JP3955255B2 - Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same - Google Patents

Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same Download PDF

Info

Publication number
JP3955255B2
JP3955255B2 JP2002345963A JP2002345963A JP3955255B2 JP 3955255 B2 JP3955255 B2 JP 3955255B2 JP 2002345963 A JP2002345963 A JP 2002345963A JP 2002345963 A JP2002345963 A JP 2002345963A JP 3955255 B2 JP3955255 B2 JP 3955255B2
Authority
JP
Japan
Prior art keywords
ground improvement
cement composition
mass
additive
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002345963A
Other languages
Japanese (ja)
Other versions
JP2004175989A (en
Inventor
要 青山
哲也 脇山
富士櫻 倭
政朗 下田
憲一 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Sumitomo Osaka Cement Co Ltd
Original Assignee
Kao Corp
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Sumitomo Osaka Cement Co Ltd filed Critical Kao Corp
Priority to JP2002345963A priority Critical patent/JP3955255B2/en
Publication of JP2004175989A publication Critical patent/JP2004175989A/en
Application granted granted Critical
Publication of JP3955255B2 publication Critical patent/JP3955255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地盤改良セメント組成物用添加剤、それを含む地盤改良セメント組成物及び地盤改良方法に関するものである。更に詳しく述べるならば、本発明は、地盤改良に用いられるセメント組成物の地盤改良性能を著しく向上させる地盤改良セメント用添加剤、それを含む地盤改良セメント組成物、及びそれを用いる地盤改良方法に関するものである。
【0002】
【従来の技術】
一般に、セメントスラリーと改良対象土を混合した混合土の特性として、なるべく粘性が低く、削孔する際のスライムの排出が容易になるような混合土が望まれる。しかし混合土に粘性土が多く含まれていると、混合土の粘度が高くなり、スライムの排出が困難になる。これは、混合土中の土粒子とセメント粒子が凝集して、流動性を失うためである。
【0003】
従来、この対策として、加水する方法と、混合土中の土粒子とセメント粒子の凝集を抑える(分散)方法がある。しかし、加水する方法では、硬化後の強度低下の要因になり、さらに、スライム量が多くなりすぎると、経済的な悪化の要因となる。混合土中の土粒子とセメント粒子の凝集を抑える(分散)方法では、スライムの粘性を低下させる目的のために、地盤改良用セメント組成物中に、ナフタレンスルホン酸塩ホルマリン縮合物、又はメラミンスルホン酸塩ホルマリン縮合物を添加し、これをセメント粒子及び土粒子に吸着させることにより、電気的反発力により土壌の粒子が互いに反発し、スライムの粘性を低下させることが可能であることが知られている。グラウト工法などの地盤改良材に使用される添加剤としてポリアクリル酸が提案されている(特許文献1:特許第3253282号)。
しかしこの添加剤は、内陸部などの粘性土(ミネラル分が少ない)に用いると、顕著な粘性低下の効果が得られるが、海成粘土などのようにミネラル分(特に多価金属イオン)を含む粘性土に用いると、多価金属イオンが、電気二重層を圧縮し、分散メカニズムを阻害するために充分な粘性低下の効果が得られないという問題点がある。
【0004】
さらに、土の種類の内、海成粘土については、凝集の原因と考えられる分散を阻害する多価金属イオンを除去する目的のために、重炭酸塩を添加することが知られている(特許文献2:特開平7−206495、特許文献3:特開平10−212482)。しかし、この方法によればその土のミネラル分を除去することによる凝集防止は可能であるが、海成粘土以外の、ミネラル分が少ない粘性土の分散(粘性低下)には、充分な効果がないことが判明している。
【0005】
また分散剤としては、ナフタレンスルホン酸やメラミンスルホン酸のホルマリン縮合物(特許文献4:特開昭61−146747、特許文献5:特開平6−127993)では、スライムの粘性低下効果が充分ではなく、分散補助剤(ビルダー)として用いられる、炭酸塩及び硫酸塩(特許文献2:特開平7−206495、特許文献3:特開平10−212482)には多価金属イオンの除去効果がなく、またリン酸塩は特定の化合物以外その効果は得られない。
【0006】
また上記と類似の添加剤を使用した水硬性組成物も提案されているが、それに適用される工法が異なり、或は、使用される目的が異なるものである。その一例として、水溶性高分子(ポリアクリル酸)と重炭酸塩とを含む水硬性組成物(特許文献6:特許2668598号)は、高炉スラグをベースに、アルカリの存在下で高強度複合材料を得るものであって、本発明の地盤改良セメント組成物用添加剤とは異なるものである。
高性能減水剤と重炭酸塩を含むセメント混和材(特許文献7:特開平11−71147、特許文献8:特開平11−116306)は、高強度コンクリート(モルタル)を目的とするセメント組成物であり、また高性能減水剤は、ナフタレンスルホン酸、メラミンスルホン酸などのホルマリン縮合物であり、さらに重炭酸塩は、凝結促進剤または急結剤として使用されている。コンクリートのワーカビリティ改良方法(特許文献9:特公平1−52342)としても使用されているが、地盤改良に用いられることについては全く教示も示唆もされていない。(実施例1参照)
【0007】
【特許文献1】
特許第3253282号公報(第1〜3頁)
【特許文献2】
特開平7−206492号公報(第1〜3頁、実施例〜10)
【特許文献3】
特開平10−212482号公報(第1〜3頁)
【特許文献4】
特開昭61−146747号公報(第1〜8頁)
【特許文献5】
特開平6−127993号公報(第1〜4頁)
【特許文献6】
特許第2668598号公報(第1〜8頁)
【特許文献7】
特開平11−71147号公報(第1〜3頁)
【特許文献8】
特開平11−116306号公報(第1〜3頁)
【特許文献9】
特公平1−52342号公報(第1〜6頁)
【0008】
【発明が解決しようとする課題】
本発明は、地盤改良セメント組成物を改良すべき地盤に打設したとき、地盤改良セメント組成物の、この改良対象土中への拡散及び混合を促進し、地盤改良セメント組成物の打設により地盤から排出されるべきスライムの排出を円滑に行うことができ、かつ排出されたスライムが海水中に流入したとき、その周辺海域の汚濁を防止乃至減少させることを可能にする地盤改良セメント組成物用添加剤、とそれを用いる地盤改良セメント組成物、及びこれを用いる地盤改良方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明の地盤改良セメント組成物用添加剤は、(イ)ポリアクリル酸及びその水溶性塩の少なくとも1種を含む重合体成分と、及び(ロ)水溶性重炭酸塩の少なくとも1種を含む重炭酸塩成分とを含み、前記重合体成分(イ)と、前記重炭酸塩成分(ロ)との質量比が、 100 : 500 100 : 5,000 であることを特徴とするものである。
本発明の地盤改良セメント組成物用添加剤において、前記重合体成分(イ)に含まれる前記ポリアクリル酸の平均分子量が1,000〜50,000の範囲内にあることが好ましい。
本発明の地盤改良セメント組成物用添加剤において、前記重炭酸塩成分(ロ)に含まれる水溶性重炭酸塩が、炭酸水素1価金属塩から選ばれることが好ましい。
本発明の地盤改良セメント組成物用添加剤において、追加成分として、(ハ)有機酸及びその塩、ポリリン酸及びその塩、並びに糖、及び糖アルコールから選ばれた少なくとも1種からなる硬化遅延剤、並びに、(ニ)オキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種からなる消泡剤から選ばれた少なくとも1員を更に含んでいてもよい。
本発明の地盤改良セメント組成物用添加剤において、前記硬化遅延剤(ハ)および前記消泡剤(ニ)の含有量が、前記重合体成分(イ)100質量部に対して、それぞれ50〜1,000質量部、及び1〜70質量部であることが好ましい。
本発明の地盤改良セメント組成物は、少なくとも50質量%のセメントを含むセメント系固化材と、このセメント系固化材100質量部に対し、0.1〜25質量部の、前記本発明の地盤改良セメント組成物用添加剤とを含むことを特徴とするものである。
本発明の地盤改良セメント組成物において、追加添加材料として、高炉スラグ、石灰石粉、フライアッシュ、シリカ微粉末、炭酸カルシウム及び石膏から選ばれた少なくとも1種からなる添加剤を更に含んでいてもよい。
本発明の地盤改良方法は、前記本発明の地盤改良セメント組成物を、その質量の50〜200%の混練水に混合して地盤改良セメント組成物スラリーを調製し、この地盤改良セメント組成物スラリーを、改良すべき地盤中に、改良対象土の容積の0.1〜1.5倍の容積をもって打設・混合し、硬化させることを特徴とするものである。
本発明の地盤改良方法は、前記地盤が、土粒子径75μm 以下の細粒分を50質量%以上の含有率で含むか、又は5μm以下の土粒子径を有する粘土分を20質量%以上の含有率で含み、前記地盤改良セメント組成物スラリーにおける混練水の質量Wの地盤改良セメント組成物の質量Cに対する質量比W / Cが1 : 0.5〜1 : 2である場合に有効に適用することができる。
【0010】
【発明の実施の形態】
本発明に係る地盤改良セメント組成物用添加剤は、
(イ)ポリアクリル酸及びの水溶性塩の少なくとも1種を含む重合体成分と、
(ロ)水溶性重炭酸塩の少なくとも1種を含む重炭酸塩成分と、
を、100:500〜100:5000の質量比で含むものである
(ハ)本発明の地盤改良セメント組成物用添加剤は、必要により上記成分(イ)、(ロ)に加えて、有機酸及びその塩、ポリリン酸及びその塩、並びに糖、及び糖アルコールから選ばれた少なくとも1種からなる硬化遅延剤、及び
(ニ)オキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種からなる消泡剤
の1種以上を含むことができる。
上記成分(イ)及び(ロ)並びに必要により成分(ハ)及び(ニ)の少なくとも1種を含む本発明の添加剤を、地盤改良セメント組成物に含有させることにより、あらゆる地盤に対し、地盤改良セメント組成物の硬化性能を低下させることなく、スライムの粘性を低下させ(流動性を向上させ)ることができ、地盤改良工事の効率を高め、その効果を向上させることができる。
【0011】
本発明の添加剤に用いられる重合体成分(イ)は、アクリル酸、及び/又はそれらの水溶性塩、例えばアルカリ金属塩、アンモニウム塩及び低級アルキルアンモニウム塩から選ばれた少なくとも1種を含むものであり、特に、ポリアクリル酸のナトリウム塩及び/又はアンモニウム塩を含むことが好ましい。これらの重合体成分(イ)を構成するポリアクリル酸の質量平均分子量は1,000〜50,000の範囲内にあることが好ましく、5,000〜10,000の範囲内にあることがさらに好ましい。平均分子量が上記範囲内にあるとき、重合体成分(イ)は高い粘性低下の効果を示すことができる。上記質量平均分子量は、ゲルパーミエーションクロマトグラフ法(標準物質:ポリスチレンスルホン酸ナトリウム/水系)により測定することができる。
すなわち、重合体成分(イ)の平均分子量が1,000未満の場合十分な、粘性低下の効果が得られないことがあり、またそれが、50,000をこえると、凝集作用が働き、粘性低下の効果がほとんど得られないことがある。
本発明の添加剤において、ポリアクリル酸以外の、不飽和モノカルボン酸(例えば、メタクリル酸、及びマレイン酸、フマル酸、及びイタコン酸)など及び不飽和ジカルボン酸の重合体及びその少なくとも1種を含む共重合体、及びそれらの水溶性塩から選ばれた少なくとも1種が、追加成分として含まれていてもよい。
【0012】
本発明の添加剤に用いられる重炭酸塩成分(ロ)は、好ましくは、炭酸水素ナトリウム及び炭酸水素カリウムなどの炭酸水素1価金属塩から選ばれることが好ましい。成分(ロ)は、地盤改良に及ぼす土壌中の多価金属イオンの悪影響を防止する効果を有する。
【0013】
重炭酸塩成分(ロ)の配合量は、重合体成分(イ)の質量、100質量部に対し、500〜5,000質量部であ、改良土の強度をさらに高めるためには、500〜2,000質量部であることが好ましい。この質量比(ロ)/(イ)が、500/100未満であるときは、地盤中の土壌の多価金属イオンの影響により、混合土の、粘性低下の効果が不十分になり、またそれが5000/100をこえると、地盤改良セメント組成物スラリーが短時間内に凝結するため、地盤改良セメント組成物スラリーを深層地盤に打設・混合するときに、配管を閉塞させることがある。
【0014】
本発明の添加剤に必要により含まれる追加成分(ハ)は、有機酸及びその塩、ポリリン酸及びその塩、並びに糖及び糖アルコールから選ばれた少なくとも1種からなるものであって、地盤改良セメント組成物スラリーの分散性を高め、硬化時間を長くする硬化遅延剤として作用するものである。
【0015】
追加成分(ハ)に用いられる有機酸及びその塩は、クエン酸、リンゴ酸、酒石酸、グルコン酸並びにこれらのナトリウム塩及びカリウム塩などの水溶性塩から選ばれることが好ましい。
追加成分(ハ)に用いられるポリリン酸及びその塩は、トリポリリン酸、テトラポリリン酸、ヘキサメタリン酸並びにこれらのナトリウム塩及びカリウム塩などの水溶性塩から選ばれることが好ましい。
追加成分(ハ)に用いられる糖及び糖アルコールは、グルコース、フラクトース、ガラクトース、サッカロース、キシロース、アビトース、リポーズ、マルトース、異性化糖等の単糖類、二糖、三糖等のオリゴ糖、デキストリン等の多糖類およびこれらを含む糖蜜類、並びに、ソルビトール等の糖アルコールから選ばれることが好ましい。
【0016】
追加成分(ハ)は、硬化時間のコントロールの観点から、クエン酸ナトリウム、トリポリリン酸ナトリウム、及びサッカロースから選ばれた1種以上を含むことが好ましい。
追加成分(ハ)の配合量は、重合体成分(イ)100質量部に対し、50〜1,000質量部であることが好ましく、200〜800質量部であることがより好ましい。追加成分(ハ)の配合量が、50質量部以下では、地盤改良工事における硬化時間の遅延効果が不十分になることがあり、またそれが1,000質量部をこえると、十分な強度が得られないことがある。
【0017】
本発明において、追加消泡剤成分(ニ)としてオキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種が用いられる。これらの化合物は、下記一般式(1)により表される。
R−O(PO)m (EO)n H (1)
〔但し、式(1)中、Rは水素原子、または、6〜24個の炭素原子を含むアルキル基、アルケニル基又はアリール基を表し、POはオキシプロピレン基を表し、EOはオキシエチレン基を表し、mは1〜50の整数を表し、nは0〜50の整数を表す〕。
式(1)の化合物において、Rが水素原子であるか、或はC6 −C18アルキル基であることが好ましい。Rが水素原子の場合、式(1)の化合物はオキシプロピレン、ポリオキシプロピレン、エチレン、ポリオキシエチレンなどのオキシアルキレン及びポリオキシアルキレンを包含する。
【0018】
本発明の追加成分(ニ)として好ましい消泡剤化合物としては、Rがラウリル基でありmが3、nが0のポリオキシプロピレン(m=3)ラウリルエーテル、Rがラウリル基でありmが0、nが1のオキシエチレンラウリルエーテルなどが用いられる。
本発明の添加剤において、追加成分(ニ)の配合量は、重合体成分(イ)100質量部に対し、追加成分(ニ)が1〜70質量部であることが好ましく、より好ましくは10〜50質量部であることがより好ましい。
【0019】
本発明の地盤改良セメント組成物用添加剤には、必要により、前記成分(イ)、(ロ)及び追加成分(ハ)、(ニ)に加えて、従来の地盤改良セメント組成物に用いられているAE剤、AE減水剤、高性能減水剤、遅延剤、早強剤、促進剤、起泡剤、発泡剤、消泡剤、増粘剤、防水剤等の公知の添加剤が配合されていてもよい。
【0020】
本発明の地盤改良セメント組成物は、少なくとも50質量%のセメントを含むセメント系固化材と、このセメント系固化材100質量部に対し、0.1〜25質量部の、前記本発明の地盤改良用セメント組成物用添加剤とを含むものである。
本発明に使用するセメントとしては、普通、早強、超早強、中庸熱、耐硫酸塩等の各種ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメントなどJISに規定されているものを包含し、本発明の課題解決に支障がない限り、その種類には、格別の制限はない。
【0021】
本発明の地盤改良セメント組成物には、追加添加材料が50質量%以下の含有量で含まれていてもよく、特に高粘性を有する土質に対しては、本発明の地盤改良セメント組成物用添加剤の配合量に応じて、30〜50質量%の追加添加材料が含まれていることが好ましい。この追加添加材料としては、高炉スラグ、石灰石粉、フライアッシュ、シリカ微粉末、炭酸カルシウム及び石膏から選ばれた少なくとも1種が用いられ、必要によりさらに石炭灰、溶融スラグ、ガラスカレットなどが含まれていてもよく、シリカ微粉末は、フュームドシリカを包含する。高炉スラグ、フライアッシュ及びヒュームドシリカはいわゆるポゾラン反応やマイクロフィラー効果を奏する添加材であり、長期強度を増大させる効果がある。さらに、これらの追加添加材料は、セメント粒子と添加材の粒子が均一に分散し、凝集を防止するため、材料分離を抑制する効果を発揮することができる。またフライアッシュは球状の粉末で、そのベアリング効果により、セメント組成物の流動性を向上させることができる。
【0022】
本発明の地盤改良セメント組成物において、セメント系固化材と、前記地盤改良セメント組成物用添加剤との配合質量比は、100:0.1〜100:25であることが好ましく、100:0.5〜100:10であることがより好ましく、100:1〜100:5であることがさらに好ましい。またセメント系固化材100質量部に対し、添加剤の各成分の配合量は、
重合体成分(イ):0.01〜2.0質量部、
重炭酸塩成分(ロ):0.1〜10.0質量部、
追加硬化遅延剤成分(ハ):0〜10質量部、
追加消泡剤成分(ニ):0〜1.0質量部、
であることが好ましい。
セメント系固化材100質量部に対して、本発明の添加剤の配合量が0.1質量部未満であると本発明の、添加剤の効果が不十分になることがあり、またそれが25質量部をこえると、セメント系固化材の地盤改良効果が不十分になることがある。
【0023】
本発明の地盤改良方法において、本発明の地盤改良セメント組成物を、その質量の50〜200%、好ましくは60〜150%の混練水に混合して地盤改良セメント組成物スラリーを調製し、この地盤改良セメント組成物スラリーを、改良すべき地盤中に、改良対象土の容積の0.1〜1.5倍の容積、をもって打設・混合し、硬化させる。
地盤改良セメント組成物スラリー中の混練水の量が、地盤改良セメント組成物の質量の50%未満のときは、得られるスラリーの粘性が増大しポンプ圧送が困難になりワーカビリティの悪化を生ずることがあり、またそれが200%をこえると、材料分離が懸念され、改良土の、強度低下やバラツキを生ずることがある。
また、地盤改良セメント組成物スラリーの打設量が、改良対象土の容量の0.1倍以下であると、地盤改良セメント組成物スラリーと、改良対象土の混合不良が生じ品質が悪化することがある。
【0024】
硬化した改良土の品質を悪くする因子のうち、第一の因子として、改良対象土の特性と使用するセメント組成物の相性があることが、本発明に伴う試験で明らかとなった。土の土粒子径が75μm以下の細粒土の含有率が30%を超える地盤(参考文献あり)では、強度発現効果が悪くなる。その要因として混ざり具合が重要である。混ざり具合は、土の土粒子径が5μm以下の粘土分の含有率が40%を超える地盤では、コロイドの電荷作用と凝集により偽凝結を生じ(流動性を失った状態)になり、攪拌する施工機械の攪拌機構の能力を十分に発揮できないまま硬化してしまい、セメント組成物スラリーの混練不足を招くことがある。このような場合には、本発明の地盤改良セメント組成物を使用することにより、混練直後から30分までの固まらない状態の流体、いわゆるビンガム流体のせん断力を軽減することが可能になり、混ざり具合を改善することができる。従って、設備能力を十分に発揮でき、工程の遅延や改良物の悪化を防止できる。発明では海成粘土を用いた試験および内陸型粘性土を用いた試験において、本発明の地盤改良セメント組成物スラリー、および従来の固化材スラリーとを比較すると、本発明の地盤改良セメント組成物スラリーによるものが、より良好な成果が得られ、混合後30分程度まではスライムの低粘性が確保でき、ワーカビリティが著しく改善できることが確認された。(後記実施例11参照)
【0025】
地盤改良方法において、地盤が、土粒子径75μm以下の細粒分を50質量%以上の含有率で含むか、又は5μm以下の土粒子径を有する粘土分を20質量%以上の含有率で含む場合、地盤改良セメント組成物スラリーにおける混練水の質量Wの、地盤改良セメント組成物の質量Cに対する質量比W/Cを1:0.5〜1:2にコントロールすることが好ましい。
また、上記の場合、地盤改良セメント組成物スラリーの体積Vmの、改良すべき地盤の土壌体積Vに対する比Vm/Vは、0.1〜1.5にコントロールすることが好ましい。
【0026】
本発明の地盤改良方法は、上記のように、粒径が75μm以下の細粒土分の含有率が重量比で30%以上を超える土質、好ましくは、粒径が75μm以下の細粒土分の含有率が重量比で50%以上を超える土質または、土粒子径が5μm以下の粘土分の含有率が20%以上を超える土質、最も好ましくは75μm以下の細粒土分の含有率が重量比で70%以上を超える土質または、土粒子径が5μm以下の粘土分の含有率が40%以上を超える土質に対し、最も有効に用いられる。
【0027】
本発明の地盤改良方法が用いられる環境には、地表から直接もしくは所定の深さの施工深度からセメント組成物スラリーと土とを混合攪拌する陸上施工で用いられる場合と、海面上で海底から直接もしくは所定の深さの施工深度からセメント組成物スラリーと土とを混合攪拌する海上施工で使用される場合とがある。これらのうち、海上施工においては、セメント組成物スラリーと土とが混合されたスライムは海水中に排出されるため、周辺海域の汚濁が懸念される。特に海底地盤で多く見られる海成粘土では、前述のように、スライムの性状において、改良土の品質やワーカビリティーを確保する上で粘性を低く抑える必要があり、このため排出されたスライムによる周辺海域の汚濁が生ずる可能性がある。本発明の地盤改良セメント組成物スラリーと土(海成粘土)とを用いた実験では、混合土の粘性は、前述のよう低く抑えることができた。この混合土を海水中に投入し、濁度測定を行ったところ、海水中に海成粘土のみを投入した場合と比較しても大幅に濁度の低下、すなわち混合土の拡散を抑制し得ることが明らかになった。(後記実施例12参照)
【0028】
【実施例】
本発明を下記実施例によりさらに説明する。
【0029】
実施例1〜9及び比較例1〜11
実施例1〜9及び比較例1〜11の各々において、下記成分(イ)〜(ニ)を用いて、地盤改良セメント組成物用添加剤を調製し、これを、下記セメント系固化材に混合して地盤改良セメント組成物を調製し、この地盤改良セメント組成物から調製された地盤改良セメント組成物スラリーを下記記載の試料土に混合して水硬性セメント混合物を調製した。
【0030】
地盤改良セメント組成物用添加剤の成分
〔成分(イ)〕
・(イ−1):「ポリアクリル酸」(質量平均分子量:8000)
・(イ−2):「ポリアクリル酸ナトリウム塩」(質量平均分子量:8000)
〔成分(ロ)〕
・(ロ−1):炭酸水素ナトリウム
・(ロ−2):炭酸水素カリウム
〔成分(ハ)〕
・(ハ−1):クエン酸三ナトリウム
・(ハ−2):トリポリリン酸ナトリウム
〔成分(ニ)〕
・(ニ−1):オキシアルキレンアルキルエーテル(商標:SNデフォーマー15−P、サンノプコ社製)
・(ニ−2):ポリオキシアルキレンアルキルエーテル(商標:消泡剤No.8、花王製)
【0031】
セメント系固化材
・セメント:普通ポルトランドセメント
添加材
・高炉スラグ:エスメント4000(新日本化学製)
【0032】
実験対象の土
・内陸部粘性土:茨城県つくば地方の工事現場で採取(湿潤密度ρt=1.66g/cm3 、含水比ωn=49.0%)
・海成粘土 :東京都江東区砂町の工事現場で採取(湿潤密度ρt=1.56g/cm3 、含水比ωn=72.4%)
【0033】
実施例1〜9及び比較例1〜11の各々において、表1又は2に記載のセメント系固化材と、添加剤成分(イ)〜(ニ)とを、表1又は2に記載の配合量(質量部)で調合し、得られたセメント組成物(合計100質量部)と水とを、質量比200/300の配合比で、家庭用ハンドミキサーで混合し、セメント組成物スラリー(以下セメントミルクと記す)を調製した。得られたセメントミルクと、土とを配合重量比200/300(容積比145〜147/188〜192)で、家庭用ハンドミキサーにより混合し、水硬性セメント混合物を調製した。
【0034】
上記水硬性セメント混合物を、下記試験に供した。
(1)分散性/粘性試験
水硬性セメント混合物をフローコーン(φ50×高さ51mm)に入れ、フローコーンを持ち上げ水硬性セメント混合物の拡がりをもって分散性/粘性の指標とした。結果を、拡がりの径160mm以上を「S」、140mm 以上〜160mm未満を「A」、120mm 以上〜140mm未満を「B」、100mm 以上〜120mm未満を「C」、70mm 以上〜100mm未満を「D」、70mm未満を「E」と6段階に判定し、表記した。
(2)硬化性試験
水硬性セメント混合物を、その調製から48時間静置した後、水硬性セメント混合物に5kg/cm2 の荷重をかけ、変形の有無を目視により観察し、変形しないものを「○」、変形するものを「×」と判定表記した。
実施例1〜9の試験結果を表1に示し、比較例1〜11の試験結果を表2に示す。
【0035】
【表1】

Figure 0003955255
【0036】
【表2】
Figure 0003955255
【0037】
表1及び2の註
*NSF:ナフタレンスルホン酸ホルマリン縮合物Na塩
*Na2 CO3 :炭酸ナトリウム
*Na2 SO4 :硫酸ナトリウム
【0038】
実施例10及び11並びに比較例12
実施例10,11及び比較例12の各々において、下記成分材料を用い、表3に記載の配合量で配合して、セメント組成物を調製した。
【0039】
添加剤成分
(イ):「ポリアクリル酸ナトリウム塩」(質量平均分子量:8000)
(ロ):炭酸水素ナトリウム
(ハ):クエン酸三ナトリウム
(ニ):オキシアルキレンアルキルエーテル(商標:アデカネート、旭電化工業製)
セメント系固化材成分
セメント:普通ポルトランドセメント(住友大阪セメント製)
石膏:無水石膏(日本軽金属製)
【0040】
【表3】
Figure 0003955255
【0041】
セメント組成物スラリー配合及び投入量
硬化材スラリー配合:W/C=100%(質量比)W:混練水(イオン交換水)、C:硬化材
硬化材スラリー投入量:上記硬化材配合の硬化材スラリー(Vm)を下記供試土(V)に体積比でVm/V=0.5となるよう計量し投入した。
【0042】
試料土
内陸粘土:埼玉県所沢粘性土
湿潤密度ρt=1.83g/cm3 、含水比ωn=37.3%
75μm以下含有率Fs=66%、5μm以下含有率Fs=49%
海成粘土:東京都江東区砂町粘性土
湿潤密度ρt=1.54g/cm3 、含水比ωn=71.2%
75μm以下含有率Fs=99%、5μm以下含有率Fs=53%
【0043】
改良土の作製
改良土の作製に当たっては、所定量の試料土とセメント組成物スラリーを計量混合し、ホバート型ミキサーで6分間混合攪拌を行った。
【0044】
改良土の粘性試験
改良土の粘性試験において、簡易ベーン試験装置を用いて混合攪拌直後からの改良土のベーンせん断強さの経時変化を測定した。
測定結果を図1及び図2に示す。
実施例10において内陸粘土に対し、優れた改良結果が得られ、実施例10及び11において、特に実施例11において、海成粘土に対し、優れた改良結果が得られた。
【0045】
実施例12
(1)下記組成のセメント組成物を調製した。
セメント:普通ポルトランドセメント 97.45%
添加剤
(イ):「ポリアクリル酸」(質量平均分子量:8000) 0.15%
(ロ):炭酸水素ナトリウム 1.55%
(ハ):クエン酸三ナトリウム 0.75%
(ニ):ポリオキシアルキレンアルキルエーテル 0.10%
(商標:SNデフォーマー15−P、サンノプコ社製)
(2)供試土は下記のとおりであった。
・海成粘土:東京都江東区砂町の工事現場で採取(湿潤密度ρt=1.56g/cm3 、含水比ωn=72.4%)
【0046】
(3)試験
改良土の水中(海水中)での拡散状態を確認するため、下記方法による濁度測定試験を実施した。セメント組成物200質量部と水300質量部とを家庭用ハンドミキサーで混合し、セメント組成物スラリーを調製した。上記セメント組成物スラリー200質量部と粘性土200質量部(容積比145/128)を家庭用ハンドミキサーで混合し、改良土を調製した。この改良土20gを1リットルビーカーに取り、このビーカーにイオン交換水又は海水980gを静かに投入し、その上層液を50g採取し、投入直後(攪拌前)の濁度を測定した。更にビーカー内を攪拌装置で攪拌(300rpm ×1min )し、その上層液50gを採取し300rpm 攪拌後の濁度を測定した。
(濁度)
濁度の測定は、島津製作所製 紫外分光光度計「UV−160A」を用いて行った。
濁度の指標として、海成粘土を水に分散させた状態の濁度を指標とした。
<検量線>
500ppm :海成粘土0.05%/イオン交換水
1000ppm :海成粘土0.10%/イオン交換水
2000ppm :海成粘土0.20%/イオン交換水
供試海成粘土の濁度の指標を表4に示し、海水中の海成粘土の濁度と吸光度との関係図を図3に示し、試験結果を表5に示す。
【0047】
【表4】
Figure 0003955255
【0048】
【表5】
Figure 0003955255
【0049】
表5及び図3から明らかなように、本発明方法による実施例12の海成粘土の改良土は、海水中への拡散が少なく、本発明方法が海底における海成地盤の改良に有効であることが確認された。
【0050】
【発明の効果】
本発明の地盤改良セメント組成物用添加剤は、地盤(内陸及び多価金属イオンを多く含む粘土地盤)の改良に用いられる地盤改良セメント組成物の地盤改良効果を向上させ、特に多価金属イオンを多く含む(例えば海成粘土)地盤に対し、地盤改良工事を施すときにも、排出スライムの海水中拡散を抑制し、海中環境の悪化を防止乃至抑制することができるものであって、その実用上有用なものである。
【図面の簡単な説明】
【図1】 本願発明に係る地盤改良方法を内陸粘土に施したときの粘性低減効果を示す、実施例10及び比較例12のベーン剪断力−経過時間の関係図。
【図2】 本願発明に係る地盤改良方法を海成粘土に施したときの粘性低減効果を示す、実施例10、11、比較例12のベーン剪断力−経過時間の関係図。
【図3】 本願発明に係る地盤改良方法を海成粘土に施したときの、土壌拡散防止効果判定用海水中海成粘土濃度−吸光度の関係図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an additive for ground improvement cement composition, a ground improvement cement composition containing the same, and a ground improvement method. More specifically, the present invention relates to a ground improvement cement additive that significantly improves the ground improvement performance of a cement composition used for ground improvement, a ground improvement cement composition containing the same, and a ground improvement method using the same. Is.
[0002]
[Prior art]
In general, as a characteristic of the mixed soil obtained by mixing the cement slurry and the soil to be improved, a mixed soil having a viscosity as low as possible and facilitating the discharge of slime when drilling is desired. However, if the mixed soil contains a lot of viscous soil, the viscosity of the mixed soil increases and it becomes difficult to discharge slime. This is because soil particles and cement particles in the mixed soil aggregate and lose fluidity.
[0003]
Conventionally, as countermeasures, there are a method of adding water and a method of suppressing (dispersing) aggregation of soil particles and cement particles in the mixed soil. However, the method of adding water causes a decrease in strength after curing, and if the amount of slime is excessive, it causes an economic deterioration. In the method of suppressing aggregation (dispersion) of soil particles and cement particles in the mixed soil, naphthalene sulfonate formalin condensate or melamine sulfone is included in the ground improvement cement composition for the purpose of reducing the viscosity of the slime. It is known that by adding salt formalin condensate and adsorbing it to cement particles and soil particles, the soil particles repel each other due to the electric repulsive force, and the slime viscosity can be reduced. ing. Polyacrylic acid has been proposed as an additive used for ground improvement materials such as the grout method (Patent Document 1: Japanese Patent No. 3253282).
However, when this additive is used for clayey soils (low mineral content) such as inland areas, the effect of significantly reducing viscosity can be obtained, but minerals (especially polyvalent metal ions) such as marine clay can be obtained. When used in a viscous soil, the polyvalent metal ions compress the electric double layer, and there is a problem that a sufficient viscosity reduction effect cannot be obtained to inhibit the dispersion mechanism.
[0004]
Furthermore, among marine clays among the types of soil, it is known to add bicarbonate for the purpose of removing polyvalent metal ions that hinder dispersion, which is considered to cause aggregation (patent) Document 2: JP-A-7-206495, Patent Document 3: JP-A-10-212482). However, according to this method, it is possible to prevent agglomeration by removing the mineral content of the soil, but there is a sufficient effect for the dispersion (decrease in viscosity) of viscous soils with low mineral content other than marine clay. It turns out not.
[0005]
As a dispersant, the formalin condensate of naphthalene sulfonic acid or melamine sulfonic acid (Patent Document 4: Japanese Patent Laid-Open No. 61-146747, Patent Document 5: Japanese Patent Laid-Open No. 6-127993) is not sufficient in reducing the slime viscosity. Carbonate and sulfate (Patent Document 2: JP-A-7-206495, Patent Document 3: JP-A-10-212482) used as dispersion aids (builders) have no effect of removing polyvalent metal ions. Phosphates are not effective except for specific compounds.
[0006]
A hydraulic composition using an additive similar to the above has also been proposed, but the construction method applied thereto is different or the purpose of use is different. As an example, a hydraulic composition (Patent Document 6: Japanese Patent No. 2668598) containing a water-soluble polymer (polyacrylic acid) and bicarbonate is a high-strength composite material in the presence of alkali based on blast furnace slag. This is different from the additive for ground improvement cement composition of the present invention.
A cement admixture containing a high-performance water reducing agent and bicarbonate (Patent Document 7: JP-A-11-711147, Patent Document 8: JP-A-11-116306) is a cement composition intended for high-strength concrete (mortar). In addition, high-performance water reducing agents are formalin condensates such as naphthalene sulfonic acid and melamine sulfonic acid, and bicarbonate is used as a setting accelerator or rapid setting agent. Although it is also used as a method for improving the workability of concrete (Patent Document 9: Japanese Patent Publication No. 1-52342), there is no teaching or suggestion that it is used for ground improvement. (See Example 1)
[0007]
[Patent Document 1]
Japanese Patent No. 3253282 (pages 1 to 3)
[Patent Document 2]
JP-A-7-206492 (pages 1 to 3, Examples 10)
[Patent Document 3]
JP-A-10-212482 (pages 1 to 3)
[Patent Document 4]
JP 61-146747 A (pages 1 to 8)
[Patent Document 5]
JP-A-6-127993 (pages 1 to 4)
[Patent Document 6]
Japanese Patent No. 2668598 (pages 1-8)
[Patent Document 7]
JP 11-711147 A (pages 1 to 3)
[Patent Document 8]
JP-A-11-116306 (pages 1 to 3)
[Patent Document 9]
Japanese Patent Publication No. 1-52342 (pages 1-6)
[0008]
[Problems to be solved by the invention]
The present invention promotes the diffusion and mixing of the ground improved cement composition into the soil to be improved when the ground improved cement composition is placed on the ground to be improved. A ground improvement cement composition that can smoothly discharge slime to be discharged from the ground, and can prevent or reduce pollution of the surrounding sea area when the discharged slime flows into seawater. It is intended to provide an additive for use, a ground improvement cement composition using the same, and a ground improvement method using the same.
[0009]
[Means for Solving the Problems]
  The additive for ground improvement cement composition of the present invention is (i)Polyacrylic acidAnd a polymer component comprising at least one water-soluble salt thereof, and (b) a bicarbonate component comprising at least one water-soluble bicarbonate.The mass ratio of the polymer component (I) and the bicarbonate component (B) is 100: 500 ~ 100: 5,000 IsIt is characterized by this.
  In the additive for ground improvement cement composition of the present invention, it is preferable that the average molecular weight of the polyacrylic acid contained in the polymer component (A) is in the range of 1,000 to 50,000.
  In the additive for ground improvement cement composition of the present invention, it is preferable that the water-soluble bicarbonate contained in the bicarbonate component (b) is selected from hydrogen carbonate monovalent metal salts.
  In the additive for the ground improvement cement composition of the present invention, as an additional component, (c) a curing retarder comprising at least one selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, sugars and sugar alcohols And (d) at least one member selected from at least one antifoaming agent selected from oxyalkylene alkyl ethers and polyoxyalkylene alkyl ethers.
  In the additive for ground improvement cement composition of the present invention, the content of the curing retarder (c) and the antifoaming agent (d) is 50 to 50 parts by mass with respect to 100 parts by mass of the polymer component (b). It is preferable that they are 1,000 mass parts and 1-70 mass parts.
  The ground improved cement composition of the present invention is a cement-based solidified material containing at least 50% by mass of cement, and 0.1 to 25 parts by mass of the ground improved cement composition of the present invention with respect to 100 parts by mass of the cement-based solidified material. And a physical additive.
  The ground improvement cement composition of the present invention may further contain an additive consisting of at least one selected from blast furnace slag, limestone powder, fly ash, fine silica powder, calcium carbonate and gypsum as an additional additive material. .
  The ground improvement method of the present invention comprises preparing the ground improvement cement composition slurry by mixing the ground improvement cement composition of the present invention with 50 to 200% of the mass of the kneaded water, and preparing the ground improvement cement composition slurry. Is placed and mixed in the ground to be improved in a volume of 0.1 to 1.5 times the volume of the soil to be improved, and is hardened.
  In the ground improvement method of the present invention, the ground contains a fine particle having a soil particle diameter of 75 μm or less in a content of 50% by mass or more, or a clay having a soil particle diameter of 5 μm or less is 20% by mass or more. Effectively applied when the mass ratio W / C of the mass W of the kneaded water in the ground improved cement composition slurry to the mass C of the ground improved cement composition is 1: 0.5 to 1: 2 Can do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  The additive for ground improvement cement composition according to the present invention,
  (I)Polyacrylic acidas well asSoA polymer component comprising at least one water-soluble salt of
  (B) A bicarbonate component containing at least one water-soluble bicarbonateWhen,
In a mass ratio of 100: 500 to 100: 5000
  (C)In addition to the above components (I) and (B), the additive for ground improvement cement composition of the present invention, if necessary,A curing retarder comprising at least one selected from organic acids and salts thereof, polyphosphoric acids and salts thereof, and sugars and sugar alcohols; and
  (D) Antifoaming agent comprising at least one selected from oxyalkylene alkyl ether and polyoxyalkylene alkyl ether
Including one or more ofbe able to.
  By adding the additive of the present invention containing at least one of the above components (a) and (b) and optionally components (c) and (d) to the ground improvement cement composition, Without reducing the hardening performance of the improved cement composition, the slime can be reduced in viscosity (improved fluidity), the efficiency of ground improvement work can be increased, and the effect thereof can be improved.
[0011]
  The polymer component (a) used in the additive of the present invention is acrylic acid and / or theirWater-soluble salts, for exampleIt contains at least one selected from alkali metal salts, ammonium salts and lower alkyl ammonium salts, and particularly preferably contains sodium salt and / or ammonium salt of polyacrylic acid. Consists of these polymer components (A)Polyacrylic acidThe mass average molecular weight of is preferably in the range of 1,000 to 50,000, more preferably in the range of 5,000 to 10,000. When the average molecular weight is within the above range, the polymer component (a) can exhibit a high viscosity reducing effect. The mass average molecular weight can be measured by gel permeation chromatography (standard material: sodium polystyrene sulfonate / water system).
  That is, when the average molecular weight of the polymer component (a) is less than 1,000, a sufficient viscosity reducing effect may not be obtained. In some cases, the reduction effect is hardly obtained.
  In the additive of the present invention, a polymer of unsaturated monocarboxylic acid (for example, methacrylic acid, maleic acid, fumaric acid, and itaconic acid) other than polyacrylic acid, and an unsaturated dicarboxylic acid and at least one kind thereof At least 1 sort (s) chosen from the copolymer to contain and those water-soluble salts may be contained as an additional component.
[0012]
The bicarbonate component (b) used in the additive of the present invention is preferably selected from monovalent metal bicarbonates such as sodium bicarbonate and potassium bicarbonate. The component (b) has an effect of preventing adverse effects of polyvalent metal ions in the soil on the ground improvement.
[0013]
  The amount of the bicarbonate component (b) is 500 to 5,000 parts by mass with respect to 100 parts by mass of the polymer component (a).RIn order to further increase the strength of the improved soil, it is preferably 500 to 2,000 parts by mass. When this mass ratio (b) / (b) is less than 500/100, the effect of lowering the viscosity of the mixed soil becomes insufficient due to the influence of polyvalent metal ions in the soil in the ground. When the ratio exceeds 5000/100, the ground improvement cement composition slurry congeals within a short time, and therefore, when the ground improvement cement composition slurry is placed and mixed in the deep ground, the piping may be blocked.
[0014]
The additional component (c) optionally contained in the additive of the present invention is composed of at least one selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, and sugars and sugar alcohols, It acts as a curing retarder that increases the dispersibility of the cement composition slurry and lengthens the curing time.
[0015]
The organic acid and salt thereof used for the additional component (c) are preferably selected from citric acid, malic acid, tartaric acid, gluconic acid and water-soluble salts such as sodium salt and potassium salt thereof.
The polyphosphoric acid and salt thereof used for the additional component (c) are preferably selected from tripolyphosphoric acid, tetrapolyphosphoric acid, hexametaphosphoric acid and water-soluble salts such as sodium salt and potassium salt thereof.
The sugar and sugar alcohol used in the additional component (c) are monosaccharides such as glucose, fructose, galactose, saccharose, xylose, abitose, repose, maltose, isomerized sugar, oligosaccharides such as disaccharide and trisaccharide, dextrin, etc. It is preferable to be selected from these polysaccharides and molasses containing them, and sugar alcohols such as sorbitol.
[0016]
The additional component (c) preferably contains one or more selected from sodium citrate, sodium tripolyphosphate, and saccharose from the viewpoint of controlling the curing time.
The compounding amount of the additional component (c) is preferably 50 to 1,000 parts by mass, and more preferably 200 to 800 parts by mass with respect to 100 parts by mass of the polymer component (a). If the blending amount of the additional component (c) is 50 parts by mass or less, the effect of delaying the curing time in the ground improvement work may be insufficient, and if it exceeds 1,000 parts by mass, sufficient strength is obtained. It may not be obtained.
[0017]
In the present invention, at least one selected from oxyalkylene alkyl ethers and polyoxyalkylene alkyl ethers is used as the additional antifoam component (d). These compounds are represented by the following general formula (1).
R-O (PO)m (EO)n H (1)
[In the formula (1), R represents a hydrogen atom or an alkyl group, an alkenyl group or an aryl group containing 6 to 24 carbon atoms, PO represents an oxypropylene group, and EO represents an oxyethylene group. M represents an integer of 1 to 50, and n represents an integer of 0 to 50].
In the compound of the formula (1), R is a hydrogen atom or C6 -C18An alkyl group is preferred. When R is a hydrogen atom, the compound of formula (1) includes oxyalkylenes such as oxypropylene, polyoxypropylene, ethylene, polyoxyethylene, and polyoxyalkylene.
[0018]
Preferred antifoam compounds as the additional component (d) of the present invention include polyoxypropylene (m = 3) lauryl ether in which R is a lauryl group and m is 3 and n is 0, R is a lauryl group and m is Oxyethylene lauryl ether having 0 and n of 1 is used.
In the additive of the present invention, the amount of the additional component (d) is preferably 1 to 70 parts by mass, more preferably 10 parts per 100 parts by mass of the polymer component (b). More preferably, it is -50 mass parts.
[0019]
The additive for ground improvement cement composition of the present invention can be used for conventional ground improvement cement composition in addition to the above components (b) and (b) and additional components (c) and (d), if necessary. AE agent, AE water reducing agent, high performance water reducing agent, retarder, early strengthening agent, accelerator, foaming agent, foaming agent, antifoaming agent, thickener, waterproofing agent, etc. are blended It may be.
[0020]
The ground improvement cement composition of the present invention is a cement-based solidified material containing at least 50% by mass of cement and 0.1 to 25 parts by mass of the ground improvement of the present invention with respect to 100 parts by mass of the cement-based solidified material. And an additive for cement composition.
The cement used in the present invention includes those specified in JIS such as various portland cements such as ordinary, early strength, ultra-early strength, moderate heat, and sulfate resistant, blast furnace cement, silica cement, fly ash cement and the like. As long as there is no problem in solving the problems of the present invention, there is no particular limitation on the type.
[0021]
The ground improved cement composition of the present invention may contain an additional additive material in a content of 50% by mass or less. Especially for soil having high viscosity, the ground improved cement composition of the present invention is used. It is preferable that 30 to 50% by mass of an additional additive material is included depending on the amount of the additive. As this additional additive material, at least one selected from blast furnace slag, limestone powder, fly ash, fine silica powder, calcium carbonate and gypsum is used, and if necessary, coal ash, molten slag, glass cullet and the like are included. The fine silica powder includes fumed silica. Blast furnace slag, fly ash, and fumed silica are additives that exhibit a so-called pozzolanic reaction and microfiller effect, and have the effect of increasing long-term strength. Further, these additional additive materials can exhibit the effect of suppressing material separation because the cement particles and the additive particles are uniformly dispersed to prevent aggregation. Further, fly ash is a spherical powder, and the fluidity of the cement composition can be improved by its bearing effect.
[0022]
In the ground improvement cement composition of the present invention, the blending mass ratio of the cement-based solidifying material and the additive for ground improvement cement composition is preferably 100: 0.1 to 100: 25, and 100: 0. 5 to 100: 10 is more preferable, and 100: 1 to 100: 5 is even more preferable. Moreover, the compounding quantity of each component of an additive with respect to 100 mass parts of cementitious solidification materials is as follows.
Polymer component (I): 0.01 to 2.0 parts by mass,
Bicarbonate component (b): 0.1 to 10.0 parts by mass,
Additional curing retarder component (C): 0 to 10 parts by mass,
Additional antifoam component (d): 0 to 1.0 part by mass,
It is preferable that
When the compounding amount of the additive of the present invention is less than 0.1 parts by mass with respect to 100 parts by mass of the cement-based solidifying material, the effect of the additive of the present invention may be insufficient, and 25 If the mass part is exceeded, the ground improvement effect of the cement-based solidified material may be insufficient.
[0023]
In the ground improvement method of the present invention, a ground improvement cement composition slurry is prepared by mixing the ground improvement cement composition of the present invention with 50 to 200%, preferably 60 to 150%, of the mass of kneaded water. The ground improvement cement composition slurry is placed and mixed in the ground to be improved at a volume of 0.1 to 1.5 times the volume of the soil to be improved, and cured.
If the amount of kneading water in the ground improvement cement composition slurry is less than 50% of the mass of the ground improvement cement composition, the viscosity of the resulting slurry will increase and pumping will be difficult, resulting in poor workability. In addition, if it exceeds 200%, there is a concern about material separation, and the strength of the improved soil may be reduced or may vary.
In addition, if the amount of the ground improvement cement composition slurry is 0.1 times or less the capacity of the soil to be improved, the ground improvement cement composition slurry and the soil to be improved are poorly mixed and the quality is deteriorated. There is.
[0024]
Among the factors that deteriorate the quality of the hardened improved soil, the first factor has revealed that the properties of the soil to be improved and the cement composition to be used are compatible with the test according to the present invention. In the ground where the content of fine-grained soil having a soil particle diameter of 75 μm or less exceeds 30% (there is a reference), the strength development effect is deteriorated. The mixing condition is important as the factor. As for the mixing condition, when the soil content of the soil has a soil particle diameter of 5 μm or less and the soil content exceeds 40%, a colloidal charge action and agglomeration result in the formation of false coagulation (a state in which fluidity has been lost), and stirring is performed. It may harden | cure without fully exhibiting the capability of the stirring mechanism of a construction machine, and may cause the kneading | mixing shortage of a cement composition slurry. In such a case, by using the ground improvement cement composition of the present invention, it becomes possible to reduce the shearing force of the fluid that does not solidify immediately after kneading until 30 minutes, that is, the so-called Bingham fluid, and is mixed. The condition can be improved. Therefore, the facility capacity can be fully exhibited, and the delay of the process and the deterioration of the improved product can be prevented. In the invention, in the test using marine clay and the test using inland type clay, the ground improved cement composition slurry of the present invention and the conventional solidified material slurry are compared, and the ground improved cement composition slurry of the present invention is compared. However, it was confirmed that better results were obtained, and that the low viscosity of the slime could be secured up to about 30 minutes after mixing, and the workability could be remarkably improved. (See Example 11 below)
[0025]
In the ground improvement method, the ground includes a fine particle having a soil particle diameter of 75 μm or less in a content of 50% by mass or more, or a clay having a soil particle diameter of 5 μm or less in a content of 20% by mass or more. In this case, the mass ratio W / C of the mass W of the kneaded water in the ground-improved cement composition slurry to the mass C of the ground-improved cement composition is preferably controlled to 1: 0.5 to 1: 2.
In the above case, the ratio Vm / V of the volume Vm of the ground improvement cement composition slurry to the soil volume V of the ground to be improved is preferably controlled to 0.1 to 1.5.
[0026]
As described above, the ground improvement method of the present invention is a soil whose content of fine-grained soil having a particle size of 75 μm or less exceeds 30% by weight, preferably a fine-grained soil having a particle size of 75 μm or less. The soil content is more than 50% or more by weight, or the soil content is more than 20%, and most preferably the fine soil content is 75μm or less. It is most effectively used for soils having a ratio exceeding 70% or more, or soils having a soil particle diameter of more than 40%.
[0027]
In the environment where the ground improvement method of the present invention is used, there are a case where it is used in land construction where the cement composition slurry and soil are mixed and stirred directly from the ground surface or from a construction depth of a predetermined depth, and directly from the sea floor on the sea surface. Or it may be used by the marine construction which mixes and stirs a cement composition slurry and soil from the construction depth of a predetermined depth. Among these, in the offshore construction, the slime mixed with the cement composition slurry and the soil is discharged into the seawater, so there is a concern about contamination of the surrounding sea area. Especially for marine clay, which is often found on the seabed, it is necessary to keep the viscosity low in order to ensure the quality and workability of the improved soil in the properties of the slime. May occur. In the experiment using the ground improved cement composition slurry of the present invention and soil (marine clay), the viscosity of the mixed soil could be kept low as described above. When this mixed soil was put into seawater and turbidity measurement was performed, even if compared with the case where only marine clay was thrown into seawater, the decrease in turbidity, that is, the diffusion of mixed soil can be suppressed. It became clear. (See Example 12 below)
[0028]
【Example】
The invention is further illustrated by the following examples.
[0029]
Examples 1-9 and Comparative Examples 1-11
  Examples 1-9 and Comparative Examples 111In each of the following components (i) to (d), an additive for ground improvement cement composition is prepared, and this is mixed with the following cement-based solidifying material to prepare a ground improvement cement composition. A hydraulic cement mixture was prepared by mixing the ground improved cement composition slurry prepared from the ground improved cement composition with the sample soil described below.
[0030]
Ingredients for additives for ground improvement cement composition
[Ingredient (I)]
-(I-1): "Polyacrylic acid" (mass average molecular weight: 8000)
-(I-2): "Polyacrylic acid sodium salt" (mass average molecular weight: 8000)
[Ingredients (b)]
・ (Ro-1): Sodium bicarbonate
・ (B-2): Potassium bicarbonate
[Ingredient (C)]
・ (C-1): Trisodium citrate
(C-2): sodium tripolyphosphate
[Ingredient (d)]
(D-1): oxyalkylene alkyl ether (trademark: SN deformer 15-P, manufactured by San Nopco)
(D-2): polyoxyalkylene alkyl ether (trademark: antifoaming agent No. 8, manufactured by Kao)
[0031]
Cement-based solidifying material
・ Cement: Ordinary Portland cement
Additives
・ Blast furnace slag: Esment 4000 (manufactured by Shin Nippon Chemical)
[0032]
Experiment soil
・ Inland viscous soil: collected at the construction site in Tsukuba, Ibaraki Prefecture (wet density ρt = 1.66 g / cmThree , Water content ratio ωn = 49.0%)
・ Marine clay: collected at a construction site in Sunamachi, Koto-ku, Tokyo (wet density ρt = 1.56 g / cmThree , Moisture content ωn = 72.4%)
[0033]
  Examples 1-9 and Comparative Examples 111In each of the above, the cement-based solidifying material described in Table 1 or 2 and the additive components (i) to (d) were blended in the blending amounts (parts by mass) described in Table 1 or 2, and obtained. The cement composition (total 100 parts by mass) and water were mixed with a household hand mixer at a mass ratio of 200/300 to prepare a cement composition slurry (hereinafter referred to as cement milk). The obtained cement milk and soil were mixed at a blending weight ratio of 200/300 (volume ratio of 145 to 147/188 to 192) by a household hand mixer to prepare a hydraulic cement mixture.
[0034]
  The hydraulic cement mixture was subjected to the following test.
(1) Dispersibility / viscosity test
  The hydraulic cement mixture was put into a flow cone (φ50 × height 51 mm), the flow cone was lifted and the spread of the hydraulic cement mixture was used as an index of dispersibility / viscosity. The result is “S” for an expanded diameter of 160 mm or more, 140mm more than~ 160mmLess thanTo "A", 120mm more than~ 140mmLess thanTo "B", 100mm more than~ 120mmLess thanTo “C”, 70mm more than~ 100mmLess than"D", 70mmLess thanWas marked as “E” in 6 stages.
(2) Curability test
  The hydraulic cement mixture is allowed to stand for 48 hours from its preparation, and then added to the hydraulic cement mixture at 5 kg / cm.2 And the presence or absence of deformation was visually observed, and those that did not deform were judged as “◯”, and those that deformed were marked as “x”.
  The test results of Examples 1 to 9 are shown in Table 1, and Comparative Examples 1 to11The test results are shown in Table 2.
[0035]
[Table 1]
Figure 0003955255
[0036]
[Table 2]
Figure 0003955255
[0037]
Table 1 and 2
* NSF: Naphthalenesulfonic acid formalin condensate Na salt
* Na2 COThree :sodium carbonate
* Na2 SOFour : Sodium sulfate
[0038]
Examples 10 and 11 and Comparative Example 12
  Examples 10 and 11 and comparative examples12In each of the above, the following component materials were used and blended in the blending amounts shown in Table 3 to prepare cement compositions.
[0039]
Additive component
(I): “Polyacrylic acid sodium salt” (mass average molecular weight: 8000)
(B): Sodium bicarbonate
(C): Trisodium citrate
(D): Oxyalkylene alkyl ether (Trademark: Adecanate, manufactured by Asahi Denka Kogyo)
Cement-based solidifying material components
Cement: Ordinary Portland cement (manufactured by Sumitomo Osaka Cement)
Gypsum: Anhydrous gypsum (Nippon Light Metal)
[0040]
[Table 3]
Figure 0003955255
[0041]
Cement composition slurry formulation and input
Curing material slurry blend: W / C = 100% (mass ratio) W: kneading water (ion exchange water), C: curing material
Curing material slurry input amount: The curing material slurry (Vm) blended with the above-mentioned curing material was weighed and introduced into the following sample soil (V) so that Vm / V = 0.5 by volume.
[0042]
Sample soil
Inland clay: Tokorozawa clay soil, Saitama
Wet density ρt = 1.83 g / cmThree , Moisture content ωn = 37.3%
75 μm or less content Fs = 66%, 5 μm or less content Fs = 49%
Marine clay: sandy clay soil, Koto-ku, Tokyo
Wet density ρt = 1.54g / cmThree , Water content ωn = 71.2%
75 μm or less content Fs = 99%, 5 μm or less content Fs = 53%
[0043]
Production of improved soil
In preparing the improved soil, a predetermined amount of the sample soil and the cement composition slurry were weighed and mixed, and mixed and stirred for 6 minutes with a Hobart mixer.
[0044]
Viscosity test of improved soil
In the improved soil viscosity test, the change with time of the vane shear strength of the improved soil immediately after mixing and stirring was measured using a simple vane test apparatus.
The measurement results are shown in FIGS.
In Example 10, an excellent improvement result was obtained for inland clay, and in Examples 10 and 11, particularly in Example 11, an excellent improvement result was obtained for marine clay.
[0045]
Example 12
(1) A cement composition having the following composition was prepared.
Cement: Ordinary Portland cement 97.45%
Additive
(I): “Polyacrylic acid” (mass average molecular weight: 8000) 0.15%
(B): Sodium bicarbonate 1.55%
(C): Trisodium citrate 0.75%
(D): Polyoxyalkylene alkyl ether 0.10%
(Trademark: SN deformer 15-P, manufactured by San Nopco)
(2) The test soil was as follows.
・ Marine clay: collected at the construction site in Sunamachi, Koto-ku, Tokyo (wet density ρt = 1.56 g / cmThree , Moisture content ωn = 72.4%)
[0046]
(3) Test
In order to confirm the diffusion state of the improved soil in water (in seawater), a turbidity measurement test was carried out by the following method. 200 parts by mass of the cement composition and 300 parts by mass of water were mixed with a household hand mixer to prepare a cement composition slurry. 200 parts by mass of the above cement composition slurry and 200 parts by mass of viscous soil (volume ratio 145/128) were mixed with a household hand mixer to prepare improved soil. 20 g of this improved soil was taken in a 1 liter beaker, and 980 g of ion-exchanged water or seawater was gently put into this beaker, 50 g of the upper layer liquid was sampled, and turbidity was measured immediately after the addition (before stirring). Further, the inside of the beaker was stirred with a stirrer (300 rpm × 1 min), 50 g of the upper layer liquid was collected, and the turbidity after stirring at 300 rpm was measured.
(Turbidity)
The turbidity was measured using an ultraviolet spectrophotometer “UV-160A” manufactured by Shimadzu Corporation.
As an index of turbidity, the turbidity of marine clay dispersed in water was used as an index.
<Calibration curve>
500ppm: Marine clay 0.05% / ion exchange water
1000ppm: Marine clay 0.10% / ion-exchanged water
2000ppm: Marine clay 0.20% / ion-exchanged water
The turbidity index of the test marine clay is shown in Table 4, the relationship between the turbidity and absorbance of the marine clay in seawater is shown in FIG. 3, and the test results are shown in Table 5.
[0047]
[Table 4]
Figure 0003955255
[0048]
[Table 5]
Figure 0003955255
[0049]
As is apparent from Table 5 and FIG. 3, the improved soil of the marine clay of Example 12 according to the method of the present invention has little diffusion into seawater, and the method of the present invention is effective for improving the marine ground on the seabed. It was confirmed.
[0050]
【The invention's effect】
The additive for ground improvement cement composition of the present invention improves the ground improvement effect of the ground improvement cement composition used for improvement of the ground (inland and clay ground containing a large amount of polyvalent metal ions). When the ground improvement work is performed on the ground containing a lot of (e.g. marine clay), the diffusion of the discharged slime in the sea water can be suppressed, and the deterioration of the sea environment can be prevented or suppressed. It is practically useful.
[Brief description of the drawings]
FIG. 1 shows a tenth embodiment and a comparative example showing the effect of reducing viscosity when the ground improvement method according to the present invention is applied to inland clay.12Of vane shearing force-elapsed time in FIG.
FIG. 2 Examples 10 and 11 and Comparative Examples showing the effect of reducing viscosity when marine clay is subjected to the ground improvement method according to the present invention12Of vane shearing force-elapsed time in FIG.
FIG. 3 is a graph showing the relationship between the concentration of marine clay in seawater and the absorbance when determining the soil diffusion prevention effect when the soil improvement method according to the present invention is applied to marine clay.

Claims (9)

(イ)ポリアクリル酸及びその水溶性塩の少なくとも1種を含む重合体成分と、及び(ロ)水溶性重炭酸塩の少なくとも1種を含む重炭酸塩成分とを含み、前記重合体成分(イ)と、前記重炭酸塩成分(ロ)との質量比が、 100 : 500 100 : 5,000 であることを特徴とする地盤改良セメント組成物用添加剤。(B) includes a polymer component comprising at least one polyacrylic acid and its water-soluble salts, and a bicarbonate component comprising at least one (ii) a water-soluble bicarbonate salts, the polymer component ( and b), wherein the weight ratio of the bicarbonate component (b), 100: 500 to 100: additive for ground improvement cement composition, which is a 5,000. 前記重合体成分(イ)に含まれる前記ポリアクリル酸の平均分子量が1,000〜50,000に範囲内にある、請求項1に記載の地盤改良セメント組成物用添加剤。The additive for ground improvement cement composition according to claim 1, wherein an average molecular weight of the polyacrylic acid contained in the polymer component (a) is in a range of 1,000 to 50,000. 前記重炭酸塩成分(ロ)に含まれる水溶性重炭酸塩が、炭酸水素1価金属塩から選ばれる、請求項1に記載の地盤改良セメント組成物用添加剤。  The additive for ground improvement cement composition according to claim 1, wherein the water-soluble bicarbonate contained in the bicarbonate component (b) is selected from a monovalent metal bicarbonate. 追加成分として、(ハ)有機酸及びその塩、ポリリン酸及びその塩、並びに糖、及び糖アルコールから選ばれた少なくとも1種からなる硬化遅延剤、並びに、(ニ)オキシアルキレンアルキルエーテル及びポリオキシアルキレンアルキルエーテルから選ばれた少なくとも1種からなる消泡剤から選ばれた少なくとも1員を更に含む、請求項1に記載の地盤改良セメント組成物用添加剤。  As additional components, (c) a curing retarder comprising at least one selected from organic acids and salts thereof, polyphosphoric acid and salts thereof, sugars and sugar alcohols, and (d) oxyalkylene alkyl ethers and polyoxys The additive for ground improvement cement composition according to claim 1, further comprising at least one member selected from at least one antifoaming agent selected from alkylene alkyl ethers. 前記硬化遅延剤(ハ)および前記消泡剤(ニ)の含有量が、前記重合体成分(イ)100質量部に対して、それぞれ50〜1,000質量部、及び1〜70質量部である、請求項に記載の地盤改良セメント組成物用添加剤。The contents of the curing retarder (c) and the antifoaming agent (d) are 50 to 1,000 parts by mass and 1 to 70 parts by mass, respectively, with respect to 100 parts by mass of the polymer component (b). The additive for ground improvement cement composition of Claim 4 . 少なくとも50質量%のセメントを含むセメント系固化材と、このセメント系固化材100質量部に対し、0.1〜25質量部の、請求項1〜5のいずれか1項に記載の地盤改良セメント組成物用添加剤とを含む、地盤改良セメント組成物。The cement-improved cement composition according to any one of claims 1 to 5 , wherein the cement-based solidified material contains at least 50% by mass of cement and 0.1 to 25 parts by mass with respect to 100 parts by mass of the cement-based solidified material. A ground improvement cement composition comprising an additive for use. 追加添加材料として、高炉スラグ、石灰石粉、フライアッシュ、シリカ微粉末、炭酸カルシウム及び石膏から選ばれた少なくとも1種からなる添加剤を更に含む、請求項に記載の地盤改良セメント組成物。The ground improvement cement composition according to claim 6 , further comprising at least one additive selected from blast furnace slag, limestone powder, fly ash, silica fine powder, calcium carbonate and gypsum as an additional additive material. 請求項6又は7に記載の地盤改良セメント組成物を、その質量の50〜200%の混練水に混合して地盤改良セメント組成物スラリーを調製し、この地盤改良セメント組成物スラリーを、改良すべき地盤中に、改良対象土の容積の0.1〜1.5倍の容積をもって打設・混合し、硬化させることを特徴とする地盤改良方法。 The ground improvement cement composition slurry according to claim 6 or 7 is mixed with 50 to 200% of the mass of kneaded water to prepare a ground improvement cement composition slurry, and the ground improvement cement composition slurry is improved. A ground improvement method comprising placing, mixing and hardening in a ground having a volume of 0.1 to 1.5 times the volume of the soil to be improved. 前記地盤が、土粒子径75μm 以下の細粒分を50質量%以上の含有率で含むか、又は5μm以下の土粒子径を有する粘土分を20質量%以上の含有率で含み、前記地盤改良セメント組成物スラリーにおける混練水の質量Wの地盤改良セメント組成物の質量Cに対する質量比W / Cが1 : 0.5〜1 : 2である、請求項に記載の地盤改良方法。The ground contains fine particles having a soil particle diameter of 75 μm or less at a content of 50% by mass or more, or a clay having a soil particle diameter of 5 μm or less at a content of 20% by mass or more, the ground improvement The ground improvement method according to claim 8 , wherein a mass ratio W / C of a mass W of the kneaded water in the cement composition slurry to a mass C of the ground improvement cement composition is 1: 0.5 to 1: 2.
JP2002345963A 2002-11-28 2002-11-28 Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same Expired - Lifetime JP3955255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345963A JP3955255B2 (en) 2002-11-28 2002-11-28 Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345963A JP3955255B2 (en) 2002-11-28 2002-11-28 Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005036694A Division JP3868451B2 (en) 2005-02-14 2005-02-14 How to improve marine ground

Publications (2)

Publication Number Publication Date
JP2004175989A JP2004175989A (en) 2004-06-24
JP3955255B2 true JP3955255B2 (en) 2007-08-08

Family

ID=32707014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345963A Expired - Lifetime JP3955255B2 (en) 2002-11-28 2002-11-28 Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same

Country Status (1)

Country Link
JP (1) JP3955255B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878857B2 (en) * 2005-08-31 2012-02-15 株式会社トクヤマ Ground improvement additive for jet grout method and ground improvement cement composition using the same
JP4271676B2 (en) * 2005-08-31 2009-06-03 竹本油脂株式会社 Premix powder cement composition for ground improvement
JP5219261B2 (en) * 2008-05-29 2013-06-26 竹本油脂株式会社 Premix cement composition for ground improvement
SG179011A1 (en) * 2009-09-07 2012-04-27 Denki Kagaku Kogyo Kk Hydraulic cement composition for soil injection, and soil improvement method using the same
JP6521911B2 (en) * 2016-07-21 2019-05-29 東亞合成株式会社 Fluidizer composition for soil cement, cement suspension and soil cement
JP6242955B1 (en) * 2016-07-21 2017-12-06 株式会社鴻池組 Control method of fluidity and retention time of soil cement
JP2018012622A (en) * 2016-07-21 2018-01-25 東亞合成株式会社 Fluidizing agent composition for soil cement, cement suspension, and soil cement
JP6498716B2 (en) * 2017-04-07 2019-04-10 花王株式会社 Ground improvement method
JP6279137B2 (en) * 2017-09-20 2018-02-14 株式会社鴻池組 Control method of fluidity and retention time of soil cement
CN107936973B (en) * 2017-11-05 2020-07-24 江西环保股份有限公司 Heavy metal contaminated soil CaCO3Preparation method of/C repairing agent
JP6869927B2 (en) * 2018-08-01 2021-05-12 花王株式会社 Dispersant composition for hydraulic composition
WO2020027191A1 (en) * 2018-08-01 2020-02-06 花王株式会社 Method for improving ground

Also Published As

Publication number Publication date
JP2004175989A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4495828B2 (en) Admixture for hydraulic composition and hydraulic composition
JP3955255B2 (en) Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same
JPH0553740B2 (en)
CN105693173B (en) A kind of sleeve grouting material for assembled architecture
JPS635346B2 (en)
JP3868451B2 (en) How to improve marine ground
JP4090772B2 (en) Cement composition
JP2019178579A (en) Method for producing improved soil
JP4097965B2 (en) Injection material for submerged ground improvement
JPS6131333A (en) Cement admixing agent
JPS6011255A (en) Cement additive
JP5805476B2 (en) Hydraulic composition
JP3435122B2 (en) Plastic injection material
JP3502595B2 (en) Additive for ground improvement method
JPWO2020115790A1 (en) Additives for hydraulic compositions and hydraulic compositions
JP6924688B2 (en) Injectable material for submerged ground improvement
JP2006182625A (en) Cement-based grout composition
JP5498695B2 (en) Ground injection material and ground injection method using the same
JP2001302315A (en) Backfill material
JPS62256752A (en) Self levelling mortar
EP0409774B1 (en) Set retarding composition for hydraulic binders and process for its preparation
JPS61141651A (en) Cement dispersion
JPH04367548A (en) Cement additive for ultrahigh pressure jet impregnation method
JPH04321546A (en) Concrete composition
JP2659034B2 (en) Water reducer for concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Ref document number: 3955255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term