JP2009035453A - Method for fluidizing soil cement slurry - Google Patents

Method for fluidizing soil cement slurry Download PDF

Info

Publication number
JP2009035453A
JP2009035453A JP2007201672A JP2007201672A JP2009035453A JP 2009035453 A JP2009035453 A JP 2009035453A JP 2007201672 A JP2007201672 A JP 2007201672A JP 2007201672 A JP2007201672 A JP 2007201672A JP 2009035453 A JP2009035453 A JP 2009035453A
Authority
JP
Japan
Prior art keywords
component
mass
fluidizing
soil
soil cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007201672A
Other languages
Japanese (ja)
Other versions
JP5051884B2 (en
Inventor
Eiji Sato
英二 佐藤
Yoshihide Kasa
義秀 笠
Mitsuo Kinoshita
光男 木之下
Shinji Tamaki
伸二 玉木
Tsugumine Hikita
次峰 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Takenaka Komuten Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2007201672A priority Critical patent/JP5051884B2/en
Publication of JP2009035453A publication Critical patent/JP2009035453A/en
Application granted granted Critical
Publication of JP5051884B2 publication Critical patent/JP5051884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for fluidizing a soil cement slurry which is capable of imparting enough fluidity and fluidity maintaining property to the soil cement, and, at the same time, capable of imparting enough water-stopping property, strength, and the like, to the resulting hardened soil cement, through suppressing foaming property and promoting uniform mixing of a cement milk and a soil. <P>SOLUTION: The method for fluidizing a soil cement slurry comprises mixing a cement milk with a fluidizing agent comprising a component A which is a water-soluble vinyl copolymer formed by alkali-hydrolyzing a copolymer of isobutylene and maleic anhydride and has a mass-average molecular weight of 2,000-50,000, a component B which is one or more selected from the group consisting of saccharides, oxycarboxylic acids and salts of oxycarboxylic acids, a component C which is a specific aliphatic polyether, and a component D which is a specific polyether-based defoaming agent, and containing 50-95 mass% of the component A, 2-35 mass% of the component B, 0.1-20 mass% of the component C and 0.01-5 mass% of the component D, in a mixing ratio of 0.5-25 kg of the fluidizing agent per 1 m<SP>3</SP>of soil. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はソイルセメントスラリーの流動化方法に関する。山留め工事、地下止水工事、軟弱地盤改良工事等では、工事現場において、セメントミルクと原位置土壌とを攪拌混合して硬化させるソイルセメント壁工法が広く採用されている。かかる工法では、1)一定の作業時間内における応力負担材(H鋼)の挿入性を確保しつつ、地中へのセメントミルクの注入率を下げて廃棄することとなる建設汚泥の発生量を抑えるため、セメントミルクと土壌とを混合したソイルセメントスラリーに充分な流動性と流動保持性を持たせること、2)起泡性を抑え、またセメントミルクと土壌との均一混合を促して、ソイルセメント壁に充分な止水性及び強度等を発現させることが要求されている。本発明はかかる要求に応えるソイルセメントスラリーの流動化方法に関する。   The present invention relates to a method for fluidizing a soil cement slurry. In mountain construction, underground water construction, soft ground improvement work, etc., a soil cement wall construction method in which cement milk and in-situ soil are mixed and hardened at construction sites is widely used. In this construction method, 1) The amount of construction sludge that will be discarded at a lower rate of cement milk injection into the ground while ensuring the insertability of the stress bearing material (H steel) within a certain working time. In order to suppress, the soil cement slurry mixed with cement milk and soil should have sufficient fluidity and fluid retention. 2) Soil foaming can be suppressed, and uniform mixing of cement milk and soil can be promoted. It is required that the cement wall exhibit sufficient water stoppage and strength. The present invention relates to a method for fluidizing a soil cement slurry that meets such requirements.

従来、ソイルセメントスラリーの流動化方法として、各種の流動化剤を用いる方法が知られている(例えば特許文献1〜3参照)。しかし、これらの従来法では、ソイルセメント壁工法における前記した要求に充分に応えることができないという問題がある。   Conventionally, a method using various fluidizing agents is known as a fluidizing method for soil cement slurry (see, for example, Patent Documents 1 to 3). However, these conventional methods have a problem that they cannot sufficiently meet the above-described requirements in the soil cement wall method.

特開2002−3843号公報JP 2002-3843 A 特開2002−114550号公報JP 2002-114550 A 特開2006−298726号公報JP 2006-298726 A

本発明が解決しようとする課題は、ソイルセメントスラリーに充分な流動性及び流動保持性を持たせることができ、また起泡性を抑えてセメントミルクと土壌との均一混合を促すことにより、得られるソイルセメント硬化体に充分な止水性及び強度等を発現させることができるソイルセメントスラリーの流動化方法を提供する処にある。   The problem to be solved by the present invention can be obtained by allowing the soil cement slurry to have sufficient fluidity and fluid retention, and by suppressing foaming and promoting uniform mixing of cement milk and soil. The present invention provides a fluidizing method of a soil cement slurry that can exhibit sufficient water-stopping and strength and the like in the cured soil cement.

本発明者らは、前記の課題を解決するべく研究した結果、特定の4成分から成る流動化剤を、土壌に対して所定割合となるよう、セメントミルクに含有させて用いる方法が正しく好適であることを見出した。   As a result of researches to solve the above-mentioned problems, the inventors of the present invention correctly use a method in which a specific four-component fluidizing agent is used in cement milk so as to have a predetermined ratio with respect to soil. I found out.

すなわち本発明は、下記のA成分、B成分、C成分及びD成分から成り、該A成分を50〜95質量%、該B成分を2〜35質量%、該C成分を0.1〜20質量%及び該D成分を0.01〜5質量%含有して成る流動化剤を、土壌1m当たり0.5〜25kgの割合となるよう、セメントミルクに含有させて用いることを特徴とするソイルセメントスラリーの流動化方法に係る。 That is, this invention consists of the following A component, B component, C component, and D component, this A component is 50-95 mass%, this B component is 2-35 mass%, and this C component is 0.1-20. A fluidizing agent containing 0.01% to 5% by mass of the D component and 0.01% to 5% by mass of D component is used by being added to cement milk so as to have a ratio of 0.5 to 25 kg per 1 m 3 of soil. The present invention relates to a fluidizing method for soil cement slurry.

A成分:イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量2000〜50000の水溶性ビニル共重合体   Component A: Water-soluble vinyl copolymer having a weight average molecular weight of 2000 to 50000 obtained by alkaline hydrolysis of a copolymer of isobutylene and maleic anhydride

B成分:糖類、オキシカルボン酸及びオキシカルボン酸の塩から選ばれる一つ又は二つ以上   Component B: one or more selected from sugars, oxycarboxylic acids and oxycarboxylic acid salts

C成分:下記の化1で示される脂肪族ポリエーテル

Component C: Aliphatic polyether represented by the following chemical formula 1

Figure 2009035453
Figure 2009035453

D成分:下記の化2で示されるポリエーテル系消泡剤   Component D: polyether-based antifoaming agent represented by the following chemical formula 2

Figure 2009035453
Figure 2009035453

化1及び化2において、
:炭素数8〜20の脂肪族炭化水素基
:炭素数12〜20の脂肪族炭化水素基
:分子中に2〜20個のオキシエチレン単位で構成されたポリオキシエチレン基を有するポリエチレングリコールから全ての水酸基を除いた残基
:分子中に合計23〜70個のオキシエチレン単位とオキシプロピレン単位とで構成され且つ該オキシエチレン単位と該オキシプロピレン単位とがブロック状に付加したポリオキシアルキレン基を有するポリアルキレングリコールから全ての水酸基を除いた残基
In Chemical Formula 1 and Chemical Formula 2,
R 1 : Aliphatic hydrocarbon group having 8 to 20 carbon atoms R 2 : Aliphatic hydrocarbon group having 12 to 20 carbon atoms A 1 : Polyoxyethylene group composed of 2 to 20 oxyethylene units in the molecule Residue obtained by removing all hydroxyl groups from polyethylene glycol having A 2 : Consists of a total of 23 to 70 oxyethylene units and oxypropylene units in the molecule, and the oxyethylene units and the oxypropylene units are in a block form Residues obtained by removing all hydroxyl groups from polyalkylene glycol having a polyoxyalkylene group attached to

本発明に係るソイルセメントスラリーの流動化方法(以下単に本発明の流動化方法という)では、セメントミルクと土壌とを混合してソイルセメントスラリーとするときに、該セメントミルクに流動化剤を含有させて用いる。かかるセメントミルクに用いるセメントとしては、普通ポルトランドセメント、高炉セメント、フライアッシュセメント等が挙げられるが、なかでも高炉セメントB種が好ましい。セメントの使用量は、セメントミルクと土壌を混合してソイルセメントスラリーとするときに、土壌1m当たり通常は100〜500kgとなるようにするが、好ましくは150〜400kgとなるようにする。セメントミルクの調製時には、セメントの他に、セメントミルクの分離防止やソイルセメントスラリーの水分逸散防止等の目的で更にベントナイトを用いるのが好ましい。ベントナイトを用いる場合、その使用量は、土壌1m当たり通常は1〜50kgとなるようにし、好ましくは3〜30kgとなるようにする。セメントミルクの水/セメント比は、これと混合する土壌の性状によっても異なり、通常は100〜350%とするが、155〜330%とするのが好ましい。 In the fluidizing method of soil cement slurry according to the present invention (hereinafter simply referred to as fluidizing method of the present invention), when cement milk and soil are mixed to form a soil cement slurry, the cement milk contains a fluidizing agent. Use it. Examples of the cement used in the cement milk include ordinary Portland cement, blast furnace cement, fly ash cement, and the like, among which blast furnace cement B type is preferable. When cement milk and soil are mixed to form a soil cement slurry, the amount of cement used is usually 100 to 500 kg per 1 m 3 of soil, but preferably 150 to 400 kg. When preparing cement milk, it is preferable to use bentonite in addition to cement for the purpose of preventing separation of cement milk and preventing water dissipation of soil cement slurry. When bentonite is used, the amount used is usually 1 to 50 kg per 1 m 3 of soil, preferably 3 to 30 kg. The water / cement ratio of the cement milk varies depending on the properties of the soil mixed therewith, and is usually 100 to 350%, preferably 155 to 330%.

本発明の流動化方法において、以上説明したようなセメントミルクに含有させて用いる流動化剤はA成分、B成分、C成分及びD成分から成るものである。A成分は、イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量2000〜50000の水溶性ビニル共重合体である。ここで質量平均分子量は、ゲル浸透クロマトグラフ法(以下、単にGPC法という)で測定したプルラン換算の質量平均分子量を意味する。   In the fluidizing method of the present invention, the fluidizing agent used in cement milk as described above is composed of an A component, a B component, a C component, and a D component. Component A is a water-soluble vinyl copolymer having a mass average molecular weight of 2,000 to 50,000 obtained by alkaline hydrolysis of a copolymer of isobutylene and maleic anhydride. Here, the mass average molecular weight means a pullulan-converted mass average molecular weight measured by gel permeation chromatography (hereinafter simply referred to as GPC method).

イソブチレンと無水マレイン酸との共重合及び得られる共重合物のアルカリ加水分解は、公知の方法で行なうことができる。例えば、溶媒としてエチルベンゼン、無水マレイン酸、ラジカル連鎖移動剤及びラジカル開始剤をオートクレーブに仕込み、反応系を窒素置換した後、イソブチレンを圧入し、温度60〜120℃で圧力2〜5kg/cm2の条件下に2〜10時間ラジカル重合させて、共重合物を沈殿物として得た後、この共重合物をアルカリ水溶液で加水分解する方法が挙げられる。 Copolymerization of isobutylene and maleic anhydride and alkali hydrolysis of the resulting copolymer can be performed by known methods. For example, ethylbenzene, maleic anhydride, a radical chain transfer agent and a radical initiator are charged in an autoclave as a solvent, and the reaction system is purged with nitrogen. Then, isobutylene is injected, and the pressure is 2 to 5 kg / cm 2 at 60 to 120 ° C. A method of radical polymerization under conditions for 2 to 10 hours to obtain a copolymer as a precipitate and then hydrolyzing the copolymer with an aqueous alkaline solution can be mentioned.

所望の共重合物を得るためには、ラジカル開始剤やラジカル連鎖移動剤の種類及び使用量、溶媒の種類及び使用量、重合温度、重合時間等を適宜選択する。ここで用いるラジカル開始剤としては、アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ系開始剤、過酸化ベンゾイル、過酸化ラウロイル、クメンハイドロパーオキサイド等の非水系の開始剤等が挙げられる。   In order to obtain a desired copolymer, the type and amount of radical initiator and radical chain transfer agent, the type and amount of solvent, polymerization temperature, polymerization time and the like are appropriately selected. Examples of the radical initiator used here include azo initiators such as azobisisobutyronitrile and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, Non-aqueous initiators such as cumene hydroperoxide are listed.

イソブチレンと無水マレイン酸との共重合物において、双方の共重合比率は、
イソブチレン/無水マレイン酸=45/55〜55/45(モル比)となるようにするのが好ましく、できるだけ50/50(モル比)に近い比率となるようにするのがより好ましい。
In the copolymer of isobutylene and maleic anhydride, the copolymerization ratio of both is
It is preferable that isobutylene / maleic anhydride = 45/55 to 55/45 (molar ratio), and it is more preferable that the ratio be as close to 50/50 (molar ratio) as possible.

イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解するときのアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物が好ましく、工業的見地から安価な水酸化ナトリウムの水溶液がより好ましい。アルカリ加水分解は、結果として部分中和物が得られる場合であっても又は完全中和物が得られる場合であってもよい。   The alkali used in the alkali hydrolysis of the copolymer of isobutylene and maleic anhydride is preferably an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide, and is inexpensive from an industrial standpoint. An aqueous solution of sodium is more preferred. Alkaline hydrolysis may be a case where a partially neutralized product is obtained as a result or a completely neutralized product is obtained.

A成分は、イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量2000〜50000の水溶性ビニル共重合体であるが、質量平均分子量は5000〜35000の水溶性共重合体とするのが好ましい。   The component A is a water-soluble vinyl copolymer having a mass average molecular weight of 2000 to 50000 obtained by alkaline hydrolysis of a copolymer of isobutylene and maleic anhydride, and the water-soluble copolymer having a mass average molecular weight of 5000 to 35000 It is preferable to do this.

B成分は、糖類、オキシカルボン酸及びオキシカルボン酸の塩から選ばれる一つ又は二つ以上である。糖類としては、ショ糖、グルコース、フラクトース、ガラクトース、オリゴ糖、糖蜜類等が挙げられ、またオキシカルボン酸としては、グルコン酸、クエン酸等が挙げられ、かかるオキシカルボン酸の塩としては、グルコン酸ナトリウム、クエン酸ナトリウム等が挙げられる。なかでもB成分としては、A成分との溶解安定性や腐敗防止性の観点から、ショ糖が好ましい。   The B component is one or more selected from saccharides, oxycarboxylic acids, and salts of oxycarboxylic acids. Examples of the saccharide include sucrose, glucose, fructose, galactose, oligosaccharide, and molasses. Examples of the oxycarboxylic acid include gluconic acid and citric acid. Examples of the oxycarboxylic acid salt include glucone. Examples thereof include sodium acid and sodium citrate. Among these, sucrose is preferable as the B component from the viewpoint of dissolution stability with the A component and anti-corrosion properties.

C成分は、化1で示される脂肪族ポリエーテルである。化1中のRとしては、1)オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基(ドデシル基)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等の炭素数8〜20の飽和脂肪族炭化水素基、2)11−ドデセニル基、8−ヘキサデセニル基、9−オクタデセニル基、11−エイコセニル基等の炭素数8〜20の不飽和脂肪族炭化水素基等が挙げられるが、なかでも炭素数10〜20の飽和脂肪族炭化水素基が好ましく、炭素数12〜16の飽和脂肪族炭化水素基がより好ましく、ラウリル基が特に好ましい。 Component C is an aliphatic polyether represented by Chemical Formula 1. As R 1 in Chemical Formula 1, 1) octyl group, nonyl group, decyl group, undecyl group, lauryl group (dodecyl group), tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group 8) a saturated aliphatic hydrocarbon group having 8 to 20 carbon atoms such as an eicosyl group, and 2) an unsaturated fat having 8 to 20 carbon atoms such as an 11-dodecenyl group, an 8-hexadecenyl group, a 9-octadecenyl group, and an 11-eicocenyl group. Among them, a saturated hydrocarbon group having 10 to 20 carbon atoms is preferable, a saturated aliphatic hydrocarbon group having 12 to 16 carbon atoms is more preferable, and a lauryl group is particularly preferable.

また化1中のAは、分子中に2〜20個のオキシエチレン単位で構成されたポリオキシエチレン基を有するポリエチレングリコールから全ての水酸基を除いた残基とするが、分子中に4〜12個のオキシエチレン単位で構成されたポリオキシエチレン基を有するポリエチレングリコールから全ての水酸基を除いた残基とするのが好ましい。以上説明した化1で示される脂肪族ポリエーテルから成るC成分は、土壌中の粘土塊粒子にぬれ性や浸透性を付与するための表面張力低下剤として作用し、主に土粒子の分散剤として作用する前記したA成分及びB成分の練り混ぜ性能を助長する。 A 1 in Chemical Formula 1 is a residue obtained by removing all hydroxyl groups from polyethylene glycol having a polyoxyethylene group composed of 2 to 20 oxyethylene units in the molecule. A residue obtained by removing all hydroxyl groups from a polyethylene glycol having a polyoxyethylene group composed of 12 oxyethylene units is preferred. The C component composed of the aliphatic polyether represented by Chemical Formula 1 described above acts as a surface tension reducing agent for imparting wettability and permeability to clay lump particles in soil, and is mainly a dispersant for soil particles. This promotes the kneading performance of the A component and B component described above.

D成分は、化2で示されるポリエーテル系消泡剤である。化2中のRとしては、1)ラウリル基(ドデシル基)、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等の炭素数12〜20の飽和脂肪族炭化水素基、2)11−ドデセニル基、8−ヘキサデセニル基、9−オクタデセニル基、11−エイコセニル基等の炭素数12〜20の不飽和脂肪族炭化水素基等が挙げられるが、なかでも炭素数12〜20の不飽和脂肪族炭化水素基が好ましく、9−オクタデセニル基がより好ましい。 Component D is a polyether antifoaming agent represented by Chemical Formula 2. As R 2 in Chemical Formula 2 , 1) saturation of 12 to 20 carbon atoms such as lauryl group (dodecyl group), tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, etc. Examples include aliphatic hydrocarbon groups, 2) 11-dodecenyl groups, 8-hexadecenyl groups, 9-octadecenyl groups, 11-eicocenyl groups and the like, and unsaturated aliphatic hydrocarbon groups having 12 to 20 carbon atoms. An unsaturated aliphatic hydrocarbon group having 12 to 20 carbon atoms is preferred, and a 9-octadecenyl group is more preferred.

また化2中のAは、分子中にオキシエチレン単位とオキシプロピレン単位とで構成され且つ該オキシエチレン単位と該オキシプロピレン単位とがブロック状に付加したポリオキシアルキレン基を有するポリアルキレングリコールから全ての水酸基を除いた残基である。Aのポリオキシアルキレン基を構成するオキシエチレン単位及びオキシプロピレン単位の繰り返し数は合計で23〜70とするが、25〜60とするのが好ましい。以上説明した化2で示されるポリエーテル系消泡剤は、炭素数12〜20の脂肪族アルコール1モルに対してエチレンオキサイド及びプロピレンオキサイドを合計23〜70モルの割合でブロック状に付加させる公知の方法で合成できる。 A 2 in Chemical Formula 2 is a polyalkylene glycol having a polyoxyalkylene group composed of oxyethylene units and oxypropylene units in the molecule and having the oxyethylene units and the oxypropylene units added in the form of blocks. A residue excluding all hydroxyl groups. Although repetition number of oxyethylene units and oxypropylene units constituting the polyoxyalkylene group A 2 is a 23 to 70 in total, preferably with 25 to 60. The polyether antifoaming agent represented by Chemical Formula 2 described above is known in which ethylene oxide and propylene oxide are added in a block form at a ratio of 23 to 70 mol in total with respect to 1 mol of an aliphatic alcohol having 12 to 20 carbon atoms. It can be synthesized by this method.

本発明の流動化方法において、セメントミルクに含有させて用いる流動化剤は、以上説明したA成分、B成分、C成分及びD成分から成るものである。A成分、B成分、C成分及びD成分の含有割合は、A成分50〜95質量%、B成分2〜35質量%、C成分0.1〜20質量%、D成分0.01〜5質量%(合計100質量%)とするが、A成分60〜90質量%、B成分9〜30質量%、C成分0.5〜17質量%、D成分0.1〜3質量%(合計100質量%)とするのが好ましい。流動化剤中のA成分、B成分、C成分及びD成分の含有割合は、以上のような含有割合の範囲内にて、それを含有させたセメントミルクと混合する土壌の性状との関係で適宜選択するのが好ましい。   In the fluidizing method of the present invention, the fluidizing agent used in cement milk is composed of the A component, B component, C component and D component described above. The content ratio of A component, B component, C component and D component is 50 to 95% by mass of A component, 2 to 35% by mass of B component, 0.1 to 20% by mass of C component, and 0.01 to 5% by mass of D component. % (Total 100 mass%), A component 60-90 mass%, B component 9-30 mass%, C component 0.5-17 mass%, D component 0.1-3 mass% (total 100 mass) %). The content ratio of the A component, B component, C component and D component in the fluidizing agent is related to the properties of the soil mixed with the cement milk containing it within the range of the content ratio as described above. It is preferable to select appropriately.

以上説明した流動化剤は、その水溶液がアルカリ領域でより優れた効果を発揮する。したがって流動化剤は、その固形分濃度1質量%の水溶液のpHが7.0〜11の範囲内となるものが好ましく、7.5〜10.5の範囲内となるものがより好ましい。かかる流動化剤のpHの調整は例えばアルカリ金属水酸化物を用いて行なうことができる。   The fluidizing agent described above exhibits more excellent effects when the aqueous solution is in the alkaline region. Accordingly, the fluidizing agent preferably has a pH of an aqueous solution having a solid content concentration of 1 mass% within the range of 7.0 to 11, more preferably 7.5 to 10.5. The pH of the fluidizing agent can be adjusted using, for example, an alkali metal hydroxide.

また流動化剤は、その固形分濃度1質量%の水溶液の20℃における表面張力が40mN/m以下となるものが好ましく、25〜40mN/mの範囲内となるものがより好ましい。かかる流動化剤の表面張力の調整は例えば前記C成分の含有割合を加減することによって行なうことができる。   The fluidizing agent preferably has a surface tension at 20 ° C. of an aqueous solution having a solid content concentration of 1% by mass of 40 mN / m or less, more preferably 25 to 40 mN / m. The surface tension of the fluidizing agent can be adjusted, for example, by adjusting the content ratio of the C component.

本発明の流動化方法では、予め流動化剤を含有させておいたセメントミルクを調製しておき、かかるセメントミルクと土壌とを混合してソイルセメントスラリーとする。この場合、流動化剤の使用量は、土壌1m当たり0.5〜25kgの割合となるようにするが、1〜10kgの割合となるようにするのが好ましい。 In the fluidizing method of the present invention, cement milk that contains a fluidizing agent in advance is prepared, and the cement milk and soil are mixed to form a soil cement slurry. In this case, the amount of the fluidizing agent used is 0.5 to 25 kg per 1 m 3 of soil, but preferably 1 to 10 kg.

本発明の流動化剤方法では、流動化剤の使用に際して、合目的的に他の剤を併用することができる。かかる他の剤としては、防腐剤、凝結促進剤、防水剤等が挙げられる。以上、本発明の流動化方法について説明したが、本発明の流動化方法は、工事現場においてセメントミルクと原位置土壌とを撹拌混合して硬化させるソイルセメント壁工法に適用する場合に効果の発現が高い。   In the fluidizing agent method of the present invention, when the fluidizing agent is used, other agents can be used in combination for the purpose. Examples of such other agents include antiseptics, setting accelerators, waterproofing agents and the like. Although the fluidization method of the present invention has been described above, the fluidization method of the present invention is effective when applied to a soil cement wall construction method in which cement milk and in-situ soil are stirred and mixed and hardened at a construction site. Is expensive.

本発明の流動化方法によると、ソイルセメントスラリーに充分な流動性及び流動保持性を持たせることができ、また同時に起泡性を抑えてセメントミルクと土壌との均一混合を促すことにより、得られるソイルセメント硬化体に充分な止水性及び強度等を発現させることができる。これらの効果は、土壌が粘土分やシルト分を多く含む粘性のものであっても発揮される。   According to the fluidization method of the present invention, the soil cement slurry can be provided with sufficient fluidity and fluid retention, and at the same time, the foaming property is suppressed and uniform mixing of cement milk and soil is promoted. Sufficient water-stopping and strength can be expressed in the cured soil cement. These effects are exhibited even when the soil is viscous and contains a large amount of clay and silt.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(A成分としての水溶性ビニル共重合体の合成)
・水溶性ビニル共重合体(a−1)の合成
無水マレイン酸49g、溶媒としてエチルベンゼン300g、分子量調節剤として3−メルカプトプロピオン酸0.3g及び重合開始剤としてアゾビスイソブチロニトリル1gをオートクレーブに仕込み、攪拌しながら均一に溶解した後、雰囲気を窒素置換した。次に、イソブチレン28gを圧入した後、反応系の温度を85℃まで加温し、85℃に保ちながらラジカル重合反応を6時間継続して反応を完結した。反応終了後、反応系の温度を室温まで冷却し、脱気後、攪拌を止めて沈殿した共重合物を取り出し、濾過乾燥して淡黄色粉末状の共重合物75gを得た。この共重合物を分析したところ、無水マレイン酸/イソブチレン=50/50(モル比)の割合で共重合したものであった。この共重合物50g、30%水酸化ナトリウム水溶液51g及び水道水102gを攪拌装置及び冷却コンデンサーのついたフラスコに入れ、攪拌しながら加温して、共重合物をアルカリ加水分解した水溶性ビニル共重合体(a−1)の30%水溶液を得た。この水溶性ビニル共重合体をGPCで分子量測定したところ、質量平均分子量が20100(プルラン換算)であった。
Test Category 1 (Synthesis of water-soluble vinyl copolymer as component A)
Synthesis of water-soluble vinyl copolymer (a-1) 49 g of maleic anhydride, 300 g of ethylbenzene as a solvent, 0.3 g of 3-mercaptopropionic acid as a molecular weight regulator and 1 g of azobisisobutyronitrile as a polymerization initiator The solution was uniformly dissolved with stirring, and the atmosphere was replaced with nitrogen. Next, after 28 g of isobutylene was injected, the temperature of the reaction system was heated to 85 ° C., and the radical polymerization reaction was continued for 6 hours while maintaining the temperature at 85 ° C. to complete the reaction. After completion of the reaction, the temperature of the reaction system was cooled to room temperature. After deaeration, stirring was stopped and the precipitated copolymer was taken out and filtered and dried to obtain 75 g of a pale yellow powdery copolymer. When the copolymer was analyzed, it was copolymerized at a ratio of maleic anhydride / isobutylene = 50/50 (molar ratio). 50 g of this copolymer, 51 g of a 30% aqueous sodium hydroxide solution and 102 g of tap water are placed in a flask equipped with a stirrer and a cooling condenser, heated while stirring, and the copolymer is alkali-hydrolyzed water-soluble vinyl copolymer. A 30% aqueous solution of the polymer (a-1) was obtained. When the molecular weight of this water-soluble vinyl copolymer was measured by GPC, the mass average molecular weight was 20100 (in pullulan conversion).

・水溶性ビニル共重合体(a−2)、(a−3)、(ar−1)及び(ar−2)の合成
水溶性ビニル共重合体(a−1)の合成と同様にして、水溶性ビニル共重合体(a−2)、(a−3)、(ar−1)及び(ar−2)を合成した。以上で合成した各水溶性ビニル共重合体の内容を表1に示した。
-Synthesis of water-soluble vinyl copolymer (a-2), (a-3), (ar-1) and (ar-2) In the same manner as the synthesis of water-soluble vinyl copolymer (a-1), Water-soluble vinyl copolymers (a-2), (a-3), (ar-1) and (ar-2) were synthesized. The contents of each water-soluble vinyl copolymer synthesized above are shown in Table 1.

Figure 2009035453
Figure 2009035453

試験区分2(流動化剤の調製)
・流動化剤(P−1)の調製
A成分として試験区分1で合成した水溶性ビニル共重合体(a−1)の30%水溶液250部、B成分としてショ糖(b−1)の30%水溶液63部、C成分としてポリオキシエチレン(オキシエチレン単位の繰り返し数が6個、以下6モルと略記)ラウリルモノエーテル(c−1)の30%水溶液17部及びD成分としてポリエーテル系消泡剤(d−1)の30%水懸濁液3部を混合して流動化剤(P−1)の30%水溶液を調製した。流動化剤(P−1)の固形分濃度1%水溶液のpH及び温度20℃での表面張力を測定したところ、9.9及び29.9mN/mであった。
Test Category 2 (Preparation of fluidizing agent)
-Preparation of fluidizing agent (P-1) 250 parts of a 30% aqueous solution of a water-soluble vinyl copolymer (a-1) synthesized in Test Category 1 as the A component, and 30 parts of sucrose (b-1) as the B component 63 parts of aqueous solution, polyoxyethylene as component C (repeating 6 oxyethylene units, hereinafter abbreviated as 6 moles), 17 parts of 30% aqueous solution of lauryl monoether (c-1) and polyether component as D component A 30% aqueous solution of a fluidizing agent (P-1) was prepared by mixing 3 parts of a 30% aqueous suspension of foaming agent (d-1). It was 9.9 and 29.9 mN / m when pH of the solid content concentration 1% aqueous solution of fluidizing agent (P-1) and the surface tension at the temperature of 20 degreeC were measured.

・流動化剤(P−2)〜(P−13)及び(R−1)〜(R−12)の調製
流動化剤(P−1)の調製と同様にして、流動化剤(P−2)〜(P−13)及び(R−1)〜(R−12)を調製した。以上で調製した各流動化剤の内容を表2にまとめて示した。
-Preparation of fluidizing agents (P-2) to (P-13) and (R-1) to (R-12) In the same manner as the preparation of fluidizing agents (P-1), fluidizing agents (P- 2) to (P-13) and (R-1) to (R-12) were prepared. The contents of each fluidizing agent prepared above are summarized in Table 2.

Figure 2009035453
Figure 2009035453

表2において、
*1:固形分濃度1%水溶液のpH
*2:固形分濃度1%水溶液の20℃における表面張力
a−1〜a−3,ar−1及びar−2:試験区分1で合成した水溶性ビニル重合体
ar−3:ナフタレンスルホン酸ホルムアルデヒド縮合物
b−1:ショ糖
b−2:グルコース
b−3:グルコン酸ナトリウム
b−4:グルコン酸
c−1:ポリオキシエチレン(6モル)モノラウリルエーテル(HLB価11.7)
c−2:ポリオキシエチレン(9モル)モノセチルエーテル(HLB価12.4)
c−3:ポリオキシエチレン(15モル)モノオレイルエーテル(HLB価14.2)
d−1:α−オクタデセニル−ω−ヒドロキシ−ポリオキシエチレン(6モル)ポリオキシプロピレン(32モル)
d−2:α−オクタデセニル−ω−ヒドロキシ−ポリオキシエチレン(9モル)ポリオキシプロピレン(48モル)
d−3:α−ラウリル−ω−ヒドロキシ−ポリオキシエチレン(3モル)ポリオキシプロピレン(32モル)
In Table 2,
* 1: pH of aqueous solution with 1% solid content
* 2: Surface tension of an aqueous solution with a solid content of 1% at 20 ° C. a-1 to a-3, ar-1 and ar-2: water-soluble vinyl polymers synthesized in Test Category 1 ar-3: formaldehyde naphthalene sulfonate Condensate b-1: Sucrose b-2: Glucose b-3: Sodium gluconate b-4: Gluconic acid c-1: Polyoxyethylene (6 mol) monolauryl ether (HLB number 11.7)
c-2: polyoxyethylene (9 mol) monocetyl ether (HLB number 12.4)
c-3: polyoxyethylene (15 mol) monooleyl ether (HLB number 14.2)
d-1: α-octadecenyl-ω-hydroxy-polyoxyethylene (6 mol) polyoxypropylene (32 mol)
d-2: α-octadecenyl-ω-hydroxy-polyoxyethylene (9 mol) polyoxypropylene (48 mol)
d-3: α-lauryl-ω-hydroxy-polyoxyethylene (3 mol) polyoxypropylene (32 mol)

試験区分3(ソイルセメントスラリーの調製)
・比較例1
高炉セメントB種(密度=3.04g/cm)202g、水650g及びベントナイト14gをホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表3に記載のシルト質粘土を主成分とする掘削土1690g(0.001m相当)を加えて混合し、表4に記載の配合No.1に相当するソイルセメントスラリーを調製した。調製したソイルセメントスラリーは、試験区分4の物性評価における直後フロー値が212mmのもので、調製直後においては流動化剤を添加しなくても施工現場でH鋼が挿入可能な流動性を有するソイルセメントスラリーであった。
Test category 3 (Preparation of soil cement slurry)
Comparative example 1
Blast furnace cement type B (density = 3.04 g / cm 3 ) 202 g, water 650 g and bentonite 14 g were placed in a Hobart mixer and mixed uniformly to prepare cement milk. To this cement milk, 1690 g (equivalent to 0.001 m 3 ) of excavated soil mainly composed of silty clay listed in Table 3 was added and mixed. A soil cement slurry corresponding to 1 was prepared. The prepared soil cement slurry has a flow value of 212 mm immediately after the physical property evaluation in Test Category 4 and has a fluidity that allows H steel to be inserted at the construction site without adding a fluidizing agent immediately after preparation. It was a cement slurry.

・実施例1〜16及び比較例2〜14
高炉セメントB種(密度=3.04g/cm)199g、水419g、ベントナイト16g及び表5に記載の使用量となる量の流動化剤をホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表3に記載の物性値を有する掘削土1690gを加えて混合し、表4に記載の配合No.2に相当するソイルセメントスラリーを調製した。
-Examples 1-16 and Comparative Examples 2-14
199 g of blast furnace cement type B (density = 3.04 g / cm 3 ), 419 g of water, 16 g of bentonite and a quantity of fluidizing agent as shown in Table 5 are put in a Hobart mixer and mixed uniformly. Prepared. To this cement milk, 1690 g of excavated soil having physical property values listed in Table 3 was added and mixed. A soil cement slurry corresponding to 2 was prepared.

・実施例17〜29及び比較例15〜25
高炉セメントB種(密度=3.04g/cm)190g、水296g、ベントナイト17g及び表6に記載の使用量となる量の流動化剤をホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表4に記載の物性値を有する掘削土1690gを加えて混合し、表4に記載の配合No.3に相当するソイルセメントスラリーを調製した。
Examples 17 to 29 and comparative examples 15 to 25
Blast furnace cement type B (density = 3.04 g / cm 3 ) 190 g, water 296 g, bentonite 17 g and the amount of fluidizing agent used in Table 6 are put in a Hobart mixer and mixed uniformly. Prepared. To this cement milk, 1690 g of excavated soil having physical property values described in Table 4 was added and mixed. A soil cement slurry corresponding to 3 was prepared.

・実施例30〜42及び比較例26〜37
高炉セメントB種(密度=3.04g/cm)190g、水296g及び表6に記載の使用量となる量の流動化剤をホバートミキサーに入れて均一に混合し、セメントミルクを調製した。このセメントミルクに表3に記載の物性値を有する掘削土1690gを加えて混合し、表4に記載の配合No.4に相当するソイルセメントスラリーを調製した。
Examples 30 to 42 and comparative examples 26 to 37
190 g of blast furnace cement type B (density = 3.04 g / cm 3 ), 296 g of water and an amount of fluidizing agent as shown in Table 6 were mixed in a Hobart mixer to prepare a cement milk. To this cement milk, 1690 g of excavated soil having physical property values listed in Table 3 was added and mixed. A soil cement slurry corresponding to 4 was prepared.

Figure 2009035453
Figure 2009035453











Figure 2009035453
Figure 2009035453

試験区分4(調製したソイルセメントスラリーの評価)
試験区分3で調製した各例のソイルセメントスラリーについて、フロー値、フロー残存率、空気量を次のように求め、結果を表5〜表7にまとめて示した。また各例のソイルセメントスラリーから得た硬化体について、透水比及び一軸圧縮強度をつぎのように求め、結果を表5〜表7にまとめて示した。
Test Category 4 (Evaluation of prepared soil cement slurry)
For the soil cement slurry of each example prepared in Test Category 3, the flow value, flow residual ratio, and air amount were determined as follows, and the results are summarized in Tables 5 to 7. Moreover, about the hardening body obtained from the soil cement slurry of each example, the water permeability ratio and the uniaxial compressive strength were calculated | required as follows, and the result was put together in Table 5-Table 7, and was shown.

・フロー値:JIS−R5201に準拠し、練り混ぜ直後と180分後にフロー試験を行い、15回落差後のフロー値(mm)を測定した。   -Flow value: According to JIS-R5201, a flow test was performed immediately after kneading and after 180 minutes, and the flow value (mm) after 15 drops was measured.

・フロー残存率:(180分静置後のフロー値/練り混ぜ直後のフロー値)×100で求めた。   -Flow residual ratio: It calculated | required in (flow value after 180 minutes leaving / flow value immediately after mixing) x100.

・空気量:JIS−A1171に準拠して求めた。   -Air amount: It calculated | required based on JIS-A1171.

・透水比:JIS−A1404に準拠し、直径150mm×高さ40mmの金属製型枠にソイルセメントスラリーを充填した後、ポリエチレンフィルムで表面を覆って、温度20℃、湿度80%の恒温室に28日間養生し、脱型後に表面を平滑に仕上げして、試験体を作製した。この試験体の上下両面の中央に、直径5cmの円孔をもつ厚さ1cmのゴムガスケットを当て、均一に締め付けた後、上面から9.8kPaの水圧を1時間かけて透水試験を行った。透水の目安として、下記の透水比を算出した。ここで透水比の数値が小さいほど遮水性が優れていることを意味する。
透水比=各例のソイルセメントスラリーから作製した試験体の透水量(g)/比較例1のソイルセメントスラリーから作製した試験体の透水量(g)
-Permeability ratio: In accordance with JIS-A1404, after filling a metal mold having a diameter of 150 mm and a height of 40 mm with a soil cement slurry, the surface is covered with a polyethylene film, and the temperature is controlled at 20 ° C and humidity of 80%. The specimen was cured for 28 days, and after removing the mold, the surface was smoothed to prepare a test specimen. A rubber gasket of 1 cm thickness having a 5 cm diameter circular hole was applied to the center of the upper and lower surfaces of this test body, and after tightening uniformly, a water pressure test of 9.8 kPa from the upper surface was performed for 1 hour. As a measure of water permeability, the following water permeability ratio was calculated. Here, the smaller the numerical value of the water permeability ratio, the better the water shielding property.
Permeability ratio = water permeability (g) of the specimen prepared from the soil cement slurry of each example / water permeability (g) of the specimen prepared from the soil cement slurry of Comparative Example 1

・一軸圧縮強度試験:JIS−A1108に準拠し、直径50mm×高さ100mmの型枠を用いて成形した成型品について、材齢28日の圧縮強度(N/mm2)を測定した。尚、この試験では、ソイルセメント壁工法における目標値を0.2〜2.0N/mm2の強度範囲とした。









-Uniaxial compressive strength test: Based on JIS-A1108, the compressive strength (N / mm < 2 >) of material age 28 days was measured about the molded product shape | molded using the mold of diameter 50mm x height 100mm. In this test, the target value in the soil cement wall method was set to a strength range of 0.2 to 2.0 N / mm 2 .









Figure 2009035453
Figure 2009035453















Figure 2009035453
Figure 2009035453




















Figure 2009035453
Figure 2009035453

表5〜表7において、
*3:土壌1m当たりに使用した流動化剤の固形分換算値(kg)
*4:材齢28日の一軸圧縮強度
R−13:ポリアクリル酸ナトリウム(質量平均分子量12000)
In Tables 5 to 7,
* 3: in terms of solid content of the fluidizing agent used per soil 1 m 3 (kg)
* 4: Uniaxial compressive strength at age 28 days R-13: Sodium polyacrylate (mass average molecular weight 12000)

Claims (9)

下記のA成分、B成分、C成分及びD成分から成り、該A成分を50〜95質量%、該B成分を2〜35質量%、該C成分を0.1〜20質量%及び該D成分を0.01〜5質量%含有して成る流動化剤を、土壌1m当たり0.5〜25kgの割合となるよう、セメントミルクに含有させて用いることを特徴とするソイルセメントスラリーの流動化方法。
A成分:イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量2000〜50000の水溶性ビニル共重合体
B成分:糖類、オキシカルボン酸及びオキシカルボン酸の塩から選ばれる一つ又は二つ以上
C成分:下記の化1で示される脂肪族ポリエーテル
Figure 2009035453
D成分:下記の化2で示されるポリエーテル系消泡剤
Figure 2009035453
(化1及び化2において、
:炭素数8〜20の脂肪族炭化水素基
:炭素数12〜20の脂肪族炭化水素基
:分子中に2〜20個のオキシエチレン単位で構成されたポリオキシエチレン基を有するポリエチレングリコールから全ての水酸基を除いた残基
:分子中に合計23〜70個のオキシエチレン単位とオキシプロピレン単位とで構成され且つ該オキシエチレン単位と該オキシプロピレン単位とがブロック状に付加したポリオキシアルキレン基を有するポリアルキレングリコールから全ての水酸基を除いた残基)
It consists of the following A component, B component, C component and D component, the A component is 50 to 95% by mass, the B component is 2 to 35% by mass, the C component is 0.1 to 20% by mass and the D Flow of soil cement slurry characterized by using a cementizing milk containing a fluidizing agent containing 0.01 to 5% by mass of ingredients so as to have a ratio of 0.5 to 25 kg per 1 m 3 of soil. Method.
Component A: Water-soluble vinyl copolymer having a weight average molecular weight of 2000 to 50000 obtained by alkali hydrolysis of a copolymer of isobutylene and maleic anhydride Component B: One selected from saccharides, oxycarboxylic acids and oxycarboxylic acid salts Or two or more C component: The aliphatic polyether shown by following Chemical formula 1
Figure 2009035453
Component D: polyether-based antifoaming agent represented by the following chemical formula 2
Figure 2009035453
(In Chemical Formula 1 and Chemical Formula 2,
R 1 : Aliphatic hydrocarbon group having 8 to 20 carbon atoms R 2 : Aliphatic hydrocarbon group having 12 to 20 carbon atoms A 1 : Polyoxyethylene group composed of 2 to 20 oxyethylene units in the molecule Residue obtained by removing all hydroxyl groups from polyethylene glycol having A 2 : Consists of a total of 23 to 70 oxyethylene units and oxypropylene units in the molecule, and the oxyethylene units and the oxypropylene units are in a block form A residue obtained by removing all hydroxyl groups from polyalkylene glycol having a polyoxyalkylene group attached to
流動化剤が、A成分を60〜90質量%、B成分を9〜30質量%、C成分を0.5〜17質量%及びD成分を0.1〜3質量%含有して成るものである請求項1記載のソイルセメントスラリーの流動化方法。   The fluidizing agent comprises 60 to 90% by mass of component A, 9 to 30% by mass of component B, 0.5 to 17% by mass of component C and 0.1 to 3% by mass of component D. A method for fluidizing a soil cement slurry according to claim 1. A成分が、イソブチレンと無水マレイン酸との共重合物をアルカリ加水分解した質量平均分子量5000〜35000の水溶性ビニル共重合体である請求項1又は2記載のソイルセメントスラリーの流動化方法。   The method for fluidizing a soil cement slurry according to claim 1 or 2, wherein the component A is a water-soluble vinyl copolymer having a mass average molecular weight of 5000 to 35000 obtained by alkaline hydrolysis of a copolymer of isobutylene and maleic anhydride. B成分が、ショ糖である請求項1〜3のいずれか一つの項記載のソイルセメントスラリーの流動化方法。   The method for fluidizing a soil cement slurry according to any one of claims 1 to 3, wherein the component B is sucrose. C成分が、化1中のRがラウリル基、Aが分子中に4〜12個のオキシエチレン単位で構成されたポリオキシエチレン基を有するポリエチレングリコールから全ての水酸基を除いた残基である場合のものである請求項1〜4のいずれか一つの項記載のソイルセメントスラリーの流動化方法。 Component C is a residue obtained by removing all hydroxyl groups from polyethylene glycol having R 1 in Chemical Formula 1 having a lauryl group and A 1 having a polyoxyethylene group composed of 4 to 12 oxyethylene units in the molecule. The method for fluidizing a soil cement slurry according to any one of claims 1 to 4, wherein the fluidizing method is used in some cases. 流動化剤が、その固形分濃度1質量%の水溶液のpHが7.0〜11の範囲内となり且つ該水溶液の20℃における表面張力が40mN/m以下となるものである請求項1〜5のいずれか一つの項記載のソイルセメントスラリーの流動化方法。   The fluidizing agent is one in which the pH of an aqueous solution having a solid content concentration of 1% by mass is in the range of 7.0 to 11, and the surface tension of the aqueous solution at 20 ° C is 40 mN / m or less. The fluidizing method of the soil cement slurry according to any one of the above. セメントミルクが、セメントとして高炉セメントB種を用いたものである請求項1〜6のいずれか一つの項記載のソイルセメントスラリーの流動化方法。   The method for fluidizing a soil cement slurry according to any one of claims 1 to 6, wherein the cement milk uses blast furnace cement type B as cement. 更にベントナイトをセメントミルクに含有させて用いる請求項1〜7のいずれか一つの項記載のソイルセメントスラリーの流動化方法。   The method for fluidizing a soil cement slurry according to any one of claims 1 to 7, wherein bentonite is further used in cement milk. ソイルセメント壁工法に用いる請求項1〜8のいずれか一つの項記載のソイルセメントスラリーの流動化方法。   The fluidization method of the soil cement slurry as described in any one of Claims 1-8 used for a soil cement wall construction method.
JP2007201672A 2007-08-02 2007-08-02 Fluidization method of soil cement slurry Active JP5051884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201672A JP5051884B2 (en) 2007-08-02 2007-08-02 Fluidization method of soil cement slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201672A JP5051884B2 (en) 2007-08-02 2007-08-02 Fluidization method of soil cement slurry

Publications (2)

Publication Number Publication Date
JP2009035453A true JP2009035453A (en) 2009-02-19
JP5051884B2 JP5051884B2 (en) 2012-10-17

Family

ID=40437711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201672A Active JP5051884B2 (en) 2007-08-02 2007-08-02 Fluidization method of soil cement slurry

Country Status (1)

Country Link
JP (1) JP5051884B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286655A (en) * 2008-05-29 2009-12-10 Takemoto Oil & Fat Co Ltd Powdery premixed cement composition for foundation improvement
WO2010143630A1 (en) * 2009-06-09 2010-12-16 株式会社竹中工務店 Slurry composition for soil improvement containing blast furnace slag cement and method for preparing soil cement slurry using same
JP2011121793A (en) * 2009-12-09 2011-06-23 Takenaka Komuten Co Ltd Fluidizing method of soil-cement slurry
JP2014108911A (en) * 2012-12-03 2014-06-12 Takenaka Komuten Co Ltd Blast-furnace slag-containing cement slurry composition and method for preparing soil cement slurry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131041A (en) * 1987-11-13 1989-05-23 Mitsubishi Petrochem Co Ltd Cement additive
JPH0543286A (en) * 1991-08-02 1993-02-23 Kao Corp Production of cement-based slurry composition
JP2002003843A (en) * 2000-06-23 2002-01-09 Sumitomo Osaka Cement Co Ltd Additive for soil-improvement construction method
JP2006298726A (en) * 2005-04-25 2006-11-02 Takenaka Komuten Co Ltd Fluidizing method of soil-cement slurry
JP2006298675A (en) * 2005-04-18 2006-11-02 Taiheiyo Material Kk High fluidity admixture
JP2007076969A (en) * 2005-09-15 2007-03-29 Nippon Shokubai Co Ltd Admixture composition for hydraulic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131041A (en) * 1987-11-13 1989-05-23 Mitsubishi Petrochem Co Ltd Cement additive
JPH0543286A (en) * 1991-08-02 1993-02-23 Kao Corp Production of cement-based slurry composition
JP2002003843A (en) * 2000-06-23 2002-01-09 Sumitomo Osaka Cement Co Ltd Additive for soil-improvement construction method
JP2006298675A (en) * 2005-04-18 2006-11-02 Taiheiyo Material Kk High fluidity admixture
JP2006298726A (en) * 2005-04-25 2006-11-02 Takenaka Komuten Co Ltd Fluidizing method of soil-cement slurry
JP2007076969A (en) * 2005-09-15 2007-03-29 Nippon Shokubai Co Ltd Admixture composition for hydraulic material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286655A (en) * 2008-05-29 2009-12-10 Takemoto Oil & Fat Co Ltd Powdery premixed cement composition for foundation improvement
WO2010143630A1 (en) * 2009-06-09 2010-12-16 株式会社竹中工務店 Slurry composition for soil improvement containing blast furnace slag cement and method for preparing soil cement slurry using same
US20110136946A1 (en) * 2009-06-09 2011-06-09 Takao Kono Slurry compositions for ground improvement using blast-furnace slag cement and method of producing soil cement slurry by using same
CN102459510A (en) * 2009-06-09 2012-05-16 竹本油脂株式会社 Slurry composition for improving ground using blast furnace slag cement and method for producing soil-blended cement slurry using same
JPWO2010143630A1 (en) * 2009-06-09 2012-11-22 株式会社竹中工務店 Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
JP5545678B2 (en) * 2009-06-09 2014-07-09 株式会社竹中工務店 Slurry composition for ground improvement using blast furnace cement and method for preparing soil cement slurry using the same
CN102459510B (en) * 2009-06-09 2014-08-20 竹本油脂株式会社 Slurry composition for improving ground using blast furnace slag cement and method for producing soil-blended cement slurry using same
US8822567B2 (en) 2009-06-09 2014-09-02 Takemoto Yushi Kabushiki Kaisha Method of producing soil cement slurry
TWI465410B (en) * 2009-06-09 2014-12-21 Takenaka Corp The use of blast furnace cement for the improvement of the slurry composition and the use of its soil cement slurry modulation method
JP2011121793A (en) * 2009-12-09 2011-06-23 Takenaka Komuten Co Ltd Fluidizing method of soil-cement slurry
JP2014108911A (en) * 2012-12-03 2014-06-12 Takenaka Komuten Co Ltd Blast-furnace slag-containing cement slurry composition and method for preparing soil cement slurry

Also Published As

Publication number Publication date
JP5051884B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
KR100481059B1 (en) Copolymer for cement admixtures and its production process and use
KR100615378B1 (en) Polycarboxylic acid type copolymer and method for producing the same, and use of the same
JP5485959B2 (en) Cement admixture using novel polymer
JP5113988B2 (en) Polycarboxylic acid polymer for cement admixture
JP2006522734A (en) Cement admixture and cement composition
EP1702898A1 (en) Cement admixture
TWI508930B (en) Polycarboxylic acid based polymers for hydraulic materials
JP4817837B2 (en) Admixture and concrete for fly ash containing unburned carbon in high concentration
JP4145310B2 (en) Fluidization method of soil cement slurry
JP2003171156A (en) Cement admixture and cement composition
CN107074655B (en) For the two-component synthesis water-retaining agent and rheology modifier in cement, mortar and gypsum
JP5051884B2 (en) Fluidization method of soil cement slurry
JP2003128738A (en) Polycarboxylic acid-based copolymer, method for producing the same and application of the same
JP5449024B2 (en) Self-shrinkage reducing agent
JP4877691B2 (en) Method of constructing cement admixture and cement composition
JP5403813B2 (en) Fluidization method of soil cement slurry
JP3293230B2 (en) Additive for cement
JP3443454B2 (en) Cement additive for grouting method
JP2003073158A (en) Method of manufacturing hardened cement
JP2004043280A (en) Cement admixture and method for manufacturing the same
JP2008291078A (en) Manufacturing method for polymer
JP2010006701A (en) Method for producing cement admixture
JP2004002175A (en) Admixture for cement and its manufacturing method
JP2000007402A (en) Cement additive
JP2004002174A (en) Admixture for cement and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5051884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250