JP2005222744A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2005222744A
JP2005222744A JP2004027351A JP2004027351A JP2005222744A JP 2005222744 A JP2005222744 A JP 2005222744A JP 2004027351 A JP2004027351 A JP 2004027351A JP 2004027351 A JP2004027351 A JP 2004027351A JP 2005222744 A JP2005222744 A JP 2005222744A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture layer
electrode mixture
binder
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027351A
Other languages
Japanese (ja)
Inventor
Tomohito Okamoto
朋仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004027351A priority Critical patent/JP2005222744A/en
Publication of JP2005222744A publication Critical patent/JP2005222744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery capable of well keeping a charge-discharge characteristic, and improved in battery life performance and thermal stability. <P>SOLUTION: A negative electrode plate 4 having, on one surface, a first negative electrode mix layer containing a non-fluorine-based binder of a mixture or the like of styrene-butadiene-based rubber and a cellulose-based compound and having, on the other surface, a second negative mix layer containing a fluorine-based binder of a polyvinylidene fluoride-based substance or the like and a positive electrode plate 3 are stacked by interposing a separator 5 so that the first negative electrode mix layer is set closest to the outside periphery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、負極合剤層を有する負極板と、正極板とが、離隔体を介して積層された発電要素を備える非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery including a power generation element in which a negative electrode plate having a negative electrode mixture layer and a positive electrode plate are laminated via a separator.

近年、携帯電話、ノート型パーソナルコンピュータ、ビデオカメラなどの携帯可能な電子機器の高性能化、小型軽量化が進んでおり、これら電子機器に使用する高エネルギー密度の二次電池として、リチウムイオン二次電池の使用が拡大している。リチウムイオン二次電池は、例えば、シート状又は箔状の正極板及び負極板がセパレータ(離隔体)を介して巻回するなどして積層された発電要素を電池ケースに収納している。   In recent years, portable electronic devices such as mobile phones, notebook personal computers, and video cameras have been improved in performance, size, and weight. Lithium ion secondary batteries are used as high energy density secondary batteries used in these electronic devices. The use of secondary batteries is expanding. In a lithium ion secondary battery, for example, a power generation element in which a sheet-like or foil-like positive electrode plate and a negative electrode plate are wound via a separator (separator) is housed in a battery case.

リチウムイオン二次電池の負極板のバインダ(結着剤)には、ポリフッ化ビニリデン系物質などに代表されるフッ素系ポリマー材料、あるいは、スチレン・ブタジエンゴムとカルボキシメチルセルロースとの混合物などに代表される非フッ素系ポリマー材料など、種々の材料が用いられている。しかしながら、スチレン・ブタジエンゴムとカルボキシメチルセルロースとの混合物などの非フッ素系ポリマー材料を用いた場合、負極合剤層と負極集電体との接着強度が低く、充放電の繰り返しによって負極板の膨張収縮が繰り返された際は負極合剤層の剥離が生じ易くなるため、電池の寿命性能低下が早期に起こり易いという問題がある。   The binder (binder) of the negative electrode plate of the lithium ion secondary battery is represented by a fluorine-based polymer material typified by polyvinylidene fluoride-based material or a mixture of styrene-butadiene rubber and carboxymethyl cellulose. Various materials such as non-fluorine polymer materials are used. However, when a non-fluorinated polymer material such as a mixture of styrene / butadiene rubber and carboxymethyl cellulose is used, the adhesive strength between the negative electrode mixture layer and the negative electrode current collector is low, and the negative electrode plate expands and contracts due to repeated charge and discharge. When is repeated, the negative electrode mixture layer is likely to be peeled off, so that there is a problem in that the battery life performance is likely to deteriorate early.

これに対して、ポリフッ化ビニリデン系物質などのフッ素系ポリマー材料を用いた場合は、負極合剤層と負極集電体との接着強度が高いため、非フッ素系ポリマー材料と比べて電池寿命性能は良好である。しかしながら、充電状態の負極(リチウム炭素複合化合物など)は、フッ素系化合物と高温領域において発熱反応が生じ易い傾向にあるため、正極及び負極の短絡による発熱といった異常発生時には、非フッ素系ポリマー材料と比べて発熱による漏液又は発煙などが起こり易いという問題がある(例えば、特許文献1参照)。
特開平6−163031号公報
On the other hand, when a fluorine-based polymer material such as polyvinylidene fluoride is used, the battery life performance is higher than that of non-fluorine-based polymer materials because the adhesive strength between the negative electrode mixture layer and the negative electrode current collector is high. Is good. However, since a negative electrode (such as a lithium-carbon composite compound) in a charged state tends to easily generate an exothermic reaction with a fluorine compound in a high temperature region, a non-fluorine polymer material and In comparison, there is a problem that liquid leakage or smoke generation due to heat generation is likely to occur (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 6-163031

これらの問題を解決する方法として、非フッ素系のバインダとフッ素系のバインダとを混合したスラリーを集電体に塗布し、それぞれの利点を活かそうとする製法が考えられる。しかしながら、ほとんどの場合、種類が異なるポリマーが分散あるいは溶解する溶媒は異なり、また、種類が異なるポリマー同士では一般的に相溶性が悪いなど、スラリーの製法に問題を有する。   As a method for solving these problems, a manufacturing method in which a slurry in which a non-fluorine binder and a fluorine binder are mixed is applied to a current collector, and the respective advantages are utilized. However, in most cases, the solvent in which the different types of polymers are dispersed or dissolved is different, and the different types of polymers generally have poor compatibility.

また、電池ケースに金属釘が突き刺さるなどして正極板と負極板とが短絡した場合には、その短絡部分で大きな電流が流れて局所的に発熱が生じ、温度が上昇して正極活物質又は負極活物質が熱暴走を起こすことにより、電池全体が発熱して漏液又は発煙などが生じることがある。この問題の対策として、発電要素において、最も外側となる正極板の外側の面の正極合剤層に用いる正極活物質に、もう一方の面の正極合剤層に用いる正極活物質よりも示差走査熱量測定法(DSC法)における発熱開始温度が高いものを用いる方法が提案されている。しかしながら、この方法では、正極板の各面の正極合剤層に含有される正極活物質が異なるため、充放電が不安定になり易いなど、充放電特性に問題を有している。   In addition, when the positive electrode plate and the negative electrode plate are short-circuited due to a metal nail pierced into the battery case, a large current flows through the short-circuited portion to locally generate heat, and the temperature rises to increase the positive electrode active material or When the negative electrode active material undergoes thermal runaway, the entire battery may generate heat, causing leakage or fuming. As a countermeasure for this problem, in the power generation element, the positive electrode active material used for the positive electrode mixture layer on the outermost surface of the positive electrode plate, which is the outermost side, is more differentially scanned than the positive electrode active material used for the positive electrode mixture layer on the other surface There has been proposed a method using a calorimeter (DSC method) having a high heat generation starting temperature. However, this method has a problem in charge / discharge characteristics such that charge / discharge tends to become unstable because the positive electrode active material contained in the positive electrode mixture layer on each surface of the positive electrode plate is different.

本発明は斯かる事情に鑑みてなされたものであり、充放電特性を良好に維持し、電池寿命性能及び熱安定性を向上させた非水電解質電池を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the non-aqueous electrolyte battery which maintained charging / discharging characteristics favorably and improved battery life performance and thermal stability.

また、本発明は、外部から金属製の釘などが侵入し、正極及び負極の短絡が生じた場合の熱安定性を高めた非水電解質電池を提供することを他の目的とする。   Another object of the present invention is to provide a non-aqueous electrolyte battery having improved thermal stability when a metal nail or the like enters from the outside to cause a short circuit between the positive electrode and the negative electrode.

第1発明に係る非水電解質電池は、負極合剤層を有する負極板と、正極板とが、離隔体を介して積層された発電要素を備える非水電解質電池において、前記負極板は、一方の面に非フッ素系結着剤を含有する第1負極合剤層を有し、他方の面にフッ素系結着剤を含有する第2負極合剤層を有することを特徴とする。   A non-aqueous electrolyte battery according to a first aspect of the present invention is a non-aqueous electrolyte battery comprising a power generating element in which a negative electrode plate having a negative electrode mixture layer and a positive electrode plate are laminated via a separator, It has the 1st negative electrode mixture layer containing a non-fluorine-type binder on this surface, and has the 2nd negative electrode mixture layer containing a fluorine-type binder on the other surface.

第1発明においては、一方の面に非フッ素系結着剤を含有する第1負極合剤層を有し、他方の面にフッ素系結着剤を含有する第2負極合剤層を有する負極板と、正極板とを、離隔体を介して積層している。負極板は、例えば箔状の負極集電体の一方の面に第1負極合剤層を形成し、他方の面に第2負極合剤層を形成する。負極板の一方の面の第1負極合剤層が含有する非フッ素系結着剤は、フッ素系結着剤よりも熱安定性が良好であり、また、負極板の他方の面の第2負極合剤層が含有するフッ素系結着剤は、非フッ素系結着剤よりも電池寿命性能が良好であり、本発明では非フッ素系結着剤及びフッ素系結着剤の両方の長所が備わることになる。また、極板は2種類の合剤層を有するが、各合剤層の結着剤は異なるが、活物質は異ならないため、充放電特性は良好に維持される。   In the first invention, a negative electrode having a first negative electrode mixture layer containing a non-fluorine binder on one side and a second negative electrode mixture layer containing a fluorine binder on the other side The plate and the positive electrode plate are laminated via a separator. The negative electrode plate forms, for example, a first negative electrode mixture layer on one surface of a foil-like negative electrode current collector and a second negative electrode mixture layer on the other surface. The non-fluorine-based binder contained in the first negative electrode mixture layer on one surface of the negative electrode plate has better thermal stability than the fluorine-based binder, and the second surface on the other surface of the negative electrode plate. The fluorine-based binder contained in the negative electrode mixture layer has better battery life performance than the non-fluorinated binder, and the present invention has the advantages of both the non-fluorinated binder and the fluorine-based binder. Will be provided. Moreover, although an electrode plate has two types of mixture layers, since the binder of each mixture layer differs, but an active material does not differ, charging / discharging characteristics are maintained favorable.

第2発明に係る非水電解質電池は、負極合剤層を有する負極板と、正極板とが、離隔体を介して積層された発電要素を備える非水電解質電池において、前記負極板は、フッ素系結着剤を含有する第2負極合剤層と、該第2負極合剤層に積層された非フッ素系結着剤を含有する第1負極合剤層とを有することを特徴とする。   A non-aqueous electrolyte battery according to a second aspect of the present invention is a non-aqueous electrolyte battery comprising a power generating element in which a negative electrode plate having a negative electrode mixture layer and a positive electrode plate are laminated via a separator, wherein the negative electrode plate is made of fluorine It has the 2nd negative mix layer containing a type | system | group binder, and the 1st negative mix layer containing the non-fluorine type binder laminated | stacked on this 2nd negative mix layer.

第2発明においては、フッ素系結着剤を含有する第2負極合剤層、及び、該第2負極合剤層に積層された非フッ素系結着剤を含有する第1負極合剤層を有する負極板と、正極板とを、離隔体を介して積層している。負極板は、例えば箔状の負極集電体の両面又は片面に第2負極合剤層を形成し、形成した第2負極合剤層上に第1負極合剤層を形成する。第2負極合剤層が含有するフッ素系結着剤は、非フッ素系結着剤よりも電池寿命性能が良好であり、前記第2負極合剤層に積層された第1負極合剤層が含有する非フッ素系結着剤は、フッ素系結着剤よりも熱安定性が良好であり、本発明では非フッ素系結着剤及びフッ素系結着剤の両方の長所が備わることになる。また、極板は2種類の合剤層を有するが、各合剤層の結着剤は異なるが、活物質は異ならないため、充放電特性は良好に維持される。   In the second invention, a second negative electrode mixture layer containing a fluorine-based binder, and a first negative electrode mixture layer containing a non-fluorine-based binder laminated on the second negative electrode mixture layer are provided. The negative electrode plate and the positive electrode plate are stacked via a separator. In the negative electrode plate, for example, a second negative electrode mixture layer is formed on both surfaces or one surface of a foil-shaped negative electrode current collector, and a first negative electrode mixture layer is formed on the formed second negative electrode mixture layer. The fluorine-based binder contained in the second negative electrode mixture layer has better battery life performance than the non-fluorine binder, and the first negative electrode mixture layer laminated on the second negative electrode mixture layer has The contained non-fluorinated binder has better thermal stability than the fluorine-based binder, and the present invention has the advantages of both the non-fluorinated binder and the fluorine-based binder. Moreover, although an electrode plate has two types of mixture layers, since the binder of each mixture layer differs, but an active material does not differ, charging / discharging characteristics are maintained favorable.

第3発明に係る非水電解質電池は、第1又は第2発明において、前記発電要素は、正極板と対向し、外周に最も近い負極合剤層が第1負極合剤層となるように積層が行われていることを特徴とする。   A nonaqueous electrolyte battery according to a third invention is the non-aqueous electrolyte battery according to the first or second invention, wherein the power generation element is laminated such that the negative electrode mixture layer facing the positive electrode plate and closest to the outer periphery is the first negative electrode mixture layer. Is carried out.

第3発明においては、正極板と対向し、外周に最も近い負極合剤層が、非フッ素系結着剤を含有する第1負極合剤層となるように、負極板、正極板、及び離隔体を積層している。このように積層が行われた発電要素に、外部から金属製の釘などが侵入した場合、正極板と対向し、外周に最も近い第1負極合剤層側で正極と負極との短絡が最初に起こる。短絡部分には電流が流れて局所的に発熱が生じるが、充電状態の負極の熱安定性は、フッ素系結着材よりも非フッ素系結着材の方が優れているため、フッ素系結着材を含有する第2負極合剤層側で短絡が生じるよりも、非フッ素系結着材を含有する第1負極合剤層側で短絡が生じる方が、発熱及び発熱による漏液又は発煙の発生が抑制される。   In the third invention, the negative electrode plate, the positive electrode plate, and the separation plate are arranged so that the negative electrode mixture layer facing the positive electrode plate and closest to the outer periphery is the first negative electrode mixture layer containing a non-fluorine binder. Laminate the body. When a metal nail or the like enters the power generation element thus laminated from the outside, a short circuit between the positive electrode and the negative electrode is first performed on the first negative electrode mixture layer side facing the positive electrode plate and closest to the outer periphery. To happen. Although current flows through the short-circuited part and heat is locally generated, the thermal stability of the negative electrode in the charged state is superior to non-fluorinated binders than fluorine-based binders. The short circuit occurs on the first negative electrode mixture layer side containing the non-fluorine binder rather than the short circuit occurs on the second negative electrode mixture layer side containing the adhesive material. Is suppressed.

第4発明に係る非水電解質電池は、第1〜第3発明の何れかにおいて、前記非フッ素系結着剤は、スチレン・ブタジエン系ゴムとセルロース系化合物との混合物であることを特徴とする。   The nonaqueous electrolyte battery according to a fourth invention is any one of the first to third inventions, wherein the non-fluorine binder is a mixture of a styrene / butadiene rubber and a cellulose compound. .

第4発明においては、第1負極合剤層に含有される非フッ素系結着剤として、スチレン・ブタジエン系ゴムとセルロース系化合物との混合物を用いる。非フッ素系結着剤として一般的なスチレン・ブタジエン系ゴムとセルロース系化合物との混合物を用いることにより、第1負極合剤層の形成を容易に行うことができる。   In the fourth invention, a mixture of a styrene / butadiene rubber and a cellulose compound is used as the non-fluorine binder contained in the first negative electrode mixture layer. By using a mixture of a general styrene / butadiene rubber and a cellulose compound as the non-fluorinated binder, the first negative electrode mixture layer can be easily formed.

第5発明に係る非水電解質電池は、第1〜第3発明の何れかにおいて、前記フッ素系結着剤は、ポリフッ化ビニリデン系の物質であることを特徴とする。   The nonaqueous electrolyte battery according to a fifth aspect of the present invention is characterized in that, in any one of the first to third aspects, the fluorine-based binder is a polyvinylidene fluoride-based substance.

第5発明においては、第2負極合剤層に含有されるフッ素系結着剤として、ポリフッ化ビニリデン系の物質を用いる。フッ素系結着剤として一般的なポリフッ化ビニリデン系の物質を用いることにより、第2負極合剤層の形成を容易に行うことができる。   In the fifth invention, a polyvinylidene fluoride-based material is used as the fluorine-based binder contained in the second negative electrode mixture layer. By using a general polyvinylidene fluoride-based substance as the fluorine-based binder, the second negative electrode mixture layer can be easily formed.

第1、第2、第4、第5発明によれば、負極合剤層として、熱安定性に優れる非フッ素系結着剤を含有する第1負極合剤層、及び、電池寿命性能に優れるフッ素系結着剤を含有する第2負極合剤層の両層を形成することにより、電池寿命性能及び熱安定性を向上できる。また、極板は2種類の合剤層を有するが、各合剤層の結着剤は異なるが、活物質は異ならないため、充放電特性は良好に維持される。   According to the first, second, fourth, and fifth inventions, the negative electrode mixture layer is excellent in the first negative electrode mixture layer containing a non-fluorinated binder having excellent thermal stability and the battery life performance. Battery life performance and thermal stability can be improved by forming both layers of the second negative electrode mixture layer containing a fluorine-based binder. Moreover, although an electrode plate has two types of mixture layers, since the binder of each mixture layer differs, but an active material does not differ, charging / discharging characteristics are maintained favorable.

第3、第4、第5発明によれば、フッ素系結着剤よりも熱安定性に優れた非フッ素系結着剤を含有する第1負極合剤層が、正極板と対向し、外周に最も近い負極合剤層となるように正極板、負極板、及びセパレータを積層することにより、外部から金属製の釘などが突き刺さった場合、熱安定性に優れた第1負極合剤層側で正極との短絡が最初に起こるため、発熱及び発熱による漏液又は発煙の発生を抑制することができる。   According to the third, fourth, and fifth inventions, the first negative electrode mixture layer containing a non-fluorine binder that has better thermal stability than the fluorine binder is opposed to the positive electrode plate, The first negative electrode mixture layer side having excellent thermal stability when a metal nail or the like is stuck from the outside by laminating the positive electrode plate, the negative electrode plate, and the separator so as to be the closest negative electrode mixture layer to Since a short circuit with the positive electrode occurs first, heat generation and leakage or smoke generation due to heat generation can be suppressed.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(実施例1)
本発明に係る角型のリチウムイオン二次電池(非水電解質電池)の概略断面図を図1に示す。また、図1のX部分の拡大断面図を図2に示す。図1において、1は角型のリチウムイオン二次電池、2は巻回型の発電要素、3は正極板、4は負極板、5はセパレータ(離隔体)、6は正極端子を兼ねた電池ケース、7は電池蓋、8は安全弁、9は負極端子、10は正極リード、11は負極リードである。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
(Example 1)
A schematic cross-sectional view of a square lithium ion secondary battery (nonaqueous electrolyte battery) according to the present invention is shown in FIG. FIG. 2 is an enlarged cross-sectional view of a portion X in FIG. In FIG. 1, 1 is a rectangular lithium ion secondary battery, 2 is a wound-type power generation element, 3 is a positive electrode plate, 4 is a negative electrode plate, 5 is a separator (separator), and 6 is a battery also serving as a positive electrode terminal. Case, 7 is a battery cover, 8 is a safety valve, 9 is a negative terminal, 10 is a positive lead, and 11 is a negative lead.

リチウムイオン二次電池1は、正極活物質を含有する正極合剤層22を正極集電体21に形成してなる正極板3と、負極活物質を含有する負極合剤層24(後述する第1負極合剤層24A及び第2負極合剤層24B)を負極集電体23に形成してなる負極板4とが、非水電解液を注入したセパレータ5を介して巻回された発電要素2が、底及び該底を囲む側壁を有する電池ケース(厚さ5mm)6に収納されている。また、電池ケース6の開口部には、安全弁8を備えた電池蓋7がレーザー溶接によって取り付けられている。正極板3は、電池ケース6の内壁と接触しており、正極リード10を介して電池蓋7と接続されている。また、負極板4は負極リード11を介して電池蓋7の負極端子9と接続されている。   The lithium ion secondary battery 1 includes a positive electrode plate 3 in which a positive electrode mixture layer 22 containing a positive electrode active material is formed on a positive electrode current collector 21, and a negative electrode mixture layer 24 containing a negative electrode active material (described later). The negative electrode plate 4 formed by forming the first negative electrode mixture layer 24 </ b> A and the second negative electrode mixture layer 24 </ b> B) on the negative electrode current collector 23 is wound through a separator 5 into which a nonaqueous electrolyte is injected. 2 is accommodated in a battery case (thickness 5 mm) 6 having a bottom and a side wall surrounding the bottom. Further, a battery lid 7 having a safety valve 8 is attached to the opening of the battery case 6 by laser welding. The positive electrode plate 3 is in contact with the inner wall of the battery case 6 and is connected to the battery lid 7 via the positive electrode lead 10. The negative electrode plate 4 is connected to the negative electrode terminal 9 of the battery lid 7 via the negative electrode lead 11.

正極板3に関しては、まず正極活物質のLiCoO2 90wt%と、導電剤のアセチレンブラック5wt%と、バインダ(結着剤)としてのポリフッ化ビニリデン5wt%とを混合して正極合剤とし、N−メチル−2−ピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを厚さ15μmのアルミ箔の正極集電体21に均一に塗布して正極合剤層22を形成し、乾燥させた後、ロールプレスで圧縮成型して正極板3を作製した。 For the positive electrode plate 3, first and LiCoO 2 90 wt% of the positive electrode active material, acetylene black 5 wt% of a conductive agent, a binder was mixed with polyvinylidene fluoride 5 wt% of a (binder) the positive electrode mixture, N A slurry was prepared by dispersing in -methyl-2-pyrrolidone (NMP). This slurry was uniformly applied to a positive electrode current collector 21 made of aluminum foil having a thickness of 15 μm to form a positive electrode mixture layer 22, dried, and then compression-molded by a roll press to prepare a positive electrode plate 3.

負極板4の負極合剤層24に関しては、負極集電体23の一方の面に第1負極合剤層24Aが形成され、他方の面に第2負極合剤層24Bが形成されている。第1負極合剤層24Aに関しては、黒鉛粉末97wt%に対し、バインダ(結着材)としてのスチレン・ブタジエン共重合体が1.5wt%、カルボキシメチルセルロースが1.5wt%となるように調整して水を加え混合し、負極スラリーを調製した。また、第2負極合剤層24Bに関しては、黒鉛粉末95wt%に対し、バインダとしてのポリフッ化ビニリデンが5wt%となるように調整してNMPを加え混合し、負極スラリーを調製した。そして、厚さ10μmの銅箔の負極集電体23に前記第1負極合剤層用の負極スラリーを、ロールコーターを用いて、送り速度0.50m/min、乾燥温度125℃、送風量10.0m/sの条件で200mm塗布し、次にその銅箔の逆の面に第2負極合剤層用の負極スラリーを前記と同じ条件で塗布し、膜厚200〜240μmの塗工膜を得て、ロールプレスで圧縮成型することにより負極板4を作製した。   Regarding the negative electrode mixture layer 24 of the negative electrode plate 4, the first negative electrode mixture layer 24 </ b> A is formed on one surface of the negative electrode current collector 23, and the second negative electrode mixture layer 24 </ b> B is formed on the other surface. Regarding the first negative electrode mixture layer 24A, the graphite powder 97 wt% was adjusted so that the styrene / butadiene copolymer as a binder (binder) was 1.5 wt% and the carboxymethyl cellulose was 1.5 wt%. Water was added and mixed to prepare a negative electrode slurry. Regarding the second negative electrode mixture layer 24B, NMP was added to and mixed with 95 wt% of graphite powder so that polyvinylidene fluoride as a binder was 5 wt% to prepare a negative electrode slurry. Then, the negative electrode slurry for the first negative electrode mixture layer is fed to the negative electrode current collector 23 made of copper foil having a thickness of 10 μm, using a roll coater, at a feed rate of 0.50 m / min, a drying temperature of 125 ° C., and an air flow rate of 10 Then, 200 mm is applied under the condition of 0.0 m / s, and then the negative electrode slurry for the second negative electrode mixture layer is applied under the same conditions as the above on the opposite surface of the copper foil to form a coating film having a film thickness of 200 to 240 μm. The negative electrode plate 4 was produced by compression molding with a roll press.

セパレータ5には、厚さ25μm程度の微多孔性ポリエチレンフィルムを用いた。また、電解液は、1モルのLiPF6 をエチレンカーボネート及びジエチルカーボネートの混合溶媒(容積比1:2)に溶解したものを用いた。 As the separator 5, a microporous polyethylene film having a thickness of about 25 μm was used. In addition, an electrolytic solution in which 1 mol of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 2) was used.

発電要素2は、図2に示すように、正極板3が外周となり、さらに、負極板4の外周側が第1負極合剤層24Aとなるように巻回されている。発電要素2は、その外周から巻回中心部(図2では左から右)へ向かって、電池ケース6、正極板3、セパレータ5、負極板4、セパレータ5、正極板3、・・・の順に積層されている。また、負極板4の外周側の面(図2では左側の面)には、第1負極合剤層24Aが形成され、巻回中心側の面(図2では右側の面)には第2負極合剤層24Bが形成されており、正極板3と対向し、最も外側となる負極合剤層24は第1負極合剤層24Aとなっている。   As shown in FIG. 2, the power generating element 2 is wound so that the positive electrode plate 3 becomes the outer periphery and the outer peripheral side of the negative electrode plate 4 becomes the first negative electrode mixture layer 24 </ b> A. The power generation element 2 has a battery case 6, a positive electrode plate 3, a separator 5, a negative electrode plate 4, a separator 5, a positive electrode plate 3,... From the outer periphery toward the winding center (from left to right in FIG. 2). They are stacked in order. Further, a first negative electrode mixture layer 24A is formed on the outer peripheral surface (the left surface in FIG. 2) of the negative electrode plate 4, and the second central electrode surface (the right surface in FIG. 2) is the second. A negative electrode mixture layer 24B is formed. The negative electrode mixture layer 24 that faces the positive electrode plate 3 and is on the outermost side is a first negative electrode mixture layer 24A.

(実施例2)
第2負極合剤層24Bに関して、黒鉛粉末95wt%に対し、バインダとしてのフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 2)
Regarding the second negative electrode mixture layer 24B, a copolymer of vinylidene fluoride and hexafluoropropylene as a binder is adjusted to 5 wt% with respect to 95 wt% of the graphite powder, and NMP is added and mixed to mix the negative electrode slurry. A lithium ion secondary battery was produced in the same manner as in Example 1 except that it was prepared and applied to the negative electrode current collector 23.

(実施例3)
第1負極合剤層24Aに関して、黒鉛粉末97wt%に対し、バインダとしてのアクリロニトリル・ブタジエン共重合体を1.5wt%、カルボキシメチルセルロースを1.5wt%となるように調整し、水を加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 3)
Regarding the first negative electrode mixture layer 24A, with respect to 97 wt% of graphite powder, acrylonitrile-butadiene copolymer as a binder is adjusted to 1.5 wt% and carboxymethylcellulose is 1.5 wt%, and water is added and mixed. A lithium ion secondary battery was produced in the same manner as in Example 1 except that a negative electrode slurry was prepared and applied to the negative electrode current collector 23.

(実施例4)
第1負極合剤層24Aに関して、黒鉛粉末95wt%に対し、バインダとしてのポリイミドを5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 4
Regarding the first negative electrode mixture layer 24A, a polyimide as a binder was adjusted to 5 wt% with respect to 95 wt% of the graphite powder, and NMP was added and mixed to prepare a negative electrode slurry, which was applied to the negative electrode current collector 23. A lithium ion secondary battery was produced in the same manner as in Example 1 except that.

(実施例5)
第1負極合剤層24Aに関して、黒鉛粉末95wt%に対し、バインダとしてのポリアミドイミドを5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 5)
Regarding the first negative electrode mixture layer 24A, a polyamide imide as a binder is adjusted to 5 wt% with respect to 95 wt% of the graphite powder, and NMP is added and mixed to prepare a negative electrode slurry, which is applied to the negative electrode current collector 23 A lithium ion secondary battery was produced in the same manner as in Example 1 except that.

(実施例6)
第1負極合剤層24Aに関して、黒鉛粉末95wt%に対し、バインダとしてのポリフッ化ビニリデンを5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、さらに、第2負極合剤層24Bに関して、黒鉛粉末97wt%に対し、バインダとしてのスチレン・ブタジエン共重合体を1.5wt%、カルボキシメチルセルロースを1.5wt%となるように調整し、水を加え混合して負極スラリーを調製して、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Example 6)
Regarding the first negative electrode mixture layer 24A, the graphite powder 95 wt% is adjusted to 5 wt% polyvinylidene fluoride as a binder, NMP is added and mixed to prepare a negative electrode slurry, and the second negative electrode mixture layer is further mixed. With respect to the agent layer 24B, the graphite powder 97 wt% is adjusted so that the styrene-butadiene copolymer as a binder is 1.5 wt% and the carboxymethyl cellulose is 1.5 wt%, and water is added and mixed to prepare a negative electrode slurry. A lithium ion secondary battery was produced in the same manner as in Example 1 except that it was prepared and applied to the negative electrode current collector 23.

(比較例1)
第2負極合剤層24Bに関して、黒鉛粉末97wt%に対し、バインダとしてのスチレン・ブタジエン共重合体を1.5wt%、カルボキシメチルセルロースを1.5wt%となるように調整し、水を加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 1)
Regarding the second negative electrode mixture layer 24B, with respect to 97 wt% of the graphite powder, the styrene / butadiene copolymer as a binder is adjusted to 1.5 wt% and the carboxymethyl cellulose is 1.5 wt%, and water is added and mixed. A lithium ion secondary battery was produced in the same manner as in Example 1 except that a negative electrode slurry was prepared and applied to the negative electrode current collector 23.

(比較例2)
第1負極合剤層24Aおよび第2負極合剤層24Bの両方に関して、黒鉛粉末95wt%に対し、バインダとしてのポリイミド樹脂を5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 2)
For both the first negative electrode mixture layer 24A and the second negative electrode mixture layer 24B, the polyimide resin as the binder is adjusted to 5 wt% with respect to the graphite powder 95 wt%, and NMP is added and mixed to mix the negative electrode slurry. A lithium ion secondary battery was produced in the same manner as in Example 1 except that it was prepared and applied to the negative electrode current collector 23.

(比較例3)
第1負極合剤層24Aに関して、黒鉛粉末95wt%に対し、バインダとしてのポリフッ化ビニリデンを5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 3)
Regarding the first negative electrode mixture layer 24A, a polyvinylidene fluoride as a binder is adjusted to 5 wt% with respect to 95 wt% of the graphite powder, and NMP is added and mixed to prepare a negative electrode slurry. A lithium ion secondary battery was produced in the same manner as in Example 1 except that it was applied.

(比較例4)
第1負極合剤層24Aおよび第2負極合剤層24Bの両方に関して、黒鉛粉末95wt%に対し、バインダとしてのフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体を5wt%となるように調整し、NMPを加え混合して負極スラリーを調製し、負極集電体23に塗布したこと以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
(Comparative Example 4)
For both the first negative electrode mixture layer 24A and the second negative electrode mixture layer 24B, the copolymer of vinylidene fluoride and hexafluoropropylene as a binder is adjusted to 5 wt% with respect to 95 wt% of the graphite powder. , NMP was added and mixed to prepare a negative electrode slurry, and a lithium ion secondary battery was fabricated in the same manner as in Example 1, except that the negative electrode current collector 23 was applied.

上述した実施例1〜6および比較例1〜4のリチウムイオン二次電池について、釘刺し試験を実施した。電池ケース6に金属製の釘30を刺した場合、図2に示すように、釘30の先端は、まず正極板3と電気的に接続されている電池ケース6を突き破り、正極板3に達する(図2の(A))。この時点では、釘30が接触している電池ケース6及び正極板3は同じ電位であるため、釘30に電流は流れない。さらに釘30が発電要素2内に侵入すると、セパレータ5を突き破り、負極板4の外周側にある第1負極合剤層24Aに到達する(図2の(B))。このとき、釘30により正極(正極板3)と負極板4とが短絡して大きな電流が流れることになる。短絡部分で大きな電流が流れて局所的に発熱した場合、漏液又は発煙などの異常が生じる可能性がある。   A nail penetration test was performed on the lithium ion secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 4 described above. When the metal nail 30 is pierced into the battery case 6, as shown in FIG. 2, the tip of the nail 30 first breaks through the battery case 6 that is electrically connected to the positive electrode plate 3 to reach the positive electrode plate 3. ((A) of FIG. 2). At this time, since the battery case 6 and the positive electrode plate 3 in contact with the nail 30 have the same potential, no current flows through the nail 30. When the nail 30 further enters the power generation element 2, the separator 5 is broken through and reaches the first negative electrode mixture layer 24A on the outer peripheral side of the negative electrode plate 4 ((B) of FIG. 2). At this time, the positive electrode (positive electrode plate 3) and the negative electrode plate 4 are short-circuited by the nail 30, and a large current flows. When a large current flows in the short-circuit portion and locally generates heat, abnormalities such as leakage or smoke may occur.

釘刺し試験は、電池ケース6を貫通するように、直径3mmの鋼鉄製の釘を突き刺し、漏液又は発煙等の有無を確認した。試験数は、各実施例及び各比較例に対して夫々10個とした。   In the nail penetration test, a steel nail having a diameter of 3 mm was pierced so as to penetrate the battery case 6, and the presence or absence of leakage or smoke generation was confirmed. The number of tests was 10 for each example and each comparative example.

また、実施例1〜6および比較例1〜4のリチウムイオン二次電池について、初期の放電容量と、500回充放電を繰り返した後の放電容量とを測定し、寿命特性(100×「初期の放電容量」/「500回充放電を繰り返した後の放電容量」[%])を求めた。放電容量の測定の試験数は、各実施例及び各比較例に対して夫々3個とし、測定値の平均値を求めた。試験結果及び測定結果を表1に示す。   Moreover, about the lithium ion secondary battery of Examples 1-6 and Comparative Examples 1-4, the initial stage discharge capacity and the discharge capacity after repeating 500 times charge / discharge were measured, and a lifetime characteristic (100x "initial stage Discharge capacity "/" discharge capacity after 500 charge / discharge cycles "[%]). The number of tests for measuring the discharge capacity was set to 3 for each example and each comparative example, and the average value of the measured values was obtained. Test results and measurement results are shown in Table 1.

Figure 2005222744
Figure 2005222744

表1より、第1負極合剤層24Aが非フッ素系バインダ、第2負極合剤層24Bがフッ素系バインダを含有する実施例1〜5においては、何れも釘刺し試験で異常は生じておらず、しかも、寿命特性が80%以上となっている。   From Table 1, in Examples 1-5 in which the first negative electrode mixture layer 24A contains a non-fluorine binder and the second negative electrode mixture layer 24B contains a fluorine binder, no abnormality occurred in the nail penetration test. Moreover, the life characteristics are 80% or more.

また、第1負極合剤層24Aがフッ素系バインダ、第2負極合剤層24Bが非フッ素系バインダである実施例6においては、寿命特性は80%以上であり、発煙が生じた電池は無いが、漏洩が生じた電池があるので、第1負極合剤層24Aを非フッ素系バインダにし、第2負極合剤層24B(フッ素系バインダ)よりも外周に近くすることが好ましい。   Further, in Example 6 in which the first negative electrode mixture layer 24A is a fluorine-based binder and the second negative electrode mixture layer 24B is a non-fluorine-based binder, the life characteristics are 80% or more, and there is no battery that generates smoke. However, since there is a leaked battery, the first negative electrode mixture layer 24A is preferably made of a non-fluorine binder and is closer to the outer periphery than the second negative electrode mixture layer 24B (fluorine binder).

また、第1負極合剤層24A及び第2負極合剤層24Bが非フッ素系バインダである比較例1及び2においては、何れも釘刺し試験で異常は生じていないが、寿命特性は65〜70%であり、実施例1〜6より劣る。   Further, in Comparative Examples 1 and 2 in which the first negative electrode mixture layer 24A and the second negative electrode mixture layer 24B are non-fluorine binders, no abnormality occurred in the nail penetration test, but the life characteristics were 65 to 65. 70%, which is inferior to Examples 1-6.

一方、第1負極合剤層24A及び第2負極合剤層24Bがフッ素系バインダである比較例3及び4においては、何れも釘刺し試験で漏液又は発煙が生じている。   On the other hand, in Comparative Examples 3 and 4 in which the first negative electrode mixture layer 24 </ b> A and the second negative electrode mixture layer 24 </ b> B are fluorine-based binders, liquid leakage or smoke generation occurs in the nail penetration test.

負極合剤層24として、非フッ素系バインダを含有する第1負極合剤層24A、及び、フッ素系バインダを含有する第2負極合剤層24Bを用いることにより、フッ素系バインダの電池寿命性能に優れた特性と、非フッ素系バインダの熱安定性に優れた特性の両方の利点を活かすことができる。また、集電体に2種類の合剤層を形成するが、各合剤層の結着剤は異なるが、活物質は異ならないため、充放電特性は良好に維持される。   By using the first negative electrode mixture layer 24A containing a non-fluorine binder and the second negative electrode mixture layer 24B containing a fluorine binder as the negative electrode mixture layer 24, the battery life performance of the fluorine binder can be improved. The advantages of both the excellent characteristics and the excellent thermal stability of the non-fluorinated binder can be utilized. Moreover, although two types of mixture layers are formed on the current collector, the binder of each mixture layer is different, but since the active material is not different, the charge / discharge characteristics are maintained well.

また、非フッ素系バインダを含有する第1負極合剤層24Aを外周に近い方に配置することにより、外部から金属製の釘30などが発電要素2内に侵入した場合に、最初に短絡する部分の負極合剤層24が、充電状態の負極に対する熱安定性がフッ素系バインダよりも優れている非フッ素系バインダを含有した第1負極合剤層24Aとなるため、短絡による発熱、及び、発熱による漏液又は発煙の発生が抑制され、安全性が向上する。   In addition, by arranging the first negative electrode mixture layer 24A containing a non-fluorine binder on the side closer to the outer periphery, when a metal nail 30 or the like enters the power generation element 2 from the outside, the first short circuit is first performed. Since the negative electrode mixture layer 24 of the portion becomes the first negative electrode mixture layer 24A containing a non-fluorine binder that has a thermal stability with respect to the negative electrode in a charged state better than the fluorine binder, heat generation due to a short circuit, and The occurrence of leakage or smoke due to heat generation is suppressed, and safety is improved.

上述した各実施例では負極板4の一方の面に第1負極合剤層24Aを形成し、他方の面に第2負極合剤層24Bを形成したが、図3に示すリチウムイオン二次電池の拡大断面図のように、負極板4の両面(又は片面)に第2負極合剤層24Bを形成し、形成した第2負極合剤層24B上に第1負極合剤層24Aを形成することも可能である。   In each of the above-described embodiments, the first negative electrode mixture layer 24A is formed on one surface of the negative electrode plate 4, and the second negative electrode mixture layer 24B is formed on the other surface, but the lithium ion secondary battery shown in FIG. 2B, the second negative electrode mixture layer 24B is formed on both surfaces (or one surface) of the negative electrode plate 4, and the first negative electrode mixture layer 24A is formed on the formed second negative electrode mixture layer 24B. It is also possible.

(実施例7)
上述した実施例1のリチウムイオン二次電池において、負極合剤層24(第1負極合剤層24A及び第2負極合剤層24B)の形成状態を、図1に示す各面で負極合剤層が異なる状態から図3に示す両面に異なる負極合剤層を積層した状態に変更した。すなわち、図3に示すように、負極集電体23の両面に第2負極合剤層(黒鉛粉末95wt%に対し、バインダとしてのポリフッ化ビニリデンが5wt%)24Bを形成し、形成した第2負極合剤層24B上に第1負極合剤層(黒鉛粉末97wt%に対し、バインダとしてのスチレン・ブタジエン共重合体が1.5wt%、カルボキシメチルセルロースが1.5wt%)24Aを形成して、リチウムイオン二次電池を作製した。また、実施例1〜6及び比較例1〜4と同様の釘刺し試験を実施し、また、寿命特性を求めた。試験結果及び測定結果を表1に示すが、実施例1〜5と同様の効果が得られている。
(Example 7)
In the lithium ion secondary battery of Example 1 described above, the formation state of the negative electrode mixture layer 24 (first negative electrode mixture layer 24A and second negative electrode mixture layer 24B) is shown in FIG. It changed into the state which laminated | stacked the different negative mix layer on both surfaces shown in FIG. 3 from the state from which a layer differs. That is, as shown in FIG. 3, a second negative electrode mixture layer (polyvinylidene fluoride as a binder is 5 wt% with respect to 95 wt% of graphite powder) 24B is formed on both surfaces of the negative electrode current collector 23 to form the second On the negative electrode mixture layer 24B, a first negative electrode mixture layer 24A (1.5 wt% of styrene-butadiene copolymer as a binder and 1.5 wt% of carboxymethylcellulose with respect to 97 wt% of graphite powder) is formed, A lithium ion secondary battery was produced. Moreover, the nail penetration test similar to Examples 1-6 and Comparative Examples 1-4 was implemented, and the lifetime characteristic was calculated | required. Test results and measurement results are shown in Table 1, and the same effects as in Examples 1 to 5 are obtained.

上述した実施の形態では、1つの正極板、負極板、及びセパレータを巻回することにより、正極板、負極板、及びセパレータを積層したが、例えば同面積の複数の正極板、負極板、及びセパレータを順に積層することも可能である。   In the above-described embodiment, the positive electrode plate, the negative electrode plate, and the separator are stacked by winding one positive electrode plate, the negative electrode plate, and the separator. For example, a plurality of positive electrode plates, negative electrode plates, and It is also possible to sequentially stack the separators.

本発明に係る角型のリチウムイオン二次電池(非水電解質電池)の概略断面図である。It is a schematic sectional drawing of the square-shaped lithium ion secondary battery (nonaqueous electrolyte battery) which concerns on this invention. 図1のX部分の拡大断面図である。It is an expanded sectional view of the X section of FIG. 他の実施例に係るリチウムイオン二次電池の拡大断面図である。It is an expanded sectional view of the lithium ion secondary battery which concerns on another Example.

符号の説明Explanation of symbols

1 リチウムイオン二次電池
2 発電要素
3 正極板
4 負極板
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 正極リード
11 負極リード
21 正極集電体
22 正極合剤層
23 負極集電体
24 負極合剤層
24A 第1負極合剤層
24B 第2負極合剤層
30 釘
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Power generation element 3 Positive electrode plate 4 Negative electrode plate 5 Separator 6 Battery case 7 Battery lid 8 Safety valve 9 Negative electrode terminal 10 Positive electrode lead 11 Negative electrode lead 21 Positive electrode collector 22 Positive electrode mixture layer 23 Negative electrode collector 24 Negative electrode mixture layer 24A First negative electrode mixture layer 24B Second negative electrode mixture layer 30 Nail

Claims (5)

負極合剤層を有する負極板と、正極板とが、離隔体を介して積層された発電要素を備える非水電解質電池において、
前記負極板は、一方の面に非フッ素系結着剤を含有する第1負極合剤層を有し、他方の面にフッ素系結着剤を含有する第2負極合剤層を有することを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a power generation element in which a negative electrode plate having a negative electrode mixture layer and a positive electrode plate are laminated via a separator,
The negative electrode plate has a first negative electrode mixture layer containing a non-fluorine binder on one side and a second negative electrode mixture layer containing a fluorine binder on the other side. Non-aqueous electrolyte battery characterized.
負極合剤層を有する負極板と、正極板とが、離隔体を介して積層された発電要素を備える非水電解質電池において、
前記負極板は、フッ素系結着剤を含有する第2負極合剤層と、該第2負極合剤層に積層された非フッ素系結着剤を含有する第1負極合剤層とを有することを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a power generation element in which a negative electrode plate having a negative electrode mixture layer and a positive electrode plate are laminated via a separator,
The negative electrode plate has a second negative electrode mixture layer containing a fluorine-based binder, and a first negative electrode mixture layer containing a non-fluorine-based binder laminated on the second negative electrode mixture layer. The nonaqueous electrolyte battery characterized by the above-mentioned.
前記発電要素は、正極板と対向し、外周に最も近い負極合剤層が第1負極合剤層となるように積層が行われていることを特徴とする請求項1又は2記載の非水電解質電池。   3. The non-aqueous composition according to claim 1, wherein the power generation element is laminated such that the negative electrode mixture layer facing the positive electrode plate and closest to the outer periphery becomes the first negative electrode mixture layer. Electrolyte battery. 前記非フッ素系結着剤は、スチレン・ブタジエン系ゴムとセルロース系化合物との混合物であることを特徴とする請求項1乃至3の何れかに記載の非水電解質電池。   4. The nonaqueous electrolyte battery according to claim 1, wherein the non-fluorine binder is a mixture of a styrene / butadiene rubber and a cellulose compound. 前記フッ素系結着剤は、ポリフッ化ビニリデン系の物質であることを特徴とする請求項1乃至3の何れかに記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the fluorine-based binder is a polyvinylidene fluoride-based substance.
JP2004027351A 2004-02-03 2004-02-03 Nonaqueous electrolyte battery Pending JP2005222744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027351A JP2005222744A (en) 2004-02-03 2004-02-03 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027351A JP2005222744A (en) 2004-02-03 2004-02-03 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2005222744A true JP2005222744A (en) 2005-08-18

Family

ID=34998224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027351A Pending JP2005222744A (en) 2004-02-03 2004-02-03 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2005222744A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004506A1 (en) * 2009-07-10 2011-01-13 本田技研工業株式会社 Nail puncture test equipment having temperature measurement function
WO2014141403A1 (en) * 2013-03-13 2014-09-18 株式会社日立製作所 Negative electrode for electricity storage devices, and electricity storage device
KR101517043B1 (en) * 2010-12-20 2015-04-30 주식회사 엘지화학 Anode Having Improved Adhesion for Lithium Secondary Battery
WO2021166925A1 (en) * 2020-02-19 2021-08-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary batteries
WO2022255669A1 (en) * 2021-06-03 2022-12-08 주식회사 엘지에너지솔루션 Cathode additive and cathode containing same for lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004506A1 (en) * 2009-07-10 2011-01-13 本田技研工業株式会社 Nail puncture test equipment having temperature measurement function
US8950936B2 (en) 2009-07-10 2015-02-10 Honda Motor Company Limited Nail puncture test device having temperature measurement function
KR101517043B1 (en) * 2010-12-20 2015-04-30 주식회사 엘지화학 Anode Having Improved Adhesion for Lithium Secondary Battery
WO2014141403A1 (en) * 2013-03-13 2014-09-18 株式会社日立製作所 Negative electrode for electricity storage devices, and electricity storage device
WO2021166925A1 (en) * 2020-02-19 2021-08-26 三洋電機株式会社 Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary batteries
CN115039253A (en) * 2020-02-19 2022-09-09 三洋电机株式会社 Nonaqueous electrolyte secondary battery and negative electrode for nonaqueous electrolyte secondary battery
WO2022255669A1 (en) * 2021-06-03 2022-12-08 주식회사 엘지에너지솔루션 Cathode additive and cathode containing same for lithium secondary battery

Similar Documents

Publication Publication Date Title
US10186700B2 (en) Heat-resistant microporous film and battery separator
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP4752574B2 (en) Negative electrode and secondary battery
JP2008226807A (en) Non-aqueous electrolyte secondary battery
WO2017014245A1 (en) Lithium ion secondary battery
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
KR20160134761A (en) Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
WO2008050604A1 (en) Sealed secondary battery
JP2008311171A (en) Lithium secondary battery
JP2008041504A (en) Nonaqueous electrolyte battery
JP6288015B2 (en) Non-aqueous electrolyte secondary battery
KR20060107318A (en) Non-aqueous electrolyte secondary battery
US20080199764A1 (en) Safer high energy battery
JP2013137943A (en) Lithium ion secondary battery and manufacturing method thereof
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2005222744A (en) Nonaqueous electrolyte battery
JP3648540B2 (en) Nonaqueous electrolyte secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP2013191345A (en) Lithium secondary battery and manufacturing method thereof
JP5433600B2 (en) Nonaqueous electrolyte secondary battery
JP2003303581A (en) Battery pack
JP2003346768A (en) Non-aqueous electrolyte secondary battery
US20200014013A1 (en) Method of producing nonaqueous electrolyte secondary battery separator