration of the heat sink 150 of the fourth embodiment will be described with reference to Fig. 9. Fig. 9 is a perspective view showing an example of the heat sink 150 according to the fourth embodiment. The arrow in Fig. 9 shows the flow of the coolant through the radiator 150. As shown in FIG. 9, the heat sink 15 of the fourth embodiment is provided with a first heat sink portion 152, a second heat sink portion 154, a third heat sink portion 162, a row of heat members 156, and an additional Heat exhaust 164. The first heat sink portion 152, the second heat sink portion 154, and the third heat sink portion 162 are arranged adjacent to each other, but each of them has an independent flow path. The inside of the adjacent members of the above members are not connected. The first heat sink portion 152, the second heat sink portion 154, and the third heat sink portion 162 are all adjacent to the electronic module 44. Flow tube bodies 18 and 182 are provided at both ends of the first heat sink portion 152. Further, at both ends of the second heat sink portion 154, flow bodies 184 and 188 are provided. Further, at both ends of the third heat sink portion 162, flow tubes 186 and 188 are provided. Further, the flow tubes 182 and 184 are connected by the heat exhaust member 156. In addition, the flow tubes 182 and 186 are connected by the additional heat exhaust member 164. The internal structure of the third heat sink portion 162 is similar to that of the first heat sink portion 152 of the first embodiment described above. In addition, the internal structure of the additional heat-dissipating member 164 is similar to that of the heat-dissipating member 丨56 of the first embodiment described above. In the same manner as the above embodiment, the heat exhausting member 156 is disposed at an opposite side of the electronic module 44 from the first heat sink portion 152 and the second heat sink portion 154. 164 is that the Si is disposed at an opposite side of the electronic module 44 from the first heat sink portion 15 2 and the third heat sink portion 162. In addition, in the same manner as the above embodiment, the heat exhausting member 156 is disposed in a flow path between the first heat sink portion 152 and the second heat sink portion 154. The sin extra heat-dissipating member 164 is disposed in a flow path between the first heat sink portion 152 and the third heat sink portion 162. Therefore, as indicated by the arrow in FIG. 9, the coolant flowing into the radiator ι5 flows through the flow tube body 180, the first heat sink portion 152, the flow tube body 182, the heat exhaust member 156, The flow tube body 184, the second heat sink portion 154, and the flow tube body 188 flow out of the heat sink 15 and at the same time, the coolant flows through the flow tube body 180 and the first heat sink. The portion 152, the flow tube body 182, the additional heat exhausting member 164, the flow tube body 186, the third heat sink portion 162, and the flow tube body 188 flow out of the heat sink 150. In the fourth embodiment, the coolant flowing through the first heat sink portion 152 is cooled by flowing into both the heat exhausting member 156 and the additional heat exhausting member 164, thereby further enhancing the cooling of the heat sink 150. effectiveness. The heat sink, liquid cooling unit and electronic device of the present invention have been described in detail above, but the present invention is not limited to the above embodiments. Alternatively, the embodiments described above may be combined as appropriate. In addition, various changes and modifications can be made in the scope of the invention. 201223430 All examples and conditions expressed herein are for illustrative purposes and to assist the reader in understanding the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an example of a notebook type PC of the first embodiment; Fig. 2 is a perspective view showing an example of the internal structure of a case body of the first embodiment; A plan view showing an example of a liquid cooling unit according to the first embodiment; Fig. 4 is a perspective view showing an example of the heat sink according to the first embodiment; and Fig. 5 is a view showing an example of the heat sink according to the first embodiment. Fig. 6 is a perspective view showing a modification of the heat sink according to the first embodiment; Fig. 7A is a perspective view showing an example of the heat sink according to the second embodiment, and Fig. 7B is a side view A cross-sectional view taken along line AA of Fig. 7A; Fig. 8A is a perspective view showing an example of the heat sink according to the third embodiment, and Fig. 8B is a horizontal view seen from the direction of the arrow of Fig. 8A Fig. 9 and Fig. 9 are perspective views showing an example of a heat sink according to a fourth embodiment. [Description of main component symbols] 10...note type PC 24.. cover body 20... case body 26···keyboard 22... base body 28.·instruction device 15 201223430 30...display case 32...liquid crystal panel module 40 ...printed circuit board unit 42...printed circuit board 44...electronic module 46...DVD drive unit 48...hard disk drive unit 50...card unit 52...discharge port 100···liquid cooling unit 102...tube 104···joining The heat exchanger 120...the fan unit 122...the fan casing 124···the intake opening 126...the fan 130...the tank 140...the pump 150...the radiator 152···the first radiator portion 154... Second heat sink portion 155···Baffle 156... Heat-dissipating member 158, 160···Fin 162··. Third heat sink portion 164... Heat-dissipating member 170, 172... Flow tube body 174, 176... Flow tube body 180, 182... Flow tube body 184, 186, 188 · · · flow tube body 16

Claims (1)

201223430 七、申請專利範圍: 1. 一種散熱器,用以藉由一冷卻劑流過其内部來吸收一電 子模組所產生之熱,包括: 一第一散熱器部,其與該電子模組鄰接; 一第二散熱器部,其與該電子模組鄰接;及 一排熱件,其配置成於該電子模組的相對側處與 該第一散熱器部及第二散熱器部相間隔,且配置於該第 一散熱器部與第二散熱器部之間的一流動路徑内。 2_如申請專利範圍第}項之散熱器,&括多數個該等排熱 件。 "’、 5月'範圍第1項或第2項之散熱器,其中該排熱件 的表面中最大面積之表面是相對於該第—散熱器部的 表面中最大面積之表面成傾斜。 4. 5. 利範圍第1項至第3項的任-項之散熱器,進― 及/1位^ ’其位於該第一散熱器部與該排熱件之間, 5 ^第二散熱器部與該排熱件之間。 ==專利範圍第1項至第4項的任一項之散熱器,進-梦包括 布二狀熟器部 二散熱_齊,且 與該第===料他的相對側處 第-散熱㈣料=1:35部蝴隔,且配置於該 -種液態冷卻單元:部之間的-流動路徑内。 17 201223430 一散熱器,用以藉由一冷卻劑流過其内部來吸收一 電子模組所產生之熱, 一用於該冷卻劑之熱交換器,及 一泵浦,其循環該冷卻劑,其中 該散熱器包括 一第一散熱器部,其與該電子模組鄰接, 一第二散熱器部,其與該電子模組鄰接,及 一排熱件,其配置成於該電子模組的相對側處與 該第一散熱器部及第二散熱器部相間隔,且配置於該第 一散熱器部與第二散熱器部之間的一流動路徑内。 7. 一種電子裝置,包括 一電子模組,其會產生熱, 一散熱器,用以藉由一冷卻劑流過其内部來吸收該 電子模組所產生之熱,及 一泵浦,其循環該冷卻劑,其中 該散熱器包括 一第一散熱器部,其與該電子模組鄰接, 一第二散熱器部,其與該電子模組鄰接,及 一排熱件,其配置成於該電子模組的相對側處與 該第一散熱器部及第二散熱器部相間隔,且配置於該第 一散熱器部與第二散熱器部之間的一流動路徑内。 18201223430 VII. Patent Application Range: 1. A heat sink for absorbing the heat generated by an electronic module by flowing a coolant through the interior thereof, comprising: a first heat sink portion, and the electronic module Adjacent; a second heat sink portion adjacent to the electronic module; and a row of heat members disposed to be spaced apart from the first heat sink portion and the second heat sink portion at opposite sides of the electronic module And disposed in a flow path between the first heat sink portion and the second heat sink portion. 2_For the radiator of the patent application scope, & includes a plurality of such heat exhaustors. "', the heat sink of item 1 or 2 of the '5', wherein the surface of the largest area of the surface of the heat-dissipating member is inclined with respect to the surface of the largest area of the surface of the first heat sink portion. 4. 5. For the heat sink of item 1 to item 3, the inlet and the /1 position ^' are located between the first heat sink portion and the heat exhausting member, 5 ^ second heat dissipation Between the portion and the heat exhausting member. ==The radiator of any one of items 1 to 4 of the patent range, the dream-in-the-cover includes the heat dissipation of the second part of the fabric, and the first side of the opposite side with the === (4) Material=1: 35 parts of the butterfly partition, and disposed in the flow path between the liquid cooling unit: the part. 17 201223430 A heat sink for absorbing heat generated by an electronic module by flowing a coolant therein, a heat exchanger for the coolant, and a pump for circulating the coolant, The heat sink includes a first heat sink portion adjacent to the electronic module, a second heat sink portion adjacent to the electronic module, and a row of heat members disposed on the electronic module The opposite side is spaced apart from the first heat sink portion and the second heat sink portion, and disposed in a flow path between the first heat sink portion and the second heat sink portion. 7. An electronic device comprising an electronic module that generates heat, a heat sink for absorbing heat generated by the electronic module by a coolant flowing through the interior thereof, and a pump that circulates The coolant, wherein the heat sink includes a first heat sink portion adjacent to the electronic module, a second heat sink portion adjacent to the electronic module, and a row of heat members configured to The opposite side of the electronic module is spaced apart from the first heat sink portion and the second heat sink portion, and disposed in a flow path between the first heat sink portion and the second heat sink portion. 18
TW100128193A 2010-09-02 2011-08-08 Heat sink, liquid cooling unit, and electronic apparatus TW201223430A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196526A JP5533458B2 (en) 2010-09-02 2010-09-02 Heat receiver, liquid cooling unit and electronic equipment

Publications (1)

Publication Number Publication Date
TW201223430A true TW201223430A (en) 2012-06-01

Family

ID=45769812

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128193A TW201223430A (en) 2010-09-02 2011-08-08 Heat sink, liquid cooling unit, and electronic apparatus

Country Status (4)

Country Link
US (1) US20120055655A1 (en)
JP (1) JP5533458B2 (en)
CN (1) CN102438428A (en)
TW (1) TW201223430A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426595B2 (en) * 2015-12-24 2018-11-21 Necプラットフォームズ株式会社 Cooling system
JP2019115478A (en) * 2017-12-27 2019-07-18 株式会社日立製作所 Ultrasonic probe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242963A (en) * 1990-06-30 1992-08-31 Toshiba Corp Cooling device
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
JP4423792B2 (en) * 2000-09-14 2010-03-03 株式会社デンソー Boiling cooler
JP3673249B2 (en) * 2002-08-27 2005-07-20 株式会社東芝 Electronic equipment and cooling device
JP2005064410A (en) * 2003-08-20 2005-03-10 Denso Corp Cooler for heating element
JP2005229033A (en) * 2004-02-16 2005-08-25 Hitachi Ltd Liquid-cooled system and electronic apparatus having the same
JP4551729B2 (en) * 2004-09-30 2010-09-29 株式会社東芝 Cooling device and electronic device having cooling device
CN2763975Y (en) * 2004-12-11 2006-03-08 鸿富锦精密工业(深圳)有限公司 Heat-pipe radiator
JP4234722B2 (en) * 2006-02-28 2009-03-04 株式会社東芝 Cooling device and electronic equipment
CN101212885B (en) * 2006-12-27 2011-08-31 富准精密工业(深圳)有限公司 Heat radiation module
JP3151098U (en) * 2009-03-02 2009-06-11 奇▲こう▼科技股▲ふん▼有限公司 Heat dissipation module

Also Published As

Publication number Publication date
US20120055655A1 (en) 2012-03-08
JP2012054446A (en) 2012-03-15
CN102438428A (en) 2012-05-02
JP5533458B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP3757200B2 (en) Electronic equipment with cooling mechanism
KR100907233B1 (en) Heat exchanger for liquid cooling unit, liquid cooling unit and electronic apparatus
JP4267629B2 (en) Electronics
US7613001B1 (en) Heat dissipation device with heat pipe
JP2009128947A (en) Electronic apparatus
TW201251591A (en) Computer case
JP4842040B2 (en) Electronics
JP2008027374A (en) Heat receiver for liquid cooling unit, liquid cooling unit, and electronic device
JP2008027370A (en) Electronic device
JP6126149B2 (en) Air-cooled laser apparatus provided with a heat conducting member having a radiation fin
US20120033382A1 (en) Heat sink, liquid cooling unit, and electronic apparatus
KR20090096562A (en) Heat absorption member, cooling device, and electronic apparatus
JP2008028331A (en) Electronic apparatus
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP4720688B2 (en) Electronic control unit cooling system
JP4558627B2 (en) Electronic device casing and electronic device
JP2007123641A5 (en)
JP5117287B2 (en) Electronic equipment cooling system
JP4682858B2 (en) Cooling device for electronic equipment
JP4744280B2 (en) Electronic equipment with cooling mechanism
TW201223430A (en) Heat sink, liquid cooling unit, and electronic apparatus
JP7275243B1 (en) Electronics
TWI777653B (en) Water cooling device and electronic device
TWI501719B (en) Heat dissipation device
JP4422390B2 (en) Electronic device cooling device