JP2004181472A - Mold and structural body for producing casting - Google Patents

Mold and structural body for producing casting Download PDF

Info

Publication number
JP2004181472A
JP2004181472A JP2002349220A JP2002349220A JP2004181472A JP 2004181472 A JP2004181472 A JP 2004181472A JP 2002349220 A JP2002349220 A JP 2002349220A JP 2002349220 A JP2002349220 A JP 2002349220A JP 2004181472 A JP2004181472 A JP 2004181472A
Authority
JP
Japan
Prior art keywords
casting
mold
fiber
thermosetting resin
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002349220A
Other languages
Japanese (ja)
Other versions
JP4219157B2 (en
Inventor
Shigeo Nakai
茂夫 仲井
Shigemasa Takagi
栄政 高城
Tokuo Tsuura
徳雄 津浦
Tadashi Kusube
匡 楠部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002349220A priority Critical patent/JP4219157B2/en
Publication of JP2004181472A publication Critical patent/JP2004181472A/en
Application granted granted Critical
Publication of JP4219157B2 publication Critical patent/JP4219157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold and a structural body for producing a casting, having good formability and light weight and sufficient hot-strength and shape-holding property at the casting time and excellent surface smoothness of the casting and excellent removability after casting. <P>SOLUTION: This mold and structural body includes an organic fiber, an inorganic fiber and a thermosetting resin. It is desirable that the above organic fiber is a paper fiber and the above inorganic fiber is a carbon fiber and the above thermosetting resin is a phenolic resin. A blending ratio of the above organic fiber, inorganic fiber and thermosetting resin is desirably 10-70/1-80/10-70 (weight ratio). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋳物の製造時に用いられる鋳型又は構造体(以下、「鋳型又は構造体」を鋳型等ともいう。)及び該鋳型等の製法、並びに該鋳型等を用いた鋳物の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
鋳物は、一般に、木型や金型などをもとに鋳物砂で内部にキャビティを有する鋳型を形成するとともに、必要に応じて該キャビティ内に中子を配した後、該キャビティに溶湯を供給して製造されている。
【0003】
木型、金型の製造は、加工に熟練を要し高価な設備も必要で、高価で重い等の欠点と共に廃棄処理の問題も生じ、量産の鋳物のほかには使用が困難である。また、鋳物砂を用いた砂型は、通常の砂にバインダーを添加し、硬化させて形状を保持させているため、砂の再利用には再生処理工程が必須となる。また、再生処理の際にダストなどの廃棄物が発生するなどの問題も生じている。加えて、中子を砂型で製造する場合、上記課題に加え中子自身の重量のため取り扱いに難があり、さらには、鋳込み時の強度保持と鋳込み後の中子除去性という相反する性能が要求される。
【0004】
このような課題を解決する技術として、鋳型に用いる部材を例えば、紙等の有機繊維物で成形するもの(下記特許文献1参照)、無機繊維を主成分とし、これに粘結剤として樹脂を添加して成形するもの(下記特許文献2参照)、或いはセルロース繊維に無機粉や無機繊維を添加して成形するもの(下記特許文献3参照)が知られている。
【0005】
これらの技術は、軽量化、加工性、廃材問題については、ある程度の効果を有するものの、1)均一な鋳型成形体を得ることが困難であり、特に中空構造に均一に成形する場合の成形性が悪かったり、2)熱間強度が低いため鋳込み後の鋳物の形状保持性も十分得られなかったり、3)得られる鋳物の表面平滑性が低かったりする課題を有していた。このため、これらの課題の改善し得る手段が強く望まれていた。
【0006】
【特許文献1】
実開平6−86843号公報
【特許文献2】
特開平10−5931号公報
【特許文献3】
特開平9−253792号公報
【0007】
従って、本発明の目的は、鋳型等の成形性が良く、軽量で鋳込み時においても十分な熱間強度及び形状保持性を有し、得られる鋳物の形状保持性及び表面平滑性にも優れ、さらには鋳造後の除去性に優れる鋳物製造用の鋳型及び構造体並びにこれらの製造方法、並びにこれらを用いた鋳物の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、有機繊維、無機繊維及び熱硬化性樹脂を含有する鋳物製造用の鋳型又は構造体を提供することにより、前記目的を達成したものである。なお、本明細書において、「鋳物製造用の構造体」という場合、「鋳物製造用の鋳型」の範疇に含まれる場合もある。
【0009】
また、本発明は、前記本発明の鋳物製造用の鋳型又は構造体の製造方法であって、前記有機繊維及び前記無機繊維を少なくとも含む原料スラリーを用いた抄造工程を具備する鋳物用の鋳型又は構造体の製造方法を提供することにより、前記目的を達成したものである。
【0010】
また、本発明は、前記本発明の鋳物製造用の鋳型又は構造体を用いた鋳物の製造方法を提供することにより、前記目的を達成したものである。
【0011】
【発明の実施の形態】
以下本発明を、その好ましい実施形態に基づき説明する。
【0012】
本実施形態の鋳型等は、有機繊維、無機繊維及び熱硬化性樹脂を含有するものである。
前記有機繊維、前記無機繊維及び前記熱硬化性樹脂の配合比は、前記有機繊維/前記無機繊維/前記熱硬化性樹脂=10〜70/1〜80/10〜70(重量比率)、さらには10〜50/5〜50/20〜70(重量比率)、特には10〜30/10〜40/30〜60(重量比率)であることが好ましい。
【0013】
前記有機繊維が前記配合比で10未満であると添加効果が得られないほか、鋳型等の成形性や鋳込み後の鋳型等の除去性が低下する場合があり、前記配合比で70を超えると鋳込み時のガス発生量が増加して鋳物の表面欠陥が発生しやすくなったり、耐熱性が低下し、鋳物の形状保持性が低下する場合がある。
【0014】
また、前記無機繊維が前記配合比で1未満であると鋳型等の耐熱性の低下に伴う熱収縮によって鋳物の形状保持性が低下したり、ガスの発生量が増大する場合があり、前記配合比で80を超えると鋳型等の成形性が悪くなるほか、鋳込み後の鋳型等の除去性が低下する場合がある。
【0015】
さらに、前記熱硬化性樹脂が前記配合比で10未満であると鋳物の表面の平滑性が得られないほか、鋳型等の強度や形状保持性が低下する場合があり、70を超えると鋳型等の成形性が悪くなるほか、ガス発生量が増大して鋳物の表面欠陥が生じやすくなる場合がある。
【0016】
前記有機繊維は、主として鋳型等において鋳造に用いられる前の状態ではその骨格をなし、鋳型等の成形性を向上させる成分である。また、鋳造に用いられたときには溶融金属の熱によってその一部若しくは全部が燃焼し、鋳物製造後の鋳型等内部に空隙を形成して鋳型等の除去性を向上させる成分である。
【0017】
前記有機繊維としては、紙繊維、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等の繊維が挙げられる。有機繊維は、これらを単独で又は二種以上を選択して用いることができる。そして、これらの中でも、特に、抄造により多様な形態に成形できるほか、脱水後と乾燥後に十分な強度が得られる点から紙繊維を用いることが好ましい。
【0018】
前記紙繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。紙繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。紙繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。
【0019】
前記有機繊維は、鋳型等の成形性、表面平滑性、耐衝撃性を考慮すると、平均繊維長が0.3〜2.0mm、特に0.5〜1.5mmであるものが好ましい。
【0020】
前記有機繊維の鋳型等における配合割合は、鋳型等の成形性、鋳物製造後の鋳型等の除去性を考慮すると、10〜70wt%、特に10〜50wt%であることが好ましい。
【0021】
前記無機繊維は、主として鋳型等において鋳造に用いられる前の状態ではその骨格をなし、鋳造に用いられたときには溶融金属の熱によって燃焼せずにその形状を維持する成分である。特に、本発明で使用する熱硬化性樹脂等の有機成分が溶融金属の熱によって熱分解して生じる熱収縮を抑える成分である。
【0022】
前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。無機繊維は、これらを単独で又は二以上を選択して用いることができる。そして、これらの中でも、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましく、特にPAN系の炭素繊維が好ましい。
【0023】
前記無機繊維は、鋳型等を抄造して脱水する場合の脱水性、鋳型等の成形性、均一性の観点から平均繊維長が0.2〜10mm、特に0.5〜8mmであるものが好ましい。
【0024】
また、前記無機繊維は、熱硬化性樹脂の熱分解に伴う熱収縮を効果的に抑える点から、1000℃、還元雰囲気下(窒素雰囲気)で10分間熱処理を行ったときの下記式で表される収縮率が5%以下、さらに3%以下、特には2%以下のものが好ましい。
収縮率=(処理前シート長−加熱後シート長)×100/(加熱前シート長)
ここで、シート長は、新聞紙/無機繊維/ノボラックフェノール樹脂=25/37.5/37.5(重量比率)の配合比で後述する実施例の湿式抄造と同様にして製造された縦50mm×横50mm×厚さ1mmのシートを試料とし、その縦および横寸法の平均値とする。
【0025】
前記無機繊維は、前記配合比において、前記有機繊維100重量部に対し、10〜300重量部、特に20〜200重量部配合することが好ましい。無機繊維を斯かる範囲で配合することで、鋳型等の耐熱性を十分に保持できるとともに、ガス発生による鋳物表面欠陥の発生を抑えることができる。
【0026】
前記熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂等の熱硬化性樹脂が挙げられる。熱硬化性樹脂は、常温強度及び熱間強度を維持させると共に、鋳物の表面粗度を向上させるために必要な成分であり、塗型剤を塗布した砂型と同等の表面平滑性が得られ、塗型剤を使用しなくても良いほどである。斯かる性能は、従来のアルコール系塗型剤等使用時の着火乾燥が困難な有機繊維等を含有する本発明の鋳型等に重要な性能である。
【0027】
斯かる性能を有する前記熱硬化性樹脂には、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、鋳造時に炭素皮膜を形成するために良好な鋳肌を得ることができる点からフェノール系樹脂を用いることが好ましい。なお、残炭率は、示査熱分析により還元雰囲気下(窒素雰囲気下)にて1000℃に加熱後の残留重量により求めることができる。
【0028】
前記フェノール系樹脂としては、ノボラックフェノール樹脂、レゾールタイプ等のフェノール樹脂、尿素、メラミン、エポキシ等で変性した変性フェノール樹脂等が挙げられるが、好ましくはノボラックフェノール樹脂又はその変性樹脂である。
【0029】
前記熱硬化性樹脂は、単独で又は二以上を選択して用いることもでき、さらにはアクリル系樹脂やポリビニルアルコール系樹脂等と併用することもできる。特に、本発明の鋳型等を中空中子に適用する場合には、熱硬化性樹脂(特に残炭率が15%以上、特には25%以上)を使用することで、高い熱間強度が得られ、中空中子としての機能を十分に発揮できる。
【0030】
前記熱硬化性樹脂は、前記配合比において、前記有機繊維100重量部に対し、50〜400重量部、特に、70〜300重量部配合することが好ましい。硬化性樹脂を斯かる範囲で配合することで、鋳物の表面粗度や形状保持性を向上させることができる。
【0031】
前記熱硬化性樹脂は、前記有機繊維又は無機繊維にコーティングしたり、粉末化又は乳化して原料スラリー中に添加したりし、抄造後乾燥成形したときに前記有機繊維及び前記無機繊維を結合させるもの、成形体の抄造後に含浸させ、乾燥又は硬化させることで鋳型等の強度を高めるもの等、その後の鋳込み時の溶融金属の熱によって炭化して炭素皮膜を形成し、鋳型等の強度の維持と鋳物の表面平滑性の向上に寄与し得るものであれば含有させる形態はいずれでもよい。
【0032】
前記ノボラックフェノール樹脂を使用した場合に必要となる硬化剤は、水に溶け易いため、湿式抄造による場合には特に成形体の脱水後に塗工することが好ましい。前記硬化剤には、ヘキサメチレンテトラミン等を用いることが好ましい。
【0033】
本実施形態の鋳型等には、前記有機繊維、前記無機繊維及び前記熱硬化性樹脂に加えて、必要に応じ、黒曜石やムライト粉等の浸炭防止剤、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、ポリアミドアミンエピクロルヒドリン樹脂等の紙力強化材、ポリアクリルアミド系等の凝集剤、着色剤等の他の成分を適宜の割合で添加することができる。
【0034】
本実施形態の鋳型等の厚みは、その用いられる部分に応じて適宜設定することができるが、少なくとも溶融金属と接する部分における厚みが、0.2〜5mm、特に0.4〜2mmであることが好ましい。薄すぎると鋳物砂を充填して造型するときに要する強度が不十分となり、鋳型等、特に、中子等の構造体の形状機能が維持できない場合があり、厚すぎると鋳込み時にガス発生量が増加して鋳物の表面欠陥が発生しやすくなるほか、成形時間が長くなり、製造費が高くなる場合がある。
【0035】
本実施形態の鋳型等は、鋳造に用いられる前の状態において、抗折強度が5MPa以上であることが好ましく、10MPa以上であることがより好ましい。
【0036】
本実施形態の鋳型等は、水を分散媒とした原料スラリーを用いた抄造工程を経て製造したときには、鋳込み時のガス発生量を極力抑える点から、鋳造に用いられる前の状態において、含水率(重量含水率)が10%以下、特には8%以下であることが好ましい。
【0037】
本実施形態の鋳型等は、軽量性と、造型作業や二次加工のし易さの点でから、鋳造に用いられる前の状態において、その比重が1.0以下であることが好ましく、0.8以下であることがより好ましい。
【0038】
本実施形態の鋳型等は、内面に鋳物製品形状のキャビティーを有する主型、その主型に入れて使用する中子、或いは湯道などの注湯系部材等に適用することができるが、本発明の鋳型等が表面平滑性に優れており、良好な鋳肌の鋳物を得ることができるため、主型や中子への適用が好ましい。特に、熱間の圧縮強度にも優れ、高い形状保持性を有し且つ鋳込み後の除去性にも優れているため、中子として、特には中空形状でも高い形状保持性を有し、鋳物砂の充填が不要となる中空中子へ適用することが好ましい。
【0039】
本実施形態の鋳型等を鋳物の製造に用いると、従来のように、主型の周りに充填する鋳物砂、中空中子にバックアップの目的で充填する鋳物砂を必ずしもバインダーで硬化させる必要がないので、鋳物砂の再生が容易となる利点も生じる。
【0040】
次に、本発明の鋳型等の製造方法を、その好ましい実施形態に基づいて説明する。
本実施形態の製造方法では、前記有機繊維、前記無機繊維及び前記熱硬化性樹脂を前記所定配合比で含む原料スラリーを調製し、該原料スラリーを用いた湿式抄造法によって所定形状の繊維積層体を抄造し、脱水、乾燥して鋳型等を製造する。
【0041】
前記原料スラリーの分散媒としては、水、白水の他、エタノール、メタノール等の溶剤等が挙げられ、これらの中でも抄造・脱水の安定性、品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。
【0042】
前記原料スラリーにおける前記分散媒に対する前記各繊維の合計の割合は、0.1〜3wt%、特に0.5〜2wt%であることが好ましい。原料スラリー中の前記繊維の合計割合が多すぎると肉厚むらが生じやすくなる。特に中空品の場合には内面の表面性が悪くなる場合がある。逆に、少なすぎると局所的な薄肉部が発生する場合がある。
【0043】
前記原料スラリーには、必要に応じて、前記浸炭防止剤、前記紙力強化材、凝集剤、防腐剤等の添加剤を適宜の割合で添加することができる。
【0044】
前記繊維積層体の抄造工程では、例えば、2個で一組をなす割型を突き合わせることにより、当該鋳型等の外形に略対応した形状を有し且つ外部に向けて開口するキャビティが内部に形成される金型を用いる。各割型には、外部とキャビティとを連通する多数の連通孔を設けておくとともに、各割型の内面を所定の大きさの網目を有するネットによって被覆しておく。そして、該金型のキャビティ内に所定量の原料スラリーを圧送ポンプ等を用いて注入する一方で前記連通孔を通して液体分を吸引排出し、前記ネットに原料スラリーの固形分を堆積させる。前記原料スラリーの加圧注入の圧力は、0.01〜5MPa、特に0.01〜3MPaであることが好ましい。
【0045】
所定量の原料スラリーの注入により、前記ネット上に所定厚みの繊維積層体が形成されたら、原料スラリーの加圧注入を停止し、前記キャビティ内に空気を圧入して繊維積層体を所定の含水率に脱水する。
【0046】
次に、前記繊維積層体を乾燥成形する。この乾燥成形工程では、一組の割型を突き合わせることにより成形すべき鋳型等の外形に対応した形状を有し且つ外部に向けて開口するキャビティが形成される乾燥型を用いる。そして、該乾燥型を所定温度に加熱し、脱水された前記繊維積層体を該乾燥型内に装填する。
【0047】
次に、弾性を有し伸縮自在で且つ中空状をなす中子(弾性中子)を前記キャビティ内に挿入し、該中子内に加圧流体を供給して該中子を該キャビティ内において膨らませる。そして、前記繊維積層体を該キャビティの形成面に押圧し、該キャビティの内面形状を転写しながら乾燥する。中子には、例えば、ウレタン、フッ素系ゴム、シリコーン系ゴム又はエラストマー製のものを用いる。
【0048】
前記中子を膨張させる前記加圧流体としては、例えば圧縮空気(加熱空気)、油(加熱油)、その他各種の液が挙げられる。加圧流体を供給する圧力は、0.01〜5MPa、特に0.1〜3MPaであることが好ましい。
【0049】
前記乾燥型の加熱温度(金型温度)は、乾燥時間、焦げによる表面性の低下を考慮すると180〜250℃、特に200〜240℃であることが好ましい。
【0050】
前記繊維積層体の乾燥後、前記中子内の前記加圧流体を抜き、該中子を縮ませて当該繊維積層体から取り出す。そして、前記乾燥型を開いて乾燥成形された鋳型等を取り出す。
【0051】
得られた鋳型等には、必要に応じて、バインダーを部分的又は全体に含浸させ、加熱して熱硬化させることができる。該バインダーとしては、コロイダルシリカ、エチルシリケート、水ガラス等が挙げられる。
【0052】
このようにして得られる鋳型等は、有機繊維、無機繊維及び熱硬化性樹脂の各成分がむらなく均一に分散しているため、熱収縮に伴うひび割れ等の発生が抑えられ、高い熱間強度が得られ、表面の平滑性にも優れている。また、前記繊維積層体がその内部から前記中子で乾燥型のキャビティの形成面に押し付けられて成形されているため、内表面及び外表面の平滑性が高い。このため、鋳物の製造に用いた場合には、得られる鋳物は特に表面平滑性に優れたものとなる。また、中空形状や複雑な立体形状とする場合にも貼り合わせ工程が不要なので、最終的に得られる鋳型等には貼り合わせによる継ぎ目及び肉厚部は存在しない。この点においても、肉厚が均一で成形精度や機械的強度が高く、精度の高く表面の平滑性に優れた鋳物を製造することができる。従って、主型や中子は勿論、嵌合部やネジ部を有する湯道等の構造体の製造にも適用することができる。
また、鋳物の材質や形状によりガス欠陥の発生が懸念される場合、鋳型等を予め還元雰囲気で200〜250℃で熱処理してもよい。
【0053】
次に、本発明の鋳物の製造方法を、その好ましい実施形態に基づいて説明する。
本実施形態の製造方法では、上述のようにして得られた所定の鋳型等を鋳物砂内の所定位置に埋設して造型する。鋳物砂には、従来からこの種の鋳物の製造に用いられている通常のものを特に制限なく用いることができる。なお、鋳物砂はバインダーで硬化させなくてもよいが、必要に応じて硬化させてもよい。鋳型等が中空中子の場合には中子内に鋳物砂の充填は不要であるが、充填することもできる。
【0054】
そして、注湯口から溶融金属を注ぎ入れ、鋳込みを行う。このとき、当該熱硬化性樹脂及び前記有機繊維が熱分解して炭化するが、前記無機繊維によってその熱分解に伴う熱収縮が抑えられる。このため、各鋳型等にひび割れが生じたり、鋳型等自体が破損したりすることもほとんどなく、溶融金属の鋳型等への差し込みや鋳物砂等の付着もほとんど生じることがない。また、前記熱分解によって生成した炭化皮膜により鋳型等の表面平滑性が維持されるため、得られる鋳物の表面平滑性も良好となる。
【0055】
鋳込みを終えた後、所定の温度まで冷却し、鋳枠を解体して鋳物砂を取り除き、さらにブラスト処理によって鋳型等を取り除いて鋳物を露呈させる。この時、前記有機繊維が熱分解しているため、鋳型等の除去処理は容易である。その後、必要に応じて鋳物にトリミング処理等の後処理を施して鋳物の製造を完了する。
【0056】
本実施形態の鋳物の製造方法は、前記有機繊維、前記無機繊維及び前記熱硬化性樹脂を含む鋳型等を用いるため、該無機繊維及び該熱硬化性樹脂によって熱間強度を維持することができ、寸法精度や表面の平滑性に優れる鋳物を製造することができる。また、前記有機繊維等の熱分解によって鋳型等の内部に空隙を形成することで当該鋳型等の除去を容易に行うことができるので、従来に比べて廃棄処理を簡便に行うことができるほか、その廃棄物の発生量も大幅に抑えることができ、合わせてその処理の手間も大幅に削減することができる。さらに、必ずしも鋳物砂をバインダーで硬化させる必要がないため、鋳物砂の再生処理も簡便なものとなる。
【0057】
本発明は上述した実施形態に制限されず、本発明の趣旨を逸脱しない範囲において、適宜変更することができる。
【0058】
本発明の鋳型等は、前記実施形態のように、立体的な中空形状の鋳型等を形成する上では、湿式抄造法によって成形体を抄造し、脱水、乾燥成形工程を経て鋳型等を製造することが好ましいが、前記原料スラリーを抄紙してシート状の成形体を形成し、これを紙管として巻き上げて鋳型等を製造することもできる。
【0059】
また、乾燥成形後に最終的な形状に対応した鋳型等が得られるように製造することが好ましいが、乾燥後に得られた成形体を切断して分割し、分割された部品どうしを嵌合や螺合等で連結できる形態で製造することもできる。この場合、予め端部や分割部分に嵌合や螺合部を有する形態で成形しておくことが好ましい。
【0060】
本発明の鋳物の製造方法は、溶湯(鋳鉄)の他、アルミニウム及びその合金、銅及びその合金、ニッケル、鉛等の非鉄金属の鋳造にも適用することができる。
【0061】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
【0062】
表1に示す材料組成の鋳型等を下記実施例1〜6及び比較例1〜5のように作製し、得られた鋳型等の重量を測定するとともに、該鋳型等の成形性を下記のように評価した。また、得られた鋳型等を用いて鋳物を製造し、鋳物の形状保持性(鋳型等の形状保持性)、表面平滑性及び鋳込み後の鋳型等の除去性を下記のように評価した。それらの結果を表1に合わせて示した。
【0063】
〔実施例1〕
<原料スラリーの調製>
下記有機繊維、無機繊維を表1に示す配合で水に分散させた約1wt%のスラリーを調整した後、該スラリーにさらに下記熱硬化性樹脂粉末及び適量の下記凝集剤を添加し、原料スラリーを調整した。
有機繊維:新聞古紙(平均繊維長1mm、フリーネス(CSF、以下同じ)150cc)
無機繊維:PAN系炭素繊維(東レ(株)製「トレカチョップ」、繊維長3mm、収縮率0.1%)
熱硬化性樹脂:ノボラックフェノール樹脂(旭有機材工業(株)製「SP1006LS」、残炭率38%)
凝集剤:ポリアクリルアミド系凝集剤(三井サイテック社製「A110」)
【0064】
<鋳型等の抄造成形>
抄造型には、φ40×100mmに対応するキャビティ形成面を有する一対の割型で、当該キャビティ形成面に所定の目開きのネットが配され、キャビティ形成目と外部とを連通する多数の連通孔が形成されたものを用いた。そして、前記原料スラリーをモーノポンプで循環させ、前記抄造型内に所定量のスラリーを加圧注入する一方で、前記連通孔を通じて排水し、所定の繊維積層体を前記ネットの表面に堆積させた。所定量の原料スラリーの注入を完了した後、該繊維積層体が堆積された抄造型内に0.2MPaの加圧エアーを約30秒間供給し、該繊維積層体を脱水した。得られた繊維積層体の全面に、前記熱硬化性樹脂の15%(重量比)の硬化剤(ヘキサメチレンテトラミン)を水に分散させた液を均一に塗布した。次いで、繊維積層体を抄造型から取り出し、220℃に加熱された乾燥型に移した。乾燥型には、φ40×100mmに対応するキャビティ形成面を有する一対の割型で、該キャビティ形成面と外部とを連通する多数の連通孔が形成されたものを用いた。乾燥工程では、前記乾燥型の上方開口部から袋状の弾性中子を挿入し、密閉された該乾燥型内で該弾性中子内に加圧流体(加圧空気、0.2MPa)を供給して該弾性中子を膨らませた。そして、前記繊維積層体を該乾燥型の内面に押しつけて、該乾燥型の内面形状を転写させつつ該繊維積層体を乾燥した。所定時間(180秒)の加圧乾燥を行った後、前記弾性中子内の加圧流体を抜いて該弾性中子を収縮させて前記乾燥型内から退避させた。そして、得られた成形体を前記乾燥型から取り出して冷却し、図1に示す形態で、表1に示した組成で重量7g、厚さ1.2mmの中空中子1を得た。
【0065】
<鋳物の鋳造>
図2に示すような直管状の鋳物10に対応したキャビティを有する主型を鋳物砂で造型し、その中に、得られたφ40×100mmの前記中空中子1を配し、中子1内には鋳物砂を充填せずに造型し、鋳物材質FC−250、鋳込温度1380℃で鋳物を製造した。
【0066】
〔鋳型等の成形性の評価〕
乾燥成形後の鋳型等の形状を目視で判断し、その成形性を下記三段階によって評価した。
○:乾燥型の形状が寸法精度良く転写されている。
△:寸法精度は劣るが、乾燥型の形状がほぼ転写されている。
×:乾燥型の形状がほとんど転写されていない。
【0067】
〔鋳造後における鋳物の形状保持性の評価〕
鋳造後の鋳物の形状保持性を目視で判断し、下記三段階で評価した。
○:鋳型等の形状が寸法精度良く転写されている。
△:寸法精度は劣るが、ほぼ鋳型等の形状が転写されている。
×:鋳型等の形状がほとんど転写されていない。
【0068】
〔鋳物表面の平滑性の評価〕
得られた鋳物の前記鋳型等に接していた部分の表面粗度(Ra)を測定し、下記三段階で表面の平滑性を評価した。なお鋳物の表面粗度は、テーラーホブソン社製「Surtronic 10」により測定した。
○:15μm以下
△:15超〜50μm未満
×:50μm以上
【0069】
〔鋳造後の鋳型等の除去性の評価〕
鋳造後の鋳型等の除去性を下記三段階で評価した。
○:容易に除去できる。
△:除去がやや困難
×:除去困難
【0070】
〔実施例2〕
表1に示す材料組成に、さらに下記黒曜石50重量部を添加した以外は、実施例1と同様にして重量9g、厚さ1.2mmの中空中子を得た。そして、この中空中子を用い、鋳物材質をFCD−450(鋳込温度1350℃)とした以外は、実施例1と同様にして鋳物を鋳造した。
黒曜石:キンセイマテック社製「ナイスキャッチ」、平均粒径30μm
【0071】
〔実施例3〕
鋳型等の材料組成を表1に示す組成に変更した以外は、実施例1と同様にして重量7g、厚さ1.2mmの中空中子を得た。そして、この中空中子を用い、鋳物材質をAC4A(鋳込温度800℃)とした以外は、実施例1と同様にして鋳物を鋳造した。
【0072】
〔実施例4〕
鋳型等の材料組成を表1に示す組成に、無機繊維を下記のものにそれぞれ変更した以外は、実施例1と同様にして重量7g、厚さ1.2mmの中空中子を得た。そして、この中空中子を用い、実施例1と同様にして鋳物を鋳造した。
無機繊維:ピッチ系炭素繊維(呉羽化学工業製「クレカチョップT−106」、繊維長4mm、収縮率1.5%)
【0073】
〔実施例5〕
鋳型等の材料組成を表1に示す組成に、熱硬化性樹脂を市販のフェノールレゾール樹脂(残炭率35%)に変更した以外は、実施例1と同様にして重量7g、厚さ1.2mmの中空中子を得た。そして、この中空中子を用い、実施例1と同様にして鋳物を鋳造した。
【0074】
〔実施例6〕
図2に示す直管状の鋳物10に対応したキャビティを有する主型を実施例1と同様にして形成し、厚さ1.2mm、重さ12gの主型を得た。そして、該主型を用い、実施例1と同様にして鋳物を製造した。
【0075】
〔比較例1〜4〕
鋳型等の材料組成を表1に示す組成に変更した以外は、実施例1と同様にして鋳物を鋳造した。
【0076】
〔比較例5〕
鋳型等の材料組成を表1に示す組成に変更した以外は、実施例1と同様にして中空中子を得た。得られた中空中子にさらにポリビニルアルコールを含浸させて重量7g、厚さ1.2mmの中空中子を得た。この中空中子を用い、実施例1と同様にして鋳物を鋳造した。
【0077】
〔比較例6〕
フラタリーサンドを元砂としたシェル砂を用い、実施例1と同様の形状の中空中子(重量約200g)を作製し、実施例1と同様にして鋳物を鋳造した。
【0078】
【表1】

Figure 2004181472
【0079】
表1に示すように、実施例1〜6では、鋳型等の成形性も良好であり、軽量で、比較例6と同等以上に鋳込み後の鋳型等の形状保持性および表面平滑性も良好であった。さらに、抄造後の鋳型等の除去性も実施例1〜6の何れも良好であった。これに対し、比較例1〜3、5では、鋳型等は成形できるものの、熱間強度が劣るため、当該鋳型等を使用して鋳物を鋳造しても、得られる鋳物の形状保持性、表面平滑性は悪かった。特に、比較例4では、鋳型等の製造自体が困難であった。
【0080】
【発明の効果】
本発明によれば、以下の効果が奏される。
1.本発明の鋳物製造用の鋳型及び構造体は、成形性がよく、表面の平滑性に優れ、且つ鋳込み時においてもこれを保持できる。このため、これを用いた鋳物の製造方法では、得られる鋳物の表面平滑性を高めることができる。特に従来のような塗型剤を施さなくても、鋳造後の焼着が大幅に低減できるため、鋳物の製造工数低減を図ることができる。
2.本発明の鋳物製造用の鋳型及び構造体は、鋳込み時においても熱間強度及び形状保持性に優れる。このため、これを用いた鋳物の製造方法では、造型の際に鋳物砂をバインダーで硬化させる必要がない。従って、鋳造後に機械的研磨により砂を再生する必要がなく、従来に比べて廃棄物を低減できる。また、特に、中空形状の中子に適用する場合でも、中子内への鋳物砂の充填が必ずしも必要でない。
3.本発明の鋳物製造用の鋳型及び構造体は、鋳込み後の除去性が良好であり、従来に比べて容易に鋳型等を除去することができる。
4.本発明の鋳物製造用の鋳型及び構造体は、軽量であるため、取り扱いが容易である。
5.本発明の鋳物製造用の鋳型及び構造体の製造方法では、有機繊維、無機繊維を含む原料スラリーを抄造して製造するので、各成分がむらなく均一に分散した鋳型等を得ることができる。従って、熱収縮に伴うひび割れ等の発生が抑えられ、高い熱間強度が得られ、表面の平滑性にも優れている。また、中空形状や複雑な立体形状とする場合にも貼り合わせ工程が不要なので、最終的に得られる鋳型等の肉厚が均一で成形精度や機械的強度が高く、成形精度の高く表面の平滑性に優れた鋳物を製造することができる。
【図面の簡単な説明】
【図1】本発明の鋳物製造用鋳型等を中空中子に適用した一実施形態を用いて製造された鋳物を模式的に示す斜視図である。
【図2】前記実施形態の中空中子を用いて製造された鋳物を模式的に示す斜視図である。
【符号の説明】
1 中空中子(鋳型等)
10 鋳物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold or structure (hereinafter referred to as “mold or structure” also referred to as a mold or the like) used in the production of a casting, a method for producing the mold, and a method for producing a casting using the mold or the like.
[0002]
[Prior art and problems to be solved by the invention]
For castings, in general, a mold having a cavity is formed with casting sand based on a wooden mold or a mold, and a core is disposed in the cavity as needed, and then a molten metal is supplied to the cavity. Manufactured.
[0003]
The manufacture of wooden molds and molds requires skill in processing and expensive equipment, and there are disadvantages such as expensive and heavy disposal, as well as disposal problems, making it difficult to use in addition to mass-produced castings. Moreover, since the sand mold | die using casting sand has added the binder to normal sand, it is made to harden | cure and the shape is hold | maintained, a recycling process process becomes essential for reuse of sand. There is also a problem that waste such as dust is generated during the regeneration process. In addition, when the core is manufactured in a sand mold, it is difficult to handle due to the weight of the core itself in addition to the above problems, and furthermore, there are conflicting performances of strength maintenance during casting and core removal after casting. Required.
[0004]
As a technique for solving such problems, for example, a member used for a mold is formed of an organic fiber material such as paper (see Patent Document 1 below), an inorganic fiber is a main component, and a resin is used as a binder. Addition and molding (see Patent Document 2 below), or addition and molding of cellulose fibers with inorganic powder or inorganic fiber (see Patent Document 3 below) are known.
[0005]
Although these technologies have some effects in terms of weight reduction, workability, and waste material problems, 1) it is difficult to obtain a uniform molded body, and in particular, formability when uniformly forming into a hollow structure. And 2) the hot strength is low, the shape retention of the casting after casting cannot be sufficiently obtained, and 3) the surface smoothness of the resulting casting is low. For this reason, means that can improve these problems has been strongly desired.
[0006]
[Patent Document 1]
Japanese Utility Model Publication No. 6-86843
[Patent Document 2]
Japanese Patent Laid-Open No. 10-5931
[Patent Document 3]
Japanese Patent Laid-Open No. 9-253792
[0007]
Therefore, the object of the present invention is good moldability such as molds, light weight, sufficient hot strength and shape retention even at the time of casting, excellent shape retention and surface smoothness of the resulting casting, Furthermore, it is providing the casting_mold | template and structure for castings excellent in the removability after casting, these manufacturing methods, and the manufacturing method of castings using these.
[0008]
[Means for Solving the Problems]
This invention achieves the said objective by providing the casting_mold | template or structure for casting manufacture containing an organic fiber, an inorganic fiber, and a thermosetting resin. In the present specification, the term “structure for casting production” may be included in the category of “mold for casting production”.
[0009]
Further, the present invention is a method for producing a casting mold or structure for producing a casting according to the present invention, wherein the casting mold or structure includes a papermaking process using a raw slurry containing at least the organic fiber and the inorganic fiber. The object is achieved by providing a method for manufacturing a structure.
[0010]
Moreover, this invention achieves the said objective by providing the manufacturing method of the casting using the casting_mold | template or structure for casting manufacture of the said invention.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on preferred embodiments thereof.
[0012]
The mold of this embodiment contains organic fibers, inorganic fibers, and a thermosetting resin.
The mixing ratio of the organic fiber, the inorganic fiber, and the thermosetting resin is the organic fiber / the inorganic fiber / the thermosetting resin = 10 to 70/1 to 80/10 to 70 (weight ratio), and It is preferable that it is 10-50 / 5-50 / 20-70 (weight ratio), especially 10-30 / 10-40 / 30-60 (weight ratio).
[0013]
If the organic fiber is less than 10 in the blending ratio, the addition effect cannot be obtained, and the moldability of the mold and the removability of the mold after casting may be deteriorated. When the blending ratio exceeds 70, There are cases where the amount of gas generated during casting increases and surface defects of the casting are likely to occur, heat resistance is lowered, and shape retention of the casting is lowered.
[0014]
In addition, if the inorganic fiber is less than 1 in the blending ratio, the shape retention of the casting may be reduced due to heat shrinkage due to a decrease in heat resistance of the mold or the like, or the amount of gas generated may be increased. If the ratio exceeds 80, the moldability of the mold and the like is deteriorated, and the removability of the mold and the like after casting may be lowered.
[0015]
Furthermore, if the thermosetting resin is less than 10 in the blending ratio, the surface smoothness of the casting may not be obtained, and the strength and shape retainability of the mold may be deteriorated. In addition to the poor formability, the amount of gas generated increases and surface defects of the casting are likely to occur.
[0016]
The organic fiber is a component that forms a skeleton in a state before being used for casting mainly in a mold or the like and improves moldability of the mold or the like. Further, when used for casting, it is a component that part or all of it is burned by the heat of the molten metal, forming voids in the mold after the casting is manufactured, and improving the removability of the mold.
[0017]
Examples of the organic fibers include paper fibers, fibrillated synthetic fibers, and recycled fibers (for example, rayon fibers). These organic fibers can be used alone or in combination of two or more. Among these, it is particularly preferable to use paper fibers because they can be formed into various forms by papermaking and sufficient strength can be obtained after dehydration and drying.
[0018]
Examples of the paper fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. As the paper fiber, these virgin pulp or waste paper pulp can be used alone or in combination of two or more. The paper fiber is particularly preferably used paper pulp from the viewpoints of easy availability, environmental protection, and reduction of manufacturing costs.
[0019]
The organic fiber preferably has an average fiber length of 0.3 to 2.0 mm, particularly 0.5 to 1.5 mm in consideration of moldability such as a mold, surface smoothness, and impact resistance.
[0020]
The blending ratio of the organic fiber in the mold or the like is preferably 10 to 70 wt%, particularly 10 to 50 wt% in consideration of moldability of the mold or the like and removability of the mold or the like after manufacturing the casting.
[0021]
The inorganic fiber is a component that mainly forms a skeleton in a state before being used for casting in a mold or the like, and maintains its shape without being burned by the heat of molten metal when used for casting. In particular, it is a component that suppresses thermal shrinkage caused by thermal decomposition of an organic component such as a thermosetting resin used in the present invention by the heat of molten metal.
[0022]
Examples of the inorganic fibers include artificial mineral fibers such as carbon fibers and rock wool, ceramic fibers, and natural mineral fibers. These inorganic fibers can be used alone or in combination of two or more. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin, and in particular, PAN-based carbon. Fiber is preferred.
[0023]
The inorganic fibers preferably have an average fiber length of 0.2 to 10 mm, particularly 0.5 to 8 mm, from the viewpoints of dewaterability when paper is made from a mold or the like and dewatered, moldability of the mold or the like, and uniformity. .
[0024]
Moreover, the said inorganic fiber is represented by the following formula when it heat-processes for 10 minutes in 1000 degreeC and reducing atmosphere (nitrogen atmosphere) from the point which suppresses the thermal contraction accompanying the thermal decomposition of a thermosetting resin effectively. The shrinkage ratio is preferably 5% or less, more preferably 3% or less, and particularly preferably 2% or less.
Shrinkage rate = (sheet length before treatment−sheet length after heating) × 100 / (sheet length before heating)
Here, the sheet length is 50 mm in length produced in the same manner as in wet papermaking in Examples described later with a blending ratio of newspaper / inorganic fiber / novolak phenol resin = 25 / 37.5 / 37.5 (weight ratio). A sheet having a width of 50 mm and a thickness of 1 mm is used as a sample, and the average value of the vertical and horizontal dimensions is used.
[0025]
The inorganic fiber is preferably blended in an amount of 10 to 300 parts by weight, particularly 20 to 200 parts by weight, based on 100 parts by weight of the organic fiber in the blending ratio. By blending the inorganic fiber in such a range, the heat resistance of the mold or the like can be sufficiently maintained, and the occurrence of casting surface defects due to gas generation can be suppressed.
[0026]
Examples of the thermosetting resin include thermosetting resins such as phenol resins, epoxy resins, and furan resins. The thermosetting resin is a component necessary for maintaining the normal temperature strength and the hot strength and improving the surface roughness of the casting, and a surface smoothness equivalent to that of a sand mold coated with a coating agent is obtained. It is not necessary to use a coating agent. Such performance is important for the mold of the present invention containing organic fibers and the like that are difficult to ignite and dry when using conventional alcoholic coating agents.
[0027]
In particular, the thermosetting resin having such performance has little generation of combustible gas, has a combustion suppressing effect, has a high residual carbon ratio of 25% or more after pyrolysis (carbonization), and has a carbon film at the time of casting. It is preferable to use a phenol-based resin from the viewpoint that a good casting surface can be obtained for the formation. The residual carbon ratio can be determined from the residual weight after heating to 1000 ° C. in a reducing atmosphere (under a nitrogen atmosphere) by an analytical thermal analysis.
[0028]
Examples of the phenolic resin include novolak phenol resins, resol type phenol resins, modified phenol resins modified with urea, melamine, epoxy, and the like, preferably novolak phenol resins or modified resins thereof.
[0029]
The thermosetting resins may be used alone or in combination of two or more, and may be used in combination with an acrylic resin, a polyvinyl alcohol resin, or the like. In particular, when the mold of the present invention is applied to a hollow core, a high hot strength can be obtained by using a thermosetting resin (particularly a residual carbon ratio of 15% or more, particularly 25% or more). Therefore, the function as a hollow core can be sufficiently exhibited.
[0030]
The thermosetting resin is preferably blended in an amount of 50 to 400 parts by weight, particularly 70 to 300 parts by weight, per 100 parts by weight of the organic fiber in the blending ratio. By blending the curable resin in such a range, the surface roughness and shape retention of the casting can be improved.
[0031]
The thermosetting resin is coated on the organic fiber or inorganic fiber, or powdered or emulsified and added to the raw material slurry, and the organic fiber and the inorganic fiber are combined when made into a dry slurry after paper making. Maintaining the strength of molds, etc. by carbonizing with the heat of the molten metal at the time of casting, etc. As long as it can contribute to the improvement of the surface smoothness of the casting, any form may be included.
[0032]
Since the curing agent required when the novolak phenol resin is used is easily dissolved in water, it is preferably applied after dehydration of the molded body, particularly in the case of wet papermaking. It is preferable to use hexamethylenetetramine or the like as the curing agent.
[0033]
In addition to the organic fiber, the inorganic fiber, and the thermosetting resin, the mold of the present embodiment includes a carburizing inhibitor such as obsidian and mullite powder, polyvinyl alcohol, carboxymethylcellulose (CMC), polyamide, as necessary. Other components such as a paper strength reinforcing material such as an amine epichlorohydrin resin, a polyacrylamide-based flocculant, and a colorant can be added at an appropriate ratio.
[0034]
The thickness of the mold or the like of the present embodiment can be appropriately set according to the portion to be used, but at least the thickness at the portion in contact with the molten metal is 0.2 to 5 mm, particularly 0.4 to 2 mm. Is preferred. If it is too thin, the strength required when casting with casting sand will be insufficient, and the shape function of the structure such as the mold, especially the core, may not be maintained. In addition to the increased surface defects of the casting, the molding time may be increased and the manufacturing cost may be increased.
[0035]
In the state before being used for casting, the mold or the like of the present embodiment preferably has a bending strength of 5 MPa or more, and more preferably 10 MPa or more.
[0036]
When the mold of the present embodiment is manufactured through a paper making process using a raw material slurry using water as a dispersion medium, the moisture content in the state before being used for casting from the point of suppressing the amount of gas generation during casting as much as possible. (Weight moisture content) is preferably 10% or less, particularly preferably 8% or less.
[0037]
The mold and the like of the present embodiment preferably have a specific gravity of 1.0 or less in the state before being used for casting in terms of lightness and ease of molding and secondary processing. More preferably, it is 8 or less.
[0038]
The mold and the like of the present embodiment can be applied to a main mold having a cast product-shaped cavity on the inner surface, a core used in the main mold, or a pouring system member such as a runner, Since the mold of the present invention is excellent in surface smoothness and a casting having a good casting surface can be obtained, application to a main mold and a core is preferable. In particular, it has excellent hot compressive strength, high shape-retaining properties, and excellent removability after casting. It is preferable to apply to a hollow core that does not require filling.
[0039]
When the mold of this embodiment is used for the production of a casting, it is not always necessary to harden the foundry sand to be filled around the main mold and the foundry sand to be filled in the hollow core for backup purposes with a binder. Therefore, there is an advantage that the casting sand can be easily regenerated.
[0040]
Next, the manufacturing method of the casting_mold | template etc. of this invention is demonstrated based on the preferable embodiment.
In the manufacturing method of this embodiment, a raw material slurry containing the organic fiber, the inorganic fiber, and the thermosetting resin at the predetermined blending ratio is prepared, and a fiber laminate having a predetermined shape is obtained by a wet papermaking method using the raw material slurry. Paper, and then dehydrated and dried to produce molds.
[0041]
Examples of the dispersion medium of the raw material slurry include water, white water, and solvents such as ethanol and methanol. Among these, from the viewpoints of papermaking / dehydration stability, quality stability, cost, ease of handling, etc. Water is particularly preferable.
[0042]
The total ratio of the fibers to the dispersion medium in the raw slurry is preferably 0.1 to 3 wt%, particularly 0.5 to 2 wt%. If the total proportion of the fibers in the raw material slurry is too large, uneven thickness tends to occur. In particular, in the case of a hollow product, the surface property of the inner surface may be deteriorated. Conversely, if the amount is too small, a local thin portion may occur.
[0043]
If necessary, additives such as the carburizing inhibitor, the paper strength reinforcing material, the flocculant, and the preservative can be added to the raw slurry at an appropriate ratio.
[0044]
In the paper making process of the fiber laminate, for example, a cavity having a shape substantially corresponding to the outer shape of the mold or the like and opening to the outside is formed inside by matching a pair of split molds. Use the mold to be formed. Each split mold is provided with a large number of communication holes for communicating the outside with the cavity, and the inner surface of each split mold is covered with a net having a mesh of a predetermined size. Then, a predetermined amount of raw material slurry is injected into the cavity of the mold using a pressure pump or the like, while liquid is sucked and discharged through the communication hole, and the solid content of the raw material slurry is deposited on the net. The pressure for pressure injection of the raw slurry is preferably 0.01 to 5 MPa, particularly preferably 0.01 to 3 MPa.
[0045]
When a fiber laminate having a predetermined thickness is formed on the net by injecting a predetermined amount of raw material slurry, the pressure injection of the raw material slurry is stopped, and air is injected into the cavity so that the fiber laminate has a predetermined water content. Dehydrate to rate.
[0046]
Next, the fiber laminate is dry-molded. In this dry molding process, a dry mold having a shape corresponding to the outer shape of a mold or the like to be molded by abutting a set of split molds and having a cavity that opens outward is used. Then, the drying mold is heated to a predetermined temperature, and the dehydrated fiber laminate is loaded into the drying mold.
[0047]
Next, an elastic, elastic and hollow core (elastic core) is inserted into the cavity, a pressurized fluid is supplied into the core, and the core is inserted into the cavity. Inflate. Then, the fiber laminate is pressed against the formation surface of the cavity and dried while transferring the shape of the inner surface of the cavity. For the core, for example, urethane, fluorine rubber, silicone rubber or elastomer is used.
[0048]
Examples of the pressurized fluid for expanding the core include compressed air (heated air), oil (heated oil), and other various liquids. The pressure for supplying the pressurized fluid is preferably 0.01 to 5 MPa, particularly preferably 0.1 to 3 MPa.
[0049]
The heating temperature (mold temperature) of the drying mold is preferably 180 to 250 ° C., particularly 200 to 240 ° C. in consideration of drying time and deterioration of surface properties due to scorching.
[0050]
After the fiber laminate is dried, the pressurized fluid in the core is drained, the core is shrunk and removed from the fiber laminate. Then, the dry mold is opened, and a dry-molded mold or the like is taken out.
[0051]
The obtained mold or the like can be partially or wholly impregnated with a binder and heated to be thermally cured as necessary. Examples of the binder include colloidal silica, ethyl silicate, and water glass.
[0052]
The molds obtained in this manner have organic fibers, inorganic fibers, and thermosetting resin components evenly dispersed, so that the occurrence of cracks associated with thermal shrinkage is suppressed, and high hot strength And the surface smoothness is also excellent. Moreover, since the said fiber laminated body is pressed and shape | molded from the inside to the formation surface of the dry type cavity with the said core, the smoothness of an inner surface and an outer surface is high. For this reason, when it uses for manufacture of a casting, the obtained casting becomes a thing excellent especially in surface smoothness. In addition, when a hollow shape or a complicated three-dimensional shape is used, since a bonding step is not required, the finally obtained mold or the like does not have a seam and a thick portion due to bonding. Also in this respect, it is possible to manufacture a casting having a uniform thickness, high molding accuracy and mechanical strength, high accuracy, and excellent surface smoothness. Therefore, the present invention can be applied not only to the main mold and the core but also to the manufacture of a structure such as a runner having a fitting part and a screw part.
Moreover, when there is a concern about the occurrence of gas defects due to the material and shape of the casting, the mold or the like may be heat-treated at 200 to 250 ° C. in a reducing atmosphere in advance.
[0053]
Next, the manufacturing method of the casting of this invention is demonstrated based on the preferable embodiment.
In the manufacturing method of the present embodiment, the predetermined mold or the like obtained as described above is embedded in a predetermined position in the foundry sand to make a mold. As the foundry sand, a conventional one that has been conventionally used for producing this type of casting can be used without any particular limitation. The foundry sand need not be cured with a binder, but may be cured as necessary. When the mold or the like is a hollow core, the core does not need to be filled with foundry sand, but can be filled.
[0054]
Then, the molten metal is poured from the pouring gate and cast. At this time, although the thermosetting resin and the organic fiber are pyrolyzed and carbonized, the inorganic fiber suppresses thermal shrinkage accompanying the thermal decomposition. For this reason, there is almost no occurrence of cracks in each mold or the like, or the mold itself is damaged, and there is hardly any insertion of molten metal into the mold or the like, or adhesion of foundry sand or the like. Moreover, since the surface smoothness of a casting mold etc. is maintained by the carbonized film produced | generated by the said thermal decomposition, the surface smoothness of the casting obtained also becomes favorable.
[0055]
After the casting is finished, the casting is cooled to a predetermined temperature, the casting frame is disassembled to remove the foundry sand, and the casting mold is removed by blasting to expose the foundry. At this time, since the organic fiber is thermally decomposed, the removal process of the mold and the like is easy. Then, post-processing such as trimming is performed on the casting as necessary to complete the casting.
[0056]
The casting production method of the present embodiment uses the mold including the organic fiber, the inorganic fiber, and the thermosetting resin, so that the hot strength can be maintained by the inorganic fiber and the thermosetting resin. A casting having excellent dimensional accuracy and surface smoothness can be produced. In addition, the removal of the mold and the like can be easily performed by forming a void in the mold and the like by pyrolysis of the organic fiber, etc. The amount of waste generated can be significantly reduced, and the processing effort can be greatly reduced. Furthermore, since it is not always necessary to harden the foundry sand with a binder, the reclaiming treatment of the foundry sand becomes simple.
[0057]
The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
[0058]
The mold of the present invention, as in the above-described embodiment, forms a three-dimensional hollow mold or the like, and forms a molded body by a wet papermaking method, and manufactures the mold or the like through dehydration and dry molding processes. It is preferable, however, that the raw material slurry is made into a paper to form a sheet-like molded body, and this is rolled up as a paper tube to produce a mold or the like.
[0059]
In addition, it is preferable to produce a mold or the like corresponding to the final shape after dry molding. However, the molded body obtained after drying is cut and divided, and the divided parts are fitted or screwed together. It can also be manufactured in a form that can be connected together. In this case, it is preferable to form in advance a form having a fitting or screwing portion at the end or divided portion.
[0060]
The casting production method of the present invention can be applied to casting of non-ferrous metals such as aluminum and its alloys, copper and its alloys, nickel, lead, etc. in addition to molten metal (cast iron).
[0061]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0062]
Molds having the material composition shown in Table 1 were prepared as in Examples 1 to 6 and Comparative Examples 1 to 5 below, and the weights of the obtained molds were measured, and the moldability of the molds and the like was as follows: Evaluated. Further, a casting was produced using the obtained mold and the like, and the shape retention of the casting (shape retention of the mold and the like), the surface smoothness and the removability of the mold after casting were evaluated as follows. The results are shown in Table 1.
[0063]
[Example 1]
<Preparation of raw material slurry>
After preparing a slurry of about 1 wt% in which the following organic fibers and inorganic fibers are dispersed in water with the formulation shown in Table 1, the following thermosetting resin powder and an appropriate amount of the following flocculant are added to the slurry, and the raw material slurry Adjusted.
Organic fiber: used newspaper (average fiber length 1mm, freeness (CSF, the same applies below) 150cc)
Inorganic fiber: PAN-based carbon fiber (“Toray Chop” manufactured by Toray Industries, Inc., fiber length 3 mm, shrinkage 0.1%)
Thermosetting resin: Novolac phenolic resin ("SP1006LS" manufactured by Asahi Organic Materials Co., Ltd., residual charcoal rate 38%)
Flocculant: Polyacrylamide flocculant (“A110” manufactured by Mitsui Cytec)
[0064]
<Making of molds, etc.>
The papermaking mold is a pair of split molds having a cavity forming surface corresponding to φ40 × 100 mm, a net having a predetermined mesh is arranged on the cavity forming surface, and a large number of communication holes communicating the cavity forming eyes with the outside What was formed was used. Then, the raw material slurry was circulated by a Mono pump, and a predetermined amount of slurry was pressurized and injected into the papermaking mold, while drained through the communication hole, and a predetermined fiber laminate was deposited on the surface of the net. After the injection of a predetermined amount of raw material slurry was completed, 0.2 MPa of pressurized air was supplied for about 30 seconds into the papermaking mold on which the fiber laminate was deposited, and the fiber laminate was dehydrated. A liquid in which a 15% (weight ratio) curing agent (hexamethylenetetramine) of the thermosetting resin was dispersed in water was uniformly applied to the entire surface of the obtained fiber laminate. The fiber laminate was then removed from the papermaking mold and transferred to a dry mold heated to 220 ° C. The drying mold used was a pair of split molds having a cavity forming surface corresponding to φ40 × 100 mm, in which a large number of communication holes communicating the cavity forming surface and the outside were formed. In the drying process, a bag-shaped elastic core is inserted from the upper opening of the drying mold, and pressurized fluid (pressurized air, 0.2 MPa) is supplied into the elastic core in the sealed drying mold. Then, the elastic core was inflated. Then, the fiber laminate was pressed against the inner surface of the dry mold, and the fiber laminate was dried while transferring the inner shape of the dry mold. After performing pressure drying for a predetermined time (180 seconds), the pressurized fluid in the elastic core was removed, and the elastic core was contracted and retracted from the drying mold. And the obtained molded object was taken out from the said dry type | mold, it cooled, and the hollow core 1 with a composition shown in Table 1 and the weight of 7g and thickness 1.2mm was obtained with the form shown in FIG.
[0065]
<Casting of castings>
A main mold having a cavity corresponding to the straight tubular casting 10 as shown in FIG. 2 is formed with foundry sand, and the obtained hollow core 1 of φ40 × 100 mm is arranged therein, Was cast without being filled with foundry sand, and a casting was produced at a casting material FC-250 at a casting temperature of 1380 ° C.
[0066]
[Evaluation of moldability of molds, etc.]
The shape of the mold after dry molding was judged visually, and the moldability was evaluated according to the following three steps.
○: The shape of the dry mold is transferred with high dimensional accuracy.
Δ: Although the dimensional accuracy is inferior, the dry mold shape is almost transferred.
X: The shape of the dry mold is hardly transferred.
[0067]
[Evaluation of casting shape retention after casting]
The shape retention of the cast product after casting was judged visually and evaluated in the following three stages.
○: The shape of the mold or the like is transferred with high dimensional accuracy.
Δ: Although the dimensional accuracy is inferior, the shape of a mold or the like is almost transferred.
X: The shape of the mold or the like is hardly transferred.
[0068]
[Evaluation of smoothness of casting surface]
The surface roughness (Ra) of the portion of the obtained casting that was in contact with the mold or the like was measured, and the surface smoothness was evaluated in the following three stages. The surface roughness of the casting was measured by “Surtronic 10” manufactured by Taylor Hobson.
○: 15 μm or less
Δ: More than 15 to less than 50 μm
×: 50 μm or more
[0069]
[Evaluation of mold removability after casting]
The mold removal property after casting was evaluated in the following three stages.
○: Can be easily removed.
Δ: Somewhat difficult to remove
×: difficult to remove
[0070]
[Example 2]
A hollow core having a weight of 9 g and a thickness of 1.2 mm was obtained in the same manner as in Example 1 except that 50 parts by weight of the following obsidian were further added to the material composition shown in Table 1. A casting was then cast in the same manner as in Example 1 except that this hollow core was used and the casting material was FCD-450 (casting temperature 1350 ° C.).
Obsidian: “Nice catch” manufactured by Kinsei Matec, average particle size of 30μm
[0071]
Example 3
A hollow core having a weight of 7 g and a thickness of 1.2 mm was obtained in the same manner as in Example 1 except that the material composition of the mold and the like was changed to the composition shown in Table 1. A casting was then cast in the same manner as in Example 1 except that this hollow core was used and the casting material was AC4A (casting temperature 800 ° C.).
[0072]
Example 4
A hollow core having a weight of 7 g and a thickness of 1.2 mm was obtained in the same manner as in Example 1 except that the material composition such as the mold was changed to the composition shown in Table 1 and the inorganic fibers were changed to the following. Then, using this hollow core, a casting was cast in the same manner as in Example 1.
Inorganic fiber: Pitch-based carbon fiber (“Kureka chop T-106” manufactured by Kureha Chemical Industries, fiber length: 4 mm, shrinkage: 1.5%)
[0073]
Example 5
The material composition such as mold was changed to the composition shown in Table 1, and the thermosetting resin was changed to a commercially available phenol resole resin (residual carbon ratio: 35%). A 2 mm hollow core was obtained. Then, using this hollow core, a casting was cast in the same manner as in Example 1.
[0074]
Example 6
A main die having a cavity corresponding to the straight tubular casting 10 shown in FIG. 2 was formed in the same manner as in Example 1 to obtain a main die having a thickness of 1.2 mm and a weight of 12 g. And the casting was manufactured like Example 1 using this main type | mold.
[0075]
[Comparative Examples 1-4]
A casting was cast in the same manner as in Example 1 except that the material composition of the mold and the like was changed to the composition shown in Table 1.
[0076]
[Comparative Example 5]
A hollow core was obtained in the same manner as in Example 1 except that the material composition such as the mold was changed to the composition shown in Table 1. The obtained hollow core was further impregnated with polyvinyl alcohol to obtain a hollow core having a weight of 7 g and a thickness of 1.2 mm. Using this hollow core, a casting was cast in the same manner as in Example 1.
[0077]
[Comparative Example 6]
A hollow core (weight: about 200 g) having the same shape as in Example 1 was prepared using shell sand made of flattery sand as original sand, and a casting was cast in the same manner as in Example 1.
[0078]
[Table 1]
Figure 2004181472
[0079]
As shown in Table 1, in Examples 1 to 6, the moldability and the like of the mold are also good, the weight is light, and the shape retention and surface smoothness of the mold and the like after casting are equal to or better than those of Comparative Example 6. there were. Further, the removability of the mold after papermaking was also good in each of Examples 1-6. On the other hand, in Comparative Examples 1-3, 5 and the like can be molded, but since the hot strength is inferior, even if the casting is cast using the casting mold or the like, the shape retainability and surface of the casting obtained The smoothness was poor. In particular, in Comparative Example 4, it was difficult to manufacture a mold or the like.
[0080]
【The invention's effect】
According to the present invention, the following effects are exhibited.
1. The casting mold and structure for producing a casting according to the present invention have good moldability, excellent surface smoothness, and can be retained even during casting. For this reason, in the manufacturing method of the casting using this, the surface smoothness of the obtained casting can be improved. In particular, since the post-casting can be greatly reduced without applying a conventional coating agent, it is possible to reduce the number of manufacturing steps for castings.
2. The casting mold and structure for producing a casting of the present invention are excellent in hot strength and shape retention even during casting. For this reason, in the manufacturing method of the casting using this, it is not necessary to harden casting sand with a binder in the case of molding. Therefore, it is not necessary to regenerate the sand by mechanical polishing after casting, and waste can be reduced as compared with the conventional case. In particular, even when applied to a hollow core, it is not always necessary to fill the core with foundry sand.
3. The casting mold and structure for casting production according to the present invention have good removability after casting, and the casting mold and the like can be easily removed as compared with the conventional one.
4). The casting mold and structure for producing a casting according to the present invention are lightweight and therefore easy to handle.
5. In the casting and mold manufacturing method according to the present invention, since the raw material slurry containing organic fibers and inorganic fibers is made and manufactured, a mold in which each component is uniformly dispersed can be obtained. Therefore, the occurrence of cracks and the like due to heat shrinkage is suppressed, high hot strength is obtained, and surface smoothness is excellent. In addition, since a bonding process is not required even in the case of a hollow shape or a complicated three-dimensional shape, the thickness of the final mold or the like is uniform, the molding accuracy and mechanical strength are high, the molding accuracy is high, and the surface is smooth. Castings with excellent properties can be manufactured.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a casting manufactured using an embodiment in which a casting mold or the like according to the present invention is applied to a hollow core.
FIG. 2 is a perspective view schematically showing a casting manufactured using the hollow core according to the embodiment.
[Explanation of symbols]
1 Hollow core (mold, etc.)
10 Casting

Claims (7)

有機繊維、無機繊維及び熱硬化性樹脂を含有する鋳物製造用の鋳型又は構造体。A casting mold or structure for producing a casting containing organic fiber, inorganic fiber and thermosetting resin. 前記有機繊維、前記無機繊維及び前記熱硬化性樹脂がそれぞれ紙繊維、炭素繊維及びフェノール系樹脂である請求項1記載の鋳物製造用の鋳型又は構造体。The casting mold or structure according to claim 1, wherein the organic fiber, the inorganic fiber, and the thermosetting resin are paper fiber, carbon fiber, and phenol resin, respectively. 厚さが0.2〜5mmである請求項1若しくは2記載の鋳物製造用の鋳型又は構造体。The casting mold or structure for manufacturing a casting according to claim 1 or 2, having a thickness of 0.2 to 5 mm. 前記鋳物製造用の構造体が中子である請求項1〜3の何れかに記載の鋳物製造用の構造体。The structure for casting production according to any one of claims 1 to 3, wherein the structure for casting production is a core. 前記中子が中空である請求項4記載の鋳物製造用の構造体。The structure for manufacturing a casting according to claim 4, wherein the core is hollow. 請求項1〜5の何れかに記載の鋳物製造用の鋳型又は構造体の製造方法であって、前記有機繊維及び前記無機繊維を少なくとも含む原料スラリーを用いた抄造工程を具備する鋳物用の鋳型又は構造体の製造方法。A casting mold or a structure for producing a casting according to any one of claims 1 to 5, wherein the casting mold comprises a papermaking process using a raw slurry containing at least the organic fiber and the inorganic fiber. Or the manufacturing method of a structure. 請求項1〜5の何れかに記載の鋳物製造用の鋳型又は構造体を用いる鋳物の製造方法。A casting production method using the casting mold or structure for casting production according to any one of claims 1 to 5.
JP2002349220A 2002-11-29 2002-11-29 Molds and structures for casting production Expired - Fee Related JP4219157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349220A JP4219157B2 (en) 2002-11-29 2002-11-29 Molds and structures for casting production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349220A JP4219157B2 (en) 2002-11-29 2002-11-29 Molds and structures for casting production

Publications (2)

Publication Number Publication Date
JP2004181472A true JP2004181472A (en) 2004-07-02
JP4219157B2 JP4219157B2 (en) 2009-02-04

Family

ID=32751828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349220A Expired - Fee Related JP4219157B2 (en) 2002-11-29 2002-11-29 Molds and structures for casting production

Country Status (1)

Country Link
JP (1) JP4219157B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120745A1 (en) * 2004-06-10 2005-12-22 Kao Corporation Structure for casting production
JP2007191823A (en) * 2006-01-19 2007-08-02 Kao Corp Fiber molded article for producing cast, method and apparatus for producing the same
WO2008072772A1 (en) 2006-12-12 2008-06-19 Kao Corporation Part for removing foreign substance from melt
JP2008142755A (en) * 2006-12-12 2008-06-26 Kao Corp Structure for manufacturing casting
US7651592B2 (en) 2005-05-20 2010-01-26 Kao Corporation Molded article
WO2014104045A1 (en) 2012-12-28 2014-07-03 花王株式会社 Method for producing structure for casting and structure such as mold
WO2019097987A1 (en) 2017-11-20 2019-05-23 花王株式会社 Structure for producing cast

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118974B2 (en) 2004-06-10 2012-02-21 Kao Corporation Structure for producing castings
WO2005120745A1 (en) * 2004-06-10 2005-12-22 Kao Corporation Structure for casting production
US7651592B2 (en) 2005-05-20 2010-01-26 Kao Corporation Molded article
JP2007191823A (en) * 2006-01-19 2007-08-02 Kao Corp Fiber molded article for producing cast, method and apparatus for producing the same
JP2008142755A (en) * 2006-12-12 2008-06-26 Kao Corp Structure for manufacturing casting
EP2119517A1 (en) * 2006-12-12 2009-11-18 Kao Corporation Part for removing foreign substance from melt
JP2008168342A (en) * 2006-12-12 2008-07-24 Kao Corp Part for removing foreign substance from melt
WO2008072772A1 (en) 2006-12-12 2008-06-19 Kao Corporation Part for removing foreign substance from melt
EP2119517A4 (en) * 2006-12-12 2012-08-08 Kao Corp Part for removing foreign substance from melt
WO2014104045A1 (en) 2012-12-28 2014-07-03 花王株式会社 Method for producing structure for casting and structure such as mold
US9719211B2 (en) 2012-12-28 2017-08-01 Kao Corporation Method of producing structure for producing casting, and structure such as mold
WO2019097987A1 (en) 2017-11-20 2019-05-23 花王株式会社 Structure for producing cast
KR20200061392A (en) 2017-11-20 2020-06-02 카오카부시키가이샤 Structure for casting
KR20210113433A (en) 2017-11-20 2021-09-15 카오카부시키가이샤 Structure for producing cast
US11590560B2 (en) 2017-11-20 2023-02-28 Kao Corporation Structure for producing cast

Also Published As

Publication number Publication date
JP4219157B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4002200B2 (en) Papermaking parts for casting production
JP4675276B2 (en) Compact
JP5680490B2 (en) Casting structure
EP1754554B1 (en) Structure for casting production
JP6682159B2 (en) Method for manufacturing structure for casting production
JP3995649B2 (en) Molds or structures for casting production
JP4219157B2 (en) Molds and structures for casting production
JP4907326B2 (en) Casting manufacturing structure and casting manufacturing method
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP4407962B2 (en) Papermaking parts for casting production
JP4694347B2 (en) Manufacturing method of casting mold
JP2007111738A (en) Method for producing mold for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4219157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees