JP2009286655A - Powdery premixed cement composition for foundation improvement - Google Patents

Powdery premixed cement composition for foundation improvement Download PDF

Info

Publication number
JP2009286655A
JP2009286655A JP2008140381A JP2008140381A JP2009286655A JP 2009286655 A JP2009286655 A JP 2009286655A JP 2008140381 A JP2008140381 A JP 2008140381A JP 2008140381 A JP2008140381 A JP 2008140381A JP 2009286655 A JP2009286655 A JP 2009286655A
Authority
JP
Japan
Prior art keywords
mass
component
ground improvement
powdery
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008140381A
Other languages
Japanese (ja)
Other versions
JP5219261B2 (en
Inventor
Shinji Tamaki
伸二 玉木
Mitsuo Kinoshita
光男 木之下
Hiroyoshi Kato
弘義 加藤
Terutoshi Shigeta
輝年 重田
Katsuya Yanagihara
勝也 柳原
Toshiaki Sakai
敏明 酒井
Hiroyuki Doi
宏行 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Tokuyama Corp
Original Assignee
Takemoto Oil and Fat Co Ltd
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Tokuyama Corp filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2008140381A priority Critical patent/JP5219261B2/en
Publication of JP2009286655A publication Critical patent/JP2009286655A/en
Application granted granted Critical
Publication of JP5219261B2 publication Critical patent/JP5219261B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powdery premixed cement composition for foundation improvement, capable of achieving, at the same time, (1) low viscosity and excellent flow property in a resulting slime, (2) excellent early-strength development in a cured product of the slime, and (3) low cost by saving the amount of the slime discharged to the ground as construction sludge. <P>SOLUTION: The powdery premixed cement composition for foundation improvement comprises 0.5-15 pts.mass powdery additive for foundation improvement per 100 pts.mass powdery cement solidifying agent comprising 2-89.9 mass% sodium lignin sulfonate, 10-90 mass% alkali metal carbonate and 0.1-8 mass% specific polyether defoamant (100 mass% in total). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は粉状の地盤改良用プレミックスセメント組成物に関する。軟弱な地盤の強度の向上、透水性地盤の止水や遮水等を図るため、地盤改良工事が行なわれている。なかでも、セメントミルクを地中に高圧噴射し、土壌と混合するジェットグラウト工法が注目されている。この工法は、地中に多重管を挿入して回転させながら、その先端付近からセメントミルクを高圧噴射して、地中の土壌を切削すると同時に切削した土壌とセメントミルクとの混合物であるソイルセメントスラリー(以下、単にスライムという)の一部を地上に排出し、その一方で地中の該スライムを硬化させ、地盤を改良する工法である。かかるジェットグラウト工法をはじめとして、セメントミルクを地中に注入する地盤改良工事では、生成するスライムの粘度を低くして流動性を良くすると共に、該スライムが充分な強度を有する硬化体となり、しかもこれらが経済的に達成されることが要求される。生成するスライムの粘度が高くて流動性が悪いと、セメントミルクの注入不良やスライムの地上への排出不良等を引き起こして地盤改良工事それ自体に支障をきたし、かかる支障が生じるのを避けるためにセメントミルクの加水量や注入率等を高くすると、それだけ建設汚泥となる地上へ排出されるスライムの量が増加し、その処理費用が嵩むのである。本発明は、前記のような要求に応える粉状の地盤改良用プレミックスセメント組成物に関する。   The present invention relates to a powdery ground improvement premix cement composition. Ground improvement work is being carried out in order to improve the strength of the soft ground, and to stop and block the water of the permeable ground. Among them, the jet grout method, in which cement milk is jetted into the ground at high pressure and mixed with the soil, is attracting attention. This method uses soil cement, which is a mixture of soil and cement milk that has been cut at the same time that cement milk is sprayed from the vicinity of the tip of the tube while rotating by inserting multiple tubes into the ground and rotating. In this method, a part of a slurry (hereinafter simply referred to as slime) is discharged to the ground, while the slime in the ground is hardened to improve the ground. In the ground improvement work in which cement milk is injected into the ground, including this jet grout method, the viscosity of the generated slime is lowered to improve the fluidity, and the slime becomes a cured body having sufficient strength, These are required to be achieved economically. In order to avoid the occurrence of such troubles, if the slime produced has a high viscosity and poor fluidity, it will cause problems such as poor cement milk injection and poor discharge of the slime to the ground, causing problems in the ground improvement work itself. Increasing the amount of cement milk added, the injection rate, etc., increases the amount of slime discharged to the ground, which becomes construction sludge, and increases the treatment cost. The present invention relates to a powdery ground improvement premix cement composition that meets the above requirements.

従来、生成するスライムの粘度を低下させ、流動性を高める手段として、各種の添加剤を用いることが知られている(例えば特許文献1〜9参照)。しかし、これら従来の手段では、前記した要求に充分に応えることができないという問題がある。
特開平5−320642号公報 特開平10−95976号公報 特開平10−212482号公報 特開平10−251641号公報 特開平11−254425号公報 特開2000−169209号公報 特開2004−143041号公報 特開2004−175989号公報 特開2007−217255号公報
Conventionally, it is known to use various additives as means for reducing the viscosity of the slime to be generated and increasing the fluidity (see, for example, Patent Documents 1 to 9). However, these conventional means have a problem that they cannot sufficiently meet the above-mentioned demand.
JP-A-5-320642 JP-A-10-95976 Japanese Patent Laid-Open No. 10-212482 Japanese Patent Laid-Open No. 10-251641 JP-A-11-254425 JP 2000-169209 A JP 2004-143041 A Japanese Patent Laid-Open No. 2004-175989 JP 2007-217255 A

本発明が解決しようとする課題は、1)生成するスライムの粘度が低く、流動性に優れていること、2)スライムの硬化体が発現する早期強度に優れていること、3)建設汚泥として地上へ排出されるスライムの量が少なく、経済的に優れていること等を同時に充足することができる粉状の地盤改良用プレミックスセメント組成物を提供する処にある。   The problems to be solved by the present invention are as follows: 1) the viscosity of the slime produced is low and excellent in fluidity, 2) that the cured body of the slime is excellent in early strength, and 3) as construction sludge. The present invention provides a powdery ground improvement premix cement composition that can satisfy the fact that the amount of slime discharged to the ground is small and is economically superior.

しかして本発明者らは、前記の課題を解決すべく研究した結果、粉状の地盤改良用プレミックスセメント組成物としては、粉状のセメント系固化材に、リグニンスルホン酸ナトリウム、炭酸アルカリ金属塩及び特定のポリエーテル系消泡剤から成る粉状の地盤改良用添加剤を所定割合で含有させたものが正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems. As a result, the powdery ground improvement premix cement composition includes powdered cement-based solidified material, sodium lignin sulfonate, and alkali metal carbonate. It has been found that a powdery ground improvement additive comprising a salt and a specific polyether-based antifoaming agent is contained in a predetermined ratio and is suitable.

すなわち本発明は、粉状のセメント系固化材100質量部当たり、粉状の下記の地盤改良用添加剤を0.5〜15質量部の割合で含有して成ることを特徴とする粉状の地盤改良用プレミックスセメント組成物に係る。   That is, the present invention comprises a powdery ground improvement additive described below in a proportion of 0.5 to 15 parts by mass per 100 parts by mass of a powdered cement-based solidifying material. The present invention relates to a premix cement composition for ground improvement.

地盤改良用添加剤:下記のA成分、B成分及びC成分から成り、且つ該A成分を2〜89.9質量%、該B成分を10〜90質量%及び該C成分を0.1〜8質量%の割合で含有して成る地盤改良用添加剤
A成分:リグニンスルホン酸ナトリウム
B成分:炭酸アルカリ金属塩
C成分:下記のD成分及びE成分から成り、且つ該D成分を50〜70質量%及び該E成分を30〜50質量%の割合で含有して成るポリエーテル系消泡剤
Ground improvement additive: consisting of the following A component, B component and C component, and 2-89.9% by mass of the A component, 10-90% by mass of the B component and 0.1 to 0.1% of the C component Additive for ground improvement comprising 8% by mass A component: sodium lignin sulfonate B component: alkali metal carbonate C component: composed of the following D component and E component, and 50 to 70 A polyether-based antifoaming agent comprising 30% by mass and the E component in a proportion of 30 to 50% by mass

D成分:下記の化1で示されるブロック共重合体
E成分:多孔質シリカ微粉末
D component: block copolymer represented by the following chemical formula E component: porous silica fine powder

Figure 2009286655
Figure 2009286655

化1において、
:炭素数12〜20の脂肪族炭化水素基
:オキシエチレン単位の繰り返し数4〜10のポリエチレングリコールから全ての水酸基を除いた残基
:オキシプロピレン単位の繰り返し数20〜50のポリプロピレングリコールから全ての水酸基を除いた残基
In chemical formula 1,
R 1 : Aliphatic hydrocarbon group having 12 to 20 carbon atoms A 1 : Residue obtained by removing all hydroxyl groups from polyethylene glycol having 4 to 10 repeating oxyethylene units A 2 : Repeating 20 to 50 oxypropylene units Residues obtained by removing all hydroxyl groups from polypropylene glycol

本発明に係る粉状の地盤改良用プレミックスセメント組成物に用いる地盤改良用添加剤は、A成分、B成分及びC成分から成るものである。A成分は、リグニンスルホン酸ナトリウムであるが、粉状のリグニンスルホン酸ナトリウムが好ましい。一般に、リグニンスルホン酸は、木材の主要成分であるリグニンをスルホン化したものに含まれる水溶性の天然高分子であり、アルカリで脱糖処理したものがコンクリート用セメント分散剤として使用されている。コンクリート用セメント分散剤に使用されるリグニンスルホン酸塩としては、リグニンスルホン酸ナトリウム、リグニンスルホン酸カルシウム、リグニンスルホン酸マグネシウム等がよく知られているが、本発明においては、リグニンスルホン酸ナトリウムを使用することが重要である。カルシウム塩やマグネシウム塩は、スライムの流動性を低下させると共に、凝結遅延性を示し、スライムから得られる硬化体の初期強度の低下を招くので好ましくない。またアルカリによる脱糖処理後の還元糖類の残存量は10%未満の範囲内であってより少ないものが好ましい。更に粉状のリグニンスルホン酸ナトリウムとしては、粒子径が1〜2000μmの範囲内のものが好ましい。   The ground improvement additive used in the powdery ground improvement premix cement composition according to the present invention comprises an A component, a B component and a C component. The component A is sodium lignin sulfonate, but powdered sodium lignin sulfonate is preferred. In general, lignin sulfonic acid is a water-soluble natural polymer contained in sulfonated lignin, which is a main component of wood, and one that has been desugared with alkali is used as a cement dispersant for concrete. As the lignin sulfonate used in the cement dispersant for concrete, sodium lignin sulfonate, calcium lignin sulfonate, magnesium lignin sulfonate and the like are well known, but in the present invention, sodium lignin sulfonate is used. It is important to. Calcium salts and magnesium salts are not preferred because they reduce the fluidity of the slime and also exhibit a retarding property and cause a decrease in the initial strength of the cured product obtained from the slime. Further, the residual amount of reducing saccharide after the desugaring treatment with alkali is preferably in the range of less than 10% and less. Further, as the powdered sodium lignin sulfonate, those having a particle diameter in the range of 1 to 2000 μm are preferable.

B成分は、炭酸ナトリウム、炭酸カリウム、炭酸リチウム等の炭酸アルカリ金属塩であるが、なかでも炭酸ナトリウムが好ましい。B成分は一般に、粉状又は顆粒状で供給されるが、粉状のものが好ましく、なかでも粒子径が1〜2000μmの範囲内のものが好ましい。   The component B is an alkali metal carbonate such as sodium carbonate, potassium carbonate, lithium carbonate, etc., among which sodium carbonate is preferable. The component B is generally supplied in the form of powder or granules, preferably in the form of powder, and particularly preferably in the range of 1 to 2000 μm.

C成分は、前記のD成分及びE成分から成り、且つ該D成分を50〜70質量%及び該E成分を30〜50質量%(合計100質量%)の割合で含有して成るポリエーテル系消泡剤であるが、D成分を55〜65質量%及びE成分を35〜45質量%(合計100質量%)の割合で含有して成るポリエーテル系消泡剤が好ましい。   C component consists of the above-mentioned D component and E component, and contains the D component in a proportion of 50 to 70% by mass and the E component in a proportion of 30 to 50% by mass (total 100% by mass) Although it is an antifoamer, the polyether type antifoamer formed by containing 55 to 65 mass% of D components and 35 to 45 mass% (total 100 mass%) of E components is preferable.

D成分は、化1で示されるブロック共重合体である。化1中のRは、1)ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等の炭素数12〜20の飽和脂肪族炭化水素基、2)8−ヘキサデセニル基、9−オクタデセニル基、10−エイコセニル基等の炭素数12〜20の不飽和脂肪族炭化水素基である。なかでもRとしては、不飽和脂肪族炭化水素基が好ましく、9−オクタデセニル基がより好ましい。また化1中のAはオキシエチレン単位の繰り返し数4〜10のポリエチレングリコールから全ての水酸基を除いた残基であるが、オキシエチレン単位の繰り返し数5〜9のポリエチレングリコールから全ての水酸基を除いた残基が好ましい。更に化1中のAはオキシプロピレン単位の繰り返し数20〜50のポリプロピレングリコールから全ての水酸基を除いた残基であるが、オキシプロピレン単位の繰り返し数35〜45のポリプロピレングリコールから全ての水酸基を除いた残基が好ましい。 The component D is a block copolymer represented by Chemical Formula 1. R 1 in Chemical Formula 1 is 1) a saturated aliphatic hydrocarbon group having 12 to 20 carbon atoms such as dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, etc. 2) An unsaturated aliphatic hydrocarbon group having 12 to 20 carbon atoms such as an 8-hexadecenyl group, a 9-octadecenyl group, and a 10-eicocenyl group. Among these, as R 1 , an unsaturated aliphatic hydrocarbon group is preferable, and a 9-octadecenyl group is more preferable. A 1 in Chemical Formula 1 is a residue obtained by removing all hydroxyl groups from polyethylene glycol having 4 to 10 repeating oxyethylene units, but all hydroxyl groups are derived from polyethylene glycol having 5 to 9 repeating oxyethylene units. Excluded residues are preferred. Further, A 2 in Chemical Formula 1 is a residue obtained by removing all hydroxyl groups from polypropylene glycol having 20 to 50 repeating oxypropylene units, but all hydroxyl groups from polypropylene glycol having 35 to 45 repeating oxypropylene units. Excluded residues are preferred.

E成分は、多孔質シリカ微粉末である。かかる多孔質シリカ微粉末は、一般に水ガラスを塩酸等の酸で中和し、析出した沈殿物を水洗した後、乾燥して粉末状としたもので、SiO・nHOの組成で示される非晶質の珪酸であり、それ自体としては公知のものを使用できるが、なかでも比表面積が50〜450m/gであって、且つ平均粒子径が0.1〜500μmの範囲のものが好ましく、更に吸油量(JIS−K5101−13による吸油量)が100ml/100gを超えるものがより好ましい。 The E component is a porous silica fine powder. Such porous silica fine powder is generally obtained by neutralizing water glass with an acid such as hydrochloric acid, washing the deposited precipitate with water, and drying to form a powder, which has a composition of SiO 2 · nH 2 O. Amorphous silicic acid, which is known per se can be used, among which a specific surface area of 50 to 450 m 2 / g and an average particle diameter of 0.1 to 500 μm It is more preferable that the oil absorption (oil absorption according to JIS-K5101-13) exceeds 100 ml / 100 g.

C成分として用いるポリエーテル系消泡剤は、公知の方法(例えば、特開2004−0491288号公報に記載の方法)で製造できる。かかるポリエーテル系消泡剤としては、粉状のものが好ましく、なかでも粒子径が1〜2000μmの範囲内のものが好ましい。   The polyether antifoaming agent used as component C can be produced by a known method (for example, the method described in JP-A No. 2004-0491288). As such a polyether type antifoaming agent, powdery ones are preferable, and those having a particle diameter in the range of 1 to 2000 μm are particularly preferable.

本発明に係る粉状の地盤改良用プレミックスセメント組成物に用いる地盤改良用添加剤は、以上説明したA成分、B成分及びC成分から成り、且つA成分を2〜89.9質量%、B成分を10〜90質量%及びC成分を0.1〜8質量%(合計100質量%)含有して成るものであるが、A成分を15〜79.7質量%、B成分を20〜80質量%及びC成分を0.3〜5質量%(合計100質量%)含有して成るものが好ましい。   The ground improvement additive used in the powdery ground improvement premix cement composition according to the present invention comprises the A component, the B component and the C component described above, and the A component is 2 to 89.9% by mass, It contains 10 to 90% by mass of component B and 0.1 to 8% by mass (total 100% by mass) of component C, but 15 to 79.7% by mass of component A and 20 to 20% of component B. What contains 80 mass% and 0.3-5 mass% (total 100 mass%) of C component is preferable.

以上説明した地盤改良用添加剤は、公知の方法で製造できる。A成分、B成分及びC成分がいずれも粉状である場合、攪拌羽根を備えたミキサーを用いて、A成分、B成分及びC成分を室温で混合するだけで、乾燥や粉砕をすることなく、ブロッキングのない、粉状の地盤改良用添加剤を得ることができる。かかる粉状の地盤改良用添加剤のなかでも、粒子径が1〜2000μmの範囲内のものが好ましい。   The ground improvement additive described above can be produced by a known method. When the A component, B component and C component are all in powder form, using a mixer equipped with stirring blades, just mixing the A component, B component and C component at room temperature without drying or crushing Thus, a powdery ground improvement additive without blocking can be obtained. Among such powdery ground improvement additives, those having a particle diameter in the range of 1 to 2000 μm are preferable.

本発明に係る地盤改良用プレミックスセメント組成物に用いる粉状のセメント系固化材としては、1)普通セメント、早強セメント、超早強セメント、中庸熱セメント等の各種ポルトランドセメント、2)高炉セメント、フライアッシュセメント、シリカセメント等の各種混合セメント等が挙げられ、これらの1種又は2種以上を適宜使用できる。なかでも、粉状のセメント系固化材としては、各種ポルトランドセメントと、その70質量%以下の範囲内で高炉スラグ微粉末、フライアッシュ、シリカヒューム微粉末、石灰石微粉末、石膏等の微粉末混和材料とを混合したものが好ましく、普通ポルトランドセメント及び高炉セメントB種から成り、且つ普通ポルトランドセメントを10〜40質量%及び高炉セメントB種を60〜90質量%(合計100質量%)の割合で含有して成るものがより好ましい。   The powdery cement-based solidifying material used in the premix cement composition for ground improvement according to the present invention includes 1) various portland cements such as ordinary cement, early-strength cement, ultra-early-strength cement, and moderately hot cement; 2) blast furnace Various mixed cements such as cement, fly ash cement, silica cement and the like can be mentioned, and one or more of these can be used as appropriate. Among them, as a cementitious solidified material in powder form, various Portland cements and fine powders such as blast furnace slag fine powder, fly ash, silica fume fine powder, limestone fine powder and gypsum within 70 mass% or less are mixed. A mixture of materials is preferable, and it is composed of ordinary Portland cement and blast furnace cement B type, and 10 to 40% by mass of normal Portland cement and 60 to 90% by mass (total 100% by mass) of blast furnace cement B type. What contains is more preferable.

本発明に係る粉状の地盤改良用プレミックスセメント組成物は、粉状のセメント系固化材100質量部当たり、粉状の前記した地盤改良用添加剤を0.5〜15質量部の割合で含有するものとするが、2〜10質量部の割合で含有するものとするのが好ましい。粉状のセメント系固化材100質量部当たり、粉状の前記した地盤改良用添加剤の含有割合が0.5質量部未満であると、生成するスライムの流動性が不充分となり、逆に15質量部超であると、スライムの凝結遅延性が大きくなって得られる硬化体の初期強度の発現が不充分となる。   The powdery ground improvement premix cement composition according to the present invention has a powdery ground improvement additive in a proportion of 0.5 to 15 parts by mass per 100 parts by mass of the powdered cement-based solidified material. Although it contains, it is preferable to contain in the ratio of 2-10 mass parts. When the content ratio of the powdery ground improvement additive is less than 0.5 parts by mass per 100 parts by mass of the powdered cement-based solidifying material, the fluidity of the slime to be produced becomes insufficient, and conversely 15 If the amount is more than part by mass, the initial strength of the cured product obtained by increasing the setting delay of the slime will be insufficient.

本発明に係る粉状の地盤改良用プレミックスセメント組成物は、スライムを生成させて硬化させる各種の地盤改良工事、なかでもジェットグラウト工法に有用である。通常、本発明に係る粉状の地盤改良用プレミックスセメント組成物を、ミキサーを用いて、その質量の100〜300%、好ましくは125〜275%の混練水と混合してセメントミルクを調製し、該セメントミルクを改良すべき地盤中に注入し、混合して、硬化させる。ジェットグラウト工法では通常、改良すべき対象土壌容積の0.3〜1.5倍の容積、好ましくは0.5〜1.2倍の容積のセメントミルクを高圧ポンプを用いて地盤中に注入し、混合する。   The powdery ground improvement premix cement composition according to the present invention is useful for various ground improvement works in which slime is generated and hardened, and in particular, a jet grout method. Usually, the powdery ground improvement premix cement composition according to the present invention is mixed with kneading water of 100 to 300%, preferably 125 to 275% of its mass using a mixer to prepare cement milk. The cement milk is poured into the ground to be improved, mixed and cured. In the jet grouting method, usually, cement milk having a volume of 0.3 to 1.5 times, preferably 0.5 to 1.2 times the volume of the target soil to be improved is injected into the ground using a high-pressure pump. , Mix.

本発明に係る粉状の地盤改良用プレミックスセメント組成物は、各種の土壌で構成された地盤の改良に有用である。なかでも、粒子径75μm以下のシルト分を50質量%以上含有する土壌、又は粒子径5μm以下の粘土分を20質量%以上含有する土壌の地盤改良に用いる場合に効果の発現が高い。かかる高粘性の土壌に対しても、地中へのセメントミルクの注入率を上げることなく、したがって建設汚泥となる地上へ排出されるスライムの発生量を抑えつつ、生成するスライムに充分な流動性を付与することができ、また該スライムから得られる硬化体に充分な初期強度を発現させることができる。   The powdery ground improvement premix cement composition according to the present invention is useful for improvement of the ground composed of various soils. In particular, the effect is high when used for soil improvement of soil containing 50% by mass or more of silt having a particle size of 75 μm or less, or soil containing 20% by mass or more of clay having a particle size of 5 μm or less. Even for such highly viscous soil, the flow rate is sufficient for the slime to be produced without increasing the rate of cement milk injection into the ground, and thus reducing the amount of slime that is discharged to the ground as construction sludge. Moreover, sufficient initial strength can be expressed in the cured product obtained from the slime.

本発明に係る粉状の地盤改良用プレミックスセメント組成物の使用に際しては、合目的的に他の剤を併用することができる。かかる他の剤としては、防腐剤、凝結遅延剤、凝結促進剤、防水剤等が挙げられる。   When using the powdery ground improvement premix cement composition according to the present invention, other agents can be used in combination for the purpose. Examples of such other agents include antiseptics, setting retarders, setting accelerators, waterproofing agents and the like.

以上説明した本発明に係る粉状の地盤改良用プレミックスセメント組成物によると、地盤を構成する各種の土壌に対して生成するスライムに充分な流動性を付与することができ、また該スライムから得られる硬化体に充分な初期強度を発現させることができ、しかもこれらを経済的に行なうことができるという効果がある。   According to the powdery ground improvement premix cement composition according to the present invention described above, sufficient fluidity can be imparted to slime generated for various soils constituting the ground, and from the slime. There is an effect that a sufficient initial strength can be expressed in the obtained cured product and these can be carried out economically.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。     Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass% and part means mass part.

試験区分1(ブロック共重合体の合成)
・D成分としてのブロック共重合体(D−1)の合成
オレイルアルコール269g(1モル)をオートクレーブに仕込み、触媒として水酸化カリウム0.7gを加えた後、オートクレーブ内を窒素置換した。撹拌しながら、反応温度を115〜125℃に保ち、エチレンオキサイド264g(6モル)を圧入して付加反応を行なった。圧入終了後、同温度で1時間熟成した後、反応温度を125〜135℃に保ち、プロピレンオキサイド2320g(40モル)を圧入して付加反応を行なった。圧入終了後、同温度で2時間熟成して反応を終了し、生成物を得た。この生成物を、吸着材を用いて濾別精製し、分析したところ、化1中のRが9−オクタデセニル基、Aがオキシエチレン単位の繰り返し数6のポリエチレングリコールから全ての水酸基を除いた残基、Aがオキシプロピレン単位の繰り返し数40のポリプロピレングリコールから全ての水酸基を除いた残基である場合の化1で示されるブロック共重合体(D−1)であった。
Test Category 1 (Synthesis of block copolymer)
-Synthesis | combination of the block copolymer (D-1) as D component After 269 g (1 mol) of oleyl alcohols were prepared to the autoclave and 0.7 g of potassium hydroxide was added as a catalyst, the inside of the autoclave was substituted with nitrogen. While stirring, the reaction temperature was kept at 115 to 125 ° C., and 264 g (6 mol) of ethylene oxide was injected to carry out an addition reaction. After completion of the press-fitting, after aging at the same temperature for 1 hour, the reaction temperature was kept at 125 to 135 ° C., and 2320 g (40 mol) of propylene oxide was injected to carry out an addition reaction. After completion of the press-fitting, the reaction was terminated by aging at the same temperature for 2 hours to obtain a product. When this product was separated and purified by using an adsorbent and analyzed, R 1 in chemical formula 1 was a 9-octadecenyl group, and A 1 was a polyethylene glycol having a repeating number 6 of oxyethylene units. The block copolymer (D-1) represented by Chemical formula 1 when A 2 is a residue obtained by removing all hydroxyl groups from polypropylene glycol having a repeating number of 40 oxypropylene units.

・ブロック共重合体(D−2)〜(D−4)及び(DR−1)〜(DR−4)の合成
ブロック共重合体(D−1)の合成と同様にして、ブロック共重合体(D−2)〜(D−4)及び(DR−1)〜(DR−4)を合成した。以上で合成したブロック共重合体(D−1)〜(D−4)及び(DR−1)〜(DR−4)の内容を表1にまとめて示した。
Synthesis of block copolymers (D-2) to (D-4) and (DR-1) to (DR-4) A block copolymer in the same manner as the synthesis of the block copolymer (D-1) (D-2) to (D-4) and (DR-1) to (DR-4) were synthesized. The contents of the block copolymers (D-1) to (D-4) and (DR-1) to (DR-4) synthesized above are summarized in Table 1.

Figure 2009286655
Figure 2009286655

試験区分2(C成分の調製)
・C成分としてのポリエーテル系消泡剤(C−1)の調製
E成分として多孔質シリカ微粉末(E−1)(株式会社トクヤマ社製の商品名トクシールNR、比表面積180m/g、平均粒子径85μm)8kgをリボンミキサーに仕込み、次いでブロック共重合体(D−1)12kgをリボンミキサーに撹拌しながら少しずつ分割添加して充分に混合した後、篩を用いて分級し、粒子径が1〜500μmの範囲内の粉状のポリエーテル系消泡剤(C−1)20kgを得た。
Test category 2 (Preparation of component C)
-Preparation of polyether-based antifoaming agent (C-1) as C component Porous silica fine powder (E-1) as E component (trade name Toxeal NR manufactured by Tokuyama Corporation, specific surface area 180 m 2 / g, 8 kg (average particle size 85 μm) was charged into a ribbon mixer, and then 12 kg of block copolymer (D-1) was added to the ribbon mixer in portions while stirring and mixed well, followed by classification using a sieve. 20 kg of a powdery polyether antifoaming agent (C-1) having a diameter in the range of 1 to 500 μm was obtained.

・ポリエーテル系消泡剤(C−2)〜(C−6)及び(CR−1)〜(CR−6)の調製
ポリエーテル系消泡剤(C−1)の調製と同様にして、ポリエーテル系消泡剤(C−2)〜(C−6)及び(CR−1)〜(CR−6)の調製をした。以上で調製したポリエーテル系消泡剤(C−1)〜(C−6)及び(CR−1)〜(CR−6)の内容を表2にまとめて示した。

















-Preparation of polyether antifoaming agents (C-2) to (C-6) and (CR-1) to (CR-6) In the same manner as the preparation of polyether antifoaming agents (C-1), Polyether antifoaming agents (C-2) to (C-6) and (CR-1) to (CR-6) were prepared. The contents of the polyether antifoaming agents (C-1) to (C-6) and (CR-1) to (CR-6) prepared above are shown together in Table 2.

















Figure 2009286655
Figure 2009286655

試験区分3(粉状の地盤改良用添加剤の調製)
・粉状の地盤改良用添加剤(M−1)の調製
A成分として、粉状のリグニンスルホン酸ナトリウム(ノルウェーのボレガード社製の商品名ボレスパースNA)7.4kgをリボンミキサーに仕込み、次いでB成分として炭酸ナトリウム12kg及びC成分として試験区分2で調製したポリエーテル系消泡剤(C−1)0.6kgをリボンミキサーに撹拌しながら少しずつ分割添加して充分に混合した後、篩を用いて分級し、粒子径が1〜500μmの範囲内の粉状の地盤改良用添加剤20kgを得た。
Test Category 3 (Preparation of powdery ground improvement additive)
・ Preparation of powdery ground improvement additive (M-1) As component A, 7.4 kg of powdered sodium lignin sulfonate (trade name Bolesperth NA manufactured by Borreguard, Norway) was charged into a ribbon mixer, and then B Add 12 kg of sodium carbonate as an ingredient and 0.6 kg of the polyether-based antifoaming agent (C-1) prepared in Test Category 2 as an ingredient to a ribbon mixer while stirring in small portions and mix thoroughly. The resulting mixture was classified to obtain 20 kg of a powdery ground improvement additive having a particle diameter in the range of 1 to 500 μm.

・地盤改良用添加剤(M−2)〜(M−13)及び(R−1)〜(R−16)の製造
地盤改良用添加剤(M−1)の製造と同様にして、地盤改良用添加剤(M−2)〜(M−13)及び(R−1)〜(R−16)を調製した。以上で調製した地盤改良用添加剤(M−1)〜(M−13)及び(R−1)〜(R−16)の内容を表3にまとめて示した。

















・ Production of ground improvement additives (M-2) to (M-13) and (R-1) to (R-16) Ground improvement in the same manner as the production of ground improvement additives (M-1) Additives (M-2) to (M-13) and (R-1) to (R-16) were prepared. The contents of the ground improvement additives (M-1) to (M-13) and (R-1) to (R-16) prepared above are summarized in Table 3.

















Figure 2009286655
Figure 2009286655

表3において、
A−1:粉状のリグニンスルホン酸ナトリウム
AR−1:粉状のリグニンスルホン酸カルシウム
AR−2:粉状のリグニンスルホン酸マグネシウム
B−1:粉状の炭酸ナトリウム
B−2:粉状の炭酸カリウム
B−3:粉状の炭酸リチウム
BR−1:粉状の炭酸カルシウム
C−1〜C−6及びCR−1〜CR−6:試験区分2で調製したポリエーテル系消泡剤
In Table 3,
A-1: Powdered sodium lignin sulfonate AR-1: Powdered calcium lignin sulfonate AR-2: Powdered magnesium lignin sulfonate B-1: Powdered sodium carbonate B-2: Powdered carbonic acid Potassium B-3: Powdered lithium carbonate BR-1: Powdered calcium carbonate C-1 to C-6 and CR-1 to CR-6: Polyether type antifoaming agent prepared in Test Category 2

試験区分4(粉状の地盤改良用プレミックスセメント組成物の調製)
2Lのホバートミキサーに粉状のセメント系固化材1000部を投入し、次に試験区分3で調製した粉状の地盤改良用添加剤を所定部添加して混合し、表4及び表5に記載した粉状の地盤改良用プレミックスセメント組成物を製造した。内容を表4及び表5にまとめて示した。
Test Category 4 (Preparation of powdery ground improvement premix cement composition)
1000 parts of powdered cement-based solidified material is put into a 2 L Hobart mixer, and then a predetermined part of powdery ground improvement additive prepared in Test Section 3 is added and mixed. A powdery ground improvement premix cement composition was produced. The contents are summarized in Tables 4 and 5.

Figure 2009286655
Figure 2009286655

表4において、
粉状の地盤改良用添加剤の割合:粉状のセメント系固化材100部に対する部数
N−1:普通ポルトランドセメント(密度=3.16g/cm)30質量%及び高炉セメントB種(密度=3.04g/cm)70質量%の混合物
N−2:普通ポルトランドセメント(密度=3.16g/cm
これらは以下同じ
















In Table 4,
Ratio of powdery ground improvement additive: Number of parts to 100 parts of powdered cement-based solidified material N-1: 30% by mass of ordinary Portland cement (density = 3.16 g / cm 3 ) and blast furnace cement B type (density = 3.04 g / cm 3 ) 70% by weight of the mixture N-2: ordinary Portland cement (density = 3.16 g / cm 3 )
These are the same below
















Figure 2009286655
Figure 2009286655

試験区分5(セメントミルク及びスライムの調製並びに評価)
・試験例1〜10及び比較試験例1〜16
表4又は表5に記載した粉状の地盤改良用プレミックスセメント組成物及び水を、表6に記載した配合No.1の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク1mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表8にまとめて示した。
Test Category 5 (Preparation and evaluation of cement milk and slime)
Test examples 1 to 10 and comparative test examples 1 to 16
The powdery ground improvement premix cement composition and water described in Table 4 or 5 were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing in accordance with the conditions of 1 and placing in a Hobart mixer and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 1 m 3 of this cement milk. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are summarized in Table 8.

・試験例11〜14及び比較試験例17〜21
表4又は表5に記載した粉状の地盤改良用プレミックスセメント組成物及び水を、表6に記載した配合No.2の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク0.7mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9にまとめて示した。
Test examples 11-14 and comparative test examples 17-21
The powdery ground improvement premix cement composition and water described in Table 4 or 5 were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing into the Hobart mixer according to the conditions of 2 and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 0.7 m 3 of this cement milk and mixing. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are summarized in Table 9.

・試験例15〜18及び比較試験例22〜25
表4又は表5に記載した粉状の地盤改良用プレミックスセメント組成物及び水を、表6に記載した配合No.3の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク1mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9にまとめて示した。
Test examples 15 to 18 and comparative test examples 22 to 25
The powdery ground improvement premix cement composition and water described in Table 4 or 5 were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing into the Hobart mixer according to the condition 3 and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 1 m 3 of this cement milk. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are summarized in Table 9.

・試験例19〜22及び比較試験例26〜29
表4又は表5に記載した粉状の地盤改良用プレミックスセメント組成物及び水を、表6に記載した配合No.4の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク0.7mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9にまとめて示した。
Test examples 19 to 22 and comparative test examples 26 to 29
The powdery ground improvement premix cement composition and water described in Table 4 or 5 were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing into the Hobart mixer under the condition of 4 and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 0.7 m 3 of this cement milk and mixing. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are summarized in Table 9.

・参考試験例1
普通ポルトランドセメント(密度=3.16g/cm)30質量%及び高炉セメントB種(密度=3.04g/cm)70質量%の混合物と水とを、表6に記載した配合No.5の条件にしたがい、計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク1mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9に示した。
・ Reference test example 1
A mixture of 30% by mass of ordinary Portland cement (density = 3.16 g / cm 3 ) and 70% by mass of blast furnace cement B type (density = 3.04 g / cm 3 ) and water were blended according to the blending no. In accordance with the condition of No. 5, weighed and put into a Hobart mixer, and mixed uniformly to prepare cement milk. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 1 m 3 of this cement milk. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are shown in Table 9.

・参考試験例2
普通ポルトランドセメント(密度=3.16g/cm)30質量%及び高炉セメントB種(密度=3.04g/cm)70質量%の混合物と水とを、表6に記載した配合No.6の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク1mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9に示した。
・ Reference test example 2
A mixture of 30% by mass of ordinary Portland cement (density = 3.16 g / cm 3 ) and 70% by mass of blast furnace cement B type (density = 3.04 g / cm 3 ) and water were blended according to the blending no. Cement milk was prepared by weighing into the Hobart mixer according to the conditions of 6 and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 1 m 3 of this cement milk. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are shown in Table 9.

・参考試験例3
普通ポルトランドセメント(密度=3.16g/cm)30質量%及び高炉セメントB種(密度=3.04g/cm)70質量%の混合物と水とを、表6に記載した配合No.7の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク0.7mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9に示した。
Reference test example 3
A mixture of 30% by mass of ordinary Portland cement (density = 3.16 g / cm 3 ) and 70% by mass of blast furnace cement B type (density = 3.04 g / cm 3 ) and water were blended according to the blending no. Under the conditions of No. 7, weighed into a Hobart mixer and mixed uniformly to prepare cement milk. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 0.7 m 3 of this cement milk and mixing. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are shown in Table 9.

・参考試験例4
普通ポルトランドセメント(密度=3.16g/cm)と水とを、表6に記載した配合No.8の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク1mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9に示した。
Reference test example 4
Ordinary Portland cement (density = 3.16 g / cm 3 ) and water were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing in accordance with condition 8 and placing in a Hobart mixer and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 1 m 3 of this cement milk. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are shown in Table 9.

・参考試験例5
普通ポルトランドセメント(密度=3.16g/cm)と水とを、表6に記載した配合No.9の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク1mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9に示した。
Reference test example 5
Ordinary Portland cement (density = 3.16 g / cm 3 ) and water were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing into the Hobart mixer under the conditions of 9 and mixing uniformly. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 1 m 3 of this cement milk. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are shown in Table 9.

・参考試験例6
普通ポルトランドセメント(密度=3.16g/cm)と水とを、表6に記載した配合No.10の条件にしたがい計量してホバートミキサーに入れ、均一に混合してセメントミルクを調製した。このセメントミルク0.7mに表7に記載の物性値を有する掘削土(大阪海成粘土)1m(1629g)を加えて混合し、スライムを調製した。調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度を測定した。結果を表9に示した。
Reference test example 6
Ordinary Portland cement (density = 3.16 g / cm 3 ) and water were mixed with the formulation No. described in Table 6. Cement milk was prepared by weighing into 10 Hobart mixers and mixing uniformly according to 10 conditions. Slime was prepared by adding 1 m 3 (1629 g) of excavated soil (Osaka Marine Clay) having physical properties described in Table 7 to 0.7 m 3 of this cement milk and mixing. The unit volume mass and viscosity of the prepared slime and the uniaxial compressive strength of the cured product obtained by curing the slime were measured. The results are shown in Table 9.

Figure 2009286655
Figure 2009286655

表6において、
注入率:掘削土1m当たりの注入(混合)したセメントミルクの容量(m)の割合(%)
In Table 6,
Injection rate: Ratio (%) of the volume (m 3 ) of cement milk injected (mixed) per 1 m 3 of excavated soil

Figure 2009286655
Figure 2009286655

表7において、
粘土分:粒子径5μm未満の粘土粒子
シルト分:粒子径5μm〜75μm未満のシルト粒子
砂分:粒子径75μm〜2mmの砂粒子
In Table 7,
Clay content: clay particles having a particle size of less than 5 μm Silt content: silt particles having a particle size of less than 5 μm to less than 75 μm Sand content: sand particles having a particle size of from 75 μm to 2 mm

試験区分5で調製したスライムの単位容積質量、粘度及び該スライムを硬化させた硬化体の一軸圧縮強度は下記のように測定した。
・単位容積質量:JIS−A1171に準拠し、単位容積質量(kg/L)を測定した。測定値が大きいほど、掘削時の巻き込み空気量が少なく、硬化物の組織が緻密であることを示す。
・粘度:B型粘度計を用い、練り混ぜ直後と30分後に、20℃にて粘度(mPa・s)を測定した。測定値が小さいほど粘度が小さく、流動性が優れていることを示す。施工現場で注入・噴射・混合が可能な流動性を有するスライムとするには、調製したスライムの粘度の値が10000mPa・s以下であることが望まれる。
・一軸圧縮強度試験:JIS−A1108に準拠し、直径50mm×高さ100mmの型枠を用いて成形したスライムの成型品について、材齢1日、7日及び28日の圧縮強度(kN/m)を測定した。
The unit volume mass, viscosity, and uniaxial compressive strength of the cured product obtained by curing the slime prepared in Test Category 5 were measured as follows.
Unit volume mass: Unit volume mass (kg / L) was measured according to JIS-A1171. The larger the measured value, the smaller the amount of air involved during excavation and the denser the structure of the cured product.
Viscosity: Using a B-type viscometer, the viscosity (mPa · s) was measured at 20 ° C. immediately after mixing and after 30 minutes. The smaller the measured value, the smaller the viscosity and the better the fluidity. In order to obtain a slime having fluidity that can be injected / injected / mixed at the construction site, it is desirable that the viscosity value of the prepared slime is 10,000 mPa · s or less.
-Uniaxial compressive strength test: Compressive strength (kN / m) of 1-day, 7-day and 28-day ages for molded products of slime formed using a mold with a diameter of 50 mm and a height of 100 mm in accordance with JIS-A1108 2 ) was measured.

Figure 2009286655
Figure 2009286655






Figure 2009286655
Figure 2009286655

表9において、
*6:固化せず
In Table 9,
* 6: Not solidified

Claims (7)

粉状のセメント系固化材100質量部当たり、粉状の下記の地盤改良用添加剤を0.5〜15質量部の割合で含有して成ることを特徴とする粉状の地盤改良用プレミックスセメント組成物。
地盤改良用添加剤:下記のA成分、B成分及びC成分から成り、且つ該A成分を2〜89.9質量%、該B成分を10〜90質量%及び該C成分を0.1〜8質量%の割合で含有して成る地盤改良用添加剤
A成分:リグニンスルホン酸ナトリウム
B成分:炭酸アルカリ金属塩
C成分:下記のD成分及びE成分から成り、且つ該D成分を50〜70質量%及び該E成分を30〜50質量%の割合で含有して成るポリエーテル系消泡剤
D成分:下記の化1で示されるブロック共重合体
Figure 2009286655
(化1において、
:炭素数12〜20の脂肪族炭化水素基
:オキシエチレン単位の繰り返し数4〜10のポリエチレングリコールから全ての水酸基を除いた残基
:オキシプロピレン単位の繰り返し数20〜50のポリプロピレングリコールから全ての水酸基を除いた残基)
E成分:多孔質シリカ微粉末
A powdery ground improvement premix characterized by containing 0.5 to 15 parts by mass of the following powdery ground improvement additive per 100 parts by weight of powdered cement-based solidification material Cement composition.
Ground improvement additive: composed of the following A component, B component and C component, and A component of 2-89.9% by mass, B component of 10-90% by mass and C component of 0.1 to 0.1% Additive for ground improvement comprising 8% by mass A component: sodium lignin sulfonate B component: alkali metal carbonate C component: composed of the following D component and E component, and 50 to 70 Polyether-based antifoaming agent comprising 30% by mass and 30% by mass of the E component D component: a block copolymer represented by the following chemical formula 1
Figure 2009286655
(In chemical formula 1,
R 1 : Aliphatic hydrocarbon group having 12 to 20 carbon atoms A 1 : Residue obtained by removing all hydroxyl groups from polyethylene glycol having 4 to 10 repeating oxyethylene units A 2 : Repeating 20 to 50 oxypropylene units Residues obtained by removing all hydroxyl groups from polypropylene glycol)
Component E: porous silica fine powder
B成分が、炭酸ナトリウムである請求項1記載の粉状の地盤改良用プレミックスセメント組成物。   The premix cement composition for ground improvement according to claim 1, wherein the component B is sodium carbonate. 地盤改良用添加剤が、A成分を15〜79.7質量%、B成分を20〜80質量%及びC成分を0.3〜5質量%の割合で含有して成るものである請求項1又は2記載の粉状の地盤改良用プレミックスセメント組成物。   2. The ground improvement additive comprises 15 to 79.7% by mass of component A, 20 to 80% by mass of component B, and 0.3 to 5% by mass of component C. Or the premix cement composition for powdery ground improvement of 2 description. 粉状の地盤改良用添加剤が、粒子径1〜2000μmの範囲内のものである請求項1〜3のいずれか一つの項記載の粉状の地盤改良用プレミックスセメント組成物。   The powdery ground improvement premix cement composition according to any one of claims 1 to 3, wherein the powdery ground improvement additive has a particle diameter of 1 to 2000 µm. 粉状のセメント系固化材が、普通ポルトランドセメント及び高炉セメントB種から成り、且つ該普通ポルトランドセメントを10〜40質量%及び該高炉セメントB種を60〜90質量%の割合で含有して成るものである請求項1〜4のいずれか一つの項記載の粉状の地盤改良用プレミックスセメント組成物。   The powdery cement-based solidified material is composed of ordinary Portland cement and blast furnace cement B, and contains 10 to 40% by mass of the ordinary Portland cement and 60 to 90% by mass of the blast furnace cement B. The premix cement composition for powdery ground improvement according to any one of claims 1 to 4. ジェットグラウト工法に用いるものである請求項1〜5のいずれか一つの項記載の粉状の地盤改良用プレミックスセメント組成物。   The premix cement composition for ground improvement according to any one of claims 1 to 5, which is used in a jet grout method. 粒子径75μm以下のシルト分を50質量%以上含有する土壌又は粒子径5μm以下の粘土分を20質量%以上含有する土壌の地盤改良に用いるものである請求項1〜6のいずれか一つの項記載の粉状の地盤改良用プレミックスセメント組成物。   7. The method according to claim 1, wherein the soil is used for ground improvement of soil containing 50% by mass or more of silt having a particle size of 75 μm or less or soil containing 20% by mass or more of clay having a particle size of 5 μm or less. The powdery ground improvement premix cement composition as described.
JP2008140381A 2008-05-29 2008-05-29 Premix cement composition for ground improvement Expired - Fee Related JP5219261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140381A JP5219261B2 (en) 2008-05-29 2008-05-29 Premix cement composition for ground improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140381A JP5219261B2 (en) 2008-05-29 2008-05-29 Premix cement composition for ground improvement

Publications (2)

Publication Number Publication Date
JP2009286655A true JP2009286655A (en) 2009-12-10
JP5219261B2 JP5219261B2 (en) 2013-06-26

Family

ID=41456237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140381A Expired - Fee Related JP5219261B2 (en) 2008-05-29 2008-05-29 Premix cement composition for ground improvement

Country Status (1)

Country Link
JP (1) JP5219261B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031025B2 (en) 2010-07-21 2015-05-12 Panasonic Intellectual Property Corporation Of America Base station, terminal, search space setting method and decoding method
JP2017505855A (en) * 2014-02-03 2017-02-23 株式会社ブリヂストン Rubber compound containing silicon dioxide for tire manufacture
JP2019001694A (en) * 2017-06-19 2019-01-10 株式会社長谷工コーポレーション Method for producing portland blast-furnace slag cement type a concrete, and concrete structure
JP7383857B2 (en) 2021-09-03 2023-11-21 光広 大友 Soil improvement materials and mixed soil used at baseball fields and softball fields

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138777A (en) * 1982-02-12 1983-08-17 Yoshio Taguchi Soil hardening agent
JPH0297448A (en) * 1988-10-04 1990-04-10 Jiro Fujimasu Cement composition for placement by pouring
JPH05320642A (en) * 1992-05-25 1993-12-03 Nitto Chem Ind Co Ltd Grouting work for stabilization of ground
JPH07315906A (en) * 1994-05-20 1995-12-05 Jiro Fujimasu Cement based composition for paved surface layer
JPH1025476A (en) * 1996-07-12 1998-01-27 Fujimasu Sogo Kagaku Kenkyusho:Kk Cement composition for hardening ground or the like
JPH1095976A (en) * 1996-09-26 1998-04-14 Lion Corp Additive composition for soil cement and construction of soil cement solidified body
JPH10212482A (en) * 1997-01-30 1998-08-11 Denki Kagaku Kogyo Kk Cement admixture for stabilizing ground and ground stabilization using the same
JPH10251641A (en) * 1997-03-07 1998-09-22 Mitsui Chem Inc Composition for grouting into ground and technique therefor
JPH11209152A (en) * 1998-01-22 1999-08-03 Denki Kagaku Kogyo Kk Cement admixture and cement composition containing the same
JPH11254425A (en) * 1998-03-11 1999-09-21 Lion Corp Method for building additive composition for soil cement and consolidated material for soil cement
JPH11256161A (en) * 1998-03-12 1999-09-21 Lion Corp Cement composition for improving ground and improvement of ground
JP2000169209A (en) * 1998-12-02 2000-06-20 Konoike Constr Ltd Fluidization of soil cement and superplasticizer for soil cement
JP2001323265A (en) * 2000-05-12 2001-11-22 Jiro Fujimasu Stably solidifying composition for viscous soil, or the like
JP2004143041A (en) * 2003-12-09 2004-05-20 Denki Kagaku Kogyo Kk Cement composition for jet grout method, and jet grout construction method
JP2004175989A (en) * 2002-11-28 2004-06-24 Sumitomo Osaka Cement Co Ltd Additive for foundation-improving cement composition, foundation-improving cement composition produced by using the additive and foundation improving method
JP2005220739A (en) * 2005-02-14 2005-08-18 Sumitomo Osaka Cement Co Ltd Ground improvement method
JP2007063414A (en) * 2005-08-31 2007-03-15 Takemoto Oil & Fat Co Ltd Premixed powder cement composition for ground improvement
JP2007217255A (en) * 2006-02-20 2007-08-30 Terunaito:Kk Method of preparing soil cement slurry
JP2008037891A (en) * 2006-08-01 2008-02-21 Terunaito:Kk Method for preparing soil cement slurry
JP2009035453A (en) * 2007-08-02 2009-02-19 Takenaka Komuten Co Ltd Method for fluidizing soil cement slurry
JP4442913B1 (en) * 2009-07-24 2010-03-31 竹本油脂株式会社 Fluidizing agent for preparing high strength soil cement slurry and method for preparing high strength soil cement slurry

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138777A (en) * 1982-02-12 1983-08-17 Yoshio Taguchi Soil hardening agent
JPH0297448A (en) * 1988-10-04 1990-04-10 Jiro Fujimasu Cement composition for placement by pouring
JPH05320642A (en) * 1992-05-25 1993-12-03 Nitto Chem Ind Co Ltd Grouting work for stabilization of ground
JPH07315906A (en) * 1994-05-20 1995-12-05 Jiro Fujimasu Cement based composition for paved surface layer
JPH1025476A (en) * 1996-07-12 1998-01-27 Fujimasu Sogo Kagaku Kenkyusho:Kk Cement composition for hardening ground or the like
JPH1095976A (en) * 1996-09-26 1998-04-14 Lion Corp Additive composition for soil cement and construction of soil cement solidified body
JPH10212482A (en) * 1997-01-30 1998-08-11 Denki Kagaku Kogyo Kk Cement admixture for stabilizing ground and ground stabilization using the same
JPH10251641A (en) * 1997-03-07 1998-09-22 Mitsui Chem Inc Composition for grouting into ground and technique therefor
JPH11209152A (en) * 1998-01-22 1999-08-03 Denki Kagaku Kogyo Kk Cement admixture and cement composition containing the same
JPH11254425A (en) * 1998-03-11 1999-09-21 Lion Corp Method for building additive composition for soil cement and consolidated material for soil cement
JPH11256161A (en) * 1998-03-12 1999-09-21 Lion Corp Cement composition for improving ground and improvement of ground
JP2000169209A (en) * 1998-12-02 2000-06-20 Konoike Constr Ltd Fluidization of soil cement and superplasticizer for soil cement
JP2001323265A (en) * 2000-05-12 2001-11-22 Jiro Fujimasu Stably solidifying composition for viscous soil, or the like
JP2004175989A (en) * 2002-11-28 2004-06-24 Sumitomo Osaka Cement Co Ltd Additive for foundation-improving cement composition, foundation-improving cement composition produced by using the additive and foundation improving method
JP2004143041A (en) * 2003-12-09 2004-05-20 Denki Kagaku Kogyo Kk Cement composition for jet grout method, and jet grout construction method
JP2005220739A (en) * 2005-02-14 2005-08-18 Sumitomo Osaka Cement Co Ltd Ground improvement method
JP2007063414A (en) * 2005-08-31 2007-03-15 Takemoto Oil & Fat Co Ltd Premixed powder cement composition for ground improvement
JP2007217255A (en) * 2006-02-20 2007-08-30 Terunaito:Kk Method of preparing soil cement slurry
JP2008037891A (en) * 2006-08-01 2008-02-21 Terunaito:Kk Method for preparing soil cement slurry
JP2009035453A (en) * 2007-08-02 2009-02-19 Takenaka Komuten Co Ltd Method for fluidizing soil cement slurry
JP4442913B1 (en) * 2009-07-24 2010-03-31 竹本油脂株式会社 Fluidizing agent for preparing high strength soil cement slurry and method for preparing high strength soil cement slurry

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031025B2 (en) 2010-07-21 2015-05-12 Panasonic Intellectual Property Corporation Of America Base station, terminal, search space setting method and decoding method
US9654259B2 (en) 2010-07-21 2017-05-16 Sun Patent Trust Base station, terminal, search space setting method and decoding method
US10027451B2 (en) 2010-07-21 2018-07-17 Sun Patent Trust Base station, terminal, search space setting method and decoding method
US10693604B2 (en) 2010-07-21 2020-06-23 Sun Patent Trust Base station, terminal, search space setting method and decoding method
US11265120B2 (en) 2010-07-21 2022-03-01 Sun Patent Trust Base station, terminal, search space setting method and decoding method
JP2017505855A (en) * 2014-02-03 2017-02-23 株式会社ブリヂストン Rubber compound containing silicon dioxide for tire manufacture
JP2019001694A (en) * 2017-06-19 2019-01-10 株式会社長谷工コーポレーション Method for producing portland blast-furnace slag cement type a concrete, and concrete structure
JP7383857B2 (en) 2021-09-03 2023-11-21 光広 大友 Soil improvement materials and mixed soil used at baseball fields and softball fields

Also Published As

Publication number Publication date
JP5219261B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US3232777A (en) Cementitious composition and method of preparation
JP5545678B2 (en) Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
JP5936949B2 (en) Underwater inseparable concrete
JP4495828B2 (en) Admixture for hydraulic composition and hydraulic composition
JP6057126B2 (en) Powdered water reducing agent for premix cement and method for producing the same
JP5590701B2 (en) Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same
JP5219261B2 (en) Premix cement composition for ground improvement
JP5913705B2 (en) Hydraulic composition
US20240018046A1 (en) Early strength slag-based cementitious binder
JP5811461B2 (en) Powdery drying shrinkage reducing agent for premix cement
WO2013074296A1 (en) Cmc/hec blends for cement slurries
JP6132527B2 (en) Blast furnace slag-containing cement slurry composition and method for preparing soil cement slurry using the same
JPH10168451A (en) Suspension grout and method for grouting and solidifying ground by using it
JP6371574B2 (en) Strength improver composition for hydraulic powder
JP5227161B2 (en) Cement admixture and cement composition
JP3516547B2 (en) Spraying material and spraying method using it
JP5590702B2 (en) Slurry composition for ground improvement using blast furnace slag composition and method for preparing soil cement slurry using the same
JP2558577B2 (en) How to improve frost resistance of concrete
JPH10194814A (en) Spraying material and spraying using the same
JP2006182625A (en) Cement-based grout composition
JP6300365B2 (en) Underwater inseparable fast-hardening concrete and method for producing the same
JP2003306364A (en) Powdered shrinkage reducing agent for cements
EP1496029A2 (en) Cement grout made using salt water
JP5590700B2 (en) Slurry composition for ground improvement using blast furnace slag composition and method for preparing soil cement slurry using the same
JP2820972B2 (en) Rapid hardening material for injection and cement composition for injection using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5219261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees