JPH07315906A - Cement based composition for paved surface layer - Google Patents

Cement based composition for paved surface layer

Info

Publication number
JPH07315906A
JPH07315906A JP12989594A JP12989594A JPH07315906A JP H07315906 A JPH07315906 A JP H07315906A JP 12989594 A JP12989594 A JP 12989594A JP 12989594 A JP12989594 A JP 12989594A JP H07315906 A JPH07315906 A JP H07315906A
Authority
JP
Japan
Prior art keywords
weight
soil
composition
surface layer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12989594A
Other languages
Japanese (ja)
Other versions
JP2581897B2 (en
Inventor
Jiro Fujimasu
次郎 藤増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12989594A priority Critical patent/JP2581897B2/en
Publication of JPH07315906A publication Critical patent/JPH07315906A/en
Application granted granted Critical
Publication of JP2581897B2 publication Critical patent/JP2581897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Abstract

PURPOSE:To give strength equal to asphalt paving and to improve wear resistance and durability by kneading a locally obtained soil and rock, a specified soil coagurating and curing agent and synthetic resin emulsion. CONSTITUTION:This is obtained by compounding 97-99wt.% portland cement, 1.0-0.5wt.% lignin sulfonic acid alkali metal salt, 1.0-0.5wt.% calcitjm hydroxide and 1.0-0.5wt.% soda ash. The composition (B) diluting 1-3 pts.wt synthetic resin emulsion with water is added to 100 pts.wt. composition (A) of 100 pts.wt. locally obtained soil and rock and 5-20 pts.wt. this agent until (A) component becomes to most suitable water content and kneaded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱アスファルト混合
物に代って、道路等の舗装の表層用として使用するセメ
ント系組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cement composition for use as a surface layer of a pavement for roads, etc., instead of a hot asphalt mixture.

【0002】[0002]

【従来の技術】日本の道路舗装の総延長は、簡易舗装を
含めて80万kmにおよんでいて、アスファルト舗装が
その大部分を占めている。公害の発生源とも言うべき化
石エネルギーからクリーンなエネルギーへ切り替える努
力がなされている昨今、資源不足となる恐れのある表層
用アスファルトは、他の物質への切り替えを考えておく
必要がある。
2. Description of the Related Art The total length of road pavement in Japan is 800,000 km including simple pavement, and asphalt pavement occupies the most part. In recent years, efforts are being made to switch from fossil energy, which should be called the source of pollution, to clean energy. For surface asphalt, which may run out of resources, it is necessary to consider switching to other substances.

【0003】まして、現在でも、精油所から離れた辺鄙
な地区においては、アスファルトはおろか、所謂、舗装
材料全てが、安価に入手が困難な場合もあるので、僅か
な、固化剤類を現地に運ぶだけで、大部分は現地にある
土砂等を材料として、舗装が出来る工法の開発が望まれ
ているのが現状である。
Even now, in a remote area away from the refinery, not only asphalt but also so-called pavement materials may be difficult to obtain at low cost, so a few solidifying agents are locally available. At present, it is desired to develop a construction method that allows paving by using the earth and sand, etc., that are mostly in the field, just by transporting them.

【0004】本件発明者は、かかる状況を考慮して、本
発明の開発に着手し、アスファルト以上に簡単な施工法
が可能であり、より経済的で、より耐久性のある「セメ
ント系表層用組成物」の開発に成功した。
In consideration of such a situation, the inventor of the present invention has begun the development of the present invention, is capable of a simpler construction method than asphalt, and is more economical and more durable. The composition was successfully developed.

【0005】路床・路盤が、舗装に耐えない軟弱層であ
る場合に、これを安定処理して、耐えられる路床・路盤
とする安定処理剤に、本件発明者の開発した「土壌凝結
硬化剤」(商品名フジベトン)がある。
When the roadbed / roadbed is a soft layer that does not withstand pavement, it is subjected to a stable treatment to make it a roadbed / roadbed that can withstand. Agent (trade name Fuji Beton).

【0006】このフジベトンによって、如何なる軟弱層
も、堅固な路床・路盤に改良出来るものであって、従来
はその上に「表層用加熱アスファルト混合物」を施して
「アスファルト舗装」としていた。
[0006] By using this Fuji Beton, any soft layer can be improved to a solid roadbed or roadbed. Conventionally, "hot asphalt mixture for surface layer" was applied on it to form "asphalt pavement".

【0007】本件発明者は、現地の土砂を主原料とし、
これに上述の土壌凝結硬化剤と合成樹脂エマルジョンの
希釈液とを混合混練したものを表層とすることによっ
て、僅かな薬品類を現地に運ぶだけで、アスファルト舗
装に匹敵する表層が容易に、経済的に如何なる辺鄙な地
区においても、得られることを見出した。
The present inventor uses local earth and sand as a main raw material,
By mixing and kneading the above-mentioned soil hardening agent and the diluent of the synthetic resin emulsion into the surface layer, the surface layer comparable to asphalt pavement can be easily and economically produced by only carrying a small amount of chemicals to the site. I found that it can be obtained in any remote area.

【0008】[0008]

【発明の構成、作用】本発明は、 (1)現地の土砂 100重量部と (2)(i) ポルトランドセメント 9
7〜99重量% (ii) リグニンスルホン酸アルカリ金属塩 1.0〜
0.5重量% (iii)水酸化カルシウム 1.0〜
0.5重量%及び (iv) ソーダ灰 1.0〜
0.5重量% からなる土壌凝結硬化剤 5〜20重量
部 とを混合した組成物A 100重量部に対して (3)合成樹脂エマルジョン1〜3重量部を水で希釈し
た組成物Bを、組成物Aが最適含水比になるまで添加
し、混練したことを特徴とする舗装表層用セメント系組
成物を提供する。
The present invention comprises: (1) 100 parts by weight of local earth and sand; and (2) (i) Portland cement 9
7-99% by weight (ii) Lignin sulfonic acid alkali metal salt 1.0
0.5% by weight (iii) calcium hydroxide 1.0-
0.5 wt% and (iv) soda ash 1.0-
A composition B prepared by diluting 1 to 3 parts by weight of a synthetic resin emulsion with water is added to 100 parts by weight of a composition A mixed with 5 to 20 parts by weight of a soil coagulant hardening agent consisting of 0.5% by weight. Provided is a cementitious composition for pavement surface layer, which is obtained by adding the composition A to an optimum water content ratio and kneading the mixture.

【0009】アスファルト舗装に関しては、財団法人日
本道路協会の「アスファルト舗装要綱」が重要な技術基
準を支えている。本発明の表層用セメント系組成物は、
この「アスファルト舗装要綱」に準じて設計することが
できる。
Regarding the asphalt pavement, the "Asphalt Pavement Outline" of the Japan Road Association supports important technical standards. The surface layer cementitious composition of the present invention,
It can be designed according to this “asphalt paving outline”.

【0010】本発明において、土壌凝結硬化剤及び合成
樹脂エマルジョン希釈液の配合割合は、主原料の土砂が
砂質上であるか粘性土であるか、含水比が多いか少ない
か等によって変化する。土砂が粘性土であってしかも含
水比が適性含水比を越えるような場合は、出来れば、乾
燥土を加える等によって土の状態を改善するのが、他の
方法によるよりも経済的であることが多い。
In the present invention, the mixing ratio of the soil hardening agent and the diluent for the synthetic resin emulsion changes depending on whether the main raw material is sandy or cohesive soil, or whether the water content is high or low. . If the sand is cohesive and the water content exceeds the appropriate water content, it is more economical to improve the soil condition by adding dry soil, etc., if possible, rather than using other methods. There are many.

【0011】通常の土に対しては、土壌凝結硬化剤を現
地の±100重量部に対して、5〜20重量部添加し
て、均一になるまで混合する。この場合、混合方法とし
ては、中央混合方式或は路上混合方式等がある。
For ordinary soil, 5 to 20 parts by weight of the soil hardening agent is added to ± 100 parts by weight at the site and mixed until uniform. In this case, as a mixing method, there are a central mixing method, a road mixing method and the like.

【0012】土壌凝結硬化剤を土に混合した組成物A1
00重量部に、合成樹脂エマルジョンの希釈液、組成物
BをAの最適含水比になるまで注ぐ。
Composition A1 in which a soil hardening agent is mixed with soil
Pour 00 parts by weight of the synthetic resin emulsion diluent B and composition B until the optimum water content ratio of A is reached.

【0013】路上混合の場合には、通常、スタビライザ
ーを使用する。中央混合方式の場合には、中央プラント
から運搬して、路盤上に混合物を所定の厚さ、形状に敷
きならす。
In the case of road mixing, stabilizers are usually used. In the case of the central mixing system, the mixture is transported from the central plant and spread on the roadbed in a predetermined thickness and shape.

【0014】これら混合物を路盤上に所定の密度に締め
固め舗装を終了する。
The mixture is compacted on the roadbed to a predetermined density and the pavement is completed.

【0015】以下、舗装の構造設計について簡単に説明
する、これは「アスファルト舗装要綱」に準拠して設計
される。
The pavement structure design will be briefly described below, which is designed in accordance with the "asphalt pavement guideline".

【0016】(1)表層と基層の最小厚さ 舗装の構成を決定するには、各層の最小厚さを考慮す
る。交通量の区分毎の表層と基層の合計の最小厚さは、
アスファルト舗装要項の表2.6.2によれば、次の表
1のとおりである。
(1) Minimum Thickness of Surface Layer and Base Layer In determining the structure of pavement, the minimum thickness of each layer is considered. The minimum total thickness of the surface layer and base layer for each traffic volume classification is
According to Table 2.6.2 of the asphalt pavement guideline, it is as shown in Table 1 below.

【0017】[0017]

【表1】 [Table 1]

【0018】ここで交通区分A、B、C、Dは次の表2
のように定義されている。
Here, the traffic classifications A, B, C and D are shown in Table 2 below.
Is defined as.

【0019】[0019]

【表2】 [Table 2]

【0020】(2)舗装の厚さ 舗装の厚さは、路床の設計CBRと設計交通量の区分に
応じて定まる。ここでCBRとは路床、路盤の支持力を
表わす指数であり、試験荷重強さと標準荷重強さの比
(%)で表わされる。
(2) Thickness of pavement The thickness of pavement is determined according to the classification of the roadbed design CBR and the design traffic volume. Here, CBR is an index representing the bearing capacity of the roadbed and roadbed, and is represented by the ratio (%) of the test load strength to the standard load strength.

【0021】目標とするTA(即ち舗装を全て表層基層
用加熱アスファルト混合物で行なう場合に必要な厚さ)
(cm)はアスファルト舗装要綱の表2.6.1によれ
ば、次の表3のとおりである。
Targeted TA (ie thickness required if all paving is done with hot asphalt mixture for surface substrate)
(Cm) is as shown in Table 3 below according to Table 2.6.1 of the asphalt pavement summary.

【0022】[0022]

【表3】 [Table 3]

【0023】(3)若しも、如何なる土でも安定処理等
を実施することによって、設計CBRを20以上とする
事が出来と考えるならば、表層と基層の厚さは、表3の
設計CBR20の項に示された厚さをそれぞれ採用すれ
ば、表1の最小厚さよりも大であるから、全ての交通量
・CBRに対して合格と言うことになる。
(3) If it is considered that the design CBR can be set to 20 or more by carrying out the stabilization treatment on any soil, the thickness of the surface layer and the base layer is the design CBR20 of Table 3. If each of the thicknesses shown in the section is adopted, the thickness is larger than the minimum thickness shown in Table 1, so that it can be said to pass all traffic volume / CBR.

【0024】アスファルト舗装要綱の表2.6.4によ
れば、種々の工法、材料に対する等値換算係数は次の表
4に示すとおりである。ここで等値換算係数とは、各工
法、材料の1cm厚さが表層基層用加熱アスファルト混
合物の何cmに相当するかを示す値である。
According to Table 2.6.4 of the asphalt pavement summary, the equivalent conversion factors for various construction methods and materials are as shown in Table 4 below. Here, the equivalent conversion coefficient is a value indicating how many cm each of the construction methods and materials corresponds to 1 cm in thickness of the hot asphalt mixture for the surface base layer.

【0025】[0025]

【表4】 [Table 4]

【0026】要綱の表-2.6.4(即ち前記表4)に
よれば、等値換算係数は、セメント安定処理の場合、下
層路盤では一軸圧縮強さ:10kgf/cm2の時、等
値換算係数=0.25であり、上層路盤では、一軸圧縮
強さ:30kgf/cm2の時、等値換算係数=0.55
である。これをグラフに描いて見ると、尚一層、明らか
に、一軸圧縮強さと等値換算係数とは関係があることが
よくわかる。
According to Table-2.6.4 of the summary (that is, Table 4 above), the equivalence conversion factor is such that in the case of cement stabilization, the uniaxial compressive strength of the lower layer roadbed is 10 kgf / cm 2 , etc. The value conversion coefficient is 0.25, and in the upper layer roadbed, when the uniaxial compression strength is 30 kgf / cm 2 , the equivalent conversion coefficient is 0.55.
Is. When this is drawn in a graph, it is clear that the uniaxial compressive strength and the equivalent conversion coefficient are more clearly related.

【0027】図-1には、セメント安定処理の場合と本
発明の土壌凝結硬化剤による安定処理の場合の二本の線
が書かれている。
FIG. 1 shows two lines for the case of cement stabilization and the case of stabilization with the soil hardening agent of the present invention.

【0028】上記土壌凝結硬化剤は、セメントの欠点を
少なくする為に、特定の添加剤をポルトランドセメント
に混合したものである。
The above-mentioned soil hardening agent is a mixture of Portland cement with specific additives in order to reduce the defects of the cement.

【0029】この結果、普通セメントのコンクリートの
最大の欠点とも言うべき、固化時の乾燥収縮による亀裂
の発生を減少させる事が出来て、セメント安定処理の路
盤よりも、この土壌凝結硬化剤による安定処理の路盤の
方が等値換算係数が大である事が、多くの実績によって
証明された。それと同時に、この土壌凝結硬化剤は、保
水性を持っていて、長期に強度の増進を期待出来る事
も、長い目で見て、等値換算係数に影響する事項であ
る。
As a result, it is possible to reduce the generation of cracks due to drying shrinkage at the time of solidification, which should be said to be the biggest drawback of ordinary cement concrete, and it is more stable by this soil setting and hardening agent than the cement stabilization roadbed. Many achievements have proved that the treated roadbed has a larger equivalent conversion factor. At the same time, this soil hardening agent has a water retention property and can be expected to improve the strength for a long period of time, which is a matter that affects the equivalent conversion coefficient in the long run.

【0030】本発明に使用する「土壌凝結硬化剤」は、
数百の施工例の中から、福岡大学によって追跡試験が実
施され、土壌凝結硬化剤で安定処理した土を材料とし
た、等値換算係数が求められた。その結果の一部を次の
表5に記載する。
The "soil setting hardener" used in the present invention is
A follow-up test was carried out by Fukuoka University from hundreds of construction examples, and an equivalent conversion coefficient was obtained using soil that had been stabilized with a soil hardening agent. Some of the results are shown in Table 5 below.

【0031】[0031]

【表5】 [Table 5]

【0032】上記表5は、何れも一軸圧縮強さ=30k
gf/cm2を目標に土壌凝結硬化剤を混合して路盤工
としたもので、等値換算係数は、0.7以上になってい
る。それ故に、図-1の土壌凝結硬化剤安定処理の線は
30kgf/cm2の時、0.7を通過させている。
In Table 5 above, the uniaxial compression strength is 30 k in all cases.
It is a roadbed with a soil hardening agent mixed for the purpose of gf / cm 2. The equivalent conversion coefficient is 0.7 or more. Therefore, the line for stabilizing the soil hardening agent in Figure 1 passes 0.7 at 30 kgf / cm 2 .

【0033】本発明の「セメント系表層用組成物」は、
この土壌凝結硬化剤によって安定処理した土砂に合成樹
脂エマルジョンを加えて、土砂の粒子の機械的強度を増
大させると共に、土粒子相互の接着を強化するものであ
るから、図-1のセメント安定処理の線上よりは、土壌
凝結硬化剤安定処理の線上にあると考える方が正しいと
判断できる。
The "cement-based surface layer composition" of the present invention is
A synthetic resin emulsion is added to the soil stabilized with this soil hardening agent to increase the mechanical strength of the soil particles and to strengthen the mutual adhesion of the soil particles. It can be judged that it is more correct to think that it is on the line of stabilization treatment of the soil coagulation hardener rather than on the line.

【0034】そこで、本発明の「表層用組成物」の一軸
圧縮強さを幾らにすれば、加熱アスファルト混合物と同
等の、等値換算係数=1となるかを、図-1のグラフか
ら求めて見ると、土壌凝結硬化剤安定処理の線を延長し
て等値換算係数=1の線と交わる位置から、一軸圧縮強
さ=47kgf/cm2を得る。
Then, from the graph of FIG. 1, it was determined whether the uniaxial compressive strength of the "surface layer composition" of the present invention was equivalent to that of the heated asphalt mixture, that is, the equivalent conversion coefficient = 1. As a result, the line for the stabilization treatment of the soil hardening agent is extended to obtain the uniaxial compressive strength = 47 kgf / cm 2 from the position where it intersects with the line with the equivalent conversion factor = 1.

【0035】故に、1週強度で一軸圧縮強さ=50kg
f/cm2を、本表層用組成物の目標とすべき強度と定
める。
Therefore, the uniaxial compressive strength at 50-week strength is 50 kg.
f / cm 2 is defined as the target strength of the surface layer composition.

【0036】如何に悪い路床であっても、例えば表5の
工事番号3は、CBR=1.8と最も軟弱な路床を持っ
ているが、そこでも立派に路盤を構築出来る事を示して
いる。この様に路盤を構築して、最後に、表層を掛けて
終わるのである。故に、表層の下地は、常にある支持力
を持った路盤である。この支持力は、表4によると、上
層路盤の粒調砕石或は水硬性粒度調整鉄鋼スラグの品質
規格の欄には修正CBR 80以上となる。この事は、
上層路盤の設計CBRは、80以上に相当するCBRで
ある事を物語っていることになる。それ故、道路を設置
する為には、表層の下地は、常に設計CBR 20以上
であると言う事が出来るのである。各交通区分に応じ
て、表層の厚さは、設計CBRが20以上の目標とする
TA(cm)であることになる。
No matter how bad the roadbed is, for example, the construction number 3 in Table 5 has the weakest roadbed with CBR = 1.8, but it shows that the roadbed can be constructed well there. ing. The roadbed is constructed in this way, and finally the surface layer is applied to finish. Therefore, the base of the surface layer is a roadbed that always has a certain bearing capacity. According to Table 4, this supporting force is a corrected CBR of 80 or more in the column of the quality standard of the grain crushed stone or the hydraulic grain size adjusting steel slag of the upper layer roadbed. This thing is
It means that the design CBR of the upper roadbed is a CBR equivalent to 80 or more. Therefore, it can be said that the foundation of the surface layer is always the design CBR 20 or more in order to install the road. According to each traffic division, the thickness of the surface layer is the target TA (cm) where the design CBR is 20 or more.

【0037】表-3によると、交通区分A交通で設計C
BRが20以上の時は、TAは13cmである。等値換
算係数が1である材料では、13cmの厚さに表層を掛
ける必要があると言う事である。前述の通り、本発明の
表層用組成物は、等値換算係数を1にする為に、一軸圧
縮厚さを50kgf/cm2に定めたのである。故に、
本表層の厚さは、13cmとなる。
According to Table-3, traffic category A traffic is designed C
When BR is 20 or more, TA is 13 cm. For a material having an equivalent conversion factor of 1, it is necessary to multiply the thickness of 13 cm by the surface layer. As described above, the uniaxial compression thickness of the surface layer composition of the present invention is set to 50 kgf / cm 2 in order to set the equivalent conversion coefficient to 1. Therefore,
The thickness of this surface layer is 13 cm.

【0038】本発明の組成物において、土壌凝結硬化剤
の添加量を土砂100重量部に対して5重量部以上にし
た理由は、前記表5に見られるように、一軸圧縮強さ=
30kgf/cm2の路盤の場合にも常に5%以上の添
加率が必要であるからである。土壌凝結硬化剤の添加量
を20重量部以上にすると、強度が高くなり過ぎ不経済
である。
In the composition of the present invention, the reason why the addition amount of the soil hardening agent is 5 parts by weight or more with respect to 100 parts by weight of earth and sand is that the uniaxial compressive strength =
This is because the addition rate of 5% or more is always required even in the case of the roadbed of 30 kgf / cm 2 . When the addition amount of the soil hardening agent is 20 parts by weight or more, the strength becomes too high and it is uneconomical.

【0039】合成樹脂エマルジョンは比較的高価である
ので、出来るだけ少量の添加で満足できるようにするこ
とが好ましい。現場の土の種類によって添加量が異なる
が、土壌凝結硬化剤の添加範囲5〜20重量部の範囲で
は、土砂及び土壌凝結硬化剤の合計量100重量部に対
して、合成樹脂エマルジョンの添加量が1重量部を下廻
ると表層が摩耗に弱くなり、また3重量部を越えて添加
することは経済的に好ましくない。合成樹脂エマルジョ
ンは7〜9重量部の水で希釈することが好ましい。
Since the synthetic resin emulsion is relatively expensive, it is preferable to add it as little as possible. The addition amount varies depending on the type of soil at the site, but in the range of addition of the soil hardening agent of 5 to 20 parts by weight, the addition amount of the synthetic resin emulsion is 100 parts by weight of the total amount of soil and soil hardening agent. Is less than 1 part by weight, the surface layer becomes vulnerable to abrasion, and it is economically unfavorable to add more than 3 parts by weight. The synthetic resin emulsion is preferably diluted with 7 to 9 parts by weight of water.

【0040】[0040]

【実施例】以下実施例に従って本発明を更に詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0041】実施例1及び2 土壌として関東ロームを用い、土壌凝結硬化剤として ポルトランドセメント 99重量% リグニンスルホン酸アルカリ塩 0.5重量% 水酸化カルシウム 0.25重量% ソーダ灰 0.25重量% からなる組成物を用い、合成樹脂エマルジョンとして三
菱油化(株)社製のアクリル樹脂、アクロナールMJ-
3042Dを使用した。
Examples 1 and 2 Kanto loam was used as soil, and Portland cement was used as a soil hardening agent 99% by weight Lignin sulfonic acid alkali salt 0.5% by weight Calcium hydroxide 0.25% by weight Soda ash 0.25% by weight A synthetic resin emulsion made of Mitsubishi Petrochemical Co., Ltd., acrylic resin Acronal MJ-
3042D was used.

【0042】表6に示す配合割合の土壌及び土壌凝結硬
化剤を混合した混合物Aに表6に示す配合割合で合成樹
脂エマルジョンを水で希釈した混合物を添加して混練し
た。得られた組成物について室温で強度試験を実施し
た。得られた1週強度及び4週強度の値を表6に示す。
表6には吸水率及び単位体積重量の値も併せて示されて
いる。
A mixture of the synthetic resin emulsion diluted with water at the blending ratio shown in Table 6 was added to the mixture A in which the soil and the soil coagulation hardener having the blending ratio shown in Table 6 were mixed and kneaded. A strength test was performed on the obtained composition at room temperature. The values of the 1-week strength and 4-week strength obtained are shown in Table 6.
Table 6 also shows values of water absorption and unit volume weight.

【0043】[0043]

【表6】 [Table 6]

【0044】表6の結果によれば、4週強度は、何れも
1週強度の約二倍またはそれ以上となっている。これ
は、1週強度によって、等値換算係数1を定めた経緯か
らすれば、十分に安全側に定められている事になる。
According to the results shown in Table 6, the 4-week intensity is about twice the 1-week intensity or more. From the background of setting the equivalence conversion factor of 1 depending on the strength of one week, it means that it is sufficiently set on the safe side.

【0045】実施例3〜4及び比較例1〜5 実施例1の場合と同様な土壌、土壌凝結硬化剤及び合成
樹脂エマルジョンを用い、表7に示す配合割合の組成物
を得、これらについて1週強さを測定した。結果を表7
に示す。表7において、合成樹脂エマルジョンの量は組
成物Aに対する重量%で示されている。
Examples 3 to 4 and Comparative Examples 1 to 5 Using the same soil, soil coagulation hardener and synthetic resin emulsion as in Example 1, the composition ratios shown in Table 7 were obtained. Weekly strength was measured. The results are shown in Table 7.
Shown in. In Table 7, the amounts of synthetic resin emulsions are given in% by weight relative to composition A.

【0046】[0046]

【表7】 [Table 7]

【0047】表7によれば、比較例1、2、3は、土壌
凝結硬化剤が20%を越えて、必要以上に強度が出てい
る。
According to Table 7, in Comparative Examples 1, 2, and 3, the soil coagulation and hardening agent exceeds 20%, and the strength is more than necessary.

【0048】比較例4は、樹脂の量が1%以下であっ
て、土粒子を樹脂が包む事が出来ない。
In Comparative Example 4, the amount of the resin was 1% or less, and the soil particles could not be wrapped with the resin.

【0049】比較例5は、土壌凝結硬化剤が5%以下で
あって、強度が不足である。
In Comparative Example 5, the amount of the soil hardening agent is 5% or less, and the strength is insufficient.

【0050】土壌は、千変万化であるから、一慨に限定
する事は出来ないが、関東ローム層を標準として考えて
おけば、一般の土壌は、これよりも物理的強度は平均し
て上位にある筈であるから、先ず、この値よりも経済的
に表層を構築出来ると考えられる。
[0050] The soil cannot be limited to a single one because the soil is ever-changing, but if the Kanto loam layer is considered as the standard, the general soil has an average higher physical strength than this. Since it should be, it is thought that the surface layer can be constructed more economically than this value.

【0051】耐摩耗試験 表層の役割は、交通荷重を分散して下層に伝達する機能
とともに、交通車輌による流動、摩耗ならびにひびわれ
に抵抗し、平坦ですべりにくい路面を確保することであ
る。
Abrasion resistance test The role of the surface layer is to secure a flat and non-slip road surface, which has a function of dispersing the traffic load and transmitting it to the lower layer, and also resists flow, wear and cracks caused by the traffic vehicle.

【0052】実施例3及び4及び比較例4の試料につい
て摩耗試験を実施した。結果を表8に示す。
Abrasion tests were performed on the samples of Examples 3 and 4 and Comparative Example 4. The results are shown in Table 8.

【0053】[0053]

【表8】 [Table 8]

【0054】表8によれば、コンクリート舗装の一軸圧
縮強度250kgf/cm2と比較すると、実施例3及
び4は耐摩耗性に優れているが、合成樹脂エマルジョン
1%以下の比較例4はコンクリートブロックよりも耐摩
耗性が劣っている。
According to Table 8, when compared with the uniaxial compressive strength of concrete pavement of 250 kgf / cm 2 , Examples 3 and 4 are excellent in abrasion resistance, but Comparative Example 4 containing 1% or less of synthetic resin emulsion is concrete. Wear resistance is inferior to blocks.

【0055】[0055]

【発明の効果】本発明の舗装表層用セメント系組成物
は、現地の土砂を主原料として用い、これに比較的少量
の土壌凝結硬化剤及び合成樹脂エマルジョンの希釈液を
配合したものであり、アスファルト舗装に匹敵する強度
及び耐摩耗性を有する。如何なる辺鄙な場所において
も、僅かな薬品類を現地に運ぶだけで、アスファルト舗
装と同等の表層を容易に且つ経済的に構築することがで
きる。
EFFECTS OF THE INVENTION The cement-based composition for pavement surface layer of the present invention uses local earth and sand as a main raw material, and is mixed with a relatively small amount of a soil coagulation hardener and a diluent of a synthetic resin emulsion, It has strength and abrasion resistance comparable to asphalt pavement. It is possible to easily and economically construct a surface layer equivalent to asphalt pavement by carrying a small amount of chemicals to any remote place.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の土壌凝結硬化剤による安定処理の場合
と、従来のセメント安定処理の場合の、一軸圧縮強さと
等値換算係との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the uniaxial compression strength and the equivalence conversion factor in the case of the stabilizing treatment with the soil hardening agent of the present invention and the conventional cement stabilizing treatment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09K 17/06 P 17/44 P 17/48 P //(C04B 28/04 14:02 Z 24:18 A 22:06 Z 22:10 24:26) D C09K 103:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area C09K 17/06 P 17/44 P 17/48 P // (C04B 28/04 14:02 Z 24 : 18 A 22:06 Z 22:10 24:26) D C09K 103: 00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (1)現地の土砂 100重量部と (2)(i) ポルトランドセメント 9
7〜99重量% (ii) リグニンスルホン酸アルカリ金属塩 1.0〜
0.5重量% (iii)水酸化カルシウム 1.0〜
0.5重量%及び (iv) ソーダ灰 1.0〜
0.5重量% からなる土壌凝結硬化剤 5〜20重量
部 とを混合した組成物A 100重量部に対して (3)合成樹脂エマルジョン1〜3重量部を水で希釈し
た組成物Bを、組成物Aが最適含水比になるまで添加
し、混練したことを特徴とする舗装表層用セメント系組
成物。
1. (1) 100 parts by weight of local earth and sand and (2) (i) Portland cement 9
7-99% by weight (ii) Lignin sulfonic acid alkali metal salt 1.0
0.5% by weight (iii) calcium hydroxide 1.0-
0.5 wt% and (iv) soda ash 1.0-
A composition B prepared by diluting 1 to 3 parts by weight of a synthetic resin emulsion with water is added to 100 parts by weight of a composition A mixed with 5 to 20 parts by weight of a soil coagulant hardening agent consisting of 0.5% by weight. A cement-based composition for a pavement surface layer, which is obtained by adding the composition A to an optimum water content ratio and kneading the mixture.
JP12989594A 1994-05-20 1994-05-20 Cement-based composition for pavement surface layer Expired - Fee Related JP2581897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12989594A JP2581897B2 (en) 1994-05-20 1994-05-20 Cement-based composition for pavement surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12989594A JP2581897B2 (en) 1994-05-20 1994-05-20 Cement-based composition for pavement surface layer

Publications (2)

Publication Number Publication Date
JPH07315906A true JPH07315906A (en) 1995-12-05
JP2581897B2 JP2581897B2 (en) 1997-02-12

Family

ID=15021026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12989594A Expired - Fee Related JP2581897B2 (en) 1994-05-20 1994-05-20 Cement-based composition for pavement surface layer

Country Status (1)

Country Link
JP (1) JP2581897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286655A (en) * 2008-05-29 2009-12-10 Takemoto Oil & Fat Co Ltd Powdery premixed cement composition for foundation improvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286655A (en) * 2008-05-29 2009-12-10 Takemoto Oil & Fat Co Ltd Powdery premixed cement composition for foundation improvement

Also Published As

Publication number Publication date
JP2581897B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
Baghdadi et al. Soil modification by cement kiln dust
Hassan et al. The use of reclaimed asphalt pavement (RAP) aggregates in concrete
Al-Busaltan et al. Green Bituminous Asphalt relevant for highway and airfield pavement
Koting et al. Mechanical properties of cement-bitumen composites for semi-flexible pavement surfacing
Samantasinghar et al. Strength and durability of granular soil stabilized with FA-GGBS geopolymer
Wu et al. Beneficial reuse of construction surplus clay in CLSM
Mallick et al. Evaluation of clinker stabilized fly ash-mine overburden mix as sub-base construction material for mine haul roads
Li et al. Mechanical properties of concrete with recycled composite and plastic aggregates
Dhandapani et al. Design and performance characteristics of cement grouted bituminous mixtures-a review
Little et al. SOIL STABILIZATION FOR ROADWAYS I cl AND AIRFIELDS
Terrel Soil Stabilization in Pavement Structures: Mixture design considerations
KR101053032B1 (en) Cement cement wet packing material, and method for manufacturing the wet packing material
Khan et al. Cementitious grouts containing irradiated waste polyethylene terephthalate
Mulyono Properties of pervious concrete with various types and sizes of aggregate
Šešlija et al. Possibilities of pervious concrete application in road construction
Yavuz et al. Experimental study of aggregate size and gradation on pervious concretes' mechanic, hydraulic, and surface properties
JPH07300358A (en) Hydraulic grout material for paving and grout
Whiting et al. Synthesis of current and projected concrete highway technology
TW408089B (en) Content and production method for semi-rigid asphalt concrete
JPH07315906A (en) Cement based composition for paved surface layer
US9850169B2 (en) Hydraulic mortar with glass
Shende et al. Analysis of strength of pervious concrete by adding rice husk ash and glass fibre
CN108570899A (en) A kind of pavement of road base layer structure
KR101366062B1 (en) Concrete composition for bridge pavement and manufacturing method thereof
Von Devivere et al. Warm Asphalt Mixers by adding a synthetic zeolite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees