JP5590701B2 - Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same - Google Patents

Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same Download PDF

Info

Publication number
JP5590701B2
JP5590701B2 JP2009137994A JP2009137994A JP5590701B2 JP 5590701 B2 JP5590701 B2 JP 5590701B2 JP 2009137994 A JP2009137994 A JP 2009137994A JP 2009137994 A JP2009137994 A JP 2009137994A JP 5590701 B2 JP5590701 B2 JP 5590701B2
Authority
JP
Japan
Prior art keywords
blast furnace
composition
slurry
mass
furnace cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009137994A
Other languages
Japanese (ja)
Other versions
JP2010285465A (en
Inventor
貴穂 河野
敏男 米澤
英二 佐藤
智憲 吉田
光男 木之下
伸二 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Takenaka Corp
Original Assignee
Takemoto Oil and Fat Co Ltd
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Takenaka Corp filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2009137994A priority Critical patent/JP5590701B2/en
Publication of JP2010285465A publication Critical patent/JP2010285465A/en
Application granted granted Critical
Publication of JP5590701B2 publication Critical patent/JP5590701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は高炉セメント組成物を用いた地盤改良用スラリー組成物及びこれを用いたソイルセメントスラリーの調製方法に関する。近年、二酸化炭素排出量の削減やエネルギー消費効率の改善についての要求が益々強くなっている。かかる事情に鑑み、山留工事、地下止水工事、軟弱地盤の改良工事等においても、製鉄所から副産する高炉水砕スラグが、高炉スラグ微粉末の形で高炉セメントの原料として有効利用されている。一般に前記のような地盤改良を行なう場合には、地盤中にセメント系固化材と水とを混合したセメントスラリー(セメントミルク)を地盤に注入し、削孔混練機械を用いて原位置で土と撹拌混合しており、ここではセメント系固化材として高炉セメントが用いられている。高炉セメントは、普通ポルトランドセメントに高炉スラグ微粉末を混合して造られ、JIS−R5211の規格では、高炉スラグ微粉末の分量によって、A種(5%超〜30%)、B種(30%超〜60%)及びC種(60%超〜70%)の3種類に分けられているが、実際の地盤改良を行なう分野では、性能バランスの良い高炉セメントB種が多用されている。地盤改良において高炉セメントB種は、地盤1m中に100〜400kgの割合で混入するのが一般的であるが、高炉セメントB種1トンを工場で製造するために約400kgの二酸化炭素を排出しているので、高炉セメントB種を用いて地盤1mを改良するためには、施工機械の運転や材料の運搬等により発生する二酸化炭素の排出を除き、40〜160kgの二酸化炭素を排出していることになる。そのため、地盤改良を行なう分野では、施工性を確保しつつ、改良した地盤が必要な強度を有するものになることを前提として、高炉スラグ微粉末をもっと高い割合で使用することにより二酸化炭素の発生を抑制する技術の出現が要求されている。本発明は、かかる要求に応える高炉セメント組成物を用いた地盤改良用スラリー組成物及びこれを用いたソイルセメントスラリーの調製方法に関する。 The present invention relates to a slurry composition for ground improvement using a blast furnace cement composition and a method for preparing a soil cement slurry using the same. In recent years, there has been an increasing demand for reduction of carbon dioxide emissions and improvement of energy consumption efficiency. In view of such circumstances, blast furnace granulated slag produced as a by-product from steelworks is also effectively used as a raw material for blast furnace cement in the form of fine blast furnace slag powder, even in mountain construction, underground water stoppage construction, soft ground improvement work, etc. ing. In general, when performing ground improvement as described above, a cement slurry (cement milk) mixed with cement-based solidification material and water is poured into the ground, and the soil and soil are in situ using a drilling kneading machine. Here, blast furnace cement is used as a cement-based solidifying material. Blast furnace cement is made by mixing ordinary Portland cement with blast furnace slag fine powder. According to the standard of JIS-R5211, depending on the amount of fine blast furnace slag powder, type A (over 5% to 30%), type B (30% Although it is divided into three types of super--60%) and C-type (over 60% -70%), blast furnace cement B-type having a good performance balance is frequently used in the field of actual ground improvement. Blast furnace cement B species in soil improvement is being mixed in a ratio of 100~400kg in the ground 1 m 3 is typically emit carbon dioxide of about 400kg to produce a blast furnace cement B One case ton plant since it has to, in order to improve the ground 1 m 3 using a blast furnace cement type B, with the exception of carbon dioxide emissions generated by the transportation or the like of the construction machine operation and materials, emit carbon dioxide 40~160kg Will be. Therefore, in the field of ground improvement, carbon dioxide is generated by using a higher proportion of blast furnace slag fine powder on the premise that the improved ground will have the required strength while ensuring workability. The emergence of technology to suppress this is required. The present invention relates to a ground improvement slurry composition using a blast furnace cement composition that meets such requirements, and a method for preparing a soil cement slurry using the same.

従来、地盤改良にポルトランドセメントを用いる場合の影響について、ポルトランドセメントは水と接すると水酸化カルシウムを生じるためアルカリ性を呈し、これを地盤改良に用いると、地盤のpHが10程度まで上昇して植物の生育等に悪影響を及ぼすこと、またローム層のような含水比が低い地盤の改良にポルトランドセメントを用いると、ポルトランドセメント中に含まれる六価クロムが溶出し易くなって、環境に悪影響を及ぼすこと等が報告されている(例えば、非特許文献1参照)。別に、地盤改良に用いるセメントスラリーの流動性を改善する提案(例えば、特許文献1〜3参照)や、地盤改良にも適用できる高炉スラグ等を用いた水硬性組成物についての提案(例えば、特許文献4〜8参照)等もあるが、二酸化炭素の排出量の低減に寄与するような具体的な報告や提案はされていない。   Conventionally, about the influence when Portland cement is used for ground improvement, Portland cement produces alkalinity because it generates calcium hydroxide when it comes into contact with water, and when this is used for ground improvement, the pH of the ground rises to about 10 and plant If Portland cement is used to improve the soil with low water content such as loam layer, hexavalent chromium contained in Portland cement will be easily dissolved, which will adversely affect the environment. (For example, refer nonpatent literature 1). Separately, proposals for improving the fluidity of cement slurry used for ground improvement (for example, see Patent Documents 1 to 3) and proposals for hydraulic compositions using blast furnace slag that can also be applied to ground improvement (for example, patents) There are no specific reports or proposals that contribute to the reduction of carbon dioxide emissions.

特開平11−256161号公報Japanese Patent Laid-Open No. 11-256161 特開2000−169209号公報JP 2000-169209 A 特開2006−298726号公報JP 2006-298726 A 特開昭62−158146号公報JP-A-62-158146 特開昭63−2842号公報JP-A 63-2842 特開平1−208354号公報JP-A-1-208354 特開平10−114555号公報Japanese Patent Laid-Open No. 10-114555 特開2002−241152号公報Japanese Patent Laid-Open No. 2002-241152

「セメント系固化材による地盤改良マニュアル」、セメント協会編、1984年、頁42−44."Ground improvement manual by cement-based solidifying material", edited by Cement Association, 1984, pp. 42-44.

本発明が解決しようとする課題は、地盤改良工事において施工性を確保しつつ、地盤硬化体が必要な強度を有するものになることを前提として、高炉スラグ微粉末を現在よりも高い割合で使用することにより二酸化炭素の発生を抑制した地盤改良用スラリー組成物及びこれを用いたソイルセメントスラリーの調製方法を提供する処にある。   The problem to be solved by the present invention is to use blast furnace slag fine powder at a higher rate than the present, assuming that the ground hardened body has the required strength while ensuring workability in ground improvement work. Thus, the present invention provides a slurry composition for ground improvement that suppresses the generation of carbon dioxide and a method for preparing a soil cement slurry using the same.

しかして本発明者らは、前記の課題を解決するべく研究した結果、高炉スラグ微粉末を高い割合で含有し、ポルトランドセメントの含有割合が少ない特定の高炉セメント組成物を特定の混和剤と共に特定割合で用いた地盤改良用スラリー組成物及びこれを用いたソイルセメントスラリーの調製方法が正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above problems, and as a result, specified a specific blast furnace cement composition containing a high proportion of blast furnace slag fine powder and a low content of Portland cement together with a specific admixture. It has been found that the ground improvement slurry composition used in proportion and the method of preparing the soil cement slurry using the same are properly suitable.

すなわち本発明は、少なくとも、結合材、水及び混和剤を含有して成る地盤改良用スラリー組成物であって、結合材として下記の高炉セメント組成物を用いて水/該高炉セメント組成物の質量比を40〜250%に調製し、また混和剤としてα−オレフィンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量が2000〜70000の水溶性ビニル共重合体のアルカリ金属塩からなる流動化剤及び/又は質量平均分子量が1500〜50000のポリアクリル酸のアルカリ金属塩からなる流動化剤とポリアルキレングリコールモノアルケニルエーテルからなる消泡剤とを含有するものを用いて、該高炉セメント組成物100質量部当たり該混和剤を0.1〜5質量部の割合で含有して成ることを特徴とする高炉セメント組成物を用いた地盤改良用スラリー組成物に係る。   That is, the present invention is a slurry composition for ground improvement comprising at least a binder, water and an admixture, wherein the following blast furnace cement composition is used as a binder and water / mass of the blast furnace cement composition is used. From an alkali metal salt of a water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 70000 obtained by alkali hydrolysis of a copolymer of an α-olefin and maleic anhydride as an admixture. The blast furnace using a fluidizing agent and / or a fluidizing agent composed of an alkali metal salt of polyacrylic acid having a mass average molecular weight of 1500 to 50000 and an antifoaming agent composed of a polyalkylene glycol monoalkenyl ether. Blast furnace cement assembly comprising 0.1 to 5 parts by mass of the admixture per 100 parts by mass of cement composition According to soil improvement slurry composition using objects.

高炉セメント組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜90質量%、無水石膏を5〜20質量%及びポルトランドセメントを5〜35質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を10〜30質量部の割合で添加した高炉セメント組成物。 Blast furnace cement composition: 60-90% by mass of fine powder of blast furnace slag having a fineness of 3000-13000 cm 2 / g, 5-20% by mass of anhydrous gypsum and 5-35% by mass of Portland cement (total 100% by mass) A blast furnace cement composition in which a reclaimed concrete fine powder having a calcium hydroxide content of 3 to 15% by mass separated from demolition concrete is added at a rate of 10 to 30 parts by mass per 100 parts by mass of the mixture contained in a proportion.

また本発明は、本発明に係る高炉セメント組成物を用いた地盤改良用スラリー組成物を、土1m当たり300〜1200kgの割合で用いることを特徴とするソイルセメントスラリーの調製方法に係る。 The present invention, the ground improvement slurry composition using a blast furnace cement composition according to the present invention, according to the process for the preparation of soil cement slurries which comprises using a ratio of 300~1200kg per soil 1 m 3.

本発明に係る高炉セメント組成物を用いた地盤改良用スラリー組成物(以下、本発明のスラリー組成物という)は、少なくとも、結合材、水及び混和剤を含有して成るものである。本発明のスラリー組成物は結合材として特定の高炉セメント組成物を用いたものであり、かかる高炉セメント組成物は、粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜90質量%、無水石膏を5〜20質量%及びポルトランドセメントを5〜35質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を10〜30質量部の割合で添加したものである。 The slurry composition for ground improvement using the blast furnace cement composition according to the present invention (hereinafter referred to as the slurry composition of the present invention) contains at least a binder, water and an admixture. The slurry composition of the present invention uses a specific blast furnace cement composition as a binder, and the blast furnace cement composition contains 60 to 90% by mass of fine blast furnace slag powder having a fineness of 3000 to 13000 cm 2 / g. The content of calcium hydroxide separated from demolition concrete is 3 to 15 mass per 100 mass parts of the mixture containing 5 to 20 mass% of anhydrous gypsum and 5 to 35 mass% (total 100 mass%) of Portland cement. % Recycled concrete fine powder is added at a ratio of 10 to 30 parts by mass.

前記の高炉スラグ微粉末は、粉末度が3000〜13000cm/gのものを使用するが、好ましくは3000〜8000cm/gのものを使用し、より好ましくは3500〜6500cm/gのものを使用する。粉末度が3000〜13000cm/gの範囲を外れたものを使用すると、調製したスラリー組成物の流動性が悪くなったり、これを用いた地盤の強度発現が低下したりする。尚、本発明において粉末度はブレーン法による比表面積で表したものである。 The blast furnace slag fine powder has a fineness of 3000 to 13000 cm 2 / g, preferably 3000 to 8000 cm 2 / g, more preferably 3500 to 6500 cm 2 / g. use. When the powder having a fineness outside the range of 3000 to 13000 cm 2 / g is used, the fluidity of the prepared slurry composition is deteriorated, or the strength expression of the ground using this is lowered. In the present invention, the fineness is expressed by the specific surface area by the Blaine method.

また無水石膏としては、それを90質量%以上の純度で含有するものであれば使用でき、天然無水石膏や副産無水石膏等が使用できる。かかる無水石膏の粉末度は、2500〜8000cm/gのものが好ましく、3000〜6500cm/gのものがより好ましい。 An anhydrous gypsum can be used as long as it contains 90% by mass or more, and natural anhydrous gypsum, by-product anhydrous gypsum, and the like can be used. Fineness of such anhydrous gypsum is preferably a 2500~8000cm 2 / g, it is more preferred 3000~6500cm 2 / g.

更にポルトランドセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等が挙げられるが、普通ポルトランドセメントが好ましい。   Further, examples of Portland cement include ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement and the like, but ordinary Portland cement is preferable.

そして再生コンクリート微粉末としては、粉末度が2000〜7000cm/gのものを使用するのが好ましい。また水酸化カルシウム含有率が3〜15質量%のものを使用するが、好ましくは6〜12質量%のものを使用する。解体コンクリートから分離する方法は特に限定されず、これには例えば、破砕機を用いて破砕する方法や破砕物どうしを機械ですりもむ方法が挙げられる。解体コンクリートから分離された再生コンクリート微粉末は、例えば、解体コンクリートから粗骨材や細骨材を取り除くことにより得ることができる。このとき解体コンクリートから分離された粗骨材や細骨材も再生品として使用することができる。解体コンクリートから分離した再生コンクリート微粉末であって、水酸化カルシウムを上記の含有率で含む再生コンクリート微粉末を得る手段としては、機械擦りもみ方式が好ましく、機械擦りもみ方式のなかでは偏心ロータ方式がより好ましい。以下、このような再生コンクリート微粉末の製造方法について説明する。本発明における好ましい再生コンクリート微粉末は、加熱を行わない機械擦りもみ方式により製造されることが、製造時の二酸化炭素の削減及び得られる微粉末の品質にばらつきがないという観点から好適である。特に、偏心ロータ方式や遊星ミル等の機械擦りもみ装置で製造する際に、機械すりもみプロセスを密閉された空間内で行い、空間内の空気中のCOを除去する方法、或いは、チッソガスなどの不活性ガスを封入する方法をとることで、処理中の炭酸化による水酸化カルシウム含有率の減少を抑制した再生コンクリート微粉末は本発明における如き、アルカリ刺激材として使用するのに最適な水酸化カルシウム含有率の微粉末を得ることができる。他方、解体コンクリート塊をジョークラッシャーやインペラーブレーカー等の破砕機を用いて破砕する方法においては、骨材とモルタル・ぺーストが同時に破砕されるため、再生コンクリート微粉末中に骨材粉が多くなり易く、また、微粉中の骨材粉とモルタル・ぺースト粉の比率もコンクリートの配(調)合によっては相当変化することとなり、高炉スラグ微粉末のアルカリ刺激材として用いるには、品質のコントロールが極めて困難であり、また、加熱と機械擦りもみによって骨材を取り出す加熱すりもみ方式で製造した微粉末は骨材粉が少なく、アルカリ刺激材として適しているものの、加熱によって解体コンクリート中の水和物が変化する懸念があり、また、製造エネルギーが大きくなり、セメント製造時の二酸化炭素を削減するという観点からも好適とは言い難い。 And as a recycled concrete fine powder, it is preferable to use a thing with a fineness of 2000-7000 cm < 2 > / g. Moreover, although calcium hydroxide content rate uses 3-15 mass%, Preferably a 6-12 mass% thing is used. The method of separating from demolition concrete is not particularly limited, and examples thereof include a method of crushing using a crusher and a method of crushing crushed materials with a machine. The recycled concrete fine powder separated from the demolished concrete can be obtained, for example, by removing coarse aggregate or fine aggregate from the demolished concrete. At this time, coarse aggregates and fine aggregates separated from the demolished concrete can also be used as recycled products. As a means for obtaining reclaimed concrete fine powder separated from demolition concrete and containing calcium hydroxide at the above-mentioned content rate, a mechanical rubbing method is preferred, and an eccentric rotor method among mechanical rubbing methods Is more preferable. Hereinafter, a method for producing such recycled concrete fine powder will be described. The preferred recycled concrete fine powder in the present invention is preferably produced by a mechanical rubbing method without heating from the viewpoint of reducing carbon dioxide during production and ensuring that the quality of the fine powder obtained does not vary. In particular, when manufacturing with a mechanical rubbing apparatus such as an eccentric rotor type or a planetary mill, a mechanical grinding process is performed in a sealed space to remove CO 2 in the air in the space, or nitrogen gas, etc. By using the method of enclosing the inert gas, regenerated concrete fine powder that suppresses the decrease in the content of calcium hydroxide due to carbonation during the treatment is water that is optimal for use as an alkali stimulant as in the present invention. A fine powder having a calcium oxide content can be obtained. On the other hand, in the method of crushing demolition concrete lump using a crusher such as jaw crusher or impeller breaker, aggregate and mortar paste are simultaneously crushed, so aggregate powder in recycled concrete powder increases. In addition, the ratio of aggregate powder and mortar paste powder in the fine powder varies considerably depending on the concrete arrangement (condition), and quality control is required for use as an alkali stimulant for blast furnace slag fine powder. However, the fine powder produced by the hot grinding method, which takes out the aggregate by heating and mechanical rubbing, is low in aggregate powder and is suitable as an alkali stimulating material. There is a concern that Japanese products will change, and if production energy is increased and carbon dioxide is reduced during cement production, It is hard to say that preferably also from cormorant point of view.

本発明のスラリー組成物では、水/高炉セメント組成物の質量比を40〜250%に調製するが、好ましくは45〜230%に調製する。かかる質量比が250%より大きいと、地盤の強度の低下が大きくなり、逆にかかる質量比が40%より小さいと、ソイルセメントスラリーの流動性が低下する。また本発明のスラリー組成物では、高炉セメント組成物100質量部当たり、混和剤を0.1〜5質量部の割合で含有させて用いる。尚、本発明において水/高炉セメント組成物の質量比は、(用いた水の質量/用いた高炉セメント組成物の質量)×100で求められるものである。   In the slurry composition of the present invention, the mass ratio of the water / blast furnace cement composition is adjusted to 40 to 250%, preferably 45 to 230%. If the mass ratio is greater than 250%, the strength of the ground is greatly reduced. Conversely, if the mass ratio is less than 40%, the fluidity of the soil cement slurry is degraded. In the slurry composition of the present invention, the admixture is contained at a ratio of 0.1 to 5 parts by mass per 100 parts by mass of the blast furnace cement composition. In the present invention, the mass ratio of the water / blast furnace cement composition is obtained by (mass of water used / mass of blast furnace cement composition used) × 100.

本発明のスラリー組成物において、混和剤としては、特定の流動化剤及び特定の消泡剤を含有するものを用いる。   In the slurry composition of the present invention, as the admixture, one containing a specific fluidizing agent and a specific antifoaming agent is used.

流動化剤としては、水溶性ビニル共重合体のアルカリ金属塩及び/又はポリアクリル酸のアルカリ金属塩を用いる。水溶性ビニル共重合体のアルカリ金属塩としては、α−オレフィンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量(GPC法、プルラン換算、以下同じ)が2000〜70000の水溶性ビニル共重合体のアルカリ金属塩を用いるが、なかでも炭素数3〜8のα−オレフィンと無水マレイン酸との共重合物をアルカリ加水分解した水溶性ビニル共重合体のアルカリ金属塩が好ましく、イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解した水溶性ビニル共重合体のアルカリ金属塩がより好ましい。   As the fluidizing agent, an alkali metal salt of a water-soluble vinyl copolymer and / or an alkali metal salt of polyacrylic acid is used. The alkali metal salt of the water-soluble vinyl copolymer is a water-soluble polymer having a mass average molecular weight (GPC method, pullullan conversion, the same applies hereinafter) obtained by alkali hydrolysis of a copolymer of an α-olefin and maleic anhydride of 2000 to 70000. An alkali metal salt of a vinyl copolymer is used, and an alkali metal salt of a water-soluble vinyl copolymer obtained by alkali hydrolysis of a copolymer of an α-olefin having 3 to 8 carbon atoms and maleic anhydride is preferable. An alkali metal salt of a water-soluble vinyl copolymer obtained by alkaline hydrolysis of a copolymer of isobutylene and maleic anhydride is more preferable.

ポリアクリル酸のアルカリ金属塩としては、質量平均分子量1500〜50000のポリアクリル酸のアルカリ金属塩を用いるが、これは前記の水溶性ビニル共重合体のアルカリ金属塩と組み合わせて使用することもできる。以上説明した流動化剤それ自体の使用量は、高炉セメント組成物100質量部当たり、通常は0.1〜5質量部の割合とするが、好ましくは0.3〜4質量部の割合とする。   As an alkali metal salt of polyacrylic acid, an alkali metal salt of polyacrylic acid having a mass average molecular weight of 1500 to 50000 is used, but this can also be used in combination with the alkali metal salt of the water-soluble vinyl copolymer. . The amount of the fluidizing agent itself described above is usually 0.1 to 5 parts by mass, preferably 0.3 to 4 parts by mass per 100 parts by mass of the blast furnace cement composition. .

また消泡剤としては、経済性及び効果の発現程度の点から、ポリアルキレングリコールモノアルケニルエーテルを用いる。消泡剤は、本発明のスラリー組成物を調製する際の泡立ちによるトラブルを無くし、同時に該スラリー組成物を地盤に注入して掘削撹拌する際の空気の巻き込みを抑えて得られる地盤硬化体の強度発現性を高めるために用いる。消泡剤それ自体の使用量としては、高炉セメント組成物100質量部当たり、通常は0.001〜0.1質量部の割合とするが、好ましくは0.002〜0.01質量部の割合とする。   Further, as the antifoaming agent, polyalkylene glycol monoalkenyl ether is used from the viewpoint of economy and the degree of expression of the effect. The antifoaming agent eliminates troubles caused by foaming when preparing the slurry composition of the present invention, and at the same time, suppresses the entrainment of air when the slurry composition is injected into the ground and excavated and stirred. Used to increase strength development. The amount of the antifoam used per se is usually 0.001 to 0.1 parts by mass, preferably 0.002 to 0.01 parts by mass, per 100 parts by mass of the blast furnace cement composition. And

本発明のスラリー組成物は公知の方法で調製できる。例えば、高炉セメント組成物と混和剤と水の各所定量をミキサーに投入して練り混ぜる方法で調製することができる。この際、本発明の効果を損なわない範囲内で必要に応じて、ベントナイト、繊維等の添加材、凝結遅延剤や硬化促進剤等の添加剤を添加することもできる。   The slurry composition of the present invention can be prepared by a known method. For example, the blast furnace cement composition, the admixture, and each predetermined amount of water can be prepared by a method of putting them into a mixer and mixing them. At this time, additives such as bentonite and fibers, and additives such as setting retarders and curing accelerators may be added as necessary within the range not impairing the effects of the present invention.

本発明に係るソイルセメントスラリーの流動化方法では、以上説明した本発明のスラリー組成物を、求められるソイルセメントスラリーの流動性や地盤硬化体の強度に応じて、土と混合してソイルセメントスラリーとする。この際、本発明のスラリー組成物は、土1m当たり300〜1200kgの割合となるように用いるが、400〜1100kgの割合となるように用いるのが好ましい。 In the fluidization method of the soil cement slurry according to the present invention, the above-described slurry composition of the present invention is mixed with soil according to the required fluidity of the soil cement slurry and the strength of the ground hardened body, and the soil cement slurry is mixed. And At this time, the slurry composition of the present invention is used so as to have a ratio of 300 to 1200 kg per 1 m 3 of soil, and is preferably used so as to have a ratio of 400 to 1100 kg.

本発明によると、地盤改良工事において、結合材として特定の高炉セメント組成物を特定の混和剤と共に特定割合で用いることにより、二酸化炭素の排出量を抑制しつつ、調製したソイルセメントスラリーの経時的な流動性の低下を抑えて良好な施工性を確保することができ、同時に地盤硬化体に必要な強度を発現させることができるという効果がある。   According to the present invention, in the ground improvement work, a specific blast furnace cement composition is used as a binder together with a specific admixture in a specific ratio, thereby suppressing the amount of carbon dioxide emission and the time-lapse of the prepared soil cement slurry. Therefore, there is an effect that it is possible to secure a good workability by suppressing a decrease in fluidity, and at the same time, the necessary strength can be expressed in the ground hardened body.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(混和剤成分としての流動化剤の調製)
撹拌機を備えたフラスコに水145g及び30%濃度の苛性ソーダ470gを投入した後、内温を60℃に保ちつつ撹拌しながら、イソブチレンと無水マレイン酸の共重合物(クラレ社製、商品名イソバン600)395gを徐々に加えながら加水分解し、共重合物のアルカリ金属塩を得た。これをGPCで分析したところ、質量平均分子量が23000、イソブチレンと無水マレイン酸の共重合物のナトリウム塩からなる水溶性ビニル共重合体のナトリウム塩(p−1)であった。同様な方法で、流動化剤(p−2)及び(p−3)を調製した。
Test Category 1 (Preparation of fluidizing agent as an admixture component)
A flask equipped with a stirrer was charged with 145 g of water and 470 g of 30% strength sodium hydroxide, and then a copolymer of isobutylene and maleic anhydride (trade name Isoban, manufactured by Kuraray Co., Ltd.) with stirring while maintaining the internal temperature at 60 ° C. 600) Hydrolysis was carried out while gradually adding 395 g to obtain an alkali metal salt of a copolymer. When this was analyzed by GPC, it was a sodium salt (p-1) of a water-soluble vinyl copolymer having a mass average molecular weight of 23,000 and a sodium salt of a copolymer of isobutylene and maleic anhydride. In the same manner, fluidizing agents (p-2) and (p-3) were prepared.

前記の流動化剤を含み、本発明で使用した混和剤成分としての流動化剤及び消泡剤を表1にまとめて示した。   Table 1 summarizes the fluidizing agent and antifoaming agent as the admixture components used in the present invention, including the above fluidizing agent.

Figure 0005590701
Figure 0005590701

試験区分2(高炉セメント組成物の調製)
表2に記載の調合条件で、高炉スラグ微粉末、無水石膏、ポルトランドセメント及び再生コンクリート微粉末を用いて高炉セメント組成物を調製し、高炉セメント組成物(S−1)〜(S−5)及び(R−1)〜(R−6)を得た。
Test Category 2 (Preparation of blast furnace cement composition)
A blast furnace cement composition (S-1) to (S-5) was prepared using the blast furnace slag fine powder, anhydrous gypsum, Portland cement and recycled concrete fine powder under the blending conditions shown in Table 2. And (R-1) to (R-6).

Figure 0005590701
Figure 0005590701

表2において、
sg−1:粉末度が4100cm/gの高炉スラグ微粉末
sg−2:粉末度が5900cm/gの高炉スラグ微粉末
sg−3:粉末度が1020cm/gの高炉スラグ微粉末
gp−1:粉末度が4150cm/gの無水石膏
gp−2:粉末度が5800cm/gの無水石膏
pc−1:普通ポルトランドセメント
pc−2:早強ポルトランドセメント
rc−1:粉末度が5860cm/g且つ水酸化カルシウム含有率が9.2%の再生コンクリート微粉末
rc−2:粉末度が4620cm/g且つ水酸化カルシウム含有率が6.5%の再生コンクリート微粉末
rc−3:粉末度が4350cm/g且つ水酸化カルシウム含有率が1.5%の再生コンクリート微粉末
rc−4:粉末度が1200cm/g且つ水酸化カルシウム含有率が6.1%の再生コンクリート微粉末
In Table 2,
sg-1: Ground granulated blast furnace slag with a fineness of 4100 cm 2 / g sg-2: Fine ground blast furnace slag with a fineness of 5900 cm 2 / g sg-3: Fine ground blast furnace slag with a fineness of 1020 cm 2 / g gp- 1: Anhydrous gypsum with a fineness of 4150 cm 2 / g gp-2: Anhydrous gypsum with a fineness of 5800 cm 2 / g pc-1: Ordinary Portland cement pc-2: Early strength Portland cement rc-1: Fineness of 5860 cm 2 / G and reclaimed concrete fine powder with a calcium hydroxide content of 9.2% rc-2: Recycled concrete fine powder with a fineness of 4620 cm 2 / g and a calcium hydroxide content of 6.5% rc-3: Powder Recycled concrete fine powder having a degree of 4350 cm 2 / g and a calcium hydroxide content of 1.5% rc-4: Fineness of 1200 cm 2 / g and a calcium hydroxide content 6.1% recycled concrete fine powder

試験区分3(地盤改良用スラリー組成物の調製)
実施例1〜10及び比較例1〜10
表3に記載の配合条件で、パン型強制練りミキサーに、表2に記載の高炉セメント組成物及び練り混ぜ水(水道水)の各所定量を投入し、また混和剤として表1に記載の流動化剤及び消泡剤の各所定量を投入して練り混ぜ、各例の地盤改良用スラリー組成物を調製した。





Test category 3 (Preparation of slurry composition for ground improvement)
Examples 1-10 and Comparative Examples 1-10
Under the blending conditions described in Table 3, a predetermined amount of each of the blast furnace cement composition and the mixing water (tap water) described in Table 2 is added to the pan-type forced kneading mixer, and the flow described in Table 1 is used as an admixture. Predetermined amounts of the agent and the antifoaming agent were added and kneaded to prepare a ground improvement slurry composition for each example.





Figure 0005590701
Figure 0005590701

表3において、
高炉セメント組成物の種類:表2に記載したもの
流動化剤及び消泡剤の種類:表1に記載したもの
流動化剤及び消泡剤の使用量:高炉セメント組成物(比較例8〜10は高炉セメントB種)100質量部当たりの固形分としての質量部
*1:高炉セメントB種(密度=3.04g/cm、ブレーン値3850cm/g、ポルトランドセメントを50%含有)
In Table 3,
Types of blast furnace cement composition: those described in Table 2 Types of fluidizing agent and antifoaming agent: those described in Table 1 Amounts of fluidizing agent and antifoaming agent used: blast furnace cement composition (Comparative Examples 8 to 10) Is blast furnace cement type B) parts by mass as solids per 100 parts by mass. * 1: Blast furnace cement type B (density = 3.04 g / cm 3 , brane value 3850 cm 2 / g, containing 50% Portland cement)

試験区分4(ソイルセメントスラリーの調製及び評価)
実施例11〜20及び比較例11〜21
・ソイルセメントスラリーの調製
試験区分3で調製した各例の地盤改良用スラリー組成物を用いて、次のようにソイルセメントスラリーを調製し、評価した。目標の一軸圧縮強度を材齢28日で5N/mm以上に想定して、土1m当たりの地盤改良用スラリー組成物の含有量(kg)の調合を定めた。試験区分3で調製した地盤改良用スラリー組成物の所定量をホバートミキサーに投入した後、表4に記載の物性値を有する土(地盤を掘削して得られた粘性土/珪砂=3/1(質量比)で混合した混合土)を加えて混合し、表5に記載の各例のソイルセメントスラリーを調製した。各例のソイルセメントの調合条件は表5に記載した。


Test category 4 (Preparation and evaluation of soil cement slurry)
Examples 11 to 20 and Comparative Examples 11 to 21
-Preparation of soil cement slurry Using the slurry composition for ground improvement of each example prepared in Test Category 3, a soil cement slurry was prepared and evaluated as follows. Assuming that the target uniaxial compressive strength was 5 N / mm 2 or more at 28 days of age, preparation of the content (kg) of the slurry composition for ground improvement per 1 m 3 of soil was determined. After putting a predetermined amount of the ground improvement slurry composition prepared in Test Category 3 into a Hobart mixer, soil having the physical property values shown in Table 4 (viscous soil / silica sand obtained by excavating the ground = 3/1) A soil cement slurry of each example shown in Table 5 was prepared by adding and mixing (mixed soil mixed at (mass ratio)). The blending conditions of the soil cement in each example are shown in Table 5.


Figure 0005590701
Figure 0005590701

・調製したソイルセメントスラリーの物性評価
調製した各例のソイルセメントスラリーについて、練り混ぜ直後のフロー値、練り混ぜてから90分経過後のフロー値、空気量及び一軸圧縮強度をつぎのように求め、結果を表5にまとめて示した。また二酸化炭素の排出量についても併せて示した。
・フロー値:JIS−R5201に準拠し、練り混ぜ直後及び90分経過後にフロー試験を行い、15回落差後のフロー値(mm)を測定した。
・空気量:JIS−A6201(1977年版)に準拠して求めた。
・一軸圧縮強度試験:JIS−A1108に準拠し、直径50mm×高さ100mmの型枠を用いて成形した成形品について、材齢28日の圧縮強度(N/mm)を測定した。
-Physical property evaluation of the prepared soil cement slurry For the prepared soil cement slurry, the flow value immediately after kneading, the flow value after 90 minutes from kneading, the air amount and the uniaxial compressive strength are determined as follows. The results are summarized in Table 5. The carbon dioxide emissions were also shown.
-Flow value: According to JIS-R5201, a flow test was performed immediately after kneading and after 90 minutes had elapsed, and the flow value (mm) after 15 drops was measured.
-Air amount: It calculated | required based on JIS-A6201 (1977 version).
-Uniaxial compressive strength test: Based on JIS-A1108, the compressive strength (N / mm < 2 >) of material age 28 days was measured about the molded product shape | molded using the mold of diameter 50mm x height 100mm.

Figure 0005590701
Figure 0005590701

表5において、
注入量:土1m当たりの地盤改良用スラリー組成物の注入量(kg)
注入率:土1m当たりの地盤改良用スラリー組成物の注入割合(容積%)
結合材の含有量:土1m当たりの高炉セメント組成物又は高炉セメントB種の含有量(kg)
二酸化炭素の排出量:土1mを改良するときの二酸化炭素の排出量(kg)。但し、石膏及び再生コンクリート微粉末の製造に必要なエネルギーに由来する二酸化炭素の排出量を除いてポルトランドセメントの使用量から計算した値。
In Table 5,
Injection volume: injection amount of ground improvement slurry composition per soil 1 m 3 (kg)
Injection rate: injection ratio of ground improvement slurry composition per soil 1 m 3 (volume%)
Content of binder: Content of blast furnace cement composition or type B blast furnace cement per 1 m 3 of soil (kg)
Emissions of carbon dioxide: emissions of carbon dioxide when improving soil 1m 3 (kg). However, the value calculated from the amount of Portland cement used excluding the amount of carbon dioxide emissions derived from the energy required for the production of gypsum and recycled concrete fine powder.

表5からも明らかなように、各実施例で調製したソイルセメントスラリーは、従来から使用されてきた高炉セメントB種を用いた比較例18〜21に比べて、土1mを改良する場合の炭酸ガスの排出量が少ないことが特徴であり、しかもフロー値がいずれも200mm以上の良好な流動性及び流動保持性が得られ、同時に目標の一軸圧縮強度も十分満足する結果が得られている。 As is clear from Table 5, the soil cement slurry prepared in each example was used in the case of improving soil 1 m 3 as compared with Comparative Examples 18 to 21 using blast furnace cement B type that has been conventionally used. It is characterized by a small amount of carbon dioxide emission, and good flowability and flow retention with a flow value of 200 mm or more are obtained, and at the same time, a result that sufficiently satisfies the target uniaxial compression strength is obtained. .

Claims (6)

少なくとも、結合材、水及び混和剤を含有する地盤改良用スラリー組成物であって、結合材として下記の高炉セメント組成物を用いて水/該高炉セメント組成物の質量比を40〜250%に調製し、また混和剤としてα−オレフィンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量が2000〜70000の水溶性ビニル共重合体のアルカリ金属塩からなる流動化剤及び/又は質量平均分子量が1500〜50000のポリアクリル酸のアルカリ金属塩からなる流動化剤とポリアルキレングリコールモノアルケニルエーテルからなる消泡剤とを含有するものを用いて、該高炉セメント組成物100質量部当たり該混和剤を0.1〜5質量部の割合で含有して成ることを特徴とする高炉セメント組成物を用いた地盤改良用スラリー組成物。
高炉セメント組成物:粉末度が3000〜13000cm/gの高炉スラグ微粉末を60〜90質量%、無水石膏を5〜20質量%及びポルトランドセメントを5〜35質量%(合計100質量%)の割合で含有する混合物100質量部当たり、解体コンクリートから分離した水酸化カルシウム含有率が3〜15質量%の再生コンクリート微粉末を10〜30質量部の割合で添加した高炉セメント組成物。
A slurry composition for ground improvement containing at least a binder, water and an admixture, wherein the mass ratio of water / the blast furnace cement composition is 40 to 250% using the following blast furnace cement composition as a binder. prepared, the α- olefin and maleic anhydride as or admixture copolymer alkaline hydrolyzed weight average molecular weight of an alkali metal salt of a water soluble vinyl copolymer of 2000 to 70,000 fluidizing agent and / or mass-average molecular weight is used as containing a defoaming agent consisting of alkali metal salts consisting of fluidizing agent and a polyalkylene glycol monoalkenyl ether of polyacrylic acid from 1,500 to 50,000, said blast furnace cement composition 100 parts by weight for soil improvement with blast furnace cement composition characterized by comprising a per Ri該混 dispersible in a proportion of 0.1 to 5 parts by weight Larry composition.
Blast furnace cement composition: fineness 60 to 90% by weight of blast furnace slag in 3000~13000cm 2 / g, 5~20 wt% anhydrous stone plaster and portland cement 5-35% by weight (total 100 wt%) A blast furnace cement composition obtained by adding 10 to 30 parts by mass of recycled concrete fine powder having a calcium hydroxide content of 3 to 15% by mass separated from demolition concrete per 100 parts by mass of the mixture.
高炉スラグ微粉末が、その粉末度が3500〜6500cm/gのものである請求項1記載の高炉セメント組成物を用いた地盤改良用スラリー組成物。 Blast furnace slag is, its fineness is 3500~6500cm 2 / g is of claim 1 Symbol placement of blast furnace cement composition ground improvement slurry composition used. 再生コンクリート微粉末が、その水酸化カルシウム含有率が6〜12質量%のものである請求項1又は2記載の高炉セメント組成物を用いた地盤改良用スラリー組成物。 The ground composition improving slurry composition using the blast furnace cement composition according to claim 1 or 2 , wherein the recycled concrete fine powder has a calcium hydroxide content of 6 to 12% by mass. ポルトランドセメントが普通ポルトランドセメントである請求項1〜のいずれか一つの項記載の高炉セメント組成物を用いた地盤改良用スラリー組成物。 The slurry composition for ground improvement using the blast furnace cement composition according to any one of claims 1 to 3 , wherein the Portland cement is ordinary Portland cement. 水/高炉セメント組成物の質量比を45〜230%に調製した請求項1〜のいずれか一つの項記載の高炉セメント組成物を用いた地盤改良用スラリー組成物。 A slurry composition for ground improvement using the blast furnace cement composition according to any one of claims 1 to 4 , wherein the mass ratio of the water / blast furnace cement composition is adjusted to 45 to 230%. 請求項1〜のいずれか一つの項記載の高炉セメント組成物を用いた地盤改良用スラリー組成物を、土1m当たり300〜1200kgの割合で用いることを特徴とするソイルセメントスラリーの調製方法。 Process for the preparation of soil cement slurry of claim 1 soil improvement slurry composition using a blast furnace cement composition of any one of the preceding wherein the 5, which comprises using a ratio of 300~1200kg per soil 1 m 3 .
JP2009137994A 2009-06-09 2009-06-09 Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same Active JP5590701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137994A JP5590701B2 (en) 2009-06-09 2009-06-09 Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137994A JP5590701B2 (en) 2009-06-09 2009-06-09 Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same

Publications (2)

Publication Number Publication Date
JP2010285465A JP2010285465A (en) 2010-12-24
JP5590701B2 true JP5590701B2 (en) 2014-09-17

Family

ID=43541423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137994A Active JP5590701B2 (en) 2009-06-09 2009-06-09 Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same

Country Status (1)

Country Link
JP (1) JP5590701B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1397187B1 (en) * 2009-11-30 2013-01-04 Italcementi Spa HYDRAULIC BINDER INCLUDING A LARGE FORCID PASTA.
JP5791178B2 (en) * 2011-06-17 2015-10-07 株式会社竹中工務店 Soil cement slurry and hardened hardened soil cement
JP5791177B2 (en) * 2011-06-17 2015-10-07 株式会社竹中工務店 Soil cement slurry and hardened hardened soil cement
JP5881142B2 (en) * 2011-08-01 2016-03-09 ジェコス株式会社 Cement composition manufacturing method, soil cement manufacturing method using the cement composition, ground improvement method
JP6497864B2 (en) * 2014-08-08 2019-04-10 株式会社竹中工務店 Ground improvement composition and method for producing ground improvement composition
JP2016075080A (en) * 2014-10-07 2016-05-12 株式会社大林組 Cement slurry and soil improvement method
CN110980751A (en) * 2019-11-25 2020-04-10 东南大学 Polyacrylic acid modified high-performance calcium silicate hydrate and preparation method thereof
CN113402216A (en) * 2021-08-10 2021-09-17 中国市政工程华北设计研究总院有限公司 Shield muck curing agent and resource utilization method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JP3285802B2 (en) * 1997-12-03 2002-05-27 住友大阪セメント株式会社 Slow hardening material containing fine stimulating material
JP2954136B2 (en) * 1998-02-04 1999-09-27 住友大阪セメント株式会社 Ground improvement method
JP2005232312A (en) * 2004-02-19 2005-09-02 Mitsubishi Rayon Co Ltd Chemical for stabilizing soil and ground stabilization technique using the same
JP4848293B2 (en) * 2006-02-07 2011-12-28 日鐵セメント株式会社 Ultra-fine particle injection material composition

Also Published As

Publication number Publication date
JP2010285465A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5545678B2 (en) Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
JP5590701B2 (en) Slurry composition for ground improvement using blast furnace cement composition and method for preparing soil cement slurry using the same
CN110526628B (en) Preparation method of high-doping-amount wet-grinding phosphorus-solid waste super-retarding cementing material
CN106587695A (en) Method for preparing cement mixture from waste phosphorus dregs through wet-milling method
CN102173693A (en) Clay slurry curing agent
JP5545616B2 (en) Concrete composition using blast furnace cement composition
CN114671644B (en) High-early-strength low-resilience high-performance sprayed concrete and preparation method thereof
JP2010235721A (en) Grouting method
CN103121817B (en) Environment-friendly fine crack grouting material
CN110028273A (en) A kind of grouting material and preparation method thereof reinforced for road
JP5590702B2 (en) Slurry composition for ground improvement using blast furnace slag composition and method for preparing soil cement slurry using the same
JP2003002726A (en) Producing method of concrete like solid body using steel making slag
JP2019014617A (en) Geopolymer composition and geopolymer-cured body
JP5590700B2 (en) Slurry composition for ground improvement using blast furnace slag composition and method for preparing soil cement slurry using the same
JP7287577B2 (en) Method for producing cured geopolymer and method for producing geopolymer composition
JP2014108911A (en) Blast-furnace slag-containing cement slurry composition and method for preparing soil cement slurry
JP5545615B2 (en) Concrete composition using blast furnace slag composition
JP4271676B2 (en) Premix powder cement composition for ground improvement
JP2021195385A (en) Liquid chemical for stabilizing soil, production method of liquid chemical, and ground stabilization method
JP5734756B2 (en) Cement-containing composition, ground improvement slurry, and ground improvement method
JP4234924B2 (en) Ground improvement method
WO2020121738A1 (en) Soil grouting material, cured product thereof, soil improvement method, and powder material for soil grouting
JP2007217212A (en) Quick-hardening cement concrete and its construction method
WO2022190862A1 (en) Geopolymer cured body production method, geopolymer cured body, geopolymer composition production method, and geopolymer composition
JP2000344558A (en) Cement composition, quick setting spray cement concrete and spray method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5590701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250