JP2005220469A - Method and apparatus for producing cylindrical body made by papermaking - Google Patents

Method and apparatus for producing cylindrical body made by papermaking Download PDF

Info

Publication number
JP2005220469A
JP2005220469A JP2004028611A JP2004028611A JP2005220469A JP 2005220469 A JP2005220469 A JP 2005220469A JP 2004028611 A JP2004028611 A JP 2004028611A JP 2004028611 A JP2004028611 A JP 2004028611A JP 2005220469 A JP2005220469 A JP 2005220469A
Authority
JP
Japan
Prior art keywords
papermaking
sheet
cylindrical
mold
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028611A
Other languages
Japanese (ja)
Other versions
JP4368215B2 (en
Inventor
Atsushi Sato
篤 佐藤
Shigemasa Takagi
栄政 高城
Hiroo Tomita
洋夫 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004028611A priority Critical patent/JP4368215B2/en
Publication of JP2005220469A publication Critical patent/JP2005220469A/en
Application granted granted Critical
Publication of JP4368215B2 publication Critical patent/JP4368215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a cylindrical body made by papermaking, suitable for producing the slender and thin cylindrical body made by the papermaking. <P>SOLUTION: The method involves producing the cylindrical body 11 made by the papermaking by joining both side edge parts of a sheet 10 made by the papermaking. Both the side edge parts of the sheet 10 are joined by winding the sheet 10 made by the papermaking around a core body 3 so that both edge parts may be overlapped by using split dies by combining a pair of the split dies of a mold 40 having the split dies so that the sheet 10 and the expandable and shrinkable core body 3 on which the sheet 10 is wound, may be stored, expanding the core body 3 to press the sheet 10 to a molding surface of the mold 40 and to join both the side edge parts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、筒状抄造体の製造方法及び装置に関する。   The present invention relates to a method and an apparatus for producing a cylindrical papermaking product.

繊維管の製造に関する従来技術としては、例えば、下記特許文献1に記載の技術が知られている。
この技術は、開孔部を有し、管状抄造型の管壁内面に沿ってそれを覆うように連続的又は間欠的に移動し得える2枚の網体ベルト上に繊維流を供給して、繊維流中の水分を、管状抄造型に設けられた小孔から吸引することによって除去し、継ぎ目のない管状の抄造体を連続的に製造するものである。
As a prior art relating to the manufacture of a fiber tube, for example, a technique described in Patent Document 1 below is known.
This technique provides a fiber stream on two mesh belts that have apertures and can be moved continuously or intermittently along the inner surface of a tubular papermaking tube wall. The water in the fiber stream is removed by suction from a small hole provided in the tubular papermaking mold, and a seamless tubular papermaking body is continuously produced.

ところで、この技術は、管状の抄造体をその長さ方向に沿って網状ベルトで送る機構を採用しているため、径の細い管状の抄造体、特に薄肉で径の細い抄造体の製造することは困難である。   By the way, this technique employs a mechanism that feeds a tubular paper product with a mesh belt along its length direction, so that a tubular paper product with a small diameter, particularly a thin paper product with a small diameter, can be manufactured. It is difficult.

特開昭51−115319号公報JP 51-115319 A

本発明は、上述の課題に鑑みてなされたものであり、細くて薄肉の筒状抄造体の製造にも好適な筒状抄造体の製造方法及び装置を提供することを目的とする。   This invention is made | formed in view of the above-mentioned subject, and it aims at providing the manufacturing method and apparatus of a cylindrical papermaking body suitable also for manufacture of a thin and thin cylindrical papermaking body.

本発明は、抄造シートの両側縁部を接合して筒状の抄造体を製造する方法であって、前記抄造シートと該抄造シートが巻き付けられる膨縮可能な芯体とを収容するように一組の割型を具備する成形型の該割型を組み合わせながら、前記割型で前記両側縁部どうしが重なるように前記抄造シートを前記芯体の周りに巻き付けた後、前記芯体を膨張させて前記抄造シートを前記成形型の成形面に押圧し、前記両側縁部どうしを接合する筒状抄造体の製造方法を提供することにより、前記目的を達成したものである。   The present invention is a method of manufacturing a tubular papermaking body by joining both side edges of the papermaking sheet, wherein the papermaking sheet and an expandable / contractable core body around which the papermaking sheet is wound are accommodated. While combining the split molds of the forming mold having a pair of split molds, the papermaking sheet is wound around the core body so that the side edges overlap with each other in the split mold, and then the core body is expanded. Thus, the object is achieved by providing a method for producing a cylindrical paper-making body in which the paper-making sheet is pressed against the molding surface of the mold and the side edges are joined together.

また、本発明は、前記本発明の筒状抄造体の製造方法を実施するための筒状抄造体の製造装置であって、抄造シートの抄造手段と、前記抄造手段で抄造された抄造シートが巻き付けられる伸縮自在の芯体と、前記芯体に前記抄造シートを巻き付ける一組の割型を具備する成形型とを備えている筒状抄造体の製造装置を提供するものである。   The present invention also relates to an apparatus for producing a cylindrical papermaking for carrying out the method for producing a cylindrical papermaking of the present invention, wherein a papermaking means for papermaking and a papermaking sheet made by the papermaking means are provided. The present invention provides an apparatus for producing a cylindrical paper-making body, which includes a stretchable core body to be wound and a forming die having a set of split molds around which the paper-making sheet is wound.

本発明によれば、細くて薄肉の筒状抄造体も好適に製造することができる。   According to the present invention, a thin and thin cylindrical paper-making body can also be suitably produced.

以下本発明を、その好ましい実施形態に基づき説明する。   Hereinafter, the present invention will be described based on preferred embodiments thereof.

図1及び図2は、本発明の筒状抄造体の製造装置の一実施形態を示すものである。図1において、符号1は筒状抄造体の製造装置(以下、単に製造装置ともいう。)、10は帯状の抄造シート、11は筒状抄造体を示している。   FIG.1 and FIG.2 shows one Embodiment of the manufacturing apparatus of the cylindrical papermaking body of this invention. In FIG. 1, the code | symbol 1 is the manufacturing apparatus (henceforth only a manufacturing apparatus) of a cylindrical papermaking body, 10 is a strip | belt-shaped papermaking sheet | seat, 11 has shown the cylindrical papermaking body.

図1に示すように、本実施形態の製造装置1は、帯状の抄造シート10の抄造手段2と、抄造シート10が巻き付けられる膨張可能な芯体3と、芯体3に抄造シート10を巻き付けて筒状に成形する成形手段4とを備えている。製造装置1は、成形手段4で成形された筒状抄造体11を乾燥させる乾燥手段5と、抄造手段2で抄造された帯状の抄造シート10の搬送路に後述する伸縮自在のシート又は網状体10’を供給する供給手段6とを備えている。   As shown in FIG. 1, the manufacturing apparatus 1 of the present embodiment includes a papermaking means 2 for a belt-shaped papermaking sheet 10, an expandable core body 3 around which the papermaking sheet 10 is wound, and a papermaking sheet 10 wound around the core body 3. And forming means 4 for forming into a cylindrical shape. The manufacturing apparatus 1 includes a drying unit 5 that dries the cylindrical paper-making body 11 formed by the forming unit 4 and a stretchable sheet or net-like body that will be described later in the conveyance path of the belt-like paper-making sheet 10 that is made by the paper-making unit 2. Supply means 6 for supplying 10 '.

抄造手段2は、原料スラリーを貯留する貯留槽20と、貯留槽20内に配された抄造ドラム21と、抄造ドラム21で抄造された抄造シート10を搬送する搬送ユニット22とを備えている。貯留槽20及び抄造ドラム21は、従来から湿式吸引抄造による抄造シートの製造装置に用いられているものと同様の構成を有している。   The papermaking means 2 includes a storage tank 20 that stores the raw slurry, a papermaking drum 21 disposed in the storage tank 20, and a transport unit 22 that transports the papermaking sheet 10 made by the papermaking drum 21. The storage tank 20 and the papermaking drum 21 have the same configuration as that conventionally used in a papermaking sheet manufacturing apparatus by wet suction papermaking.

貯留槽20は、調整槽200及びポンプ201とともに循環経路202に接続されている。貯留槽20内には、調整槽200で濃度調整された原料スラリーがポンプ201によって供給され、ほぼ一定量の原料スラリーが貯留される。   The storage tank 20 is connected to the circulation path 202 together with the adjustment tank 200 and the pump 201. In the storage tank 20, the raw material slurry whose concentration is adjusted in the adjustment tank 200 is supplied by the pump 201, and a substantially constant amount of the raw material slurry is stored.

抄造ドラム21は、その外周面の一部が原料スラリー内に浸漬された状態で水平軸周りに回転するように設けられている。抄造ドラム21には、その外周面において一端が開口し、他端部が吸引ポンプ(図示せず。)に接続された流体の流通路(図示せず。)が設けられている。抄造ドラム21の外周面には抄造ネット210が配されている。抄造ドラム21は、所定の回転速度で回転し、前記吸引ポンプが前記流通路を通して前記原料スラリーを吸引し、その液体分が排出されるとともに、その固形分が抄造ネット210に堆積することによって、抄造シート10が連続的に抄造される。   The papermaking drum 21 is provided so as to rotate around the horizontal axis while a part of the outer peripheral surface thereof is immersed in the raw material slurry. The papermaking drum 21 is provided with a fluid flow passage (not shown) having one end opened on the outer peripheral surface thereof and the other end connected to a suction pump (not shown). A papermaking net 210 is disposed on the outer peripheral surface of the papermaking drum 21. The papermaking drum 21 rotates at a predetermined rotational speed, and the suction pump sucks the raw slurry through the flow passage, and the liquid content is discharged, and the solid content is deposited on the papermaking net 210. The paper sheet 10 is continuously made.

搬送ユニット22は、駆動プーリー220と、プーリー221と、これらのプーリーに巻回される搬送ベルト222と、搬送ベルト222の内側に配設された吸引ボックス223とを備えている。抄造シート10及びシート又は網状体10’(以下、これらを抄造シート等10ともいう。)は吸引ボックス223で発生する吸引力によって搬送ベルト222の表面に吸着された状態で駆動プーリー220の駆動に伴って回転する搬送ベルト222によって搬送される。   The transport unit 22 includes a drive pulley 220, a pulley 221, a transport belt 222 wound around these pulleys, and a suction box 223 disposed inside the transport belt 222. The papermaking sheet 10 and the sheet or net-like body 10 ′ (hereinafter also referred to as the papermaking sheet 10 or the like) are driven by the driving pulley 220 while being attracted to the surface of the conveying belt 222 by the suction force generated by the suction box 223. It is conveyed by the conveyance belt 222 which rotates with it.

芯体3は、図2に示すように、中空の芯管30と、この芯管30を部分的に内包するように取り付けられた膨縮自在の袋状の弾性押圧体31〜33とを備えている。図1に示すように、芯体3は、抄造シート等10の搬送方向に沿い、且つ搬送ベルト222による抄造シート10等の搬送高さに略沿うように略水平に配置されている。なお、芯体3は落下しないように、支持体(図示せず)によって支えられている。   As shown in FIG. 2, the core body 3 includes a hollow core tube 30 and inflatable and inflatable bag-like elastic pressing bodies 31 to 33 attached so as to partially enclose the core tube 30. ing. As shown in FIG. 1, the core body 3 is disposed substantially horizontally along the conveying direction of the papermaking sheet 10 and substantially along the conveying height of the papermaking sheet 10 by the conveying belt 222. The core body 3 is supported by a support body (not shown) so as not to fall.

図2に示すように、芯管30には内部と外部とを連通する流通孔300が設けられている。芯管30の後端部は、流通路301を介して吸引ポンプ(ともに図示せず。)に接続されている。流通路301の他端部は流体供給源及び吸引ポンプに切り替え弁(いずれも図示せず)を介して接続されている。芯体3は、前記流体供給源から流通路301、流通孔300を介して弾性押圧体31〜33内に流体が供給されたときには当該弾性押圧体31〜33が膨張し、流通路301、流通孔300を介して前記吸引ポンプで吸引されたときはそれが収縮する。弾性押圧体31〜33の材質としては、例えば、ウレタン、フッ素系ゴム、シリコーン系ゴム又はエラストマー等が挙げられる。弾性押圧体31を膨張させる前記流体としては、例えば圧縮空気(加熱空気)、油(加熱油)、その他各種の流体が挙げられる。   As shown in FIG. 2, the core tube 30 is provided with a flow hole 300 that communicates the inside and the outside. The rear end portion of the core tube 30 is connected to a suction pump (both not shown) via a flow passage 301. The other end of the flow passage 301 is connected to a fluid supply source and a suction pump via a switching valve (both not shown). When the fluid is supplied into the elastic pressing bodies 31 to 33 from the fluid supply source via the flow passage 301 and the flow hole 300, the core 3 expands, and the elastic pressing bodies 31 to 33 expand. When sucked by the suction pump through the hole 300, it contracts. Examples of the material of the elastic pressing bodies 31 to 33 include urethane, fluorine rubber, silicone rubber, and elastomer. Examples of the fluid for expanding the elastic pressing body 31 include compressed air (heated air), oil (heated oil), and other various fluids.

図3に示すように、成形手段4は、脱水型を兼ねた成形型40と、成形型40を開閉する開閉機構(図示せず。)とを備えている。成形型40は、一組(本実施形態では3個)の割型400〜402を具備しており、これらの割型が組み合わされて閉じた状態では、芯体3及び芯体3の外側に巻回された抄造シート等10が収容される空間が形成される。割型400〜402には、流体の流通路403が接続されている。割型400〜402の内部には、一端が抄造シート等10に臨む面で多数開口し、他端が流通路403に通じる流通路404が設けられている。後述するような表面粗度を有する筒状抄造体を得るためには、割型の内面の表面粗度(Ra)を15μm以下、特に10μm以下、さらには3μm以下とすることが好ましい。流通路403の他端部は吸引ポンプ及び流体供給源に切り替え弁(いずれも図示せず。)を介して接続されている。割型400〜402は、前記流通路403、404を介して前記吸引ポンプで吸引されたときは抄造シート等10を前記成形面側に吸着し、前記流体供給源から流通路403、404を介して流体が供給されたときは筒状抄造体11を割型から離脱させる。   As shown in FIG. 3, the molding means 4 includes a molding die 40 that also serves as a dehydrating die and an opening / closing mechanism (not shown) that opens and closes the molding die 40. The mold 40 includes a set (three in the present embodiment) of split molds 400 to 402. When these split molds are combined and closed, the core 3 and the core 3 are outside. A space for accommodating the wound papermaking sheet 10 is formed. A fluid flow passage 403 is connected to the split molds 400 to 402. Inside the split molds 400 to 402, there are provided flow passages 404, one end of which is open on the surface facing the papermaking sheet 10 and the other end and the other end of which leads to the flow passage 403. In order to obtain a cylindrical paper-making body having a surface roughness as described later, the surface roughness (Ra) of the inner surface of the split mold is preferably 15 μm or less, particularly 10 μm or less, more preferably 3 μm or less. The other end of the flow passage 403 is connected to a suction pump and a fluid supply source via a switching valve (both not shown). When the split molds 400 to 402 are sucked by the suction pump through the flow passages 403 and 404, the sheet-forming sheet 10 is adsorbed to the molding surface side, and the fluid supply source passes through the flow passages 403 and 404. When the fluid is supplied, the cylindrical papermaking body 11 is detached from the split mold.

図1に示すように、乾燥手段5は、半乾燥型50と、本乾燥型51と、これらの乾燥型を開閉する開閉機構(図示せず。)とを備えている。本乾燥型51と半乾燥型50の構成は同様なので、以下、半乾燥型50について説明する。
図4に示すように、乾燥型50は、一組(本実施形態では一対)の割型500を具備しており、これらの割型500が組み合わされて、乾燥型50が閉じた状態では、成形された筒状抄造体11が芯体3とともに収容される空間が形成される。割型500には、流体の流通路501が接続されている。割型500の内部には、一端が筒状抄造体11に臨む面(以下、この面を内面ともいう。)で多数スリット状に開口し、他端が流通路501に通じる流通路502が設けられている。後述するような表面粗度を有する筒状抄造体を得るためには、割型500の内面の表面粗度(Ra)を15μm以下、特に10μm以下、さらには3μm以下とすることが好ましい。流通路501の他端部は吸引ポンプ及び流体供給源に切り替え弁(いずれも図示せず)を介して接続されている。割型500の内部には、筒状抄造体11の乾燥を促進するためのヒーター503が配されている。前記流体供給源から流通路501、502を介して内部に流体が供給されたときは抄造体を割型500から離脱する。
As shown in FIG. 1, the drying means 5 includes a semi-drying mold 50, a main drying mold 51, and an opening / closing mechanism (not shown) that opens and closes these drying molds. Since the main drying mold 51 and the semi-drying mold 50 have the same configuration, the semi-drying mold 50 will be described below.
As shown in FIG. 4, the drying mold 50 includes a pair (in this embodiment, a pair) of split molds 500, and when these split molds 500 are combined and the dry mold 50 is closed, A space is formed in which the formed tubular papermaking body 11 is accommodated together with the core body 3. A fluid flow passage 501 is connected to the split mold 500. Inside the split mold 500, there is provided a flow passage 502 whose one end faces the cylindrical papermaking body 11 (hereinafter, this surface is also referred to as an inner surface) and opens in a slit shape, and the other end communicates with the flow passage 501. It has been. In order to obtain a cylindrical paper-making body having a surface roughness as described later, the surface roughness (Ra) of the inner surface of the split mold 500 is preferably 15 μm or less, particularly 10 μm or less, more preferably 3 μm or less. The other end of the flow passage 501 is connected to a suction pump and a fluid supply source via a switching valve (both not shown). Inside the split mold 500, a heater 503 for accelerating the drying of the tubular papermaking body 11 is disposed. When the fluid is supplied from the fluid supply source through the flow passages 501 and 502, the papermaking body is detached from the split mold 500.

成形型40、半乾燥型50及び本乾燥型51の長さ(弾性押圧体31〜33により押圧される部分の長さ)L40、L50、L51は、略同じに設計されている。なお、L40、L50、L51は、搬送ユニット22による抄造シートの搬送ピッチ等に応じて適宜の長さに設定される。   The length (length of the portion pressed by the elastic pressing bodies 31 to 33) L40, L50, and L51 of the molding die 40, the semi-drying die 50, and the main drying die 51 are designed to be substantially the same. Note that L40, L50, and L51 are set to appropriate lengths according to the conveyance pitch of the paper sheet produced by the conveyance unit 22 and the like.

製造装置1は、上記各手段及び芯体3を所定のシーケンスに沿って作動させる制御部(図示せず)を備えており、該制御部は、例えば、後述のような手順で筒状抄造体を製造するように該各手段及び該芯体を作動させる。   The manufacturing apparatus 1 includes a control unit (not shown) that operates the above-described units and the core body 3 in accordance with a predetermined sequence. The respective means and the core are operated so as to manufacture

次に、本発明の筒状抄造体の製造方法を、製造装置1を使用し、鋳物の製造に用いられる筒状抄造体の製造に適用した実施形態に基づいて説明する。   Next, the manufacturing method of the cylindrical papermaking body of this invention is demonstrated based on embodiment applied to manufacture of the cylindrical papermaking body used for manufacture of a casting using the manufacturing apparatus 1. FIG.

まず、図1に示すように、繊維を含む前記原料スラリーから前記抄造手段2で湿潤状態の帯状の抄造シート10を抄造する。   First, as shown in FIG. 1, a wet strip-shaped sheet 10 is made from the raw slurry containing fibers by the sheet making means 2.

抄造シート10は、外周面の一部が原料スラリー内に浸漬された抄造ドラム21を回転させ、前記流通路を通して前記吸引ポンプで原料スラリーの液体分を吸引し、原料スラリーの固形成分を前記抄造ネットに堆積させることによって抄造される。   The papermaking sheet 10 rotates a papermaking drum 21 having a part of the outer peripheral surface immersed in the raw material slurry, sucks the liquid content of the raw material slurry with the suction pump through the flow passage, and converts the solid component of the raw material slurry into the papermaking material. Paper is made by depositing on the net.

原料スラリー中の成分及びその配合は、製造する筒状抄造体の用途に応じて選択することができる。
以下、溶融金属からの鋳物の製造に好適な筒状抄造体の製造に適用した場合に基づいて説明する。
The components in the raw slurry and the blending thereof can be selected according to the use of the cylindrical papermaking to be produced.
Hereinafter, description will be made based on a case where the present invention is applied to the production of a cylindrical papermaking suitable for the production of a casting from a molten metal.

本実施形態で製造される筒状抄造体は、有機繊維、無機繊維、無機粒子及び熱硬化性樹脂を含有するものである。
前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂の配合比は、製造された筒状抄造体を使用して鋳込みを行う際の筒状抄造体からのガス発生量の低減、鋳込み終了後の筒状抄造体の除去容易性、更に筒状抄造体自体の耐熱性の維持や成形容易性等の観点から、前記有機繊維/前記無機繊維/前記無機粒子/前記熱硬化性樹脂=10〜70/1〜80/10〜70/10〜70(重量比率)、さらには15〜50/5〜50/20〜60/10〜50(重量比率)、特に20〜40/5〜30/30〜60/10〜40(重量比率)が好ましい。
The cylindrical papermaking produced in this embodiment contains organic fibers, inorganic fibers, inorganic particles, and a thermosetting resin.
The compounding ratio of the organic fiber, the inorganic fiber, the inorganic particles, and the thermosetting resin is a reduction in the amount of gas generated from the cylindrical papermaking when casting using the produced cylindrical papermaking, From the viewpoints of ease of removal of the cylindrical papermaking after the end of casting, maintenance of heat resistance of the cylindrical papermaking itself and ease of molding, etc., the organic fiber / the inorganic fiber / the inorganic particle / the thermosetting resin. = 10 to 70/1 to 80/10 to 70/10 to 70 (weight ratio), 15 to 50/5 to 50/20 to 60/10 to 50 (weight ratio), particularly 20 to 40/5 30/30 to 60/10 to 40 (weight ratio) is preferable.

前記有機繊維は、主として筒状抄造体において鋳造に用いられる前の状態ではその骨格をなし、筒状抄造体の成形性を向上させる成分である。また、鋳造に用いられたときには溶融金属の熱によってその一部若しくは全部が燃焼し、鋳物製造後の筒状抄造体の内部に空隙を形成して筒状抄造体の除去性を向上させる成分でもある。   The organic fiber is a component that mainly forms a skeleton in a state before being used for casting in a cylindrical papermaking body and improves the moldability of the cylindrical papermaking body. In addition, when used for casting, some or all of the molten metal is burned by the heat of the molten metal, forming a void inside the cylindrical papermaking after the casting is manufactured, and improving the removability of the cylindrical papermaking. is there.

前記有機繊維としては、紙繊維、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等の繊維が挙げられる。有機繊維は、これらを単独で又は二種以上を選択して用いることができる。そして、これらの中でも、特に、抄造により多様な形態に成形できるほか、脱水後と乾燥後に十分な強度が得られる点から紙繊維が好ましい。   Examples of the organic fibers include paper fibers, fibrillated synthetic fibers, and recycled fibers (for example, rayon fibers). These organic fibers can be used alone or in combination of two or more. Among these, paper fibers are particularly preferable because they can be formed into various forms by papermaking and sufficient strength can be obtained after dehydration and drying.

前記紙繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。紙繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。紙繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。   Examples of the paper fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. As the paper fiber, these virgin pulp or waste paper pulp can be used alone or in combination of two or more. The paper fiber is particularly preferably used paper pulp from the viewpoints of easy availability, environmental protection, and reduction of manufacturing costs.

前記有機繊維は、筒状抄造体の成形性、表面平滑性、耐衝撃性を考慮すると、その平均繊維長は0.3〜2.0mm、特に0.5〜1.5mmが好ましい。   The organic fiber has an average fiber length of 0.3 to 2.0 mm, particularly 0.5 to 1.5 mm, considering the formability, surface smoothness, and impact resistance of the cylindrical papermaking product.

前記有機繊維の筒状抄造体における配合割合は、筒状抄造体の成形性、鋳物製造後の筒状抄造体の除去性を考慮すると、10〜70wt%、特に10〜50wt%が好ましい。   The blending ratio of the organic fiber in the cylindrical papermaking product is preferably 10 to 70 wt%, particularly 10 to 50 wt%, considering the moldability of the cylindrical papermaking product and the removability of the cylindrical papermaking product after the production of the casting.

前記無機繊維は、主として筒状抄造体において鋳造に用いられる前の状態ではその骨格をなし、鋳造に用いられたときには溶融金属の熱によって燃焼せずにその形状を維持する成分である。特に、本実施形態で使用する熱硬化性樹脂等の有機成分が溶融金属の熱によって熱分解して生じる熱収縮を抑える成分である。   The inorganic fiber is a component that mainly forms a skeleton in a state before being used for casting in a cylindrical paper-making body, and maintains its shape without being burned by the heat of molten metal when used for casting. In particular, it is a component that suppresses thermal shrinkage that occurs when an organic component such as a thermosetting resin used in the present embodiment is thermally decomposed by the heat of the molten metal.

前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。無機繊維は、これらを単独で又は二以上を選択して用いることができる。そして、これらの中でも、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましく、特にPAN系の炭素繊維が好ましい。   Examples of the inorganic fiber include carbon fiber, artificial mineral fiber such as rock wool, ceramic fiber, and natural mineral fiber. These inorganic fibers can be used alone or in combination of two or more. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin, and in particular, PAN-based carbon. Fiber is preferred.

前記無機繊維は、筒状抄造体を抄造して脱水する場合の脱水性、筒状抄造体の成形性、均一性の観点から平均繊維長は0.2〜10mm、特に0.5〜8mmが好ましい。   The inorganic fiber has an average fiber length of 0.2 to 10 mm, particularly 0.5 to 8 mm from the viewpoints of dewaterability when the cylindrical papermaking is made and dehydrated, moldability of the cylindrical papermaking, and uniformity. preferable.

前記無機繊維は、筒状抄造体の熱分解に伴う熱収縮を抑える機能を有している。   The said inorganic fiber has a function which suppresses the heat shrink accompanying the thermal decomposition of a cylindrical papermaking body.

前記無機繊維は、前記有機繊維100重量部に対し、5〜200重量部、特に10〜100重量部配合することが好ましい。無機繊維を斯かる範囲で配合することで、筒状抄造体の耐熱性が十分に保たれるとともにガス発生による鋳物表面欠陥の発生を抑えることができる。   The inorganic fiber is preferably blended in an amount of 5 to 200 parts by weight, particularly 10 to 100 parts by weight, based on 100 parts by weight of the organic fiber. By mix | blending inorganic fiber in such a range, heat resistance of a cylindrical papermaking body is fully maintained, and generation | occurrence | production of the casting surface defect by gas generation | occurrence | production can be suppressed.

前記無機粒子は、溶融金属の熱により軟化して耐火膜を形成し、該熱による熱硬化性樹脂の熱分解で生成する炭素皮膜が低炭素当量の溶融金属へ溶解するのを防止する成分であり、筒状抄造体の外側や中空中子内に鋳物砂を配した場合には、鋳物表面への砂の付着を防止して得られる鋳物の表面平滑性をより向上させる成分である。前記無機粒子は、筒状抄造体の成形性、鋳物の表面平滑性を考慮すると、前記配合比において、有機繊維100重量部に対して50〜400重量部、特に100〜300重量部とすることが好ましい。   The inorganic particles are components that soften by the heat of the molten metal to form a refractory film and prevent the carbon film formed by the thermal decomposition of the thermosetting resin by the heat from being dissolved in the molten metal with a low carbon equivalent. Yes, it is a component that further improves the surface smoothness of the casting obtained by preventing the sand from adhering to the casting surface when casting sand is disposed outside the cylindrical papermaking body or inside the hollow core. In consideration of the moldability of the cylindrical papermaking and the surface smoothness of the casting, the inorganic particles should be 50 to 400 parts by weight, particularly 100 to 300 parts by weight, based on 100 parts by weight of the organic fiber in the blending ratio. Is preferred.

前記無機粒子としては、シリカ、アルミナ、ムライト、マグネシア、ジルコニア、雲母、黒鉛、黒曜石等の耐火度800〜2000℃、好ましくは1000〜1700℃の無機粒子が挙げられ、軟化時の粘度が高く、溶融金属への炭素皮膜の溶解防止効果が特に高い点から黒曜石、ムライト粉が好ましい。 なお、これらの無機粒子は単独で又は二種以上
を併用しても良い。該無機粒子の粒子径は、200μm以下が好ましい。特に、鋳造する溶融金属の鋳込温度に対し±300℃、特に±200℃の耐火度を有する無機粒子が好ましい。ここで、無機粒子の耐火度は、ゼーゲルコーンを用いた測定方法(JIS R2204)に拠る。
Examples of the inorganic particles include silica, alumina, mullite, magnesia, zirconia, mica, graphite, obsidian, and other inorganic particles having a fire resistance of 800 to 2000 ° C., preferably 1000 to 1700 ° C., and a high viscosity at the time of softening, Obsidian and mullite powder are preferred because they have a particularly high effect of preventing the dissolution of the carbon film in the molten metal. These inorganic particles may be used alone or in combination of two or more. The particle diameter of the inorganic particles is preferably 200 μm or less. In particular, inorganic particles having a fire resistance of ± 300 ° C., particularly ± 200 ° C. with respect to the casting temperature of the molten metal to be cast are preferable. Here, the fire resistance of the inorganic particles depends on a measuring method (JIS R2204) using a Zeger cone.

前記熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂等の熱硬化性樹脂が挙げられる。熱硬化性樹脂は、常温強度及び熱間強度を維持させると共に、鋳物の表面粗度を向上させるために必要な成分であり、塗型剤を塗布した砂型と同等の表面平滑性が得られ、塗型剤を使用しなくても良いほどである。従来のアルコール系塗型剤等使用時の着火乾燥が困難な有機繊維等を含有する本発明の筒状抄造体に重要な性能である。   Examples of the thermosetting resin include thermosetting resins such as phenol resins, epoxy resins, and furan resins. The thermosetting resin is a component necessary for maintaining the normal temperature strength and the hot strength and improving the surface roughness of the casting, and a surface smoothness equivalent to that of a sand mold coated with a coating agent is obtained. It is not necessary to use a coating agent. This is an important performance for the tubular papermaking product of the present invention containing organic fibers and the like that are difficult to ignite and dry when using conventional alcoholic coating agents.

斯かる性能を有する前記熱硬化性樹脂には、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、鋳造時に炭素皮膜を形成するために良好な鋳肌を得ることができる点からフェノール系樹脂を用いることが好ましい。なお、残炭率は、示査熱分析により還元雰囲気下(窒素雰囲気下)にて1000℃に加熱後の残留重量により求めることができる。   In particular, the thermosetting resin having such performance has little generation of combustible gas, has a combustion suppressing effect, has a high residual carbon ratio of 25% or more after pyrolysis (carbonization), and has a carbon film at the time of casting. It is preferable to use a phenol-based resin from the viewpoint that a good casting surface can be obtained for the formation. The residual carbon ratio can be determined from the residual weight after heating to 1000 ° C. in a reducing atmosphere (under a nitrogen atmosphere) by an analytical thermal analysis.

前記フェノール系樹脂としては、ノボラックフェノール樹脂、レゾールタイプ等のフェノール樹脂、尿素、メラミン、エポキシ等で変性した変性フェノール樹脂等が挙げられるが、好ましくはノボラックフェノール樹脂又はその変性樹脂である。   Examples of the phenolic resin include novolak phenol resins, resol type phenol resins, modified phenol resins modified with urea, melamine, epoxy, and the like, preferably novolak phenol resins or modified resins thereof.

前記熱硬化性樹脂は、単独で又は二以上を選択して用いることもでき、さらにはアクリル系樹脂やポリビニルアルコール系樹脂等と併用することもできる。特に、本発明の筒状抄造体を中空中子に適用する場合には、熱硬化性樹脂(特に残炭率が15%以上、特には25%以上)を使用することで、高い熱間強度が得られ、中空中子としての機能を十分に発揮できる。   The thermosetting resins may be used alone or in combination of two or more, and may be used in combination with an acrylic resin, a polyvinyl alcohol resin, or the like. In particular, when the tubular papermaking product of the present invention is applied to a hollow core, a high hot strength can be obtained by using a thermosetting resin (particularly a residual carbon ratio of 15% or more, particularly 25% or more). And the function as a hollow core can be sufficiently exhibited.

前記熱硬化性樹脂は、前記配合比において、前記有機繊維100重量部に対し、30〜300重量部、特に、50〜200重量部配合することが好ましい。硬化性樹脂を斯かる範囲で配合することで、鋳物の表面粗度や形状保持性を向上させることができる。   The thermosetting resin is preferably blended in an amount of 30 to 300 parts by weight, particularly 50 to 200 parts by weight, per 100 parts by weight of the organic fiber in the blending ratio. By blending the curable resin in such a range, the surface roughness and shape retention of the casting can be improved.

前記熱硬化性樹脂は、前記有機繊維、前記無機繊維又は前記無機粒子にコーティングしたり、粉末化又は乳化して原料スラリー中に添加したりし、抄造後乾燥成形したときに前記有機繊維、前記無機繊維及び前記無機粒子を結合させるもの、成形体の抄造後に含浸させ、乾燥又は硬化させることで筒状抄造体の強度を高め、鋳込み時に溶融金属の熱によって炭化させて強度を維持するものなど、その後の鋳込み時の溶融金属の熱によって炭化して炭素皮膜を形成し、筒状抄造体の強度の維持と鋳物の表面平滑性の向上に寄与し得るものであれば含有させる形態はいずれでもよい。   The thermosetting resin is coated on the organic fiber, the inorganic fiber or the inorganic particle, or powdered or emulsified and added to the raw material slurry. What binds inorganic fibers and the inorganic particles, impregnates after forming the formed body, and dries or hardens it to increase the strength of the cylindrical paper body, and carbonizes it by the heat of the molten metal during casting to maintain the strength, etc. Any form may be used as long as it can be carbonized by the heat of the molten metal during the subsequent casting to form a carbon film and contribute to maintaining the strength of the cylindrical papermaking and improving the surface smoothness of the casting. Good.

前記ノボラックフェノール樹脂を使用した場合に必要となる硬化剤は、水に溶け易いため、湿式抄造による場合には特に成形体の脱水後に塗工することが好ましい。前記硬化剤には、ヘキサメチレンテトラミン等を用いることが好ましい。   Since the curing agent required when the novolak phenol resin is used is easily dissolved in water, it is preferably applied after dehydration of the molded body, particularly in the case of wet papermaking. It is preferable to use hexamethylenetetramine or the like as the curing agent.

本実施形態で製造される筒状抄造体には、前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂に加えて、必要に応じ、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、ポリアミドアミンエピクロルヒドリン樹脂等の紙力強化材、ポリアクリルアミド系等の凝集剤、着色剤等の他の成分を適宜の割合で添加することができる。   In addition to the organic fiber, the inorganic fiber, the inorganic particle, and the thermosetting resin, the cylindrical papermaking manufactured in the present embodiment includes polyvinyl alcohol, carboxymethyl cellulose (CMC), and polyamidoamine as necessary. Other components such as a paper strength reinforcing material such as epichlorohydrin resin, a polyacrylamide-based flocculant, and a colorant can be added at an appropriate ratio.

本実施形態のように、図1に示すような製造装置1を使用する場合には、原料スラリーは、循環経路を通して調整槽で調整されたものを循環ポンプで供給できるような流動性を有していることが好ましい。   When using the manufacturing apparatus 1 as shown in FIG. 1 as in this embodiment, the raw slurry has such fluidity that it can be supplied by a circulation pump after being adjusted in the adjustment tank through the circulation path. It is preferable.

本実施形態では、前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂を前記所定配合比で含む原料スラリーを調製する。   In this embodiment, a raw material slurry containing the organic fiber, the inorganic fiber, the inorganic particle, and the thermosetting resin at the predetermined blending ratio is prepared.

前記原料スラリーの分散媒としては、水、白水の他、エタノール、メタノール等の溶剤等が挙げられ、これらの中でも抄造・脱水の安定性、品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。   Examples of the dispersion medium of the raw material slurry include water, white water, and solvents such as ethanol and methanol. Among these, from the viewpoints of papermaking / dehydration stability, quality stability, cost, ease of handling, etc. Water is particularly preferable.

前記原料スラリーにおける前記分散媒に対する前記各繊維及び無機粒子の合計の割合は、抄造体の肉厚むらの抑制や表面性の向上の観点から、0.1〜3wt%、特に0.5〜2wt%が好ましい。   The total ratio of the fibers and inorganic particles to the dispersion medium in the raw slurry is 0.1 to 3 wt%, particularly 0.5 to 2 wt%, from the viewpoint of suppressing unevenness in the thickness of the papermaking and improving surface properties. % Is preferred.

前記原料スラリーには、必要に応じて、前記紙力強化材、前記凝集剤、防腐剤等の添加剤を適宜の割合で添加することができる。   If necessary, additives such as the paper strength reinforcing material, the flocculant, and the preservative can be added to the raw material slurry at an appropriate ratio.

そして、前記抄造ドラム21を回転させながら前記吸引ポンプで原料スラリーを吸引し、その固形分を前記抄造ネット210上に体積させる。   Then, the raw slurry is sucked by the suction pump while the papermaking drum 21 is rotated, and the solid content is made to be volume on the papermaking net 210.

前記抄造手段2で抄造する抄造シート10の液体成分含有率(重量含有率)は、シート状としての保形性を有し、該抄造シートが搬送時に損傷しないこと等を考慮すると、20〜90wt%、特に60〜80wt%が好ましい。また、抄造シートの坪量は、形成される筒状抄造体にもよるが、たとえば段差を有する筒状抄造体(該筒状抄造体に部分的に圧縮と延伸を施すことを考慮すると)の場合は、900〜2000g/m2、特に1000〜1200g/m2が好ましい。さらに、抄造シート10の厚みは、前述の関連で言えば、0.5〜3mm、特に1〜2mmが好ましい。 The liquid component content (weight content) of the papermaking sheet 10 made by the papermaking means 2 has a shape-retaining property as a sheet, and considering that the papermaking sheet is not damaged during transportation, etc., is 20 to 90 wt. %, Particularly 60 to 80 wt% is preferable. The basis weight of the papermaking sheet depends on the cylindrical papermaking body to be formed. For example, a tubular papermaking body having a level difference (in consideration of partial compression and stretching of the tubular papermaking body) In this case, 900 to 2000 g / m 2 , particularly 1000 to 1200 g / m 2 is preferable. Furthermore, the thickness of the papermaking sheet 10 is preferably 0.5 to 3 mm, particularly preferably 1 to 2 mm in the above-described relation.

次に、抄造された抄造シート10を搬送ベルト222で間欠的に搬送する。本実施形態では、この搬送ベルト222による搬送路に、供給手段7によってシート又は網状体10’を供給し、前記抄造シート10の裏面に伸縮自在のシート又は網状体10’を配する。このように伸縮自在のシートや網状体10’を配することによって、湿潤状態の抄造シート10が保護されるので、抄造シート10の搬送やハンドリング時に、その損傷を防止することができる。特に、裏面に配した場合には、抄造シートの搬送やハンドリングを容易にすることができる。シート又は網状体10’は、同様の理由で、抄造シート10の表面又は裏面に配することもできる。   Next, the papermaking sheet 10 is intermittently conveyed by the conveyance belt 222. In the present embodiment, the sheet or mesh body 10 ′ is supplied to the transport path by the transport belt 222 by the supply means 7, and the stretchable sheet or mesh body 10 ′ is disposed on the back surface of the papermaking sheet 10. By disposing the stretchable sheet or the net-like body 10 ′ in this way, the wet papermaking sheet 10 is protected, so that it can be prevented from being damaged when the papermaking sheet 10 is transported or handled. In particular, when it is arranged on the back surface, the paper sheet can be easily conveyed and handled. The sheet or net 10 'can be disposed on the front surface or the back surface of the papermaking sheet 10 for the same reason.

前記シート又は網状体10’の伸縮性は、抄造シート10の形状に追従し易いことを考慮すると、120〜200%が好ましい。   Considering that the stretchability of the sheet or net 10 ′ easily follows the shape of the papermaking sheet 10, it is preferably 120 to 200%.

前記シートの坪量は、前述と同様の理由から、10〜200g/m2、特に20〜50g/m2が好ましい。
前記シートの材質としては、レーヨンを含む植物系繊維、ナイロン等の合成樹脂系繊維等が挙げられる。
The basis weight of the sheet, for the same reason as described above, 10 to 200 g / m 2, especially 20 to 50 g / m 2 preferably.
Examples of the material of the sheet include plant fibers including rayon, synthetic resin fibers such as nylon.

前記網状体は、それを構成する線材どうしが接合されるか編み込まれていればよい。また、線材自体が編み込まれていてもよい。網状体は、抄造シート10の形状に追従し易いことを考慮すると、未伸縮状態での線材の線径が0.03〜0.15mm、特に、0.05〜0.1mmが好ましく、未伸縮状態での開口面積率が70〜95%、特に85〜90%が好ましい。該網状体の材質は、シートと同様であるが、生分解性を重視するならば、植物系繊維が構成主体となるのが好ましい。これは上述のシートにも言えることである。   The net-like body may be knitted so that the wire members constituting the mesh body are joined. Moreover, the wire itself may be knitted. Considering that the reticulate body easily follows the shape of the papermaking sheet 10, the wire diameter of the wire in an unstretched state is preferably 0.03 to 0.15 mm, and particularly preferably 0.05 to 0.1 mm. The opening area ratio in the state is preferably 70 to 95%, particularly preferably 85 to 90%. The material of the net-like body is the same as that of the sheet. However, if the biodegradability is important, it is preferable that the plant fiber is the main constituent. This is also true for the above-mentioned sheet.

前記シート又は網状体10’は、抄造シート10の乾燥効率を考慮すると、通気性を有していることが好ましい。該メッシュとしては7〜10程度が好ましい。   In consideration of the drying efficiency of the papermaking sheet 10, the sheet or net 10 ′ preferably has air permeability. The mesh is preferably about 7 to 10.

次に、間欠的に搬送されてきた抄造シート等10を成形手段4によって芯体3に巻き付ける。
この芯体3への抄造シート等10の巻き付けは、抄造シート10が停止した状態で行われ、図5(a)に示すように、まず、割型402が上昇して当該割型402と芯体3との間で抄造シート10を挟持し、抄造シート10の一部(図では下部)を湾曲させる。
Next, the papermaking sheet 10 that has been conveyed intermittently is wound around the core 3 by the molding means 4.
The papermaking sheet 10 is wound around the core 3 in a state where the papermaking sheet 10 is stopped. First, as shown in FIG. 5A, the split mold 402 is raised and the split mold 402 and the core are wound. The papermaking sheet 10 is sandwiched between the body 3 and a part (lower part in the figure) of the papermaking sheet 10 is curved.

次いで、図5(b)に示すように、割型400が水平移動して当該割型400と芯体3との間で抄造シート10を挟持し、抄造シート10の左上部を湾曲させる。さらに、図5(c)に示すように、割型401が水平移動して当該割型401と芯体3との間で抄造シート10を挟持し、抄造シート10の両側縁部どうしが重なるように抄造シート10の右上部を湾曲させる。   Next, as shown in FIG. 5B, the split mold 400 moves horizontally to sandwich the papermaking sheet 10 between the split mold 400 and the core body 3, and the upper left portion of the papermaking sheet 10 is curved. Further, as shown in FIG. 5 (c), the split mold 401 moves horizontally to sandwich the papermaking sheet 10 between the split mold 401 and the core body 3 so that both side edges of the papermaking sheet 10 overlap each other. The upper right part of the papermaking sheet 10 is curved.

次いで、芯体3の前記流通路301及び流通孔300を通して弾性押圧体31内に流体が供給され、芯体3の弾性押圧体31が膨張する。そして、芯体3に巻き付けられた抄造シート等10が前記脱水型50の内面に押圧されるとともに、流通路502、501を通して抄造シート10の液体分が外部に排出され、抄造シート等10が筒状抄造体11に脱水成形される。   Next, fluid is supplied into the elastic pressing body 31 through the flow passage 301 and the flow hole 300 of the core body 3, and the elastic pressing body 31 of the core body 3 expands. Then, the papermaking sheet 10 wound around the core 3 is pressed against the inner surface of the dehydrating die 50, and the liquid component of the papermaking sheet 10 is discharged to the outside through the flow passages 502, 501, so that the papermaking sheet 10 is cylindrical. The papermaking body 11 is dehydrated and molded.

成形型40による脱水成形時における芯体3による抄造シート10の押圧力は、抄造シート10の乾燥効率、製造された筒状抄造体11の表面性、密度、強度等の物性等を考慮すると0.4〜1.2MPa、特に、0.6〜1MPaが好ましい。脱水により成形された筒状抄造体11の液体成分含有率は、乾燥時に筒状抄造体11をある程度は変形させてその表面性や強度の向上を図ることを考慮すると55〜95Wt%、特に60〜80Wt%とすることが好ましい。   The pressing force of the papermaking sheet 10 by the core 3 at the time of dehydration molding by the molding die 40 is 0 in consideration of the drying efficiency of the papermaking sheet 10 and the physical properties such as surface properties, density, strength, etc. of the manufactured cylindrical papermaking body 11. .4 to 1.2 MPa, particularly 0.6 to 1 MPa is preferable. The liquid component content of the cylindrical paper body 11 formed by dehydration is 55 to 95 Wt%, particularly 60, considering that the tubular paper body 11 is deformed to some extent during drying to improve its surface properties and strength. It is preferable to set it to -80Wt%.

脱水成形完了後、流通路301からの流体の供給が停止され、弾性押圧体31が収縮する。その一方で、成形型40が開いて脱水成形された前記筒状抄造体11が成形型40から離脱せられる。そして、前記搬送ベルト222によって次に脱水成形される抄造シート10が成形手段4に搬送され、脱水成形された筒状抄造体11は、乾燥手段5に搬送される。成形手段4では、このような成形型4と芯体3との協働による抄造シート10から筒状抄造体11への脱水成形が繰り返し行われる。   After the dehydration molding is completed, the supply of fluid from the flow passage 301 is stopped, and the elastic pressing body 31 contracts. On the other hand, the cylindrical papermaking body 11 that has been dehydrated and molded by opening the mold 40 is detached from the mold 40. Then, the papermaking sheet 10 to be dehydrated and molded next is conveyed by the conveying belt 222 to the molding means 4, and the cylindrical papermaking body 11 that has been dehydrated and molded is conveyed to the drying means 5. In the molding means 4, dehydration molding from the papermaking sheet 10 to the cylindrical papermaking body 11 by the cooperation of the molding die 4 and the core body 3 is repeatedly performed.

脱水成形された筒状抄造体11は、図4に示すように、半乾燥型50内に配される。そして、芯体3の流通路301及び流通孔300を通して弾性押圧体32内に流体が供給されてそれが膨張し、筒状抄造体11が半乾燥型50の内面に押圧されるとともに、流通路502、501を通して筒状抄造体11の液体分が外部に排出され、筒状抄造体11が半乾燥される。   The dewater-molded cylindrical papermaking body 11 is placed in a semi-dry mold 50 as shown in FIG. Then, the fluid is supplied into the elastic pressing body 32 through the flow passage 301 and the flow hole 300 of the core body 3 and expands, and the cylindrical papermaking body 11 is pressed against the inner surface of the semi-drying mold 50 and the flow passage. The liquid of the cylindrical papermaking body 11 is discharged outside through 502 and 501, and the cylindrical papermaking body 11 is semi-dried.

半乾燥温度(金型温度)は、抄造体の重ね合わされた部分の確実な接合等を考慮すると、90〜170℃、特に100〜150℃が好ましい。また、半乾燥時における芯体3による筒状抄造体11の押圧力は、後工程での仕上げのし易さを考慮すると0.2〜1.2MPa、特に、0.4〜1MPaが好ましい。脱水成形後の最大外径Laと半乾燥後最大外径Lbの比(La/Lb)は、筒状抄造体の表面性の向上の点から、1.0〜1.1、特に1.0〜1.05とすることが好ましい。   The semi-drying temperature (mold temperature) is preferably 90 to 170 ° C., particularly preferably 100 to 150 ° C. in consideration of reliable bonding of the overlapped portions of the papermaking body. In addition, the pressing force of the cylindrical paper-making body 11 by the core body 3 at the time of semi-drying is preferably 0.2 to 1.2 MPa, particularly 0.4 to 1 MPa, considering the ease of finishing in the subsequent process. The ratio (La / Lb) between the maximum outer diameter La after dehydration molding and the maximum outer diameter Lb after semi-drying is 1.0 to 1.1, particularly 1.0, from the viewpoint of improving the surface properties of the cylindrical papermaking. It is preferable to set it to -1.05.

半乾燥完了後、流通路301からの流体の供給が停止され、弾性押圧体32が収縮する。その一方で、半乾燥型50が開いて半乾燥された筒状抄造体11が半乾燥型50から離脱せられる。半乾燥型50は、このように芯体3と協働し、半乾燥型50内に筒状抄造体11が配される毎に当該筒状抄造体の半乾燥を行う。そして、前記搬送ベルト222によって次に脱水成形される抄造シート10が成形手段4に搬送されるに伴って、半乾燥された筒状抄造体11は、前記搬送ベルト222によって搬送され、本乾燥型51内に配される。   After the semi-drying is completed, the supply of fluid from the flow passage 301 is stopped, and the elastic pressing body 32 contracts. On the other hand, the semi-drying mold 50 is opened and the semi-dried cylindrical papermaking body 11 is detached from the semi-drying mold 50. The semi-drying mold 50 cooperates with the core body 3 in this manner, and performs semi-drying of the cylindrical papermaking body every time the cylindrical papermaking body 11 is arranged in the semidrying mold 50. Then, as the paper sheet 10 to be dewatered and molded next is transported to the forming means 4 by the transport belt 222, the semi-dried tubular paper body 11 is transported by the transport belt 222, and this dry mold 51.

本乾燥型51による本乾燥は、乾燥条件が異なる以外は、半乾燥型による半乾燥と同様にして行われる。   The main drying by the main drying mold 51 is performed in the same manner as the semi-drying by the semi-drying mold except that the drying conditions are different.

本乾燥温度(金型温度)は、筒状抄造体11の乾燥効率を高めてそれが発火しないようにする観点から、100〜200℃、特に120〜180℃が好ましい。また、本乾燥時における芯体3による筒状抄造体11の押圧力は、筒状抄造体11の乾燥効率や表面性を考慮すると0.2〜1.2MPa、特に、0.4〜1MPaが好ましい。   The main drying temperature (mold temperature) is preferably 100 to 200 ° C., particularly 120 to 180 ° C. from the viewpoint of increasing the drying efficiency of the tubular papermaking body 11 so that it does not ignite. Further, the pressing force of the cylindrical papermaking body 11 by the core 3 during the main drying is 0.2 to 1.2 MPa, particularly 0.4 to 1 MPa in consideration of the drying efficiency and surface properties of the cylindrical papermaking body 11. preferable.

本乾燥完了後、流通路301からの流体の供給が停止され、弾性押圧体33が収縮する。その一方で、本乾燥型51が開いて本乾燥された筒状抄造体11が本乾燥型51から離脱せられる。本乾燥型51は、このように芯体3と協働し、本乾燥型51内に筒状抄造体11が配される毎に当該筒状抄造体の本乾燥を行う。   After the main drying is completed, the supply of fluid from the flow passage 301 is stopped, and the elastic pressing body 33 contracts. On the other hand, the cylindrical papermaking body 11 that has been dried and opened by the main drying mold 51 is detached from the main drying mold 51. The main drying mold 51 cooperates with the core body 3 in this way, and performs the main drying of the cylindrical papermaking body every time the cylindrical papermaking body 11 is arranged in the main drying mold 51.

上述の芯体3との協働による成形型40による脱水成形、半乾燥型50による半乾燥、本乾燥型51による本乾燥は、並行して行われる。   The dehydration molding by the mold 40 in cooperation with the core 3 described above, the semi-drying by the semi-drying mold 50, and the main drying by the main drying mold 51 are performed in parallel.

本乾燥された筒状抄造体11は、搬送コンベア8によって後工程に搬送され、必要に応じて、前記シート又は前記網状体10’の取り外し、切断、トリミング、着色、印刷、ラベル貼付等の後処理が施され、その製造が完了する。   The fully dried cylindrical papermaking body 11 is transported to a subsequent process by the transporting conveyor 8 and, if necessary, after removal, cutting, trimming, coloring, printing, labeling, etc. of the sheet or the net-like body 10 ′. Processing is performed and the manufacture is completed.

本実施形態で製造される筒状抄造体は、その用いられる部分に応じ、その内径を5〜30mm、特に6〜20mmとすることができる。   The cylindrical papermaking produced in the present embodiment can have an inner diameter of 5 to 30 mm, particularly 6 to 20 mm, depending on the portion used.

また、本実施形態で製造される筒状抄造体の厚みは、その用いられる部分に応じて適宜設定することができるが、少なくとも溶融金属と接する部分における厚みを、0.2〜5mm、特に0.4〜2mmとすることで、鋳物砂を充填して造型するときに要する強度が十分となり、筒状抄造体、特に、中子(後述)等の構造体の形状機能を維持することができる。また、鋳込み時におけるガス発生量の増加を抑えて鋳物の表面欠陥の発生を防ぐことがでえきるほか、成形時間を短くでき、製造費も低く抑えることができる。   Further, the thickness of the cylindrical papermaking produced in the present embodiment can be appropriately set according to the portion used, but the thickness at least in the portion in contact with the molten metal is 0.2 to 5 mm, particularly 0. By setting the thickness to 4 to 2 mm, the strength required when molding by filling the foundry sand is sufficient, and the shape function of the cylindrical paper-making body, particularly the structure such as the core (described later) can be maintained. . In addition to suppressing an increase in the amount of gas generated during casting and preventing the occurrence of surface defects in the casting, the molding time can be shortened and the manufacturing cost can be kept low.

本実施形態で製造される筒状抄造体は、鋳造に用いられる前の状態において、抗折強度を5MPa以上、特に10MPa以上とすることができる。   The cylindrical papermaking produced in the present embodiment can have a bending strength of 5 MPa or more, particularly 10 MPa or more, in a state before being used for casting.

本実施形態で製造される筒状抄造体は、表面粗度(Ra)が20μm以下、特には3〜15μm、更には5〜10μm以下とするのが好ましい。斯かる表面粗度とすることで、得られる鋳物の表面の平滑性をより優れたものとすることができる。ここで、表面粗度は、市販の測定装置で測定することができる。   The cylindrical papermaking produced in this embodiment preferably has a surface roughness (Ra) of 20 μm or less, particularly 3 to 15 μm, more preferably 5 to 10 μm. By setting it as such surface roughness, the smoothness of the surface of the casting obtained can be made more excellent. Here, the surface roughness can be measured with a commercially available measuring device.

本実施形態で製造される筒状抄造体は、水を分散媒とした原料スラリーを用いた抄造工程を経て製造したときには、鋳込み時のガス発生量を極力抑える点から、鋳造に用いられる前の状態において、含水率(重量含水率)が10%以下、特に8%以下であることが好ましい。   When the cylindrical papermaking produced in this embodiment is produced through a papermaking process using a raw material slurry using water as a dispersion medium, the amount of gas generated during casting is reduced as much as possible before being used for casting. In the state, the water content (weight water content) is preferably 10% or less, particularly preferably 8% or less.

本実施形態で製造される筒状抄造体は、内面に鋳物製品形状のキャビティーを有する主型に入れて使用する中子、或いは湯道などの注湯系部材等に適用することができる。特に、熱間の圧縮強度にも優れ、高い形状保持性を有し且つ鋳込み後の除去性にも優れているため、中子として、特に中空形状でも高い形状保持性を有し、鋳物砂の充填が不要となる中空中子へ適用も可能である。また、注湯系部材とした場合には、その径を細くすることができるので、湯道等に残る湯の量を少なく抑えることができる。   The cylindrical papermaking body manufactured in the present embodiment can be applied to a core used in a main mold having a casting product-shaped cavity on the inner surface, or a pouring system member such as a runner. In particular, it has excellent hot compressive strength, high shape retention, and excellent removability after casting. It can also be applied to hollow cores that do not require filling. Moreover, since it can make the diameter thin when it is set as a pouring type | system | group member, the quantity of the hot water remaining in a runner etc. can be restrained small.

また、前記筒状抄造体がその内部から前記弾性押圧体で乾燥型の内面に押し付けられて成形されているため、内表面及び外表面の平滑性が高い。このため、鋳物の製造に用いた場合には、得られる鋳物は特に表面平滑性に優れたものとなる。   Moreover, since the said cylindrical papermaking body is shape | molded by pressing on the inner surface of a dry mold with the said elastic press body from the inside, the smoothness of an inner surface and an outer surface is high. For this reason, when it uses for manufacture of a casting, the obtained casting becomes a thing excellent especially in surface smoothness.

得られた筒状抄造体には、必要に応じて、バインダーを部分的又は全体に含浸させ、加熱して熱硬化させることができる。該バインダーとしては、コロイダルシリカ、エチルシリケート、水ガラス等が挙げられる。   If necessary, the obtained cylindrical papermaking can be impregnated partially or entirely with a binder and heated to be thermally cured. Examples of the binder include colloidal silica, ethyl silicate, and water glass.

また、筒状抄造体は、予め還元雰囲気で150〜300℃、特には200〜250℃で熱処理を行い、熱硬化性樹脂の硬化を進めることが好ましい。このような熱処理を行うことで、より優れた形状保持性を有する筒状抄造体が得られる。特に、鋳物の材質や形状によりガス欠陥の発生が懸念される場合にも好適である。斯かる熱処理による熱硬化性樹脂の硬化度は、下記の熱硬化性樹脂のアセトン不溶分量で30%以上、特には80%以上とすることが好ましい。   Moreover, it is preferable that the cylindrical papermaking body is heat-treated in a reducing atmosphere at 150 to 300 ° C., particularly 200 to 250 ° C., to advance the curing of the thermosetting resin. By performing such a heat treatment, a cylindrical paper-making body having better shape retention can be obtained. In particular, it is also suitable when there are concerns about the occurrence of gas defects due to the material and shape of the casting. The degree of cure of the thermosetting resin by such heat treatment is preferably 30% or more, particularly 80% or more in terms of the amount of acetone insoluble in the thermosetting resin described below.

前記熱硬化性樹脂の不溶分量は、具体的には、次のように求められる。
すなわち、前記筒状抄造体から試料約5gを採取し、ミルで粉砕して重量(a)を精秤する。この粉砕試料をアセトンとともに容器に加えて十分に振とうさせた後、常温で放置する。次いで、前記容器に前記粉砕試料が残らないようにして、該粉砕試料をろ紙(重量(c))で十分にろ過し、ろ過した該粉砕試料を該ろ紙とともに乾燥してそれら(粉砕試料及びろ紙)の重量(b)を精秤する。そして、得られた各重量(a)〜(c)及び前記粉砕試料中の前記熱硬化性樹脂以外の成分の理論重量(d)に基づいて、下記式から前記熱硬化性樹脂の不溶分量(%)を求める。
不溶分量%=100−(a−(b−d))×100/(a−d)
Specifically, the insoluble content of the thermosetting resin is determined as follows.
That is, about 5 g of a sample is taken from the cylindrical papermaking product, pulverized with a mill, and the weight (a) is precisely weighed. The ground sample is added to a container together with acetone and shaken sufficiently, and then left at room temperature. Next, the pulverized sample is sufficiently filtered with a filter paper (weight (c)) so that the pulverized sample does not remain in the container, and the filtered pulverized sample is dried together with the filter paper to obtain them (crushed sample and filter paper). ) (B) is precisely weighed. Then, based on the obtained weights (a) to (c) and the theoretical weight (d) of components other than the thermosetting resin in the pulverized sample, the insoluble content of the thermosetting resin ( %).
Insoluble content% = 100− (a− (b−d)) × 100 / (ad)

以上説明したように、本実施形態の筒状抄造体の製造方法によれば、帯状の抄造シート10を芯体3に巻き付け、芯体3を成形型40内で膨張させて筒状に成形するため、細く、薄肉の筒状抄造体も好適に製造することができる。   As described above, according to the manufacturing method of the cylindrical papermaking body of the present embodiment, the belt-shaped papermaking sheet 10 is wound around the core body 3 and the core body 3 is expanded in the forming die 40 to be formed into a cylindrical shape. Therefore, a thin and thin-walled cylindrical papermaking can also be suitably produced.

図6は、本発明の筒状抄造体の製造装置における抄造シートの成形手段の他の実施形態を示したものである。図6において、前記実施形態の成形手段4の成形型40と共通する部分については同一符号を付し、その説明は省略する。従って、特に説明のない部分については、前記実施形態における説明が適宜適用される。   FIG. 6 shows another embodiment of the forming means of the papermaking sheet in the apparatus for producing a cylindrical papermaking of the present invention. In FIG. 6, portions common to the mold 40 of the molding unit 4 of the embodiment are given the same reference numerals, and descriptions thereof are omitted. Therefore, the description in the above embodiment is appropriately applied to a portion not particularly described.

成形型40は、一組(本実施形態では4個)の割型405〜408を具備しており、これらの割型が組み合わされて閉じた状態では、芯体3及び芯体3の外側に巻回された抄造シート等10が収容される空間が形成される。割型405〜408には、流体の流通路403が接続されている。割型405〜408の内部には、前記実施形態における流通路404と同様に、一端が抄造シート等10に臨む面で多数開口し、他端が流通路403に通じる流通路(図示せず)が設けられている。   The mold 40 includes a pair (four in this embodiment) of split molds 405 to 408. When these split molds are combined and closed, the core body 3 and the core body 3 are arranged outside. A space for accommodating the wound papermaking sheet 10 is formed. A fluid flow path 403 is connected to the split molds 405 to 408. Inside the split molds 405 to 408, as with the flow path 404 in the above-described embodiment, a flow path (not shown) having one end open on the surface facing the papermaking sheet 10 and the other end leading to the flow path 403. Is provided.

この成形型40による芯体3への抄造シート等10の巻き付けは、抄造シート10の移動が停止した状態で行われ、図6(a)に示すように、まず、割型408が上昇して当該割型408と芯体3との間で抄造シート10を挟持し、抄造シート10を湾曲させる。   Winding of the papermaking sheet 10 or the like 10 around the core 3 by the molding die 40 is performed in a state where the movement of the papermaking sheet 10 is stopped. First, as shown in FIG. 6A, the split die 408 is raised. The papermaking sheet 10 is sandwiched between the split mold 408 and the core body 3, and the papermaking sheet 10 is curved.

以下、図6(b)、(c)、(d)の順に、割型405、406及び407が水平及び下方に移動して、それぞれの割型と芯体3との間で抄造シート10を挟持するが、最終的には割型407と芯体3との間で抄造シート10を挟持し、抄造シート10の両側縁部どうしが重なるように抄造シート10を湾曲させる。   Hereinafter, in the order of FIGS. 6B, 6C, and 6D, the split molds 405, 406, and 407 move horizontally and downward, and the papermaking sheet 10 is moved between each split mold and the core body 3. The papermaking sheet 10 is finally sandwiched between the split mold 407 and the core body 3, and the papermaking sheet 10 is bent so that both side edges of the papermaking sheet 10 overlap each other.

本発明は、前記実施形態に制限されるものではなく、本発明の趣旨を逸脱しない範囲において、適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

本発明の筒状抄造体の製造方法では、原料スラリーは前記実施形態に制限されるものではなく、製造する筒状抄造体に合わせた原料スラリーが用いられる。   In the manufacturing method of the cylindrical papermaking body of this invention, raw material slurry is not restrict | limited to the said embodiment, The raw material slurry match | combined with the cylindrical papermaking body to be manufactured is used.

また、本発明は、前記実施形態のように、伸縮自在のシートや網状体の配することが好ましいが、これらは省略することもできる。また、これらシートや網状体の配し方に特に制限はない。前記実施形態のように、帯状の抄造シートの裏面に前記シートや網状体を配してもよいし、表面又は両面に配してもよい。また、抄造シートの表面又は裏面に配する前記伸縮自在のシート若しくは網状体は予め所定の大きさに切断されていてもよい。   Further, in the present invention, it is preferable to arrange a stretchable sheet or a net-like body as in the above embodiment, but these can be omitted. Moreover, there is no restriction | limiting in particular in how to arrange | position these sheets and nets. Like the said embodiment, you may distribute the said sheet | seat or a net-like body on the back surface of a strip | belt-shaped papermaking sheet | seat, and may distribute | arrange on the surface or both surfaces. Further, the stretchable sheet or net-like body disposed on the front surface or the back surface of the papermaking sheet may be cut into a predetermined size in advance.

また、本発明の製造装置は、前記実施形態のように、成形型で脱水成形した後に半乾燥型及び本乾燥型で順次乾燥させることが好ましいが、脱水と乾燥とを成形型で行ってもよい。また、抄造シートを所望の液体分含有率に調整した後、乾燥型を成形型として用いて乾燥と成形を同時に行ってもよい。   Further, as in the above-described embodiment, the production apparatus of the present invention is preferably sequentially dried with a semi-dry mold and a main dry mold after being dehydrated with a mold, but dehydration and drying may be performed with a mold. Good. Moreover, after adjusting a papermaking sheet to a desired liquid content rate, you may dry and shape | mold simultaneously using a dry type | mold as a shaping | molding die.

本発明は、製造する筒状抄造体の用途によっては、乾燥型による乾燥成形を省略することもできる。また、半乾燥と本乾燥のいずれかを省略することもできる。   In the present invention, depending on the use of the cylindrical paper to be produced, dry molding with a dry mold can be omitted. Also, either semi-drying or main drying can be omitted.

また、乾燥型や脱水型の内面形状を湾曲させた形状とすることで、湾曲した筒状抄造体を製造することもできる。   Moreover, the curved cylindrical paper-making body can also be manufactured by making it the shape which curved the inner surface shape of the dry type | mold and the dehydration type | mold.

本発明の筒状抄造体の製造方法及び装置は、上述のような鋳物の製造に用いられる筒状抄造体の他、各種インテリア材料や各種模型材料等に用いられる筒状抄造体の製造にも好適に用いられる。また、本発明は、細くて薄肉の筒状抄造体の製造に好適であるが、肉厚が0.5〜3mm、内径が5〜30mm、長さ100〜300mm程度の筒状抄造体も好適に製造することができる。   The manufacturing method and apparatus of the cylindrical papermaking of the present invention are also used for manufacturing the cylindrical papermaking used for various interior materials and various model materials in addition to the cylindrical papermaking used for the production of castings as described above. Preferably used. Further, the present invention is suitable for the production of a thin and thin tubular paper-making body, but a tubular paper-making body having a thickness of 0.5 to 3 mm, an inner diameter of 5 to 30 mm, and a length of about 100 to 300 mm is also suitable. Can be manufactured.

本発明の筒状抄造体の製造装置の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the manufacturing apparatus of the cylindrical papermaking body of this invention. 同実施形態の筒状抄造体の製造装置における芯体を模式的に示す半断面図である。It is a half sectional view which shows typically the core in the manufacturing apparatus of the cylindrical papermaking body of the embodiment. 同実施形態の筒状抄造体の製造装置における脱水成形工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the spin-drying | dehydration shaping | molding process in the manufacturing apparatus of the cylindrical papermaking body of the embodiment. 同実施形態の筒状抄造体の製造装置における乾燥工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the drying process in the manufacturing apparatus of the cylindrical papermaking body of the embodiment. 同実施形態の筒状抄造体の製造装置における成形手段の動作を模式的に示す図であり、(a)は成形手段へ抄造シートを導入している状態を示す図、(b)は芯体に抄造シートを巻き付けている状態を示す図、(c)は巻き付けが完了した状態を示す図である。It is a figure which shows typically operation | movement of the shaping | molding means in the manufacturing apparatus of the cylindrical papermaking body of the embodiment, (a) is a figure which shows the state which has introduce | transduced the papermaking sheet into a shaping | molding means, (b) is a core body The figure which shows the state which has wound the papermaking sheet | seat in (c) is a figure which shows the state which winding was completed. 本発明の他の実施形態の筒状抄造体の製造装置における成形手段の動作を模式的に示す図であり、(a)は巻回手段へ抄造シートを導入している状態を示す図、(b)及び(c)は芯体に抄造シートを巻き付けている状態を示す図、(d)は巻き付けが完了した状態を示す図である。It is a figure which shows typically operation | movement of the shaping | molding means in the manufacturing apparatus of the cylindrical paper-making body of other embodiment of this invention, (a) is a figure which shows the state which has introduce | transduced the paper-making sheet into the winding means, (b) And (c) is a figure which shows the state which winds the papermaking sheet | seat around a core, (d) is a figure which shows the state which winding was completed.

符号の説明Explanation of symbols

1 筒状抄造体の製造装置
2 抄造手段
3 芯体
4 成形手段
40 成形型
5 乾燥手段
50 乾燥型
10 抄造シート
10’ 伸縮自在のシート又は網状体
11 筒状抄造体
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of cylindrical papermaking body 2 Papermaking means 3 Core body 4 Molding means 40 Molding die 5 Drying means 50 Drying type 10 Papermaking sheet 10 'Stretchable sheet or net body 11 Cylindrical papermaking body

Claims (6)

抄造シートの両側縁部を接合して筒状の抄造体を製造する方法であって、
前記抄造シートと該抄造シートが巻き付けられる膨縮可能な芯体とを収容するように一組の割型を具備する成形型の該割型を組み合わせながら、前記割型で前記両側縁部どうしが重なるように前記抄造シートを前記芯体の周りに巻き付けた後、前記芯体を膨張させて前記抄造シートを前記成形型の成形面に押圧し、前記両側縁部どうしを接合する筒状抄造体の製造方法。
A method of manufacturing a cylindrical papermaking body by joining both side edges of the papermaking sheet,
While combining the split mold of the mold having a pair of split molds so as to accommodate the papermaking sheet and the expandable / contractable core around which the papermaking sheet is wound, A cylindrical paper-making body in which the paper-making sheet is wound around the core body so as to overlap, and then the core body is expanded to press the paper-making sheet against the molding surface of the mold, and the side edges are joined together Manufacturing method.
前記成形型の前記成形面に伸縮自在のシート又は網状体を配しておく請求項1記載の筒状抄造体の製造方法。   The manufacturing method of the cylindrical papermaking body of Claim 1 which has arrange | positioned the elastic sheet or net-like body on the said molding surface of the said shaping | molding die. 伸縮自在の前記シートが通気性を有している請求項2記載の筒状抄造体の製造方法。   The manufacturing method of the cylindrical papermaking body of Claim 2 with which the said sheet | seat which can be expanded-contracted has air permeability. 前記成形型が脱水型又は乾燥型である請求項1〜3の何れかに記載の筒状抄造体の製造方法。   The method for producing a cylindrical papermaking product according to any one of claims 1 to 3, wherein the molding die is a dehydrating die or a dry die. 請求項1記載の筒状抄造体の製造方法を実施するための筒状抄造体の製造装置であって、帯状の抄造シートの抄造手段と、前記抄造シートが巻き付けられる伸縮自在の芯体と、前記芯体に前記抄造シートを巻き付ける一組の割型を具備する成形型とを備えている筒状抄造体の製造装置。   An apparatus for producing a tubular papermaking body for carrying out the method for producing a tubular papermaking body according to claim 1, wherein a papermaking means for a belt-like papermaking sheet, a stretchable core body around which the papermaking sheet is wound, An apparatus for manufacturing a cylindrical paper-making body, comprising: a mold having a pair of split molds around which the paper-making sheet is wound around the core body. 前記芯体は、中空の芯管と、該芯管の外側に取り付けられ内部に流体が供給されて膨張する弾性押圧体とを備えている請求項5記載の筒状抄造体の製造装置。

The said core body is a manufacturing apparatus of the cylindrical papermaking body of Claim 5 provided with the hollow core pipe and the elastic press body which is attached to the outer side of this core pipe, a fluid is supplied inside, and expand | swells.

JP2004028611A 2004-02-04 2004-02-04 Method and apparatus for producing cylindrical papermaking Expired - Fee Related JP4368215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028611A JP4368215B2 (en) 2004-02-04 2004-02-04 Method and apparatus for producing cylindrical papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028611A JP4368215B2 (en) 2004-02-04 2004-02-04 Method and apparatus for producing cylindrical papermaking

Publications (2)

Publication Number Publication Date
JP2005220469A true JP2005220469A (en) 2005-08-18
JP4368215B2 JP4368215B2 (en) 2009-11-18

Family

ID=34996332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028611A Expired - Fee Related JP4368215B2 (en) 2004-02-04 2004-02-04 Method and apparatus for producing cylindrical papermaking

Country Status (1)

Country Link
JP (1) JP4368215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006857A (en) * 2015-06-22 2017-01-12 花王株式会社 Method and device for producing slurry composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006857A (en) * 2015-06-22 2017-01-12 花王株式会社 Method and device for producing slurry composition

Also Published As

Publication number Publication date
JP4368215B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP5680490B2 (en) Casting structure
JP4002200B2 (en) Papermaking parts for casting production
US7651592B2 (en) Molded article
JP6682159B2 (en) Method for manufacturing structure for casting production
BRPI0809230B1 (en) method for making ceramic material plates
EP1754554B1 (en) Structure for casting production
JP2009195991A (en) Member for producing casting
JP4471629B2 (en) Manufacturing method of parts for casting production
JP4368215B2 (en) Method and apparatus for producing cylindrical papermaking
JP3995649B2 (en) Molds or structures for casting production
JP4672522B2 (en) Casting structure
JP4368214B2 (en) Method and apparatus for producing cylindrical papermaking
JP4368204B2 (en) Method and apparatus for producing cylindrical papermaking
JP2004181472A (en) Mold and structural body for producing casting
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP4407962B2 (en) Papermaking parts for casting production
JP3241628U (en) Structures for casting manufacturing
JP2007191823A (en) Fiber molded article for producing cast, method and apparatus for producing the same
JP4694347B2 (en) Manufacturing method of casting mold
CN117102435A (en) Structure for casting production
CN116460253A (en) Structure for casting production
JP2007111738A (en) Method for producing mold for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

R151 Written notification of patent or utility model registration

Ref document number: 4368215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees