JP2008311171A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2008311171A
JP2008311171A JP2007159982A JP2007159982A JP2008311171A JP 2008311171 A JP2008311171 A JP 2008311171A JP 2007159982 A JP2007159982 A JP 2007159982A JP 2007159982 A JP2007159982 A JP 2007159982A JP 2008311171 A JP2008311171 A JP 2008311171A
Authority
JP
Japan
Prior art keywords
current collector
foil
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159982A
Other languages
Japanese (ja)
Other versions
JP5224020B2 (en
Inventor
Takehiko Sawai
岳彦 澤井
Shinji Saito
慎治 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEI KK
Original Assignee
SEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEI KK filed Critical SEI KK
Priority to JP2007159982A priority Critical patent/JP5224020B2/en
Publication of JP2008311171A publication Critical patent/JP2008311171A/en
Application granted granted Critical
Publication of JP5224020B2 publication Critical patent/JP5224020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high capacity, long life in a high current charge and discharge, and high safety. <P>SOLUTION: The lithium secondary battery includes an electrode group formed by laminating or winding a negative electrode having a foil-shaped negative electrode collector in a negative electrode mixture layer and a positive electrode having a foil-shaped positive electrode collector in a positive electrode mixture layer, through a separator, and an electrolyte in which the electrode group is immersed. The foil-shaped negative electrode collector and the foil-shaped positive electrode collector are provided with a plurality of holes penetrating the collectors, a circumference of each of the holes projects to at least one surface side of the foil-shaped collector, and a thickness of the foil-shaped collector, including the projection portion of the circumference of the hole is more than 3% and 25% or less of a total thickness of one electrode plate in which the collector of the negative electrode or the positive electrode and the mixture layer are put together. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はリチウム二次電池に関する。   The present invention relates to a lithium secondary battery.

リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウム二次電池は、金属リチウムを用いて負極を形成したリチウム電池に比べてデンドライトの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。
近年ではこのリチウム二次電池のさらなる高容量化が求められる一方、電池抵抗の低減に伴う大電流充放電性能の向上が求められている。この点で従来では電池反応物質であるリチウム金属酸化物正極材または負極材自体の高容量化、さらにはこれら反応物質粒子の比表面積や電池設計による電極面積の増加、さらにはセパレータの薄形化による反応物質量の増加等の工夫がなされてきた。また、一方では電池内部で反応物質が集電体である金属箔から剥離・脱落して内部短絡を生じ、電池の電圧低下や発熱暴走などのリチウム二次電池の安全性が損なわれることがあった。そこで反応物質間や箔との結着性増加させるためにバインダーを増量したり、種類を変更したり(特許文献1)、また他の二次電池で採用されているような、剥離防止のために表面に凹凸を有する金属箔を使用すること(特許文献2、特許文献3)などを採用することが考えられる。
A lithium secondary battery in which a negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress dendrite precipitation compared to a lithium battery in which a negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
In recent years, further increase in capacity of this lithium secondary battery is demanded, while improvement of large current charge / discharge performance accompanying reduction in battery resistance is demanded. In this regard, the capacity of the lithium metal oxide positive electrode material or negative electrode material itself, which is a battery reactant in the past, has been increased. Further, the specific surface area of these reactant particles and the electrode area due to battery design have increased, and the separator has been made thinner. Ingenuity has been devised such as an increase in the amount of reactants due to. On the other hand, the reactants peel and fall from the current collector metal foil inside the battery, causing an internal short circuit, which may impair the safety of the lithium secondary battery such as battery voltage drop or heat runaway. It was. Therefore, in order to increase the binding between the reactants and the foil, the amount of the binder is increased, the type is changed (Patent Document 1), and the other secondary battery is used for preventing peeling. It is conceivable to use a metal foil having irregularities on the surface (Patent Document 2, Patent Document 3).

しかしながら、これまでに提案されてきた手段では、単に容量という観点では増大できるが、加えて抵抗低減による大電流充放電特性の改善という点では未解決であり、ニカド電池やニッケル水素電池等の他の二次電池と比較して、リチウム二次電池の大きな性能障壁であった大電流充放電が必要とされる電動工具やハイブリッドカー用途への展開が不可能であった。また、大電流による充放電サイクルを繰り返すと正・負極材の膨張収縮により、正・負極粒子間や金属箔との結着性が損なわれて抵抗が大きくなったり、箔から剥離・脱落を加速したりして、結果、電池として大電流が流せなくなり早期寿命になったり、電池が発熱暴走し、不安全なものになるおそれもあった。
特開平5−226004号公報 特開2004−342519号公報 特開2002−198055号公報
However, the means proposed so far can be increased simply in terms of capacity, but is still unresolved in terms of improving large current charge / discharge characteristics by reducing resistance. Compared with the secondary battery, it has been impossible to expand to the use of electric tools and hybrid cars that require large current charge / discharge, which is a large performance barrier of the lithium secondary battery. In addition, repeated charge and discharge cycles with a large current cause expansion and shrinkage of the positive and negative electrode materials, thereby damaging the binding between the positive and negative electrode particles and the metal foil, increasing resistance, and accelerating the peeling and dropping from the foil. As a result, a large current could not flow as a battery, resulting in an early life, and the battery could run out of heat and become unsafe.
JP-A-5-226004 JP 2004-342519 A JP 2002-198055 A

本発明はこのような問題に対処するためになされたもので、高容量化とともに、大電流充放電で長寿命、かつ安全性の高いリチウム二次電池を提供することを目的とする。   The present invention has been made to address such problems, and an object of the present invention is to provide a lithium secondary battery with high capacity, long life and high safety as well as high capacity.

本発明のリチウム二次電池は、負極合剤層に箔状負極集電体を有する負極と、正極合剤層に箔状正極集電体を有する正極とが、セパレータを介して積層あるいは捲回されることにより形成される電極群と、上記電極群が浸漬される電解液とを備えてなるリチウム二次電池であって、上記箔状負極集電体および上記箔状正極集電体は、該集電体を貫通する複数の孔を有し、該孔は孔の周囲が箔状集電体の少なくとも一方の面側へ突出してなり、上記箔状集電体の上記孔周囲の突出部を含めた厚さが、上記負極または上記正極の該集電体および該合剤層を合わせた1枚の極板総厚さの 3 %をこえ 25 %以下であることを特徴とする。   In the lithium secondary battery of the present invention, a negative electrode having a foil-like negative electrode current collector in a negative electrode mixture layer and a positive electrode having a foil-like positive electrode current collector in a positive electrode mixture layer are laminated or wound via a separator. A lithium secondary battery comprising an electrode group formed by being formed and an electrolyte solution in which the electrode group is immersed, wherein the foil-shaped negative electrode current collector and the foil-shaped positive electrode current collector are: A plurality of holes penetrating the current collector, wherein the hole has a periphery projecting toward at least one side of the foil-shaped current collector, and the projecting portion around the hole of the foil-shaped current collector The thickness including the current collector and the mixture layer of the negative electrode or the positive electrode exceeds 3% of the total thickness of one electrode plate and is 25% or less.

上記箔状負極集電体および上記箔状正極集電体は、該集電体の表面全体に上記突出部を有する孔を備えるもの、または該集電体の長手方向もしくは幅方向に対して孔を有さない部分を残して該集電体の表面に上記突出部を有する孔を備えるものであることを特徴とする。   The foil-shaped negative electrode current collector and the foil-shaped positive electrode current collector are provided with holes having the protrusions on the entire surface of the current collector, or holes in the longitudinal direction or the width direction of the current collector. The hole which has the said protrusion part is provided in the surface of this electrical power collector, leaving the part which does not have, It is characterized by the above-mentioned.

上記箔状正極集電体を除く上記正極合剤層の密度が 1.8〜3.6 g/cc であり、上記箔状負極集電体を除く上記負極合剤層の密度が 1.2〜1.6 g/cc であることを特徴とする。   The density of the positive electrode mixture layer excluding the foil-like positive electrode current collector is 1.8 to 3.6 g / cc, and the density of the negative electrode mixture layer excluding the foil-like negative electrode current collector is 1.2 to 1.6 g / cc. It is characterized by being.

本発明のリチウム二次電池は、上記電池構成部材として、負極合剤層に箔状負極集電体を有する負極と、正極合剤層に箔状正極集電体を有する正極とが、セパレータを介して積層あるいは捲回されることにより形成される電極群と、この電極群が浸漬される電解液とを備えている。また、上記負極および正極箔状集電体は、該集電体を貫通する複数の孔を有し、該孔は孔の周囲が箔状集電体の少なくとも一方の面側へ突出してなり、かつ上記箔状集電体の上記孔周囲の突出部を含めた厚さが、負極または正極の集電体および合剤層を合わせた1枚の極板総厚さの 3 %をこえ 25 %以下である。この孔周囲の突出部により、集電体表面に形成する活物質合剤層の保持能力が向上し、合剤層の剥離を防止することができる。また上記孔周囲に突出部を有する複数の孔を備えることにより、集電体としての電子伝導ネットワークが向上し、電極抵抗が低減され、大電流充放電が可能となる。
さらに、上記孔周囲の突出部により当該充放電中に正極または負極が膨張収縮して、それぞれの粒子間や集電体との密着性が向上し、急激な容量や出力の低下や内部短絡の防止を可能にする。
また、集電体が複数の孔を有することにより、発熱時の溶融応答性が良好で、瞬時に箔が切断されることにより部分的な電流パスのシャットダウンが生じて、より安全性の高い電池が得られる。
In the lithium secondary battery of the present invention, as the battery constituent member, a negative electrode having a foil-like negative electrode current collector in a negative electrode mixture layer, and a positive electrode having a foil-like positive electrode current collector in a positive electrode mixture layer are separators. And an electrode group formed by being laminated or wound via, and an electrolytic solution in which the electrode group is immersed. Further, the negative electrode and the positive electrode foil-shaped current collector have a plurality of holes penetrating the current collector, and the holes are formed so that the periphery of the hole protrudes to at least one surface side of the foil-shaped current collector, In addition, the thickness of the foil-shaped current collector including the projecting portion around the hole exceeds 3% of the total thickness of one electrode plate including the current collector and the mixture layer of the negative electrode or the positive electrode, 25% It is as follows. The protrusion around the hole improves the holding ability of the active material mixture layer formed on the surface of the current collector, and can prevent the mixture layer from peeling off. Moreover, by providing the some hole which has a protrusion part around the said hole, the electron conduction network as a collector improves, electrode resistance is reduced, and large current charging / discharging is attained.
Furthermore, the positive or negative electrode expands and contracts during the charging / discharging due to the protrusions around the holes, and the adhesion between the particles and the current collector is improved. Allows prevention.
In addition, the current collector has a plurality of holes, so that the melt responsiveness at the time of heat generation is good, and the foil is instantaneously cut, so that a partial current path shuts down, resulting in a higher safety battery. Is obtained.

また本発明のリチウム二次電池は、箔状集電体の表面全体に上記突出部を有する孔を備えるもの、または該集電体の長手方向もしくは幅方向に対して孔を有さない部分を残して該集電体の表面に上記突出部を有する孔を備えるものである。集電体の一部に穿孔を施さない部分を残すことにより、集電体自体の強度が増加し、プレス時や折り曲げた際に集電体が切断されることなく、結果極板が割れにくくなり、内部短絡を防止できる。   Moreover, the lithium secondary battery of the present invention is provided with a hole having the protruding portion on the entire surface of the foil-shaped current collector, or a portion having no hole in the longitudinal direction or the width direction of the current collector. The hole which has the said protrusion part in the surface of this collector is left behind. By leaving a portion of the current collector that is not perforated, the strength of the current collector itself increases, and the current collector is not cut when pressed or bent, resulting in an electrode plate that is difficult to break. Thus, an internal short circuit can be prevented.

また本発明のリチウム二次電池は、正極または負極箔状集電体を貫通する複数の孔の周囲に突出部を有するとともに、正極集電体を除く正極合剤層の密度を 1.8〜3.6 g/cc および負極集電体を除く負極合剤層の密度を 1.2〜1.6 g/cc とすることで、活物質自体を増量または合剤層を厚くすることができ、大電流充放電が可能となる。   The lithium secondary battery of the present invention has protrusions around a plurality of holes penetrating the positive electrode or negative electrode foil-shaped current collector, and the density of the positive electrode mixture layer excluding the positive electrode current collector is 1.8 to 3.6 g. By increasing the density of the negative electrode mixture layer excluding / cc and the negative electrode current collector to 1.2 to 1.6 g / cc, the active material itself can be increased or the mixture layer can be thickened, enabling large current charge / discharge. Become.

本発明のリチウム二次電池の一例について図に基づいて説明する。図1は本発明のリチウム二次電池の一例を示す断面図であり、特に正極、負極およびセパレータが積層されて形成された電極群の断面図を示す。   An example of the lithium secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the lithium secondary battery of the present invention, and particularly shows a cross-sectional view of an electrode group formed by laminating a positive electrode, a negative electrode and a separator.

図1に示すように、本発明のリチウム二次電池は、負極合剤層1bに箔状負極集電体1aを有する負極1と、正極合剤層2bに箔状正極集電体2aを有する正極2とが、セパレータ3を介して積層されることにより形成される電極群4を備える。この電極群4は上記のように積層されるものの他に、負極および正極がセパレータを介して捲回されているものも挙げられる。上記電極群4は封口される電池ケースの内部で電解液に浸漬されている(図示せず)。   As shown in FIG. 1, the lithium secondary battery of the present invention has a negative electrode 1 having a foil-like negative electrode current collector 1a in a negative electrode mixture layer 1b, and a foil-like positive electrode current collector 2a in a positive electrode mixture layer 2b. A positive electrode 2 is provided with an electrode group 4 formed by being laminated via a separator 3. In addition to the electrode group 4 laminated as described above, an electrode group 4 in which a negative electrode and a positive electrode are wound with a separator interposed therebetween may be used. The electrode group 4 is immersed in an electrolytic solution inside a sealed battery case (not shown).

本発明のリチウム二次電池用負極1は、負極合剤層1bとして、活物質となるリチウムイオンの吸蔵・放出が可能な材料を主材料とし、該材料と、結着剤と、分散溶媒等とを混練してペースト状にし、箔状負極集電体1aの両面に塗布して形成することができる。
リチウムイオンの吸蔵・放出が可能な材料としては、炭素材、リチウム−アルミニウム合金、シリコン系またはスズ系リチウム合金などを挙げることができる。この中で、リチウムイオンの吸蔵・放出量が多く、不可逆容量が小さいなどの理由から、炭素材を用いることが好ましい。
また、本発明に用いることができる負極集電体1aとしては、電気化学的性質、箔状への加工性やコスト面から、銅箔が用いられている。
The negative electrode 1 for a lithium secondary battery according to the present invention has, as the negative electrode mixture layer 1b, a material capable of occluding and releasing lithium ions as an active material as a main material, the material, a binder, a dispersion solvent, and the like. Can be kneaded into a paste and applied to both sides of the foil-shaped negative electrode current collector 1a.
Examples of materials that can store and release lithium ions include carbon materials, lithium-aluminum alloys, silicon-based or tin-based lithium alloys, and the like. Among these, it is preferable to use a carbon material for reasons such as a large amount of occlusion / release of lithium ions and a small irreversible capacity.
Moreover, as the negative electrode current collector 1a that can be used in the present invention, a copper foil is used from the viewpoint of electrochemical properties, processability to a foil shape, and cost.

本発明のリチウム二次電池用正極2は、正極合剤層2bを形成する活物質として、リチウム含有金属酸化物、リチウム含有金属リン酸化合物またはリチウム含有化合物を主材料とし、該材料と、結着剤と、分散溶媒等を混練してペースト状にし、正極集電体2aの両面に塗布して形成することができる。
リチウム含有金属酸化物としては、LiCoO2、Li(Ni/Co/Mn)O2、Li2MnO4などが挙げられ、リチウム含有金属リン酸化合物としては、LiFePO4、LiCoPO4などが挙げられ、リチウム含有化合物としては、LiTi2(PO43、LiFeO2などが挙げられる。この中で、電気化学特性、安全性やコスト面で、LiCoO2、Li(Ni/Co/Mn)O2、LiFePO4を用いることが好ましい。
また、本発明に用いることができる正極集電体2aとしては、アルミニウム箔を性能上用いる。
The positive electrode 2 for a lithium secondary battery according to the present invention is mainly composed of a lithium-containing metal oxide, a lithium-containing metal phosphate compound or a lithium-containing compound as an active material for forming the positive electrode mixture layer 2b. It can be formed by kneading an adhesive, a dispersion solvent, and the like to form a paste and applying it to both surfaces of the positive electrode current collector 2a.
Examples of the lithium-containing metal oxide include LiCoO 2 , Li (Ni / Co / Mn) O 2 , and Li 2 MnO 4. Examples of the lithium-containing metal phosphate compound include LiFePO 4 and LiCoPO 4 . Examples of the lithium-containing compound include LiTi 2 (PO 4 ) 3 and LiFeO 2 . Among these, LiCoO 2 , Li (Ni / Co / Mn) O 2 , and LiFePO 4 are preferably used in terms of electrochemical characteristics, safety, and cost.
In addition, as the positive electrode current collector 2a that can be used in the present invention, an aluminum foil is used in terms of performance.

また、本発明において、正極集電体を除く上記正極合剤層の密度は 1.8〜3.6 g/cc であり、負極集電体を除く上記負極合剤層の密度は 1.2〜1.6 g/cc であることが好ましい。上記範囲外であると、特に下限側は活物質である合剤層と集電体との密着性が低下するため、サイクル性能が低下するおそれがある。また、上限側では極板の多孔性が確保されず、電解液の拡散性が抑制されて、結果大電流充放電性能が低下する。   In the present invention, the density of the positive electrode mixture layer excluding the positive electrode current collector is 1.8 to 3.6 g / cc, and the density of the negative electrode mixture layer excluding the negative electrode current collector is 1.2 to 1.6 g / cc. Preferably there is. If it is out of the above range, the lower limit side particularly has a risk of reducing the cycle performance because the adhesion between the active material mixture layer and the current collector is lowered. On the upper limit side, the porosity of the electrode plate is not ensured, and the diffusibility of the electrolytic solution is suppressed, resulting in a decrease in large current charge / discharge performance.

図1に示すように、本発明のリチウム二次電池に使用する負極集電体1aおよび正極集電体2aには、これら箔状集電体を貫通する孔の周囲が箔状集電体の少なくとも一方の面側へ突出した突出部(1d、2d)を有する複数の孔(1c、2c)が設けられている。   As shown in FIG. 1, in the negative electrode current collector 1a and the positive electrode current collector 2a used in the lithium secondary battery of the present invention, the periphery of the hole penetrating the foil current collector is a foil current collector. A plurality of holes (1c, 2c) having protrusions (1d, 2d) protruding toward at least one surface side are provided.

図2は突出部を有する複数の孔を備えた集電体の例を示す端面図である。孔1cは、集電体1aの一方の面側へ突出部1dを有するもの(図2(a)または図2(c))であっても、集電体1aの両面へ突出部1dを有するもの(図2(b)または図2(d))であってもよい。ここで、突出部1dは少なくとも合剤層を形成する面側に突出していることが好ましい。また、先端が孔の開口方向より外側に広がる形状あるいは鉤状に曲がった形状の突出部1d’を有するものであってもよく、この形状により集電体1a上に形成される合剤層との密着性がより高まる(図2(c)または図2(d))。集電体1aに設けられる複数の孔1cのパターンは、周期的あるいは連続的に設けられるもの、またはランダムで設けられるもののどちらでもよいが、その上に形成される合剤層との密着性や電極抵抗などの理由から、周期的あるいは連続的なものであることが好ましい。上記は負極集電体1aを例に説明したが、正極集電体2aについても同様である。
箔状集電体1aに上述の孔周囲に突出部1dまたは1d’を有する複数の孔1cを設ける方法としては、ロール加工、または金型プレス加工などの方法を用いることができる。また、先端が孔の開口方向より外側に広がる形状あるいは鉤状に曲がった形状の突出部1d’を得るために、さらに上述の穿孔方法に加えてロールプレスまたは金型プレス加工などの方法を用いることができる。
FIG. 2 is an end view showing an example of a current collector provided with a plurality of holes having protrusions. Even if the hole 1c has a protrusion 1d on one surface side of the current collector 1a (FIG. 2 (a) or FIG. 2 (c)), the hole 1c has a protrusion 1d on both surfaces of the current collector 1a. It may be a thing (FIG.2 (b) or FIG.2 (d)). Here, it is preferable that the protrusion 1d protrudes at least on the surface side on which the mixture layer is formed. Further, it may have a protruding portion 1d ′ having a tip extending outward from the opening direction of the hole or a curved shape, and a mixture layer formed on the current collector 1a by this shape The adhesion is further increased (FIG. 2C or FIG. 2D). The pattern of the plurality of holes 1c provided in the current collector 1a may be either periodically or continuously provided, or randomly provided, but the adhesiveness with the mixture layer formed thereon may be For reasons such as electrode resistance, it is preferably periodic or continuous. Although the above has described the negative electrode current collector 1a as an example, the same applies to the positive electrode current collector 2a.
As a method for providing the foil-shaped current collector 1a with a plurality of holes 1c having protrusions 1d or 1d 'around the above-described holes, a method such as roll processing or die press processing can be used. Further, in order to obtain the protruding portion 1d ′ having a shape in which the tip extends outward from the opening direction of the hole or a curved shape, a method such as roll pressing or die pressing is used in addition to the above-described drilling method. be able to.

図3は突出部を有する複数の孔を備えた箔状集電体および合剤層からなる1枚の負極板の断面図である。孔周囲に突出部1dを有する孔1cが設けられた負極集電体1aの厚さt1は、負極集電体1aおよび負極合剤層1bを合わせた1枚の極板総厚さt0の 3 %をこえ 25 %以下であることが好ましい。ここで集電体1aの厚さt1とは、集電体1aに設けられた孔1c周囲の突出部1dが集電体1aの一方の面側のみへ突出している場合は、孔1cの非突出面から突出部1dの先端までの高さであり(図3(a))、孔1c周囲の突出部1dが集電体1aの両面へ突出している場合は、一方の面側の突出部1dの先端から反対の面側の突出部1dの先端までの高さである(図3(b))。孔周囲の突出部を含めた集電体1aの厚さt1の割合が 3 %以下では活物質である合剤層と集電体との間で所期の密着性を得ることができず、また 25 %をこえると合剤の集電体上への塗布が困難になる。上記は負極集電体1aを例に説明したが、正極についても同様である。 FIG. 3 is a cross-sectional view of a single negative electrode plate comprising a foil-like current collector having a plurality of holes having protrusions and a mixture layer. The thickness t 1 of the negative electrode current collector 1a provided with the hole 1c having the protruding portion 1d around the hole is the total thickness t 0 of one electrode plate including the negative electrode current collector 1a and the negative electrode mixture layer 1b. Preferably, it is more than 3% and 25% or less. Here, the thickness t 1 of the current collector 1a means that the protrusion 1d around the hole 1c provided in the current collector 1a protrudes only to one surface side of the current collector 1a. It is the height from the non-projecting surface to the tip of the projecting portion 1d (FIG. 3 (a)), and when the projecting portion 1d around the hole 1c projects to both sides of the current collector 1a, it projects from one surface side. This is the height from the tip of the portion 1d to the tip of the protruding portion 1d on the opposite surface side (FIG. 3B). If the ratio of the thickness t 1 of the current collector 1a including the protrusion around the hole is 3% or less, the desired adhesion between the active material mixture layer and the current collector cannot be obtained. If the content exceeds 25%, it will be difficult to apply the mixture onto the current collector. Although the above has described the negative electrode current collector 1a as an example, the same applies to the positive electrode.

本発明のリチウム二次電池における箔状負極集電体および箔状正極集電体は、該集電体の表面全体に上述の突出部を有する孔を備えるものであっても、集電体の長手方向もしくは幅方向に対して孔を有さない部分を残して集電体の表面に上述の突出部を有する孔を備えるものであってもよい。本発明において、活物質を集電体表面の上記突出部を有する孔が設けられている部分へ塗布して合剤層を形成する。集電体の長手方向もしくは幅方向に対して孔を有さない部分、すなわち合剤層を形成しない部分を残すことで、集電体の長手方向もしくは幅方向の強度が増し、極板加工時や積層、捲回等の電池組込み時の極板切断等を防止することができる。   Even if the foil-like negative electrode current collector and the foil-like positive electrode current collector in the lithium secondary battery of the present invention are provided with the above-described holes on the entire surface of the current collector, You may equip the surface of an electrical power collector with the hole which has the above-mentioned protrusion part, leaving the part which does not have a hole with respect to a longitudinal direction or the width direction. In this invention, an active material is apply | coated to the part in which the hole which has the said protrusion part on the surface of an electrical power collector is provided, and a mixture layer is formed. By leaving the part that does not have holes in the longitudinal direction or width direction of the current collector, that is, the part that does not form the mixture layer, the strength in the longitudinal direction or width direction of the current collector increases, and during plate processing In addition, it is possible to prevent the electrode plate from being cut when the battery is incorporated such as stacking or winding.

本発明のリチウム二次電池に使用できるセパレータは、正極および負極を電気的に絶縁して電解液を保持するものである。上記セパレータは合成樹脂製などを挙げることができ、その具体例としては、ポリエチレンやポリプロピレンなどを挙げることができる。電解液の保持性が良いことから、多孔性フィルムを用いることが好ましい。   The separator that can be used in the lithium secondary battery of the present invention is to electrically insulate the positive electrode and the negative electrode to hold the electrolytic solution. Examples of the separator include a synthetic resin, and specific examples thereof include polyethylene and polypropylene. It is preferable to use a porous film because the electrolyte retainability is good.

本発明のリチウム二次電池において、上述する電極群が浸漬される電解液としては、リチウム塩を含む非水電解液またはイオン伝導ポリマーなどを用いることが好ましい。   In the lithium secondary battery of the present invention, it is preferable to use a non-aqueous electrolyte containing a lithium salt, an ion conductive polymer, or the like as the electrolyte in which the electrode group described above is immersed.

リチウム塩を含む非水電解液における非水電解質の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等が挙げられる。
また、上記非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム(LiPF6)、ホウ四フッ化リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiSO3CF4)等が挙げられる。
Examples of the nonaqueous solvent for the nonaqueous electrolyte in the nonaqueous electrolyte containing a lithium salt include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Is mentioned.
Examples of lithium salts that can be dissolved in the non-aqueous solvent include lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), and lithium trifluoromethanesulfonate (LiSO 3 CF 4 ). .

以下、実施例及び比較例により、本発明に係るリチウム二次電池を詳細に説明する。しかし、本発明はその要旨をこえない限り、以下の実施例に限定されるものではない。本発明における正極および負極及び電池作製方法の一例を以下に示す。それぞれの実施例では、下記正極、負極、セパレータを組合せて電池を得た。   Hereinafter, the lithium secondary battery according to the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist. An example of the positive electrode, negative electrode, and battery manufacturing method in the present invention is shown below. In each Example, a battery was obtained by combining the following positive electrode, negative electrode, and separator.

<正極の作製>
コバルト酸リチウムを正極活物質とし、活物質 95.3 重量部に、導電剤 2.2 重量部と結着剤として 2.5 重量部のポリフッ化ビニリデンを添加した。これに分散溶媒としてN−メチルピロリドンを添加、混練した正極合剤(スラリー)を作製した。
20 μm アルミニウム箔に穿孔加工を施して、当該加工アルミ箔厚さを正極所定総厚さ(アルミニウム箔の両面に上記材料を塗布・乾燥後、プレスをした時の厚さ)のそれぞれ表1に示す割合としたものを準備した。上記正極スラリーを当該加工アルミニウム箔の両面に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用正極を得た。
<Preparation of positive electrode>
Lithium cobalt oxide was used as a positive electrode active material, and 2.2 parts by weight of a conductive agent and 2.5 parts by weight of polyvinylidene fluoride as a binder were added to 95.3 parts by weight of the active material. A positive electrode mixture (slurry) in which N-methylpyrrolidone was added and kneaded as a dispersion solvent was prepared.
Perforation processing is performed on 20 μm aluminum foil, and the thickness of the processed aluminum foil is shown in Table 1 for the predetermined total thickness of the positive electrode (thickness when the above material is applied on both sides of the aluminum foil, dried and pressed). What was shown was prepared. The positive electrode slurry was applied to both sides of the processed aluminum foil, dried, then pressed and cut to obtain a positive electrode for a lithium secondary battery.

<負極の作製>
黒鉛粉末 93 重量部に結着剤として 7 重量部のポリフッ化ビニリデンを添加し、これに分散溶媒としてN−メチルピロリドンを添加、混練した負極合剤(スラリー)を作製した。
10 μm の銅箔に穿孔加工を施して、当該加工銅箔厚さを負極所定総厚さ(銅箔の両面に上記材料を塗布・乾燥後、プレスをした時の厚さ)に対してそれぞれ表1に示す割合としたものを準備した。上記負極スラリーを当該加工銅箔の両面に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用負極を得た。
<Production of negative electrode>
A negative electrode mixture (slurry) was prepared by adding 7 parts by weight of polyvinylidene fluoride as a binder to 93 parts by weight of graphite powder and adding and kneading N-methylpyrrolidone as a dispersion solvent thereto.
Perforation processing is performed on 10 μm copper foil, and the thickness of the processed copper foil is compared to the predetermined total thickness of the negative electrode (the thickness when the above material is applied to both sides of the copper foil, dried and then pressed). What was made into the ratio shown in Table 1 was prepared. The negative electrode slurry was applied to both sides of the processed copper foil, dried, then pressed and cut to obtain a negative electrode for a lithium secondary battery.

上記で得られた正極および負極の表面を目視および光学顕微鏡にて観察した。その塗工面の表面形状が平滑であったものを「良好」とし、それ以外の結果を理由を付して表1に併記した。   The surfaces of the positive electrode and the negative electrode obtained above were observed visually and with an optical microscope. The coated surface having a smooth surface shape was evaluated as “good”, and the other results were also shown in Table 1 together with the reasons.

Figure 2008311171
表1に示すように、スラリー塗工面の表面状態は、突出部を有する穿孔加工箔厚さの極板総厚さに対する割合は、正極および負極共に 3〜25 %の範囲のものが良好な結果であり、特に 5〜25 %の範囲のものが良好であった。25 %のものでは、塗工面がやや肌荒れとなったが、電池作製に問題はなかった。26 %のものでは、穿孔した孔径が大きく、スラリーの塗工が困難であった。一方、割合が逆に小さくなると、通常の平滑な金属箔(穿孔加工を施していない金属箔)に近づくために塗工としては問題がない。
上記の結果から、以下の実施例4および実施例5〜7では、正・負極ともに正極3および負極3の箔仕様のものを用いることとした。
Figure 2008311171
As shown in Table 1, the surface condition of the slurry coated surface is such that the ratio of the thickness of the punched foil having protrusions to the total thickness of the electrode plate is in the range of 3 to 25% for both the positive electrode and the negative electrode. Especially, the range of 5 to 25% was good. In the case of 25%, the coated surface was slightly rough, but there was no problem in battery production. In the case of 26%, the diameter of the perforated holes was large and it was difficult to apply the slurry. On the other hand, when the ratio becomes smaller, there is no problem as coating because it approaches a normal smooth metal foil (metal foil not subjected to perforation).
From the above results, in the following Example 4 and Examples 5 to 7, the positive and negative electrodes having the foil specifications of the positive electrode 3 and the negative electrode 3 were used.

実施例1〜実施例3および比較例1〜比較例2
上記のように作製した、正極および負極の極板を用いて電池を作製した。ただし、正・負極の組み合わせについては、電池性能の差違を示すために、表2に示すように、実施例1として正極2と負極2を、実施例2として正極3と負極3を、という具合に組み合わせた。また比較例1として、穿孔加工を施していない金属箔を用いて正極2および負極2とそれぞれ同様の方法で作製された正極6および負極6を使用し、また比較例2として、上述した箔厚さの割合が平滑箔に近い正極1および負極1を組み合わせて使用した。
上記の正極および負極を、厚さ 20 μm のポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池缶に挿入、電解液を所定量注入後、上蓋をカシメ封口することにより円筒形リチウム二次電池を得た。電解液にはEC、MECを体積比で 30:70 に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を 1 mol/l 溶解したものを用いた。この電池の設計容量は 1800 mAh である。
電池性能試験としては 1 kHz の交流波による電池内部抵抗測定、2 ItA と 0.2 ItA定電流放電時の容量比率、さらには 2 ItA 定電流放電( E.V = 3.0 V )、4.2 V ( 2 ItA Cut-off ) CCCV 3 hr 充電の充放電サイクルにおける初期5サイクル目の容量に対する 200 サイクル目の容量比率を測定した。試験性能結果を表2に併記する。
Examples 1 to 3 and Comparative Examples 1 to 2
A battery was prepared using the positive and negative electrode plates prepared as described above. However, for the combination of positive and negative electrodes, as shown in Table 2, the positive electrode 2 and the negative electrode 2 as Example 1, the positive electrode 3 and the negative electrode 3 as Example 2, and so on to show the difference in battery performance. Combined. Further, as Comparative Example 1, the positive electrode 6 and the negative electrode 6 produced by the same method as the positive electrode 2 and the negative electrode 2, respectively, using a metal foil not subjected to perforation processing were used, and as the Comparative Example 2, the above-described foil thickness was used. A positive electrode 1 and a negative electrode 1 having a thickness ratio close to that of a smooth foil were used in combination.
The above positive electrode and negative electrode are wound through a polyethylene separator with a thickness of 20 μm to form an electrode group. This electrode group is inserted into a cylindrical battery can, a predetermined amount of electrolyte is injected, and the upper lid is caulked and sealed. Thus, a cylindrical lithium secondary battery was obtained. As the electrolytic solution, a solution obtained by dissolving 1 mol / l of lithium hexafluorophosphate (LiPF 6 ) in a solution in which EC and MEC were mixed at a volume ratio of 30:70 was used. The design capacity of this battery is 1800 mAh.
The battery performance test includes battery internal resistance measurement using 1 kHz AC wave, capacity ratio during 2 ItA and 0.2 ItA constant current discharge, and 2 ItA constant current discharge (EV = 3.0 V), 4.2 V (2 ItA Cut- off) The capacity ratio of the 200th cycle to the capacity of the initial 5th cycle in the charge / discharge cycle of CCCV 3 hr charge was measured. The test performance results are also shown in Table 2.

実施例4
上述の正極3および負極3の箔仕様に穿孔し、かつ集電体の幅方向に対して穿孔加工を施さない部分を残した集電体箔を用いて極板を作製し、上記実施例1と同様にして円筒形のリチウム二次電池を得た。この電池の設計容量は 1800 mAh である。
電池性能試験として、上述の電池内部抵抗測定、電流放電時の容量比率およびサイクル容量比率を測定した。試験性能結果を表2に併記する。
Example 4
An electrode plate was prepared using a current collector foil that was perforated to the foil specifications of the positive electrode 3 and the negative electrode 3 described above, and left a portion that was not perforated in the width direction of the current collector. In the same manner, a cylindrical lithium secondary battery was obtained. The design capacity of this battery is 1800 mAh.
As a battery performance test, the above-mentioned battery internal resistance measurement, capacity ratio during current discharge, and cycle capacity ratio were measured. The test performance results are also shown in Table 2.

Figure 2008311171
表2に示すように、突出部を有する穿孔加工箔厚さの割合が 3 %である比較例2は、穿孔加工を施していない比較例1と変化がないことがわかった。また、25 %の金属箔を用いた実施例3は、比較例1と比べて性能は向上するが、正比例しないことがわかり、上記割合の上限と考えられる。25 %をこえると塗工面が平滑でなくなり、セパレータと極板との界面で隙間が開いて、液の拡散性が悪くなり、所期の効果が得られなくなると考えられる。
したがって、突出部を有する穿孔加工箔厚さの割合は 3 %をこえ 25 %以下が好ましく、5〜25 %がさらに好ましいと言える。これは比較例1の平滑箔に比べ、孔周囲に突出部を有する孔の存在により合剤活物質中での電子伝導性が向上して抵抗が小さくなる。またこのことにより大電流での放電容量が大きくなることがわかる。さらには孔周囲の突出部により箔と活物質合剤との密着性が向上して、かつ抵抗が小さいのでサイクル特性は向上することになる。
また、実施例4の部分的に穿孔加工をしない箔で極板を作製すると、全面加工されたものに比べて、通電部が広くなり抵抗が下がる場合がある。そして特に集電箔幅方向の強度が増加してプレス時の極板切断等の生産上の不具合が改善されることがわかった。
Figure 2008311171
As shown in Table 2, it was found that Comparative Example 2 in which the ratio of the thickness of the punched foil having protrusions was 3% was not different from Comparative Example 1 in which punching was not performed. Moreover, although Example 3 using 25% of metal foil improves performance compared with the comparative example 1, it turns out that it is not directly proportional, and is considered to be the upper limit of the said ratio. If it exceeds 25%, the coated surface becomes unsmooth, and a gap is formed at the interface between the separator and the electrode plate, so that the diffusibility of the liquid deteriorates and the expected effect cannot be obtained.
Therefore, it can be said that the ratio of the thickness of the perforated foil having protrusions is preferably more than 3% and not more than 25%, and more preferably 5 to 25%. Compared with the smooth foil of the comparative example 1, this improves electronic conductivity in a mixture active material by presence of the hole which has a protrusion part around a hole, and resistance becomes small. This also shows that the discharge capacity at a large current increases. Furthermore, since the protrusions around the holes improve the adhesion between the foil and the active material mixture and the resistance is small, the cycle characteristics are improved.
Further, when the electrode plate is made of a foil that is not partially perforated in Example 4, the energized portion may be widened and the resistance may be reduced as compared with the case where the entire surface is processed. And it turned out that especially the intensity | strength of the collector foil width direction increases and the malfunctions in production, such as the electrode plate cutting | disconnection at the time of a press, are improved.

実施例5〜実施例7および比較例3〜比較例4
上述の正極3と負極3の箔仕様の集電体箔を用いて、塗工乾燥後プレスをする際に、それぞれ表3に示す正極合剤密度と負極合剤密度に設定した電極を作製した。
これらの極板により実施例1と同様にして円筒形のリチウム二次電池を得た。この電池の設計容量は 1800 mAh である。
上記電池を、2 ItA と 0.2 ItA 定電流放電時の容量比率、さらには 2 ItA 定電流放電( E.V = 3.0 V )、4.2 V ( 2 ItA Cut-off ) CCCV 3 hr 充電の充放電サイクルにおける初期5サイクル目の容量に対する 200 サイクル目の容量比率を測定した。結果を表3に併記する。
Examples 5 to 7 and Comparative Examples 3 to 4
Using the current collector foil having the foil specifications of the positive electrode 3 and the negative electrode 3 described above, when pressing was performed after coating and drying, electrodes set to the positive electrode mixture density and the negative electrode mixture density shown in Table 3 were produced. .
Using these electrode plates, a cylindrical lithium secondary battery was obtained in the same manner as in Example 1. The design capacity of this battery is 1800 mAh.
Capacitance ratio between 2 ItA and 0.2 ItA constant current discharge, as well as 2 ItA constant current discharge (EV = 3.0 V), 4.2 V (2 ItA Cut-off) CCCV 3 hr The capacity ratio of the 200th cycle to the capacity of the 5th cycle was measured. The results are also shown in Table 3.

比較例5
集電体に穿孔加工を施していない 20 μm アルミニウム箔と 10 μm 銅箔を用いて、それぞれ表3に示す正極合剤密度と負極合剤密度となるようにプレスした極板を用いた以外は上記実施例1と同様にして円筒形のリチウム二次電池を得た。この電池の設計容量は 1800 mAh である。
上記電池を、2 ItA と 0.2 ItA 定電流放電時の容量比率、さらには 2 ItA 定電流放電( E.V = 3.0 V )、4.2 V ( 2 ItA Cut-off ) CCCV 3 hr 充電の充放電サイクルにおける初期5サイクル目の容量に対する 200 サイクル目の容量比率を測定した。結果を表3に併記する。
Comparative Example 5
Except for using the electrode plate pressed to the positive electrode mixture density and negative electrode mixture density shown in Table 3, respectively, using 20 μm aluminum foil and 10 μm copper foil without punching the current collector. A cylindrical lithium secondary battery was obtained in the same manner as in Example 1. The design capacity of this battery is 1800 mAh.
Capacitance ratio between 2 ItA and 0.2 ItA constant current discharge, and 2 ItA constant current discharge (EV = 3.0 V), 4.2 V (2 ItA Cut-off) CCCV 3 hr The capacity ratio at the 200th cycle to the capacity at the 5th cycle was measured. The results are also shown in Table 3.

Figure 2008311171
表3の結果より、合剤密度の限界は正極下限が 1.8 g/cc で、負極が 1.2 g/cc、上限については正極が 3.6 g/cc で、負極が 1.6 g/cc であることがわかる。これは下限値側になると極板の多孔度が大きくなるので電解液の拡散が良好となるが、電子伝導性が低下するので大電流放電容量は逆に小さくなる。そして寿命においても活物質の密着性が低下するのでサイクル寿命が低下することになる。特に、正極の 1.7 g/cc や負極の 1.1 g/cc の密度は塗工した状態の密度であり、プレスされていないのでさらに集電箔との密着性は劣る。一方上限値側になると多孔度が小さくなるので大電流放電容量は小さくなる。しかしサイクル寿命は良くなるように推定されるが、極板をプレスして極板密度を上げていくと、本発明の集電体の穿孔の孔周囲の突出部の高さが結果として押しつぶされて低下することになるので、比較例5の通常平滑箔に近づくため、かえって箔との密着性は劣ることになり、サイクル性能は低下すると考えられる。
Figure 2008311171
From the results in Table 3, it can be seen that the mixture density limit is 1.8 g / cc for the lower limit of the positive electrode, 1.2 g / cc for the negative electrode, 3.6 g / cc for the positive electrode, and 1.6 g / cc for the negative electrode. . On the lower limit side, the porosity of the electrode plate increases, so that the electrolyte solution is diffused better. However, since the electron conductivity is reduced, the large current discharge capacity is decreased. And since the adhesiveness of an active material falls also in lifetime, cycle life will fall. In particular, the density of 1.7 g / cc of the positive electrode and 1.1 g / cc of the negative electrode is the density in the coated state, and since it is not pressed, the adhesion to the current collector foil is further inferior. On the other hand, when the upper limit value is reached, the porosity is reduced, so the large current discharge capacity is reduced. However, although the cycle life is estimated to be improved, when the electrode plate is pressed to increase the electrode plate density, the height of the protrusion around the hole of the current collector perforation of the present invention is crushed as a result. Therefore, since it approaches the normal smooth foil of Comparative Example 5, the adhesion with the foil is rather inferior, and the cycle performance is considered to be lowered.

本発明のリチウム電池は、高容量であって、大電流充放電が繰り返し可能であり、かつ安全性が高いため、電動工具やハイブリッドカーなど大電流充放電が必要とされる用途に好適に利用できる。   The lithium battery of the present invention has a high capacity, can be repeatedly charged and discharged with a large current, and has high safety. Therefore, the lithium battery is suitably used for applications that require charging and discharging with a large current such as electric tools and hybrid cars. it can.

本発明のリチウム二次電池の一例を示す断面図である。It is sectional drawing which shows an example of the lithium secondary battery of this invention. 突出部を有する複数の孔を備えた集電体の例を示す端面図である。It is an end view which shows the example of the electrical power collector provided with the some hole which has a protrusion part. 突出部を有する複数の孔を備えた集電体および合剤層の断面図である。It is sectional drawing of the electrical power collector provided with the some hole which has a protrusion part, and a mixture layer.

符号の説明Explanation of symbols

1 負極
1a 負極集電体
1b 負極合剤層
1c 孔
1d 突出部
2 正極
2a 正極集電体
2b 正極合剤層
2c 孔
2d 突出部
3 セパレータ
4 電極群
DESCRIPTION OF SYMBOLS 1 Negative electrode 1a Negative electrode collector 1b Negative electrode mixture layer 1c Hole 1d Protrusion part 2 Positive electrode 2a Positive electrode collector 2b Positive electrode mixture layer 2c Hole 2d Protrusion part 3 Separator 4 Electrode group

Claims (3)

負極合剤層に箔状負極集電体を有する負極と、正極合剤層に箔状正極集電体を有する正極とが、セパレータを介して積層あるいは捲回されることにより形成される電極群と、前記電極群が浸漬される電解液とを備えてなるリチウム二次電池であって、
前記箔状負極集電体および前記箔状正極集電体は、該集電体を貫通する複数の孔を有し、該孔は孔の周囲が箔状集電体の少なくとも一方の面側へ突出してなり、
前記箔状集電体の前記孔周囲の突出部を含めた厚さが、前記負極または前記正極の該集電体および該合剤層を合わせた1枚の極板総厚さの 3 %をこえ 25 %以下であることを特徴とするリチウム二次電池。
An electrode group formed by laminating or winding a negative electrode having a foil-like negative electrode current collector in a negative electrode mixture layer and a positive electrode having a foil-like positive electrode current collector in a positive electrode mixture layer via a separator And a lithium secondary battery comprising an electrolyte solution in which the electrode group is immersed,
The foil-shaped negative electrode current collector and the foil-shaped positive electrode current collector have a plurality of holes penetrating the current collector, and the periphery of the holes is directed to at least one surface side of the foil-shaped current collector. Protruding,
The thickness of the foil-shaped current collector including the protruding portion around the hole is 3% of the total thickness of one electrode plate including the current collector and the mixture layer of the negative electrode or the positive electrode. This is a lithium secondary battery characterized by being 25% or less.
前記箔状負極集電体および前記箔状正極集電体は、該集電体の表面全体に前記突出部を有する孔を備えるもの、または該集電体の長手方向もしくは幅方向に対して孔を有さない部分を残して該集電体の表面に前記突出部を有する孔を備えるものであることを特徴とする請求項1記載のリチウム二次電池。   The foil-shaped negative electrode current collector and the foil-shaped positive electrode current collector are provided with holes having the protrusions on the entire surface of the current collector, or holes in the longitudinal direction or the width direction of the current collector. 2. The lithium secondary battery according to claim 1, wherein a hole having the protruding portion is provided on a surface of the current collector, leaving a portion not having a surface. 3. 前記箔状正極集電体を除く前記正極合剤層の密度が 1.8〜3.6 g/cc であり、前記箔状負極集電体を除く前記負極合剤層の密度が 1.2〜1.6 g/cc であることを特徴とする請求項1または請求項2記載のリチウム二次電池。   The density of the positive electrode mixture layer excluding the foil-like positive electrode current collector is 1.8 to 3.6 g / cc, and the density of the negative electrode mixture layer excluding the foil-like negative electrode current collector is 1.2 to 1.6 g / cc. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is provided.
JP2007159982A 2007-06-18 2007-06-18 Lithium secondary battery Active JP5224020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159982A JP5224020B2 (en) 2007-06-18 2007-06-18 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159982A JP5224020B2 (en) 2007-06-18 2007-06-18 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008311171A true JP2008311171A (en) 2008-12-25
JP5224020B2 JP5224020B2 (en) 2013-07-03

Family

ID=40238582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159982A Active JP5224020B2 (en) 2007-06-18 2007-06-18 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5224020B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212041A (en) * 2009-03-10 2010-09-24 Sei Kk Load leveling power supply system
WO2011049153A1 (en) 2009-10-23 2011-04-28 エス・イー・アイ株式会社 Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
JP2011154788A (en) * 2010-01-26 2011-08-11 Hitachi Maxell Energy Ltd Battery
JP2012043751A (en) * 2010-08-23 2012-03-01 Toyota Motor Corp Positive electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2013131337A (en) * 2011-12-20 2013-07-04 Toyota Industries Corp Electrode body, secondary battery, and vehicle
KR20130116045A (en) 2012-04-13 2013-10-22 미츠비시 알루미늄 컴파니 리미티드 Aluminum alloy foil for lithium ion secondary battery current collector and lithium ion secondary battery using same
WO2014073221A1 (en) * 2012-11-09 2014-05-15 エス・イー・アイ株式会社 Electrodes for lithium secondary battery and lithium secondary battery
KR20160014621A (en) 2013-05-31 2016-02-11 가부시기가이샤야스나가 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
KR101614332B1 (en) * 2013-10-01 2016-04-21 주식회사 엘지화학 Battery Cell of Irregular Structure
EP3142180A4 (en) * 2014-05-08 2017-12-13 Sei Corporation Lithium secondary battery
CN109148797A (en) * 2017-06-27 2019-01-04 株式会社Lg化学 Electrode assembly and lithium secondary battery including the electrode assembly
EP4080621A1 (en) 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrical collector body of secondary battery and secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242367U (en) * 1988-09-14 1990-03-23
JPH0315157A (en) * 1989-06-13 1991-01-23 Ricoh Co Ltd Sheet-form electrode
JPH09134726A (en) * 1995-11-07 1997-05-20 Ngk Insulators Ltd Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JPH10125348A (en) * 1996-10-21 1998-05-15 Japan Storage Battery Co Ltd Battery
JPH117961A (en) * 1997-06-18 1999-01-12 Hitachi Ltd Electrode for non-aqueous electrolyte secondary battery, and manufacture thereof
JPH11144762A (en) * 1997-11-05 1999-05-28 Sumitomo Electric Ind Ltd Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JPH11250938A (en) * 1998-03-02 1999-09-17 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2003282148A (en) * 1998-08-31 2003-10-03 Toshiba Corp Thin lithium ion secondary battery
JP2004087243A (en) * 2002-08-26 2004-03-18 Kushibe Seisakusho:Kk Thin porous mesh material and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242367U (en) * 1988-09-14 1990-03-23
JPH0315157A (en) * 1989-06-13 1991-01-23 Ricoh Co Ltd Sheet-form electrode
JPH09134726A (en) * 1995-11-07 1997-05-20 Ngk Insulators Ltd Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JPH10125348A (en) * 1996-10-21 1998-05-15 Japan Storage Battery Co Ltd Battery
JPH117961A (en) * 1997-06-18 1999-01-12 Hitachi Ltd Electrode for non-aqueous electrolyte secondary battery, and manufacture thereof
JPH11144762A (en) * 1997-11-05 1999-05-28 Sumitomo Electric Ind Ltd Spiral lithium ion battery electrode and spiral lithium ion battery using the same
JPH11250938A (en) * 1998-03-02 1999-09-17 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
JP2003282148A (en) * 1998-08-31 2003-10-03 Toshiba Corp Thin lithium ion secondary battery
JP2004087243A (en) * 2002-08-26 2004-03-18 Kushibe Seisakusho:Kk Thin porous mesh material and its manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212041A (en) * 2009-03-10 2010-09-24 Sei Kk Load leveling power supply system
WO2011049153A1 (en) 2009-10-23 2011-04-28 エス・イー・アイ株式会社 Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
CN102598368A (en) * 2009-10-23 2012-07-18 Sei株式会社 Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
EP2492994A1 (en) * 2009-10-23 2012-08-29 Sei Corporation Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
EP2492994A4 (en) * 2009-10-23 2014-04-02 Sei Corp Methods for manufacturing lithium secondary battery and current-collecting foil for lithium secondary battery, and current-collecting foil for lithium secondary battery
US9496583B2 (en) 2009-10-23 2016-11-15 Sei Corporation Lithium secondary battery, method for producing power collection foil for same, and power collection foil for same
JP2011154788A (en) * 2010-01-26 2011-08-11 Hitachi Maxell Energy Ltd Battery
JP2012043751A (en) * 2010-08-23 2012-03-01 Toyota Motor Corp Positive electrode plate for lithium ion secondary battery and lithium ion secondary battery
JP2013131337A (en) * 2011-12-20 2013-07-04 Toyota Industries Corp Electrode body, secondary battery, and vehicle
KR20130116045A (en) 2012-04-13 2013-10-22 미츠비시 알루미늄 컴파니 리미티드 Aluminum alloy foil for lithium ion secondary battery current collector and lithium ion secondary battery using same
JP2013222557A (en) * 2012-04-13 2013-10-28 Mitsubishi Alum Co Ltd Aluminum alloy foil for lithium ion secondary battery positive electrode collector and lithium ion secondary battery manufactured using the same
CN103378369A (en) * 2012-04-13 2013-10-30 三菱铝株式会社 Lithium ion secondary battery positive pole current collector aluminium alloy foil and lithium ion secondary battery
JP2014096268A (en) * 2012-11-09 2014-05-22 Sei Kk Electrode for lithium secondary battery and lithium secondary battery
CN104737333A (en) * 2012-11-09 2015-06-24 Sei株式会社 Electrodes for lithium secondary battery and lithium secondary battery
EP2919300A4 (en) * 2012-11-09 2016-06-15 Sei Corp Electrodes for lithium secondary battery and lithium secondary battery
WO2014073221A1 (en) * 2012-11-09 2014-05-15 エス・イー・アイ株式会社 Electrodes for lithium secondary battery and lithium secondary battery
US9660269B2 (en) 2012-11-09 2017-05-23 Sei Corporation Electrode for lithium secondary battery and lithium secondary battery
KR20160014621A (en) 2013-05-31 2016-02-11 가부시기가이샤야스나가 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
KR101614332B1 (en) * 2013-10-01 2016-04-21 주식회사 엘지화학 Battery Cell of Irregular Structure
EP3142180A4 (en) * 2014-05-08 2017-12-13 Sei Corporation Lithium secondary battery
CN109148797A (en) * 2017-06-27 2019-01-04 株式会社Lg化学 Electrode assembly and lithium secondary battery including the electrode assembly
EP3534450A4 (en) * 2017-06-27 2019-11-13 LG Chem, Ltd. Electrode assembly and lithium secondary battery comprising same
US11081762B2 (en) 2017-06-27 2021-08-03 Lg Chem, Ltd. Electrode assembly and lithium secondary battery including the same
CN109148797B (en) * 2017-06-27 2021-10-01 株式会社Lg化学 Electrode assembly and lithium secondary battery including the same
EP4080621A1 (en) 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrical collector body of secondary battery and secondary battery
KR20220145281A (en) 2021-04-21 2022-10-28 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Electrical collector body of secondary battery and secondary battery

Also Published As

Publication number Publication date
JP5224020B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224020B2 (en) Lithium secondary battery
US11108078B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP5929897B2 (en) Positive electrode plate for nonaqueous electrolyte secondary battery and method for producing the same, nonaqueous electrolyte secondary battery and method for producing the same
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
JP6152825B2 (en) Non-aqueous electrolyte secondary battery
JP6287185B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP7161680B2 (en) Non-aqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2016126901A (en) Secondary battery
JP4649862B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
JP2010009818A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP6183393B2 (en) Power storage device manufacturing method and power storage device
JP2005259566A (en) Nonaqueous electrolyte secondary battery
US11374225B2 (en) Electrode plate, energy storage device, and method for manufacturing electrode plate
JP2007172878A (en) Battery and its manufacturing method
JP5514137B2 (en) Method for producing non-aqueous electrolyte battery
JP2007172881A (en) Battery and its manufacturing method
JP2016131127A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5224020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20220322

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250