JP2005220739A - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP2005220739A
JP2005220739A JP2005036694A JP2005036694A JP2005220739A JP 2005220739 A JP2005220739 A JP 2005220739A JP 2005036694 A JP2005036694 A JP 2005036694A JP 2005036694 A JP2005036694 A JP 2005036694A JP 2005220739 A JP2005220739 A JP 2005220739A
Authority
JP
Japan
Prior art keywords
mass
ground improvement
additive
soil
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005036694A
Other languages
Japanese (ja)
Other versions
JP3868451B2 (en
Inventor
Kaname Aoyama
要 青山
Tetsuya Wakiyama
哲也 脇山
Fujio Yamato
富士櫻 倭
Masaro Shimoda
政朗 下田
Kenichi Obata
憲一 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Sumitomo Osaka Cement Co Ltd
Original Assignee
Kao Corp
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Sumitomo Osaka Cement Co Ltd filed Critical Kao Corp
Priority to JP2005036694A priority Critical patent/JP3868451B2/en
Publication of JP2005220739A publication Critical patent/JP2005220739A/en
Application granted granted Critical
Publication of JP3868451B2 publication Critical patent/JP3868451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground improvement method capable of suppressing the underwater diffusion of soil by hardening the inland and the marine ground at a proper rate. <P>SOLUTION: In this ground improvement method, (1) the soluble salt of the (co) polymer of an ethylenic unsaturated carboxylic acid, (2) soluble bicarbonate, as necessary, (3) an organic acid (salt) and a polyphosphoric acid (salt), and (4) an additive including a defoaming agent are mixed in a cement-containing hardening material at 0.1 to 25/100 mass ratio. The water slurry of the thus obtained cement compound is filled in the ground and hardened so that the volume ratio thereof becomes 0.1 to 1.5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地盤改良方法に関するものである。更に詳しく述べるならば、本発明は、地盤改良に用いられるセメント組成物の地盤改良性能を著しく向上させる地盤改良セメント用添加剤を用いる地盤改良方法に関するものである。   The present invention relates to a ground improvement method. More specifically, the present invention relates to a ground improvement method using an additive for ground improvement cement which remarkably improves the ground improvement performance of a cement composition used for ground improvement.

一般に、セメントスラリーと改良対象土を混合した混合土の特性として、なるべく粘性が低く、削孔する際のスライムの排出が容易になるような混合土が望まれる。しかし混合土に粘性土が多く含まれていると、混合土の粘度が高くなり、スライムの排出が困難になる。これは、混合土中の土粒子とセメント粒子が凝集して、流動性を失うためである。   In general, as a characteristic of the mixed soil obtained by mixing the cement slurry and the soil to be improved, a mixed soil having a viscosity as low as possible and facilitating the discharge of slime when drilling is desired. However, if the mixed soil contains a lot of viscous soil, the viscosity of the mixed soil increases and it becomes difficult to discharge slime. This is because soil particles and cement particles in the mixed soil aggregate and lose fluidity.

従来、この対策として、加水する方法と、混合土中の土粒子とセメント粒子の凝集を抑える(分散)方法がある。しかし、加水する方法では、硬化後の強度低下の要因になり、さらに、スライム量が多くなりすぎると、経済的な悪化の要因となる。混合土中の土粒子とセメント粒子の凝集を抑える(分散)方法では、スライムの粘性を低下させる目的のために、地盤改良用セメント組成物中に、ナフタレンスルホン酸塩ホルマリン縮合物、又はメラミンスルホン酸塩ホルマリン縮合物を添加し、これをセメント粒子及び土粒子に吸着させることにより、電気的反発力により土壌の粒子が互いに反発し、スライムの粘性を低下させることが可能であることが知られている。グラウト工法などの地盤改良材に使用される添加剤としてポリアクリル酸が提案されている(特許文献1:特許第3253282号)。   Conventionally, as countermeasures, there are a method of adding water and a method of suppressing (dispersing) aggregation of soil particles and cement particles in the mixed soil. However, the method of adding water causes a decrease in strength after curing, and if the amount of slime is excessive, it causes an economic deterioration. In the method of suppressing aggregation (dispersion) of soil particles and cement particles in the mixed soil, naphthalene sulfonate formalin condensate or melamine sulfone is included in the ground improvement cement composition for the purpose of reducing the viscosity of the slime. It is known that by adding salt formalin condensate and adsorbing it to cement particles and soil particles, the soil particles repel each other due to the electric repulsive force, and the slime viscosity can be reduced. ing. Polyacrylic acid has been proposed as an additive used for ground improvement materials such as the grout method (Patent Document 1: Japanese Patent No. 3253282).

さらに、地盤改良用セメント組成物中に重炭酸塩を添加することが知られている(特許文献2:特開平7−206495、特許文献3:特開平10−212482)。   Furthermore, it is known to add a bicarbonate to the ground improvement cement composition (Patent Document 2: JP-A-7-206495, Patent Document 3: JP-A-10-212482).

また分散剤としては、ナフタレンスルホン酸やメラミンスルホン酸のホルマリン縮合物(特許文献4:特開昭61−146747、特許文献5:特開平6−127993)では、スライムの粘性低下効果が充分ではなく、分散補助剤(ビルダー)として用いられる、炭酸塩及び硫酸塩(特許文献2:特開平7−206495、特許文献3:特開平10−212482)には多価金属イオンの除去効果がなく、またリン酸塩は特定の化合物以外その効果は得られない。   As a dispersant, the formalin condensate of naphthalene sulfonic acid or melamine sulfonic acid (Patent Document 4: Japanese Patent Laid-Open No. 61-146747, Patent Document 5: Japanese Patent Laid-Open No. 6-127993) is not sufficient in reducing the viscosity of slime. Carbonate and sulfate (Patent Document 2: JP-A-7-206495, Patent Document 3: JP-A-10-212482) used as dispersion aids (builders) have no effect of removing polyvalent metal ions. Phosphates are not effective except for specific compounds.

また上記と類似の添加剤を使用した水硬性組成物も提案されているが、それに適用される工法が異なり、或は、使用される目的が異なるものである。その一例として、水溶性高分子(ポリアクリル酸)と重炭酸塩とを含む水硬性組成物(特許文献6:特許2668598号)は、高炉スラグをベースに、アルカリの存在下で高強度複合材料を得るものであって、本発明の地盤改良セメント組成物用添加剤とは異なるものである。
高性能減水剤と重炭酸塩を含むセメント混和材(特許文献7:特開平11−71147、特許文献8:特開平11−116306)は、高強度コンクリート(モルタル)を目的とするセメント組成物であり、また高性能減水剤は、ナフタレンスルホン酸、メラミンスルホン酸などのホルマリン縮合物であり、さらに重炭酸塩は、凝結促進剤または急結剤として使用されている。コンクリートのワーカビリティ改良方法(特許文献9:特公平1−52342)としても使用されているが、地盤改良に用いられることについては全く教示も示唆もされていない。(実施例1参照)
A hydraulic composition using an additive similar to the above has also been proposed, but the construction method applied thereto is different or the purpose of use is different. As an example, a hydraulic composition (Patent Document 6: Japanese Patent No. 2668598) containing a water-soluble polymer (polyacrylic acid) and bicarbonate is a high-strength composite material in the presence of alkali based on blast furnace slag. This is different from the additive for ground improvement cement composition of the present invention.
A cement admixture containing a high-performance water reducing agent and bicarbonate (Patent Document 7: JP-A-11-711147, Patent Document 8: JP-A-11-116306) is a cement composition intended for high-strength concrete (mortar). In addition, high-performance water reducing agents are formalin condensates such as naphthalene sulfonic acid and melamine sulfonic acid, and bicarbonate is used as a setting accelerator or rapid setting agent. Although it is also used as a method for improving the workability of concrete (Patent Document 9: Japanese Patent Publication No. 1-52342), there is no teaching or suggestion that it is used for ground improvement. (See Example 1)

特許第3253282号公報(第1〜3頁)Japanese Patent No. 3253282 (pages 1 to 3) 特開平7−206492号公報(第1〜3頁、実施例〜10)JP-A-7-206492 (pages 1 to 3, Examples 10) 特開平10−212482号公報(第1〜3頁)JP-A-10-212482 (pages 1 to 3) 特開昭61−146747号公報(第1〜8頁)JP 61-146747 A (pages 1 to 8) 特開平6−127993号公報(第1〜4頁)JP-A-6-127993 (pages 1 to 4) 特許第2668598号公報(第1〜8頁)Japanese Patent No. 2668598 (pages 1-8) 特開平11−71147号公報(第1〜3頁)JP 11-711147 A (pages 1 to 3) 特開平11−116306号公報(第1〜3頁)JP-A-11-116306 (pages 1 to 3) 特公平1−52342号公報(第1〜6頁)Japanese Patent Publication No. 1-52342 (pages 1-6)

しかし特許文献1に記載の添加剤は、内陸部などの粘性土(ミネラル分が少ない)に用いると、顕著な粘性低下の効果が得られるが、海成粘土などのようにミネラル分(特に多価金属イオン)を含む粘性土に用いると、多価金属イオンが、電気二重層を圧縮し、分散メカニズムを阻害するために充分な粘性低下の効果が得られないという問題点がある。
特許文献2及び3に記載の方法によればその土のミネラル分を除去することによる凝集防止は可能であるが、海成粘土以外の、ミネラル分が少ない粘性土の分散(粘性低下)には、充分な効果がないことが判明している。
本発明は、地盤改良セメント組成物を改良すべき地盤に打設したとき、地盤改良セメント組成物の、この改良対象土中への拡散及び混合が迅速で、地盤改良セメント組成物の打設により地盤から排出されるべきスライムの排出が円滑に行われ、かつ排出されたスライムが海水中に流入したとき、その周辺海域の汚濁を防止乃至減少させることが可能な地盤改良方法を提供しようとするものである。
However, when the additive described in Patent Document 1 is used for clayey soil (low mineral content) such as inland areas, the effect of remarkable viscosity reduction can be obtained. When used in a viscous soil containing a valent metal ion), the polyvalent metal ion compresses the electric double layer, and there is a problem that a sufficient viscosity reduction effect cannot be obtained to inhibit the dispersion mechanism.
According to the methods described in Patent Documents 2 and 3, it is possible to prevent aggregation by removing the mineral content of the soil, but for the dispersion (viscosity reduction) of viscous soil with a small amount of mineral other than marine clay. It has been found that there is not enough effect.
In the present invention, when the ground improvement cement composition is placed on the ground to be improved, the ground improvement cement composition is rapidly diffused and mixed into the soil to be improved. An object of the present invention is to provide a ground improvement method capable of smoothly or smoothly reducing the slime to be discharged from the ground and preventing or reducing the pollution of the surrounding sea area when the discharged slime flows into the seawater. Is.

本発明の地盤改良方法は、少なくとも50質量%以上のセメントを含むセメント系固化材と、このセメント系固化材100質量部に対し、0.1〜25質量部の、(イ)エチレン性不飽和モノカルボン酸及びエチレン性不飽和ジカルボン酸から選ばれた少なくとも1種の重合体及び共重合体及びそれらの水溶性塩の少なくとも1種を含む重合体成分と、及び(ロ)水溶性重炭酸塩の少なくとも1種を含む重炭酸塩成分とを含む添加剤とを含む、地盤改良セメント組成物とを、その質量の50〜200%の混練水に混合して地盤改良セメント組成物スラリーを調製し、この地盤改良セメント組成物スラリーを、改良すべき地盤中に、改良対象土の容積の0.1〜1.5倍の容積をもって打設・混合し、硬化させることを特徴とするものである。
本発明の地盤改良セメント組成物において、前記地盤改良セメント組成物スラリー中に、追加添加材料として、高炉スラグ、石灰石粉、フライアッシニ、シリカ微粉末、炭酸カルシウム及び石膏から選ばれた少なくとも1種を更に添加してもよい。
本発明の地盤改良方法は、前記地盤が、土粒子径75μm以下の細粉分を50質量%以上の含有率で含むか、又は5μm以下の土粒子径を有する粘土分を20質量%以上の含有率で含み、前記地盤改良セメント組成物スラリーにおける混練水の質量Wの地盤改良セメント組成物の質量Cに対する質量比W/Cが1:0.5〜1:2である場合にも、著しく有効である。
本発明の地盤改良方法において、前記添加剤中の前記重合体成分(イ)と、前記重炭酸塩成分(ロ)との質量比が、100:500〜100:5,000であることが好ましい。
前記添加剤中の重合体成分(イ)が、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、及びイタコン酸の重合体及び共重合体及びそれらのアルカリ金属塩、アンモニウム塩及び低級アルキルアンモニウム塩から選ばれた少なくとも1種を含むことが好ましい。
前記添加剤中の重合体成分(イ)に含まれる前記共重合体及び/又は共重合体の平均分子量が1,000〜50,000の範囲内にあることが好ましい。
前記添加剤中の重炭酸塩成分(ロ)に含まれる水溶性重炭酸塩が、1価金属の重炭酸塩から選ばれることが好ましい。
前記添加剤中に、追加成分として、(ハ)有機酸及びその塩、ポリリン酸及びその塩、並びに糖、及び糖アルコールから選ばれた少なくとも1種からなる硬化遅延剤、並びに、(ニ)オキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種からなる消泡剤から選ばれた少なくとも1員を更に添加してもよい。
前記添加剤追加成分用前記硬化遅延剤(ハ)および前記消泡剤(ニ)の含有量が、前記重合体成分(イ)100質量部に対して、それぞれ50〜1,000質量部、及び1〜70質量部であることが好ましい。
The ground improvement method of the present invention comprises a cement-based solidified material containing at least 50% by mass or more of cement, and 0.1 to 25 parts by mass of (i) ethylenic unsaturated with respect to 100 parts by mass of the cement-based solidified material. A polymer component comprising at least one polymer and copolymer selected from monocarboxylic acids and ethylenically unsaturated dicarboxylic acids and at least one water-soluble salt thereof; and (b) a water-soluble bicarbonate. A ground improvement cement composition containing an additive containing a bicarbonate component containing at least one of the above is mixed with 50 to 200% of the mass of kneaded water to prepare a ground improvement cement composition slurry. The soil improvement cement composition slurry is characterized in that it is placed and mixed in the ground to be improved in a volume of 0.1 to 1.5 times the volume of the soil to be improved and hardened. .
In the ground improvement cement composition of the present invention, the ground improvement cement composition slurry further includes at least one selected from blast furnace slag, limestone powder, fly assini, silica fine powder, calcium carbonate and gypsum as an additional additive material. It may be added.
In the ground improvement method of the present invention, the ground contains a fine powder component having a soil particle diameter of 75 μm or less in a content of 50% by mass or more, or a clay component having a soil particle size of 5 μm or less is 20% by mass or more. Even when the mass ratio W / C of the mass W of the kneading water in the ground improvement cement composition slurry to the mass C of the ground improvement cement composition is 1: 0.5 to 1: 2, It is valid.
In the ground improvement method of the present invention, the mass ratio of the polymer component (I) and the bicarbonate component (B) in the additive is preferably 100: 500 to 100: 5,000. .
The polymer component (a) in the additive is a polymer or copolymer of acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid, and alkali metal salts, ammonium salts, and lower alkyl ammonium salts thereof. It is preferable to include at least one selected from
The average molecular weight of the copolymer and / or copolymer contained in the polymer component (a) in the additive is preferably in the range of 1,000 to 50,000.
The water-soluble bicarbonate contained in the bicarbonate component (b) in the additive is preferably selected from monovalent metal bicarbonates.
In the additive, as an additional component, (c) a curing retarder comprising at least one selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, sugars and sugar alcohols, and (d) oxy At least one member selected from at least one antifoaming agent selected from alkylene alkyl ethers and polyoxyalkylene alkyl ethers may be further added.
The content of the curing retarder (c) for the additive additional component and the antifoaming agent (d) is 50 to 1,000 parts by mass with respect to 100 parts by mass of the polymer component (b), and It is preferable that it is 1-70 mass parts.

本発明方法は、多価金属イオンの含有量の低い陸成粘土地盤から、多価金属イオンの含有量の高い海成粘土地盤までを包含する広い範囲の各種地盤に対して優れた地盤改良効果を得ることができ、特に多価金属イオンを多量に含む海成粘土地盤に対して用いられたときに、排出スライムの海水中拡散を抑制し、海中環境の悪化を防止乃至抑制することができる。   The method of the present invention has excellent ground improvement effects for various types of ground including terrestrial clay ground with low polyvalent metal ion content to marine clay ground with high polyvalent metal ion content. In particular, when used for marine clay ground containing a large amount of polyvalent metal ions, it is possible to suppress the diffusion of the discharged slime in seawater and to prevent or suppress the deterioration of the sea environment. .

本発明に係る地盤改良方法に用いられる地盤改良セメント組成物用添加剤は、
(イ)エチレン性不飽和モノカルボン酸及びエチレン性不飽和ジカルボン酸から選ばれた少なくとも1種の重合体及び共重合体及びそれらの水溶性塩の少なくとも1種を含む重合体成分と、及び
(ロ)水溶性重炭酸塩の少なくとも1種を含む重炭酸塩成分を含み、必要により、さらに
(ハ)有機酸及びその塩、ポリリン酸及びその塩、並びに糖、及び糖アルコールから選ばれた少なくとも1種からなる硬化遅延剤、及び
(ニ)オキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種からなる消泡剤
の1種以上を含むものである。
上記成分(イ)及び(ロ)並びに必要により成分(ハ)及び(ニ)の少なくとも1種を含む本発明の添加剤を、地盤改良セメント組成物に含有させることにより、あらゆる地盤に対し、地盤改良セメント組成物の硬化性能を低下させることなく、スライムの粘性を低下させ(流動性を向上させ)ることができ、地盤改良工事の効率を高め、その効果を向上させることができる。
The additive for ground improvement cement composition used in the ground improvement method according to the present invention,
(A) a polymer component comprising at least one polymer and copolymer selected from ethylenically unsaturated monocarboxylic acids and ethylenically unsaturated dicarboxylic acids, and water-soluble salts thereof; and (B) A bicarbonate component containing at least one water-soluble bicarbonate, and if necessary, (c) at least selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, sugars, and sugar alcohols 1 type of hardening retarder, and (1) 1 or more types of the antifoamer which consists of at least 1 sort (s) chosen from oxyalkylene alkyl ether and polyoxyalkylene alkyl ether.
By adding the additive of the present invention containing at least one of the above components (a) and (b) and optionally components (c) and (d) to the ground improvement cement composition, Without reducing the hardening performance of the improved cement composition, the slime can be reduced in viscosity (improved fluidity), the efficiency of ground improvement work can be increased, and the effect thereof can be improved.

本発明方法のセメント組成物に含まれる添加剤に用いられる重合体成分(イ)は、アクリル酸、メタアクリル酸、などの不飽和モノカルボン酸及びマレイン酸、フマル酸、及びイタコン酸などの不飽和ジカルボン酸の重合体及びその少なくとも1種を含む共重合体及び/又はそれらのアルカリ金属塩、アンモニウム塩及び低級アルキルアンモニウム塩から選ばれた少なくとも1種を含むものであることが好ましく、特に、ポリアクリル酸のナトリウム塩及び/又はアンモニウム塩を含むことがより好ましい。これらの重合体成分(イ)を構成する重合体又は共重合体の質量平均分子量は1,000〜50,000の範囲内にあることが好ましく、5,000〜10,000の範囲内にあることがさらに好ましい。平均分子量が上記範囲内にあるとき、重合体成分(イ)は高い粘性低下の効果を示すことができる。上記質量平均分子量は、ゲルパーミエーションクロマトグラフ法(標準物質:ポリスチレンスルホン酸ナトリウム/水系)により測定することができる。
すなわち、重合体成分(イ)の平均分子量が1,000未満の場合十分な、粘性低下の効果が得られないことがあり、またそれが、50,000をこえると、凝集作用が働き、粘性低下の効果がほとんど得られないことがある。
The polymer component (A) used for the additive contained in the cement composition of the method of the present invention includes unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid, and unsaturated acids such as maleic acid, fumaric acid, and itaconic acid. It is preferable that the polymer contains a saturated dicarboxylic acid polymer and a copolymer containing at least one of them, and / or at least one selected from alkali metal salts, ammonium salts and lower alkylammonium salts. It is more preferable to include a sodium salt and / or an ammonium salt of an acid. The mass average molecular weight of the polymer or copolymer constituting these polymer components (a) is preferably in the range of 1,000 to 50,000, and in the range of 5,000 to 10,000. More preferably. When the average molecular weight is within the above range, the polymer component (a) can exhibit a high viscosity reducing effect. The mass average molecular weight can be measured by gel permeation chromatography (standard material: sodium polystyrene sulfonate / water system).
That is, when the average molecular weight of the polymer component (a) is less than 1,000, a sufficient viscosity reducing effect may not be obtained. In some cases, the reduction effect is hardly obtained.

本発明方法において、セメント組成物用添加剤に用いられる重炭酸塩成分(ロ)は、好ましくは、炭酸水素ナトリウム及び炭酸水素カリウムなどの炭酸水素1価金属塩から選ばれることが好ましい。成分(ロ)は、地盤改良に及ぼす土壌中の多価金属イオンの悪影響を防止する効果を有する。   In the method of the present invention, the bicarbonate component (b) used for the cement composition additive is preferably selected from monovalent metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate. The component (b) has an effect of preventing adverse effects of polyvalent metal ions in the soil on the ground improvement.

重炭酸塩成分(ロ)の配合量は、重合体成分(イ)の質量、100質量部に対し、500〜5,000質量部であることが好ましく、改良土の強度をさらに高めるためには、500〜2,000質量部であることがより好ましい。この質量比(ロ)/(イ)が、500/100未満であるときは、地盤中の土壌の多価金属イオンの影響により、混合土の、粘性低下の効果が不十分になることがあり、またそれが5000/100をこえると、地盤改良セメント組成物スラリーが短時間内に凝結することがあり、このため、地盤改良セメント組成物スラリーを深層地盤に打設・混合するときに、配管を閉塞させることがある。   The blending amount of the bicarbonate component (b) is preferably 500 to 5,000 parts by mass with respect to 100 parts by mass of the polymer component (b), and in order to further increase the strength of the improved soil. 500 to 2,000 parts by mass is more preferable. When this mass ratio (b) / (b) is less than 500/100, the effect of reducing the viscosity of the mixed soil may be insufficient due to the influence of polyvalent metal ions in the soil in the ground. In addition, if it exceeds 5000/100, the ground improvement cement composition slurry may condense within a short time. Therefore, when the ground improvement cement composition slurry is placed and mixed in the deep ground, May be blocked.

本発明の添加剤に必要により含まれる追加成分(ハ)は、有機酸及びその塩、ポリリン酸及びその塩、並びに糖及び糖アルコールから選ばれた少なくとも1種からなるものであって、地盤改良セメント組成物スラリーの分散性を高め、硬化時間を長くする硬化遅延剤として作用するものである。   The additional component (c) optionally contained in the additive of the present invention is composed of at least one selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, and sugars and sugar alcohols, It acts as a curing retarder that increases the dispersibility of the cement composition slurry and lengthens the curing time.

追加成分(ハ)に用いられる有機酸及びその塩は、クエン酸、リンゴ酸、酒石酸、グルコン酸並びにこれらのナトリウム塩及びカリウム塩などの水溶性塩から選ばれることが好ましい。
追加成分(ハ)に用いられるポリリン酸及びその塩は、トリポリリン酸、テトラポリリン酸、ヘキサメタリン酸並びにこれらのナトリウム塩及びカリウム塩などの水溶性塩から選ばれることが好ましい。
追加成分(ハ)に用いられる糖及び糖アルコールは、グルコース、フラクトース、ガラクトース、サッカロース、キシロース、アビトース、リポーズ、マルトース、異性化糖等の単糖類、二糖、三糖等のオリゴ糖、デキストリン等の多糖類およびこれらを含む糖蜜類、並びに、ソルビトール等の糖アルコールから選ばれることが好ましい。
The organic acid and salt thereof used for the additional component (c) are preferably selected from citric acid, malic acid, tartaric acid, gluconic acid and water-soluble salts such as sodium salt and potassium salt thereof.
The polyphosphoric acid and salt thereof used for the additional component (c) are preferably selected from tripolyphosphoric acid, tetrapolyphosphoric acid, hexametaphosphoric acid and water-soluble salts such as sodium salt and potassium salt thereof.
The sugar and sugar alcohol used in the additional component (c) are monosaccharides such as glucose, fructose, galactose, saccharose, xylose, abitose, repose, maltose, isomerized sugar, oligosaccharides such as disaccharide and trisaccharide, dextrin, etc. It is preferable to be selected from these polysaccharides and molasses containing them, and sugar alcohols such as sorbitol.

追加成分(ハ)は、硬化時間のコントロールの観点から、クエン酸ナトリウム、トリポリリン酸ナトリウム、及びサッカロースから選ばれた1種以上を含むことが好ましい。
追加成分(ハ)の配合量は、重合体成分(イ)100質量部に対し、50〜1,000質量部であることが好ましく、200〜800質量部であることがより好ましい。追加成分(ハ)の配合量が、50質量部以下では、地盤改良工事における硬化時間の遅延効果が不十分になることがあり、またそれが1,000質量部をこえると、十分な強度が得られないことがある。
The additional component (c) preferably contains one or more selected from sodium citrate, sodium tripolyphosphate, and saccharose from the viewpoint of controlling the curing time.
The compounding amount of the additional component (c) is preferably 50 to 1,000 parts by mass, and more preferably 200 to 800 parts by mass with respect to 100 parts by mass of the polymer component (a). If the blending amount of the additional component (c) is 50 parts by mass or less, the effect of delaying the curing time in the ground improvement work may be insufficient, and if it exceeds 1,000 parts by mass, sufficient strength is obtained. It may not be obtained.

本発明方法において、追加消泡剤成分(ニ)としてオキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種が用いられる。これらの化合物は、下記一般式(1)により表される。
R−O(PO)m (EO)n H (1)
〔但し、式(1)中、Rは水素原子、または、6〜24個の炭素原子を含むアルキル基、アルケニル基又はアリール基を表し、POはオキシプロピレン基を表し、EOはオキシエチレン基を表し、mは1〜50の整数を表し、nは0〜50の整数を表す〕。
式(1)の化合物において、Rが水素原子であるか、或はC6 −C18アルキル基であることが好ましい。Rが水素原子の場合、式(1)の化合物はオキシプロピレン、ポリオキシプロピレン、エチレン、ポリオキシエチレンなどのオキシアルキレン及びポリオキシアルキレンを包含する。
In the method of the present invention, at least one selected from oxyalkylene alkyl ethers and polyoxyalkylene alkyl ethers is used as the additional antifoam component (d). These compounds are represented by the following general formula (1).
R—O (PO) m (EO) n H (1)
[In the formula (1), R represents a hydrogen atom or an alkyl group, an alkenyl group or an aryl group containing 6 to 24 carbon atoms, PO represents an oxypropylene group, and EO represents an oxyethylene group. M represents an integer of 1 to 50, and n represents an integer of 0 to 50].
In the compound of the formula (1), R is preferably a hydrogen atom or a C 6 -C 18 alkyl group. When R is a hydrogen atom, the compound of formula (1) includes oxyalkylenes such as oxypropylene, polyoxypropylene, ethylene, polyoxyethylene, and polyoxyalkylene.

本発明方法に用いられる前記追加成分(ニ)として好ましい消泡剤化合物としては、Rがラウリル基でありmが3、nが0のポリオキシプロピレン(m=3)ラウリルエーテル、Rがラウリル基でありmが0、nが1のオキシエチレンラウリルエーテルなどが用いられる。
本発明方法に用いられる前記添加剤において、追加成分(ニ)の配合量は、重合体成分(イ)100質量部に対し、追加成分(ニ)が1〜70質量部であることが好ましく、より好ましくは10〜50質量部であることがより好ましい。
Preferred antifoam compounds as the additional component (d) used in the method of the present invention include polyoxypropylene (m = 3) lauryl ether in which R is a lauryl group, m is 3 and n is 0, and R is a lauryl group. And m is 0 and n is 1, for example, oxyethylene lauryl ether.
In the additive used in the method of the present invention, the amount of the additional component (d) is preferably 1 to 70 parts by mass of the additional component (d) with respect to 100 parts by mass of the polymer component (b). More preferably, it is 10-50 mass parts.

本発明方法に用いられる地盤改良セメント組成物用添加剤には、必要により、前記成分(イ)、(ロ)及び追加成分(ハ)、(ニ)に加えて、従来の地盤改良セメント組成物に用いられているAE剤、AE減水剤、高性能減水剤、遅延剤、早強剤、促進剤、起泡剤、発泡剤、消泡剤、増粘剤、防水剤等の公知の添加剤が配合されていてもよい。   If necessary, the additive for the ground improvement cement composition used in the method of the present invention includes the conventional ground improvement cement composition in addition to the components (A) and (B) and the additional components (C) and (D). Known additives such as AE agent, AE water reducing agent, high performance water reducing agent, retarder, early strengthening agent, accelerator, foaming agent, foaming agent, antifoaming agent, thickener, waterproofing agent, etc. May be blended.

本発明方法に用いられる地盤改良セメント組成物は、少なくとも50質量%のセメントを含むセメント系固化材と、このセメント系固化材100質量部に対し、0.1〜25質量部の、前記地盤改良用セメント組成物用添加剤とを含むものである。
本発明方法に使用されるセメントとしては、普通、早強、超早強、中庸熱、耐硫酸塩等の各種ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメントなどJISに規定されているものを包含し、本発明の課題解決に支障がない限り、その種類には、格別の制限はない。
The ground improvement cement composition used in the method of the present invention is a cement-based solidified material containing at least 50% by mass of cement, and 0.1 to 25 parts by mass of the ground-based improvement with respect to 100 parts by mass of the cement-based solidified material. And an additive for cement composition.
As the cement used in the method of the present invention, those specified in JIS such as various portland cements such as normal, early strength, super early strength, moderate heat, sulfate resistance, blast furnace cement, silica cement, fly ash cement and the like. As long as it is included and there is no problem in solving the problems of the present invention, there is no particular limitation on the type.

本発明方法に用いられる地盤改良セメント組成物には、追加添加材料が50質量%以下の含有量で含まれていてもよく、特に高粘性を有する土質に対しては、本発明の地盤改良セメント組成物用添加剤の配合量に応じて、30〜50質量%の追加添加材料が含まれていることが好ましい。この追加添加材料としては、高炉スラグ、石灰石粉、フライアッシュ、シリカ微粉末、炭酸カルシウム及び石膏から選ばれた少なくとも1種が用いられ、必要によりさらに石炭灰、溶融スラグ、ガラスカレットなどが含まれていてもよく、シリカ微粉末は、フュームドシリカを包含する。高炉スラグ、フライアッシュ及びヒュームドシリカはいわゆるポゾラン反応やマイクロフィラー効果を奏する添加材であり、長期強度を増大させる効果がある。さらに、これらの追加添加材料は、セメント粒子と添加材の粒子が均一に分散し、凝集を防止するため、材料分離を抑制する効果を発揮することができる。またフライアッシュは球状の粉末で、そのベアリング効果により、セメント組成物の流動性を向上させることができる。   The ground improvement cement composition used in the method of the present invention may contain an additional additive material in a content of 50% by mass or less, and particularly for soil having high viscosity, the ground improvement cement of the present invention. It is preferable that 30 to 50% by mass of an additional additive material is included depending on the amount of the additive for the composition. As this additional additive material, at least one selected from blast furnace slag, limestone powder, fly ash, fine silica powder, calcium carbonate and gypsum is used, and if necessary, coal ash, molten slag, glass cullet and the like are included. The fine silica powder includes fumed silica. Blast furnace slag, fly ash, and fumed silica are additives that exhibit a so-called pozzolanic reaction and microfiller effect, and have the effect of increasing long-term strength. Further, these additional additive materials can exhibit the effect of suppressing material separation because the cement particles and the additive particles are uniformly dispersed to prevent aggregation. Further, fly ash is a spherical powder, and the fluidity of the cement composition can be improved by its bearing effect.

本発明方法に用いられる地盤改良セメント組成物において、セメント系固化材と、前記地盤改良セメント組成物用添加剤との配合質量比は、100:0.1〜100:25であることが好ましく、100:0.5〜100:10であることがより好ましく、100:1〜100:5であることがさらに好ましい。またセメント系固化材100質量部に対し、添加剤の各成分の配合量は、
重合体成分(イ):0.01〜2.0質量部、
重炭酸塩成分(ロ):0.1〜10.0質量部、
追加硬化遅延剤成分(ハ):0〜10質量部、
追加消泡剤成分(ニ):0〜1.0質量部、
であることが好ましい。
セメント系固化材100質量部に対して、本発明の添加剤の配合量が0.1質量部未満であると本発明の、添加剤の効果が不十分になることがあり、またそれが25質量部をこえると、セメント系固化材の地盤改良効果が不十分になることがある。
In the ground improvement cement composition used in the method of the present invention, the blending mass ratio of the cement-based solidifying material and the additive for ground improvement cement composition is preferably 100: 0.1 to 100: 25, 100: 0.5 to 100: 10 is more preferable, and 100: 1 to 100: 5 is even more preferable. Moreover, with respect to 100 parts by mass of the cement-based solidifying material,
Polymer component (I): 0.01 to 2.0 parts by mass,
Bicarbonate component (b): 0.1 to 10.0 parts by mass,
Additional curing retarder component (C): 0 to 10 parts by mass,
Additional antifoam component (d): 0 to 1.0 part by mass,
It is preferable that
When the compounding amount of the additive of the present invention is less than 0.1 parts by mass with respect to 100 parts by mass of the cement-based solidifying material, the effect of the additive of the present invention may be insufficient, and 25 If the mass part is exceeded, the ground improvement effect of the cement-based solidified material may be insufficient.

本発明の地盤改良方法において、前記地盤改良セメント組成物を、その質量の50〜200%、好ましくは60〜150%の混練水に混合して地盤改良セメント組成物スラリーを調製し、この地盤改良セメント組成物スラリーを、改良すべき地盤中に、改良対象土の容積の0.1〜1.5倍の容積、をもって打設・混合し、硬化させる。
地盤改良セメント組成物スラリー中の混練水の量が、地盤改良セメント組成物の質量の50%未満のときは、得られるスラリーの粘性が増大しポンプ圧送が困難になりワーカビリティの悪化を生ずることがあり、またそれが200%をこえると、材料分離が懸念され、改良土の、強度低下やバラツキを生ずることがある。
また、地盤改良セメント組成物スラリーの打設量が、改良対象土の容量の0.1倍以下であると、地盤改良セメント組成物スラリーと、改良対象土の混合不良が生じ品質が悪化することがある。
In the ground improvement method of the present invention, the ground improvement cement composition is mixed with 50 to 200%, preferably 60 to 150%, of the mass of kneaded water to prepare a ground improvement cement composition slurry. The cement composition slurry is placed and mixed in the ground to be improved at a volume of 0.1 to 1.5 times the volume of the soil to be improved, and cured.
If the amount of kneading water in the ground improvement cement composition slurry is less than 50% of the mass of the ground improvement cement composition, the viscosity of the resulting slurry will increase and pumping will be difficult, resulting in poor workability. In addition, if it exceeds 200%, there is a concern about material separation, and the strength of the improved soil may be reduced or may vary.
In addition, if the amount of the ground improvement cement composition slurry is 0.1 times or less the capacity of the soil to be improved, the ground improvement cement composition slurry and the soil to be improved are poorly mixed and the quality is deteriorated. There is.

硬化した改良土の品質を悪くする因子のうち、第一の因子として、改良対象土の特性と使用するセメント組成物の相性があることが、本発明に伴う試験で明らかとなった。土の土粒子径が75μm以下の細粒土の含有率が30%を超える地盤(参考文献あり)では、強度発現効果が悪くなる。その要因として混ざり具合が重要である。混ざり具合は、土の土粒子径が5μm以下の粘土分の含有率が40%を超える地盤では、コロイドの電荷作用と凝集により偽凝結を生じ(流動性を失った状態)になり、攪拌する施工機械の攪拌機構の能力を十分に発揮できないまま硬化してしまい、セメント組成物スラリーの混練不足を招くことがある。このような場合には、本発明の地盤改良セメント組成物を使用することにより、混練直後から30分までの固まらない状態の流体、いわゆるビンガム流体のせん断力を軽減することが可能になり、混ざり具合を改善することができる。従って、設備能力を十分に発揮でき、工程の遅延や改良物の悪化を防止できる。本発明方法による、海成粘土を用いた試験および内陸型粘性土を用いた試験において、本発明方法に用いられる地盤改良セメント組成物スラリーと従来の固化材スラリーとを比較すると、本発明方法において用いられる地盤改良セメント組成物スラリーによるものが、より良好な成果が得られ、混合後30分程度まではスライムの低粘性が確保でき、ワーカビリティが著しく改善できることが確認された。(後記実施例11参照)   Among the factors that deteriorate the quality of the hardened improved soil, the first factor has revealed that the properties of the soil to be improved and the cement composition to be used are compatible with the test according to the present invention. In the ground where the content of fine-grained soil having a soil particle diameter of 75 μm or less exceeds 30% (there is a reference), the strength development effect is deteriorated. The mixing condition is important as the factor. As for the mixing condition, when the soil content of the soil has a soil particle diameter of 5 μm or less and the soil content exceeds 40%, a colloidal charge action and agglomeration result in the formation of false coagulation (a state in which fluidity has been lost), and stirring is performed. It may harden | cure without fully exhibiting the capability of the stirring mechanism of a construction machine, and may cause the kneading | mixing shortage of a cement composition slurry. In such a case, by using the ground improvement cement composition of the present invention, it becomes possible to reduce the shearing force of the fluid that does not solidify immediately after kneading until 30 minutes, that is, the so-called Bingham fluid, and is mixed. The condition can be improved. Therefore, the facility capacity can be fully exhibited, and the delay of the process and the deterioration of the improved product can be prevented. In the method using the marine clay and the test using inland type clay soil according to the method of the present invention, the ground improved cement composition slurry used in the method of the present invention and the conventional solidified material slurry are compared. It was confirmed that a better result was obtained with the ground improvement cement composition slurry used, and that the low viscosity of the slime can be secured up to about 30 minutes after mixing, and the workability can be remarkably improved. (See Example 11 below)

本発明の地盤改良方法において、地盤が、土粒子径75μm以下の細粒分を50質量%以上の含有率で含むか、又は5μm以下の土粒子径を有する粘土分を20質量%以上の含有率で含む場合、地盤改良セメント組成物スラリーにおける混練水の質量Wの、地盤改良セメント組成物の質量Cに対する質量比W/Cを1:0.5〜1:2にコントロールすることが好ましい。
また、上記の場合、地盤改良セメント組成物スラリーの体積Vmの、改良すべき地盤の土壌体積Vに対する比Vm/Vは、0.1〜1.5にコントロールすることが好ましい。
In the ground improvement method of the present invention, the ground contains a fine particle having a soil particle diameter of 75 μm or less in a content of 50% by mass or more, or a clay having a soil particle diameter of 5 μm or less contains 20% by mass or more. When the ratio is included, it is preferable to control the mass ratio W / C of the mass W of the kneaded water in the ground improvement cement composition slurry to the mass C of the ground improvement cement composition to 1: 0.5 to 1: 2.
In the above case, the ratio Vm / V of the volume Vm of the ground improvement cement composition slurry to the soil volume V of the ground to be improved is preferably controlled to 0.1 to 1.5.

本発明の地盤改良方法は、上記のように、粒径が75μm以下の細粒土分の含有率が重量比で30%以上を超える土質、好ましくは、粒径が75μm以下の細粒土分の含有率が重量比で50%以上を超える土質または、土粒子径が5μm以下の粘土分の含有率が20%以上を超える土質、最も好ましくは75μm以下の細粒土分の含有率が重量比で70%以上を超える土質または、土粒子径が5μm以下の粘土分の含有率が40%以上を超える土質に対し、最も有効に用いられる。   As described above, the ground improvement method of the present invention is a soil whose content of fine-grained soil having a particle size of 75 μm or less exceeds 30% by weight, preferably a fine-grained soil having a particle size of 75 μm or less. The soil content is more than 50% or more by weight, or the soil content is more than 20%, and most preferably the fine soil content is 75μm or less. It is most effectively used for soils having a ratio exceeding 70% or more, or soils having a soil particle diameter of more than 40%.

本発明の地盤改良方法が用いられる環境には、地表から直接もしくは所定の深さの施工深度からセメント組成物スラリーと土とを混合攪拌する陸上施工で用いられる場合と、海面上で海底から直接もしくは所定の深さの施工深度からセメント組成物スラリーと土とを混合攪拌する海上施工で使用される場合とがある。これらのうち、海上施工においては、セメント組成物スラリーと土とが混合されたスライムは海水中に排出されるため、周辺海域の汚濁が懸念される。特に海底地盤で多く見られる海成粘土では、前述のように、スライムの性状において、改良土の品質やワーカビリティーを確保する上で粘性を低く抑える必要があり、このため排出されたスライムによる周辺海域の汚濁が生ずる可能性がある。本発明方法に用いられる地盤改良セメント組成物スラリーと、土(海成粘土)とを用いた実験では、混合土の粘性は、前述のよう低く抑えることができた。この混合土を海水中に投入し、濁度測定を行ったところ、海水中に海成粘土のみを投入した場合と比較しても大幅に濁度の低下、すなわち混合土の拡散を抑制し得ることが明らかになった。(後記実施例12参照)   In the environment where the ground improvement method of the present invention is used, there are a case where it is used in land construction where the cement composition slurry and soil are mixed and stirred directly from the ground surface or from a construction depth of a predetermined depth, and directly from the sea floor on the sea surface. Or it may be used by the marine construction which mixes and stirs a cement composition slurry and soil from the construction depth of a predetermined depth. Among these, in the offshore construction, the slime mixed with the cement composition slurry and the soil is discharged into the seawater, so there is a concern about contamination of the surrounding sea area. Especially for marine clay, which is often found on the seabed, it is necessary to keep the viscosity low in order to ensure the quality and workability of the improved soil in the properties of the slime. May occur. In the experiment using the ground improvement cement composition slurry used in the method of the present invention and soil (marine clay), the viscosity of the mixed soil could be kept low as described above. When this mixed soil was put into seawater and turbidity measurement was performed, even if compared with the case where only marine clay was thrown into seawater, the decrease in turbidity, that is, the diffusion of mixed soil can be suppressed. It became clear. (See Example 12 below)

本発明を下記実施例によりさらに説明する。   The invention is further illustrated by the following examples.

実施例1〜9及び比較例1〜12
実施例1〜9及び比較例1〜12の各々において、下記成分(イ)〜(ニ)を用いて、地盤改良セメント組成物用添加剤を調製し、これを、下記セメント系固化材に混合して地盤改良セメント組成物を調製し、この地盤改良セメント組成物から調製された地盤改良セメント組成物スラリーを下記記載の試料土に混合して水硬性セメント混合物を調製した。
Examples 1-9 and Comparative Examples 1-12
In each of Examples 1 to 9 and Comparative Examples 1 to 12, an additive for ground improvement cement composition was prepared using the following components (i) to (d), and this was mixed with the following cement-based solidifying material. Then, the ground improved cement composition was prepared, and the ground improved cement composition slurry prepared from the ground improved cement composition was mixed with the sample soil described below to prepare a hydraulic cement mixture.

地盤改良セメント組成物用添加剤の成分
〔成分(イ)〕
・(イ−1):「ポリアクリル酸」(質量平均分子量:8000)
・(イ−2):「ポリアクリル酸ナトリウム塩」(質量平均分子量:8000)
〔成分(ロ)〕
・(ロ−1):炭酸水素ナトリウム
・(ロ−2):炭酸水素カリウム
〔成分(ハ)〕
・(ハ−1):クエン酸三ナトリウム
・(ハ−2):トリポリリン酸ナトリウム
〔成分(ニ)〕
・(ニ−1):オキシアルキレンアルキルエーテル(商標:SNデフォーマー15−P 、サンノプコ社製)
・(ニ−2):ポリオキシアルキレンアルキルエーテル(商標:消泡剤No.8、花王 製)
Ingredients for additives for ground improvement cement composition [component (I)]
-(I-1): "Polyacrylic acid" (mass average molecular weight: 8000)
-(I-2): "Polyacrylic acid sodium salt" (mass average molecular weight: 8000)
[Ingredients (b)]
(B-1): Sodium bicarbonate (B-2): Potassium bicarbonate [component (C)]
(C-1): trisodium citrate (c-2): sodium tripolyphosphate [component (d)]
(D-1): oxyalkylene alkyl ether (trademark: SN deformer 15-P, manufactured by San Nopco)
-(D-2): polyoxyalkylene alkyl ether (trademark: antifoam No. 8, manufactured by Kao)

セメント系固化材
・セメント:普通ポルトランドセメント
添加材
・高炉スラグ:エスメント4000(新日本化学製)
Cement-based solidification material ・ Cement: Ordinary Portland cement additive ・ Blast furnace slag: Esment 4000 (Nippon Chemical Co., Ltd.)

実験対象の土
・内陸部粘性土:茨城県つくば地方の工事現場で採取(湿潤密度ρt=1.66g/
cm3 、含水比ωn=49.0%)
・海成粘土 :東京都江東区砂町の工事現場で採取(湿潤密度ρt=1.56g/
cm3 、含水比ωn=72.4%)
Soil subject to experiment ・ Inland viscous soil: collected at a construction site in Tsukuba, Ibaraki Prefecture (wet density ρt = 1.66 g /
cm 3 , water content ωn = 49.0%)
・ Marine clay: collected at construction site in Sunamachi, Koto-ku, Tokyo (wet density ρt = 1.56g /
cm 3 , water content ωn = 72.4%)

実施例1〜9及び比較例1〜12の各々において、表1又は2に記載のセメント系固化材と、添加剤成分(イ)〜(ニ)とを、表1又は2に記載の配合量(質量部)で調合し、得られたセメント組成物(合計100質量部)と水とを、質量比200/300の配合比で、家庭用ハンドミキサーで混合し、セメント組成物スラリー(以下セメントミルクと記す)を調製した。得られたセメントミルクと、土とを配合重量比200/300(容積比145〜147/188〜192)で、家庭用ハンドミキサーにより混合し、水硬性セメント混合物を調製した。   In each of Examples 1 to 9 and Comparative Examples 1 to 12, the cement-based solidifying material described in Table 1 or 2 and the additive components (i) to (d) are blended in amounts described in Table 1 or 2. The resulting cement composition (100 parts by mass in total) and water were mixed with a household hand mixer at a mass ratio of 200/300 to obtain a cement composition slurry (hereinafter referred to as cement). (Referred to as milk). The obtained cement milk and soil were mixed at a blending weight ratio of 200/300 (volume ratio of 145 to 147/188 to 192) by a household hand mixer to prepare a hydraulic cement mixture.

上記水硬性セメント混合物を、下記試験に供した。
(1)分散性/粘性試験
水硬性セメント混合物をフローコーン(φ50×高さ51mm)に入れ、フローコーンを持ち上げ水硬性セメント混合物の拡がりをもって分散性/粘性の指標とした。結果を、拡がりの径160mm以上を「S」、140mm以上160mm未満を「A」、120〜140mmを「B」、100〜120mmを「C」、70〜100mmを「D」、70mm以下を「E」と6段階に判定し、表記した。
(2)硬化性試験
水硬性セメント混合物を、その調製から48時間静置した後、水硬性セメント混合物に5kg/cm2 の荷重をかけ、変形の有無を目視により観察し、変形しないものを「○」、変形するものを「×」と判定表記した。
実施例1〜9の試験結果を表1に示し、比較例1〜12の試験結果を表2に示す。
The hydraulic cement mixture was subjected to the following test.
(1) Dispersibility / viscosity test The hydraulic cement mixture was placed in a flow cone (φ50 × height 51 mm), the flow cone was lifted, and the spread of the hydraulic cement mixture was used as an index of dispersibility / viscosity. The result is “S” for an expanded diameter of 160 mm or more, “A” for 140 mm or more and less than 160 mm, “B” for 120 to 140 mm, “C” for 100 to 120 mm, “D” for 70 to 100 mm, and “70” for 70 mm or less. E ”was determined in 6 stages and indicated.
(2) Curability test After the hydraulic cement mixture was allowed to stand for 48 hours from its preparation, a load of 5 kg / cm 2 was applied to the hydraulic cement mixture, and the presence or absence of deformation was visually observed. “○”, and those that deformed were marked as “x”.
The test results of Examples 1 to 9 are shown in Table 1, and the test results of Comparative Examples 1 to 12 are shown in Table 2.

Figure 2005220739
Figure 2005220739

Figure 2005220739
Figure 2005220739

表1及び2の註
*NSF:ナフタレンスルホン酸ホルマリン縮合物Na塩
*Na2 CO3 :炭酸ナトリウム
*Na2 SO4 :硫酸ナトリウム
Tables 1 and 2 * NSF: Naphthalenesulfonic acid formalin condensate Na salt * Na 2 CO 3 : Sodium carbonate * Na 2 SO 4 : Sodium sulfate

実施例10及び11並びに比較例13
実施例10,11及び比較例13の各々において、下記成分材料を用い、表3に記載の配合量で配合して、セメント組成物を調製した。
Examples 10 and 11 and Comparative Example 13
In each of Examples 10 and 11 and Comparative Example 13, the following component materials were used and blended in the blending amounts shown in Table 3 to prepare cement compositions.

添加剤成分
(イ):「ポリアクリル酸ナトリウム塩」(質量平均分子量:8000)
(ロ):炭酸水素ナトリウム
(ハ):クエン酸三ナトリウム
(ニ):オキシアルキレンアルキルエーテル(商標:アデカネート、旭電化工業製)
セメント系固化材成分
セメント:普通ポルトランドセメント(住友大阪セメント製)
石膏:無水石膏(日本軽金属製)
Additive component (I): "Polyacrylic acid sodium salt" (mass average molecular weight: 8000)
(B): Sodium hydrogen carbonate (c): Trisodium citrate (d): Oxyalkylene alkyl ether (Trademark: Adecanate, manufactured by Asahi Denka Kogyo)
Cement-based solidifying material component Cement: Ordinary Portland cement (manufactured by Sumitomo Osaka Cement)
Gypsum: Anhydrous gypsum (Nippon Light Metal)

Figure 2005220739
Figure 2005220739

セメント組成物スラリー配合及び投入量
硬化材スラリー配合:W/C=100%(質量比)W:混練水(イオン交換水)、C:硬化材
硬化材スラリー投入量:上記硬化材配合の硬化材スラリー(Vm)を下記供試土(V)に体積比でVm/V=0.5となるよう計量し投入した。
Cement composition slurry blending and charging amount Curing material slurry blending: W / C = 100% (mass ratio) W: Kneading water (ion exchange water), C: Curing material Curing material slurry charging amount: Curing material blending the above curing material The slurry (Vm) was weighed and introduced into the following test soil (V) so that Vm / V = 0.5 by volume.

試料土
内陸粘土:埼玉県所沢粘性土
湿潤密度ρt=1.83g/cm3 、含水比ωn=37.3%
75μm以下含有率Fs=66%、5μm以下含有率Fs=49%
海成粘土:東京都江東区砂町粘性土
湿潤密度ρt=1.54g/cm3 、含水比ωn=71.2%
75μm以下含有率Fs=99%、5μm以下含有率Fs=53%
Sample soil Inland clay: Tokorozawa clay soil, Saitama
Wet density ρt = 1.83 g / cm 3 , moisture content ωn = 37.3%
75 μm or less content Fs = 66%, 5 μm or less content Fs = 49%
Marine clay: sandy clay soil, Koto-ku, Tokyo
Wet density ρt = 1.54 g / cm 3 , water content ratio ωn = 71.2%
75 μm or less content Fs = 99%, 5 μm or less content Fs = 53%

改良土の作製
改良土の作製に当たっては、所定量の試料土とセメント組成物スラリーを計量混合し、ホバート型ミキサーで6分間混合攪拌を行った。
Preparation of improved soil In preparation of improved soil, a predetermined amount of sample soil and cement composition slurry were weighed and mixed, and mixed and stirred for 6 minutes with a Hobart mixer.

改良土の粘性試験
改良土の粘性試験において、簡易ベーン試験装置を用いて混合攪拌直後からの改良土のベーンせん断強さの経時変化を測定した。
測定結果を図1及び図2に示す。
実施例10において内陸粘土に対し、優れた改良結果が得られ、実施例10及び11において、特に実施例11において、海成粘土に対し、優れた改良結果が得られた。
Improved soil viscosity test In the improved soil viscosity test, the time-dependent change in vane shear strength of the improved soil immediately after mixing and stirring was measured using a simple vane test device.
The measurement results are shown in FIGS.
In Example 10, an excellent improvement result was obtained for inland clay, and in Examples 10 and 11, particularly in Example 11, an excellent improvement result was obtained for marine clay.

実施例12
(1)下記組成のセメント組成物を調製した。
セメント:普通ポルトランドセメント 97.45%
添加剤
(イ):「ポリアクリル酸」(質量平均分子量:8000) 0.15%
(ロ):炭酸水素ナトリウム 1.55%
(ハ):クエン酸三ナトリウム 0.75%
(ニ):ポリオキシアルキレンアルキルエーテル 0.10%
(商標:SNデフォーマー15−P、サンノプコ社製)
(2)供試土は下記のとおりであった。
・海成粘土:東京都江東区砂町の工事現場で採取(湿潤密度ρt=1.56g/cm3 、 含水比ωn=72.4%)
Example 12
(1) A cement composition having the following composition was prepared.
Cement: Ordinary Portland cement 97.45%
Additive (I): “Polyacrylic acid” (mass average molecular weight: 8000) 0.15%
(B): Sodium bicarbonate 1.55%
(C): Trisodium citrate 0.75%
(D): Polyoxyalkylene alkyl ether 0.10%
(Trademark: SN deformer 15-P, manufactured by San Nopco)
(2) The test soil was as follows.
・ Marine clay: collected at construction site in Sunamachi, Koto-ku, Tokyo (wet density ρt = 1.56g / cm 3 , moisture content ωn = 72.4%)

(3)試験
改良土の水中(海水中)での拡散状態を確認するため、下記方法による濁度測定試験を実施した。セメント組成物200質量部と水300質量部とを家庭用ハンドミキサーで混合し、セメント組成物スラリーを調製した。上記セメント組成物スラリー200質量部と粘性土200質量部(容積比145/128)を家庭用ハンドミキサーで混合し、改良土を調製した。この改良土20gを1リットルビーカーに取り、このビーカーにイオン交換水又は海水980gを静かに投入し、その上層液を50g採取し、投入直後(攪拌前)の濁度を測定した。更にビーカー内を攪拌装置で攪拌(300rpm ×1min )し、その上層液50gを採取し300rpm 攪拌後の濁度を測定した。
(濁度)
濁度の測定は、島津製作所製 紫外分光光度計「UV−160A」を用いて行った。
濁度の指標として、海成粘土を水に分散させた状態の濁度を指標とした。
<検量線>
500ppm :海成粘土0.05%/イオン交換水
1000ppm :海成粘土0.10%/イオン交換水
2000ppm :海成粘土0.20%/イオン交換水
供試海成粘土の濁度の指標を表4に示し、海水中の海成粘土の濁度と吸光度との関係図を図3に示し、試験結果を表5に示す。
(3) Test In order to confirm the diffusion state of the improved soil in water (in seawater), a turbidity measurement test was carried out by the following method. 200 parts by mass of the cement composition and 300 parts by mass of water were mixed with a household hand mixer to prepare a cement composition slurry. 200 parts by mass of the above cement composition slurry and 200 parts by mass of viscous soil (volume ratio 145/128) were mixed with a household hand mixer to prepare improved soil. 20 g of this improved soil was taken in a 1 liter beaker, and 980 g of ion-exchanged water or seawater was gently put into this beaker, 50 g of the upper layer liquid was sampled, and turbidity was measured immediately after the addition (before stirring). Further, the inside of the beaker was stirred with a stirrer (300 rpm × 1 min), 50 g of the upper layer liquid was collected, and the turbidity after stirring at 300 rpm was measured.
(Turbidity)
The turbidity was measured using an ultraviolet spectrophotometer “UV-160A” manufactured by Shimadzu Corporation.
As an index of turbidity, the turbidity of marine clay dispersed in water was used as an index.
<Calibration curve>
500ppm: Marine clay 0.05% / ion-exchanged water 1000ppm: Marine clay 0.10% / ion-exchanged water 2000ppm: Marine clay 0.20% / ion-exchanged water Index of turbidity of test marine clay Table 4 shows the relationship between the turbidity and absorbance of marine clay in seawater, and FIG. 3 shows the test results.

Figure 2005220739
Figure 2005220739

Figure 2005220739
Figure 2005220739

表5及び図3から明らかなように、本発明方法による実施例12の海成粘土の改良土は、海水中への拡散が少なく、本発明方法が海底における海成地盤の改良に有効であることが確認された。   As is apparent from Table 5 and FIG. 3, the improved soil of the marine clay of Example 12 according to the method of the present invention has little diffusion into seawater, and the method of the present invention is effective for improving the marine ground on the seabed. It was confirmed.

本発明の地盤改良方法は、地盤(内陸及び多価金属イオンを多く含む粘土地盤)の改良において、高い地盤改良効果を示し、特に多価金属イオンを多く含む(例えば海成粘土)地盤に対し、地盤改良工事を施すときにも、排出スライムの海水中拡散を抑制し、海中環境の悪化を防止乃至抑制することができるものであって、極めて高い実用性を有するものである。   The ground improvement method of the present invention shows a high ground improvement effect in the improvement of the ground (inland and clay ground containing a large amount of polyvalent metal ions), especially for ground containing a large amount of polyvalent metal ions (eg marine clay). Even when ground improvement work is performed, it is possible to suppress the diffusion of discharged slime in seawater and prevent or suppress deterioration of the sea environment, and has extremely high practicality.

本願発明に係る地盤改良方法を内陸粘土に施したときの粘性低減効果を示す、実施例10及び比較例13のベーン剪断力−経過時間の関係図。The relationship figure of the vane shearing force-elapsed time of Example 10 and Comparative Example 13 which shows the viscosity reduction effect when applying the ground improvement method which concerns on this invention to inland clay. 本願発明に係る地盤改良方法を海成粘土に施したときの粘性低減効果を示す、実施例10、11、比較例13のベーン剪断力−経過時間の関係図。The relationship figure of the vane shear force-elapsed time of Examples 10 and 11 and Comparative Example 13 showing the viscosity reduction effect when the soil improvement method according to the present invention is applied to marine clay. 本願発明に係る地盤改良方法を海成粘土に施したときの、土壌拡散防止効果判定用海水中海成粘土濃度−吸光度の関係図。The relationship figure of marine clay concentration in the seawater for soil diffusion prevention effect determination-light absorbency when applying the ground improvement method which concerns on this invention to marine clay.

Claims (9)

少なくとも50質量%以上のセメントを含むセメント系固化材と、このセメント系固化材100質量部に対し、0.1〜25質量部の、(イ)エチレン性不飽和モノカルボン酸及びエチレン性不飽和ジカルボン酸から選ばれた少なくとも1種の重合体及び共重合体及びそれらの水溶性塩の少なくとも1種を含む重合体成分と、及び(ロ)水溶性重炭酸塩の少なくとも1種を含む重炭酸塩成分とを含む添加剤とを含む、地盤改良セメント組成物とを、その質量の50〜200%の混練水に混合して地盤改良セメント組成物スラリーを調製し、この地盤改良セメント組成物スラリーを、改良すべき地盤中に、改良対象土の容積の0.1〜1.5倍の容積をもって打設・混合し、硬化させることを特徴とする地盤改良方法。   0.1 to 25 parts by mass of (i) ethylenically unsaturated monocarboxylic acid and ethylenically unsaturated with respect to 100 parts by mass of cementitious solidified material containing at least 50% by mass or more of cement A polymer component containing at least one polymer and copolymer selected from dicarboxylic acids and at least one water-soluble salt thereof; and (b) bicarbonate containing at least one water-soluble bicarbonate. A ground improvement cement composition slurry containing an additive containing a salt component is mixed with 50 to 200% of the mass of kneaded water to prepare a ground improvement cement composition slurry, and the ground improvement cement composition slurry In the ground to be improved, with a volume of 0.1 to 1.5 times the volume of the soil to be improved, mixed and hardened. 前記地盤改良セメント組成物スラリー中に、追加添加材料として、高炉スラグ、石灰石粉、フライアッシニ、シリカ微粉末、炭酸カルシウム及び石膏から選ばれた少なくとも1種を更に添加する、請求項1に記載の地盤改良方法。   The ground according to claim 1, further comprising at least one selected from blast furnace slag, limestone powder, fly assini, fine silica powder, calcium carbonate, and gypsum as an additional additive material in the ground improvement cement composition slurry. Improvement method. 前記地盤が、土粒子径75μm以下の細粉分を50質量%以上の含有率で含むか、又は5μm以下の土粒子径を有する粘土分を20質量%以上の含有率で含み、前記地盤改良セメント組成物スラリーにおける混練水の質量Wの地盤改良セメント組成物の質量Cに対する質量比W/Cが1:0.5〜1:2である、請求項1又は2に記載の地盤改良方法。   The ground contains a fine powder having a soil particle diameter of 75 μm or less in a content of 50% by mass or more, or a clay having a soil particle diameter of 5 μm or less in a content of 20% by mass or more, The ground improvement method of Claim 1 or 2 whose mass ratio W / C with respect to the mass C of the ground improvement cement composition of the mass W of the kneading | mixing water in a cement composition slurry is 1: 0.5-1: 2. 前記添加剤中の前記重合体成分(イ)と、前記重炭酸塩成分(ロ)との質量比が、100:500〜100:5,000である、請求項1に記載の地盤改良方法。   The ground improvement method according to claim 1, wherein a mass ratio of the polymer component (I) and the bicarbonate component (B) in the additive is 100: 500 to 100: 5,000. 前記添加剤中の重合体成分(イ)が、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、及びイタコン酸の重合体及び共重合体及びそれらのアルカリ金属塩、アンモニウム塩及び低級アルキルアンモニウム塩から選ばれた少なくとも1種を含む、請求項1に記載の地盤改良方法。   The polymer component (a) in the additive is a polymer or copolymer of acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid, and alkali metal salts, ammonium salts, and lower alkyl ammonium salts thereof. The ground improvement method of Claim 1 containing at least 1 sort (s) chosen from. 前記添加剤中の重合体成分(イ)に含まれる前記共重合体及び/又は共重合体の平均分子量が1,000〜50,000の範囲内にある、請求項1に記載の地盤改良方法。   The ground improvement method according to claim 1, wherein an average molecular weight of the copolymer and / or copolymer contained in the polymer component (a) in the additive is in the range of 1,000 to 50,000. . 前記添加剤中の重炭酸塩成分(ロ)に含まれる水溶性重炭酸塩が、1価金属の重炭酸塩から選ばれる、請求項1に記載の地盤改良方法。   The ground improvement method according to claim 1, wherein the water-soluble bicarbonate contained in the bicarbonate component (b) in the additive is selected from bicarbonates of monovalent metals. 前記添加剤中に、追加成分として、(ハ)有機酸及びその塩、ポリリン酸及びその塩、並びに糖、及び糖アルコールから選ばれた少なくとも1種からなる硬化遅延剤、並びに、(ニ)オキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種からなる消泡剤から選ばれた少なくとも1員を更に添加する、請求項1に記載の地盤改良方法。   In the additive, as an additional component, (c) a curing retarder comprising at least one selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, sugars and sugar alcohols, and (d) oxy The ground improvement method according to claim 1, wherein at least one member selected from at least one antifoaming agent selected from alkylene alkyl ethers and polyoxyalkylene alkyl ethers is further added. 前記添加剤追加成分用前記硬化遅延剤(ハ)および前記消泡剤(ニ)の含有量が、前記重合体成分(イ)100質量部に対して、それぞれ50〜1,000質量部、及び1〜70質量部である、請求項8に記載の地盤改良方法。   The content of the curing retarder (c) for the additive additional component and the antifoaming agent (d) is 50 to 1,000 parts by mass with respect to 100 parts by mass of the polymer component (b), and The ground improvement method of Claim 8 which is 1-70 mass parts.
JP2005036694A 2005-02-14 2005-02-14 How to improve marine ground Expired - Lifetime JP3868451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036694A JP3868451B2 (en) 2005-02-14 2005-02-14 How to improve marine ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036694A JP3868451B2 (en) 2005-02-14 2005-02-14 How to improve marine ground

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002345963A Division JP3955255B2 (en) 2002-11-28 2002-11-28 Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same

Publications (2)

Publication Number Publication Date
JP2005220739A true JP2005220739A (en) 2005-08-18
JP3868451B2 JP3868451B2 (en) 2007-01-17

Family

ID=34996585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036694A Expired - Lifetime JP3868451B2 (en) 2005-02-14 2005-02-14 How to improve marine ground

Country Status (1)

Country Link
JP (1) JP3868451B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150121A (en) * 2007-12-20 2009-07-09 Nippon Solid Co Ltd Method of improving soft ground
JP2009286655A (en) * 2008-05-29 2009-12-10 Takemoto Oil & Fat Co Ltd Powdery premixed cement composition for foundation improvement
CN107936973A (en) * 2017-11-05 2018-04-20 长沙秋点兵信息科技有限公司 A kind of heavy-metal contaminated soil CaCO3The preparation method of/C renovation agents
WO2020027191A1 (en) * 2018-08-01 2020-02-06 花王株式会社 Method for improving ground

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150121A (en) * 2007-12-20 2009-07-09 Nippon Solid Co Ltd Method of improving soft ground
JP2009286655A (en) * 2008-05-29 2009-12-10 Takemoto Oil & Fat Co Ltd Powdery premixed cement composition for foundation improvement
CN107936973A (en) * 2017-11-05 2018-04-20 长沙秋点兵信息科技有限公司 A kind of heavy-metal contaminated soil CaCO3The preparation method of/C renovation agents
WO2020027191A1 (en) * 2018-08-01 2020-02-06 花王株式会社 Method for improving ground

Also Published As

Publication number Publication date
JP3868451B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
JP4495828B2 (en) Admixture for hydraulic composition and hydraulic composition
JP3955255B2 (en) Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same
JPH0553740B2 (en)
WO2005123624A2 (en) Providing freezing and thawing resistance to cementitious compositions
EP1758832A2 (en) Providing freezing and thawing resistance to cementitious compositions
JP3868451B2 (en) How to improve marine ground
JP2007246308A (en) Concrete composition and method for determining composition of concrete
JP7092459B2 (en) Cement composition
JP5189274B2 (en) Ground injection material and ground injection method using the same
JP4090772B2 (en) Cement composition
JP2019178579A (en) Method for producing improved soil
JP6573435B2 (en) Admixture for aqueous cement composition and method of air entrainment to mortar or concrete using the same and manufacturing method
JP4097965B2 (en) Injection material for submerged ground improvement
JP2007106961A (en) Grouting material
JP2015182906A (en) Dry shrinkage reducing agent composition for premixed mortar, premixed mortar, and cement cured body using the same
JP3806420B2 (en) Low strength mortar filler using shirasu
JP2015010010A (en) Salt damage-resistant concrete
JP5805476B2 (en) Hydraulic composition
JPH07121821B2 (en) Admixture for concrete or mortar and kneaded product containing the same
JP2011079990A (en) Grouting material
JP3502595B2 (en) Additive for ground improvement method
JP6924688B2 (en) Injectable material for submerged ground improvement
JP5498695B2 (en) Ground injection material and ground injection method using the same
JP2006182625A (en) Cement-based grout composition
CN113831462B (en) Polycarboxylate superplasticizer and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Ref document number: 3868451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term