JP2005220526A - Overhead crossing and its construction method - Google Patents

Overhead crossing and its construction method Download PDF

Info

Publication number
JP2005220526A
JP2005220526A JP2004026664A JP2004026664A JP2005220526A JP 2005220526 A JP2005220526 A JP 2005220526A JP 2004026664 A JP2004026664 A JP 2004026664A JP 2004026664 A JP2004026664 A JP 2004026664A JP 2005220526 A JP2005220526 A JP 2005220526A
Authority
JP
Japan
Prior art keywords
precast
span
cast
arch
dimensional intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004026664A
Other languages
Japanese (ja)
Inventor
Shinichi Morishita
森下伸一
Kenichi Ueno
上野謙一
Hiroyuki Yuno
油野博幸
Masakazu Nakatsuka
中塚政和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PS KK
Original Assignee
NIPPON PS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PS KK filed Critical NIPPON PS KK
Priority to JP2004026664A priority Critical patent/JP2005220526A/en
Publication of JP2005220526A publication Critical patent/JP2005220526A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overhead crossing and its construction method capable of greatly shortening a construction period of time. <P>SOLUTION: The overhead crossing 1 comprises a plurality of pre-cast footings 2 forming a foundation of an arch bridge among multi-paths, pre-cast piers 3 erected on the pre-cast footings 2, pre-cast arch ribs 4 on the pre-cast footings 2 and constructed among the paths and pre-cast stiffening girders 5 supported by the pre-cast piers 3 and the pre-cast arch ribs 4. When the center among the paths 11 is built up, a movable vehicle 71 and a mounting jack 72 are used as a support. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に道路や鉄道上をオーバーパスする多径間アーチ橋からなる立体交差とその施工方法に関するものである。   The present invention relates to a three-dimensional intersection composed of a multi-span arch bridge overpassing a road or a railway, and a construction method thereof.

現在、都市部における交通渋滞の緩和を防止する目的で、道路や鉄道などの交通手段に直交するようにアンダーパス又はオーバーパスからなる立体交差の計画や建設が盛んに進められている。
アンダーパスを施工する場合は、道路や鉄道などの両サイドに立坑を構築し、立坑間は鋼管などを推進させて門型支保工構築後に掘進したり、その他推進工法やシールド工法などにて施工がおこなわれている。
一方、オーバーパスを施工する場合は、以下の実施例が挙げられる。
(1)既存の道路などを完全に又は一部遮断して迂回路をつくり、基礎や橋脚、橋桁などの構築をおこなう施工方法。この場合の基礎構造は杭基礎や直接基礎など多様であるが、例えば直接基礎の場合には所定深度まで開削後に現場打ちコンクリート施工にて基礎の構築がおこなわれている。
(2)幹線、特に鉄道上をオーバーパスする場合、鉄道側方に基礎を構築後に路線運行のない夜間のみを利用して、手延式で桁の架設をおこなったり、支保工を鉄道上に構築し、該支保工を利用してプレキャスト桁をクレーン等で吊りながら架設をおこなったりしている。
Currently, for the purpose of preventing traffic congestion in urban areas, planning and construction of three-dimensional intersections consisting of underpasses or overpasses are being actively carried out so as to be orthogonal to transportation means such as roads and railways.
When constructing the underpass, construct shafts on both sides of the road or railway, and promote the steel pipes between the shafts to build after the portal support construction, or construct by other propulsion methods or shield methods Has been done.
On the other hand, when constructing an overpass, the following examples are given.
(1) A construction method that constructs foundations, piers, bridge girders, etc. by completely or partially blocking existing roads to create detours. In this case, there are various foundation structures such as a pile foundation and a direct foundation. For example, in the case of a direct foundation, the foundation is constructed by on-site concrete construction after excavation to a predetermined depth.
(2) When overpassing on the main line, especially on the railway, use the nighttime when there is no route operation after building the foundation on the side of the railway, constructing girders by hand, or placing support on the railway It is constructed and installed while hanging the precast girder with a crane or the like using the support.

前記した従来の立体交差とその施工方法にあっては、次のような問題点がある。
<1>立体交差を基礎から橋脚、橋桁まで現場打ち施工にておこなった場合は工期が長期化する。また、迂回路などが長期間存在する状態は、円滑な交通の阻害や交通渋滞を長期間生じさせておくこととなる。
<2>立体交差のうち、橋脚や橋桁をプレキャスト化してもフーチングなどの基礎構造を現場打ち施工する場合は工期の大幅な短縮を見込み難い。
<3>幹線上に橋桁を架設する場合に支保工の構築及び撤去に作業時間の多くを費やすこととなる。したがって、夜間工事のみの施工の場合などは実質的な橋桁架設作業時間を確保することが困難となる。
The conventional three-dimensional intersection and its construction method have the following problems.
<1> If the three-dimensional intersection is carried out on site from the foundation to the pier and bridge girder, the construction period will be prolonged. In addition, when a detour or the like exists for a long period of time, smooth traffic obstruction or traffic congestion will occur for a long period of time.
<2> Of the three-dimensional intersections, even if the bridge piers and bridge girders are precast, if the foundation structure such as footing is built on site, it is unlikely that the construction period will be significantly shortened.
<3> When a bridge girder is erected on the main line, much of the work time will be spent on the construction and removal of support structures. Therefore, it is difficult to secure a substantial bridge girder construction time in the case of nighttime construction only.

上記のような問題を解決するために、本発明の立体交差は、多径間アーチ橋の基礎を構成する複数のプレキャストフーチングと、前記プレキャストフーチング上に立設したプレキャスト橋脚と、前記プレキャストフーチング上であって径間を掛け渡されたプレキャストアーチリブと、前記プレキャスト橋脚及び前記プレキャストアーチリブに支持されたプレキャスト補剛桁と、からなることを特徴とする立体交差である。   In order to solve the above problems, the three-dimensional intersection of the present invention includes a plurality of precast footings constituting the foundation of a multi-span arch bridge, a precast pier standing on the precast footings, and the precast footings. The precast arch rib spanned across the span, and the precast stiffening girder supported by the precast pier and the precast arch rib.

また、本発明の立体交差は、前記立体交差において、その中央径間は道路上又は鉄道上をオーバーパスする区間であり、該中央径間以外の径間においてはフーチング間を繋ぎ材で連結した構造とした立体交差である。   In addition, the three-dimensional intersection of the present invention is a section where the center span is overpassed on the road or on the rail in the three-dimensional intersection, and the footings are connected by a connecting material between the spans other than the center span. It is a three-dimensional intersection with a structure.

さらに、本発明の立体交差の施工方法は、前記立体交差の施工方法において、多径間アーチ橋を構成する径間のうち少なくとも前記中央径間の組み立てや解体をおこなう際に移動式車輌及び該移動式車輌に搭載したジャッキを支保工として使用することを特徴とする、立体交差の施工方法である。
Furthermore, the construction method of the three-dimensional intersection of the present invention is the above-described method of constructing the three-dimensional intersection, in the construction method of the multi-span arch bridge, at the time of assembling or disassembling at least the center diameter among the spans constituting the multi-span arch bridge, A construction method for a three-dimensional intersection characterized in that a jack mounted on a mobile vehicle is used as a support.

本発明の立体交差及びその施工方法は、上記した課題を解決するための手段により、次のような効果の少なくとも一つを得ることができる。
<1>立体交差の構造において、橋脚や橋桁に加えてフーチングなどの基礎もプレキャスト化することにより、工期の大幅な短縮を図ることができる。
<2>移動式車輌を支保工としてプレキャスト橋桁を架設するため、支保工の設置や撤去に要する時間を大幅に短縮でき、したがって橋桁架設時間の確保が可能となる。
<3>多径間のアーチ橋からなり、該アーチ橋の構成部材を極力スレンダーなものとすることにより、美観に優れた立体交差の構築が実現できる。
The three-dimensional intersection and its construction method of the present invention can obtain at least one of the following effects by means for solving the above-described problems.
<1> In the structure of a three-dimensional intersection, in addition to the piers and bridge girders, the foundations such as footings can be precast, so that the construction period can be greatly shortened.
<2> Since the precast bridge girder is erected using the mobile vehicle as a supporting work, the time required to install and remove the supporting work can be greatly shortened, so that it is possible to secure the bridge girder installation time.
<3> Consists of multi-diameter arch bridges, and by constructing the arch bridges as slender as possible, construction of a three-dimensional intersection with excellent aesthetics can be realized.

<1>立体交差の構成
本発明の立体交差1は多径間のアーチ橋から形成される。その構成は、プレキャストフーチング2とプレキャスト橋脚3とプレキャストアーチリブ4とプレキャスト補剛桁5とからなる(図1参照)。すなわち、フーチングを含む全ての構成部材をプレキャスト化することによって、工期を大幅に短縮した立体交差1の構築を実現することをその主な目的としている。尤も、地盤内に設置されるフーチングについては、プレキャストフーチング2を設置するほかに従来のように開削後に現場打ちコンクリート施工にて構築することもできる。
<1> Configuration of a three-dimensional intersection The three-dimensional intersection 1 of the present invention is formed from an arch bridge between multiple spans. The configuration includes a precast footing 2, a precast pier 3, a precast arch rib 4, and a precast stiffening girder 5 (see FIG. 1). That is, the main purpose is to realize the construction of the three-dimensional intersection 1 with a significantly shortened construction period by precasting all the components including the footing. Of course, the footing installed in the ground can be constructed by on-site concrete construction after excavation as in the prior art, in addition to installing the precast footing 2.

所定の間隔を置いて設置されたプレキャストフーチング2上にプレキャスト橋脚3を立設し、また、プレキャストフーチング2,2間にプレキャストアーチリブ4が掛け渡されて構成される。各径間長のプレキャスト補剛桁5はプレキャストアーチリブ4とプレキャスト橋脚3,3上に支持させながら設置される。
立体交差1は、原則的には中央径間11が道路や鉄道などをオーバーパスする区間となるように構成されるが、その場合には中央径間11に掛け渡されたプレキャストアーチリブ4上に複数の中間支柱41を備えておくのがよい。中央径間11は径間長が他径間に比して長くなるため、中央径間11に設置されるプレキャスト補剛桁5の部材寸法が大規模なものとならないようにするためである。
A precast pier 3 is erected on a precast footing 2 installed at a predetermined interval, and a precast arch rib 4 is stretched between the precast footings 2 and 2. Each span-length precast stiffening girder 5 is installed while being supported on the precast arch rib 4 and the precast piers 3 and 3.
The three-dimensional intersection 1 is basically configured such that the central span 11 is a section overpassing a road or a railroad. In that case, on the precast arch rib 4 spanned across the central span 11 A plurality of intermediate struts 41 are preferably provided. This is because the center span 11 is longer than the other spans, so that the member size of the precast stiffening girder 5 installed in the center span 11 does not become large.

立体交差1を構成する各プレキャスト部材は、軽量化を図るとともに所要の強度特性を確保するために、高強度軽量コンクリートにて工場製作されるのが好ましい。高強度軽量コンクリートにて製作された各構成部材を使用して構築された立体交差1は、そのスレンダーな部材の組合せから優れた美観を実現することができる。尤も、使用材料は高強度軽量コンクリートに拘泥するものではなく、普通コンクリートや高強度繊維補強コンクリートなど多様に選定でき、また各部材ごとにコンクリート仕様を変更することもできる。   Each precast member constituting the three-dimensional intersection 1 is preferably manufactured in a factory using high-strength lightweight concrete in order to reduce the weight and ensure the required strength characteristics. The three-dimensional intersection 1 constructed by using each component member made of high-strength lightweight concrete can realize an excellent aesthetic from the combination of the slender members. However, the material used is not limited to high-strength lightweight concrete, but can be selected from a variety of materials such as ordinary concrete and high-strength fiber reinforced concrete, and the concrete specifications can be changed for each member.

アーチ橋の構造特性は、補剛桁やアーチリブなどの死荷重、交通荷重などの鉛直荷重がアーチリブを介して水平力となり、該アーチリブを支持するフーチング及びその背面土などがかかる水平力に抗し得るように構築される必要がある。本来はかかる水平力を勘案して山間の谷を跨ぐようにアーチ橋が構築され、水平力は山の斜面で支持できるようにしている。本発明の立体交差1は、都市部などの平坦地に建設することを想定しており、かかる平坦地にアーチ橋を建設する場合は上記水平力に抗し得る構造とする必要がある。そこで、中央径間11以外の径間においては、プレキャストフーチング2,2間を繋ぎ材6で繋ぐ構成とするのがよい(図1参照)。ここで、繋ぎ材6は、現場打ちコンクリート製でもプレキャスト製品でもよく、梁部材であっても板状部材であってもよい。死荷重や交通荷重からなる水平力に対して、該繋ぎ材6と地盤との摩擦力で抵抗できるように設計されることとなる。また、繋ぎ材6を備えることにより、中央径間11の両端に設置されたプレキャストフーチング2,2(又は現場打ちフーチング)の水平変位を極力抑えることができる。
The structural characteristics of the arch bridge are that the vertical load such as dead loads such as stiffening girders and arch ribs, traffic loads, etc., becomes horizontal forces through the arch ribs, and resists the horizontal forces applied by the footings supporting the arch ribs and the soil behind them. Need to be built to get. The arch bridge is originally constructed so as to cross the mountain valley in consideration of the horizontal force, and the horizontal force can be supported by the slope of the mountain. The three-dimensional intersection 1 of the present invention is assumed to be constructed on a flat ground such as an urban area. When an arch bridge is constructed on such a flat ground, it is necessary to have a structure that can resist the horizontal force. Therefore, it is preferable to connect the precast footings 2 and 2 with the connecting material 6 between the diameters other than the center distance 11 (see FIG. 1). Here, the connecting material 6 may be a cast-in-place concrete or a precast product, and may be a beam member or a plate member. It will be designed so that it can resist the horizontal force consisting of dead load and traffic load by the frictional force between the connecting material 6 and the ground. Further, by providing the connecting material 6, it is possible to suppress horizontal displacement of the precast footings 2 and 2 (or on-site footing) installed at both ends of the central span 11 as much as possible.

<2>部材の接合部
プレキャスト化された各部材は、原則的には各径間単位(径間長単位)の寸法を備えた製品として製作され、各部材同士をアンカーバー82やPC鋼材(例えばPC鋼棒)などで接合することで短時間に立体交差1が構築できる。
<2> Member Joints Each precast member is in principle manufactured as a product having dimensions of each span unit (span length unit), and the members are anchor bars 82 and PC steel ( For example, a three-dimensional intersection 1 can be constructed in a short time by joining with a PC steel rod or the like.

図2に中央径間11のクラウン部におけるプレキャストアーチリブ4とプレキャスト補剛桁5の接合部の構造を示す。プレキャストアーチリブ4とプレキャスト補剛桁5の間にはゴム支承83などの弾性支承を備えておくのがよい。また、中央径間11は他径間に比して径間長が長くなるために、2分割したプレキャストアーチリブ4,4及び2分割したプレキャスト補剛桁5,5をクラウン部にて夫々接合することもできる(図2参照)。この場合は部材同士をPC鋼材にて緊張接合するのが好ましい。
プレキャスト補剛桁5とプレキャストアーチリブ4との接合は、例えばアンカーバー82にて接合することができる。
その他の径間についても、プレキャスト補剛桁5,5同士の接合は、プレキャスト橋脚3上にておこなわれるのがよい。
FIG. 2 shows the structure of the joint portion between the precast arch rib 4 and the precast stiffening girder 5 at the crown portion of the center span 11. An elastic bearing such as a rubber bearing 83 is preferably provided between the precast arch rib 4 and the precast stiffening girder 5. Further, since the center span 11 is longer than the other spans, the two precast arch ribs 4 and 4 and the two precast stiffening girders 5 and 5 are joined at the crown portion, respectively. (See FIG. 2). In this case, it is preferable that the members are tension-bonded to each other with PC steel.
The precast stiffening girder 5 and the precast arch rib 4 can be joined by an anchor bar 82, for example.
For the other spans, the precast stiffening girders 5 and 5 are preferably joined on the precast pier 3.

図3に、プレキャストフーチング2(又は現場打ちフーチング)とプレキャスト橋脚3とプレキャストアーチリブ4の接合部の構造を示す。プレキャストフーチング2内にプレキャスト橋脚3の脚部(幅広となる)を埋め込んだ構成とし、該プレキャスト橋脚3とプレキャストアーチリブ4との間には例えばゴム製の緩衝材84やゴム支承83などを備えておき、両者はPC鋼材81やアンカーバー82にて接合する。
In FIG. 3, the structure of the junction part of the precast footing 2 (or spot cast footing), the precast pier 3 and the precast arch rib 4 is shown. The precast pier 3 has a structure in which the legs of the precast pier 3 (becomes wide) are embedded in the precast footing 2. Between the precast pier 3 and the precast arch rib 4, for example, a rubber cushioning material 84 and a rubber support 83 are provided. The two are joined by the PC steel 81 or the anchor bar 82.

<3>立体交差の施工方法
本発明の立体交差1の施工方法を図4,5を参照して説明する。
多径間アーチ橋からなる立体交差1のうち、中央径間11以外の径間の構築、すなわち、プレキャストフーチング2の設置、プレキャスト橋脚3の立設、プレキャストアーチリブ4の掛け渡しは所定の施工順序にておこなわれる。
本発明の立体交差1の施工方法の特徴は、中央径間11のプレキャストアーチリブ4及びプレキャスト補剛桁5の設置にある。従来の施工方法では、アーチリブ及び補剛桁設置用の支保工をオーバーパスする幹線上に設置しておこなわれていた。そのため、幹線が鉄道であれば夜間に、道路であれば完全に又は一部通行不可として工事がおこなわれていた。しかも、支保工の設置や撤去に多大な時間を費やすことなり、アーチリブ及び補剛桁の設置のための実質的な時間は非常に少ないものとなって結果的に工期の長期化の原因となっていた。
そこで、本発明では、少なくとも中央径間11のプレキャストアーチリブ4(及びプレキャスト補剛桁5)の設置において、例えばトレーラーなどの移動式車輌71の後部に搭載したジャッキ72(例えば油圧ジャッキ)を支保工として使用する。図4に示す実施例では2台の移動式車輌71,71を並列使用している。プレキャストアーチリブ4の設置はクレーン91を使用し、予め設置済みのプレキャスト橋脚3と移動式車輌71に係止させた後、上記するようにアンカーバー82やPC鋼材81などにて接合する。
中央径間11にてプレキャストアーチリブ4が掛け渡されてプレキャスト橋脚3と接合された後に、ジャッキ72をジャッキダウンして移動式車輌71は退避可能となる(図5参照)。
迅速な施工が要求される中央径間11において、本発明のように移動式車輌71を支保工として使用することにより、支保工の設置や撤去に要する時間を省略することができ、効率的な施工が実現可能となる。
<3> Construction method of level crossing The level crossing 1 construction method of the present invention will be described with reference to FIGS.
Construction of spans other than the central span 11 among the three-dimensional intersections 1 composed of multi-span arch bridges, that is, installation of the precast footing 2, standing of the precast pier 3, and spanning of the precast arch rib 4 are performed in a predetermined construction order. It is done at.
The feature of the construction method of the three-dimensional intersection 1 of the present invention resides in the installation of the precast arch rib 4 and the precast stiffening girder 5 at the center span 11. In the conventional construction method, the arch rib and the stiffening girder support are installed on the trunk line overpassing. Therefore, construction was performed at night when the main line was a railway and completely or partly impassable when it was a road. In addition, a great deal of time is spent on installing and removing the support works, and the substantial time for installing the arch ribs and stiffening girders becomes very short, resulting in a prolonged construction period. It was.
Therefore, in the present invention, at least the precast arch rib 4 (and the precast stiffening girder 5) having the center span 11 is installed, for example, a jack 72 (for example, a hydraulic jack) mounted on the rear portion of the mobile vehicle 71 such as a trailer is supported. Use as In the embodiment shown in FIG. 4, two mobile vehicles 71 and 71 are used in parallel. The precast arch rib 4 is installed by using the crane 91 and is locked to the precast pier 3 and the mobile vehicle 71 that have been installed in advance, and then joined by the anchor bar 82 or the PC steel 81 as described above.
After the precast arch rib 4 is spanned at the center span 11 and joined to the precast pier 3, the jack 72 is jacked down so that the mobile vehicle 71 can be retracted (see FIG. 5).
By using the mobile vehicle 71 as a support as in the present invention at the center span 11 where quick construction is required, the time required for the installation and removal of the support can be omitted, which is efficient. Construction becomes feasible.

立体交差の縦断図。A vertical section of a three-dimensional intersection. プレキャストアーチリブと補剛桁の接合部を示した側面図。The side view which showed the junction part of a precast arch rib and a stiffening girder. 橋脚とプレキャストアーチリブとフーチングの接合部を示した側面図。The side view which showed the junction part of a bridge pier, a precast arch rib, and a footing. 移動式車輌を支保工として橋桁を架設している状況を示した正面図。The front view which showed the condition where the bridge girder was constructed using a mobile vehicle as a supporting work. 移動式車輌を支保工として橋桁を架設している状況を示した側面図。The side view which showed the condition where the bridge girder was constructed using a mobile vehicle as a supporting work.

符号の説明Explanation of symbols

1・・・・立体交差
11・・・中央径間
2・・・・プレキャストフーチング
3・・・・プレキャスト橋脚
4・・・・プレキャストアーチリブ
5・・・・プレキャスト補剛桁
6・・・・繋ぎ材
71・・・移動式車輌
72・・・ジャッキ
1 ... Solid intersection 11 ... Center span 2 ... Precast footing 3 ... Precast pier 4 ... Precast arch rib 5 ... Precast stiffening girder 6 ... Connection Material 71 ... Mobile vehicle 72 ... Jack

Claims (3)

多径間アーチ橋の基礎を構成する複数のプレキャストフーチングと、
前記プレキャストフーチング上に立設したプレキャスト橋脚と、
前記プレキャストフーチング上であって径間を掛け渡されたプレキャストアーチリブと、
前記プレキャスト橋脚及び前記プレキャストアーチリブに支持されたプレキャスト補剛桁と、からなることを特徴とする、
立体交差。
A plurality of precast footings that form the basis of a multi-span arch bridge;
A precast pier erected on the precast footing;
A precast arch rib on the precast footing and spanned across the span;
It consists of the precast stiffening girder supported by the precast pier and the precast arch rib,
Multi-level crossing.
請求項1記載の立体交差において、
その中央径間は道路上又は鉄道上をオーバーパスする区間であり、該中央径間以外の径間においてはフーチング間を繋ぎ材で連結した構造とした、
立体交差。
In the three-dimensional intersection according to claim 1,
The center span is a section overpassing on the road or on the railway, and in the span other than the center span, the footings are connected by a connecting material.
Multi-level crossing.
請求項2記載の立体交差の施工方法において、
多径間アーチ橋を構成する径間のうち少なくとも前記中央径間の組み立てや解体をおこなう際に移動式車輌及び該移動式車輌に搭載したジャッキを支保工として使用することを特徴とする、
立体交差の施工方法。
In the construction method of the three-dimensional intersection of Claim 2,
When carrying out assembly or disassembly of at least the center span among spans constituting a multi-span arch bridge, the mobile vehicle and a jack mounted on the mobile vehicle are used as a support work,
How to construct a three-dimensional intersection.
JP2004026664A 2004-02-03 2004-02-03 Overhead crossing and its construction method Pending JP2005220526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026664A JP2005220526A (en) 2004-02-03 2004-02-03 Overhead crossing and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026664A JP2005220526A (en) 2004-02-03 2004-02-03 Overhead crossing and its construction method

Publications (1)

Publication Number Publication Date
JP2005220526A true JP2005220526A (en) 2005-08-18

Family

ID=34996379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026664A Pending JP2005220526A (en) 2004-02-03 2004-02-03 Overhead crossing and its construction method

Country Status (1)

Country Link
JP (1) JP2005220526A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274546A (en) * 2005-03-28 2006-10-12 Ishikawajima Constr Materials Co Ltd Viaduct
CN103255693A (en) * 2013-05-23 2013-08-21 苏州荣生大方路桥建设工程有限公司 Assembled type three-dimensional urban road system and rapid installing method
CN104612031A (en) * 2014-12-20 2015-05-13 中国电建集团贵阳勘测设计研究院有限公司 Reinforced concrete continuous rigid frame arch bridge and construction method thereof
CN111877129A (en) * 2020-08-25 2020-11-03 中交路桥华南工程有限公司 Arch ring construction method of continuous arch bridge
CN113202033A (en) * 2021-04-29 2021-08-03 中交路桥建设有限公司 Arch beam cross installation construction method of half-through tied steel box arch bridge
CN113356016A (en) * 2021-06-24 2021-09-07 上海市城市建设设计研究总院(集团)有限公司 Multi-recombination system arch bridge and construction method thereof
CN114703735A (en) * 2022-04-14 2022-07-05 北京市市政工程设计研究总院有限公司 Novel multi-span through-deck continuous arch bridge vault structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274546A (en) * 2005-03-28 2006-10-12 Ishikawajima Constr Materials Co Ltd Viaduct
JP4526990B2 (en) * 2005-03-28 2010-08-18 石川島建材工業株式会社 Viaduct
CN103255693A (en) * 2013-05-23 2013-08-21 苏州荣生大方路桥建设工程有限公司 Assembled type three-dimensional urban road system and rapid installing method
CN104612031A (en) * 2014-12-20 2015-05-13 中国电建集团贵阳勘测设计研究院有限公司 Reinforced concrete continuous rigid frame arch bridge and construction method thereof
CN111877129A (en) * 2020-08-25 2020-11-03 中交路桥华南工程有限公司 Arch ring construction method of continuous arch bridge
CN113202033A (en) * 2021-04-29 2021-08-03 中交路桥建设有限公司 Arch beam cross installation construction method of half-through tied steel box arch bridge
CN113356016A (en) * 2021-06-24 2021-09-07 上海市城市建设设计研究总院(集团)有限公司 Multi-recombination system arch bridge and construction method thereof
CN114703735A (en) * 2022-04-14 2022-07-05 北京市市政工程设计研究总院有限公司 Novel multi-span through-deck continuous arch bridge vault structure
CN114703735B (en) * 2022-04-14 2023-09-19 北京市市政工程设计研究总院有限公司 Multi-span upper bearing type continuous arch bridge vault structure

Similar Documents

Publication Publication Date Title
KR101344063B1 (en) The construction method of steel-concrete underpass
CN106978777B (en) A kind of make-shift bridge device
JP2004285738A (en) Box girder bridge structure and method of constructing the same
JP2020090785A (en) Widening structural body, widening structure, floor slab widening construction method, and floor slab renewal method
JP2005220526A (en) Overhead crossing and its construction method
JP3851539B2 (en) Block-type traffic roads, split-bridge-type traffic roads, and bridge traffic roads
KR100510092B1 (en) A one-piece type arch-shaped structure with the precast concrete pannel and the steel frame under the earth, and method for manufacturing it
JP2007107339A (en) Structure and its construction method for steel concrete compound rigid frame bridge
KR100987948B1 (en) Construction method for underground structure using prestressed beam and development structure, saddle used in the same
JP3954905B2 (en) Three-dimensional crossing method of plane intersection and viaduct
JP2004324340A (en) Steel shell for footing foundation, structure of bridge, construction method of bridge, and construction method of grade separation viaduct
KR100753140B1 (en) Steel pipe roof assembly and the construction method for tunnel using thereof
JP2003193424A (en) Composite truss bridge and its construction method
KR101523634B1 (en) Environment friendly arch structure of long-span steel composite earth works
JP2006112086A (en) Structure of bridge and method for rebuilding bridge
JP3081833B1 (en) Three-dimensional rigid frame high bridge structure
KR101047943B1 (en) A extension footpath with reinforcement equipment and it&#39;s construction method
JP2005090108A (en) Erection method of bridge
JP2004084367A (en) Foundation structure and elevated traffic way
KR20090115636A (en) Bridge block
Montgomery et al. Edmonton’s New Walterdale Bridge
JP2004190266A (en) Construction method of grade separated crossing road and connection method of foundation structure of viaduct and pier used for the same
KR20090115637A (en) Bridge reinforcement block
JP3619515B2 (en) Split-bridge type traffic road and method for constructing split-bridge type traffic road
JP3890529B2 (en) Bridge construction structure and bridge construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A02