JP2005220439A - Die with superior formability into mirror plane, and manufacturing method therefor - Google Patents
Die with superior formability into mirror plane, and manufacturing method therefor Download PDFInfo
- Publication number
- JP2005220439A JP2005220439A JP2004367265A JP2004367265A JP2005220439A JP 2005220439 A JP2005220439 A JP 2005220439A JP 2004367265 A JP2004367265 A JP 2004367265A JP 2004367265 A JP2004367265 A JP 2004367265A JP 2005220439 A JP2005220439 A JP 2005220439A
- Authority
- JP
- Japan
- Prior art keywords
- less
- mold
- stainless steel
- mirror
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、耐食性に優れたステンレス鋼の鏡面性を向上させたことで、特に光ディスクや光学レンズ等の、極めて高い表面精度を要求されるプラスチックやガラス部品の鏡面成形に最適な金型と、その製造方法に関するものである。 The present invention improves the mirror surface properties of stainless steel having excellent corrosion resistance, and is particularly suitable for mirror molding of plastic and glass parts that require extremely high surface accuracy, such as optical disks and optical lenses, It relates to the manufacturing method.
従来、CD、DVDメディア等の光ディスク樹脂成形の分野、光学レンズ用樹脂又はガラス成形の分野、液晶導光板等の光学部品用樹脂成形の分野には、JIS鋼種のSUS420J2又はそれに類似するステンレス鋼を切削加工及び研削加工した金型が用いられていた。プラスチックの光学部品など極めて精度の要求される場合には、上記SUS420J2相当鋼にNi−Pなどのアモルファスめっきを行ったのち、ダイヤモンドバイトによる切削加工を行なって成形面に仕上げる場合もあった。不純物の少ない銅合金を同様に切削加工して仕上げる場合もあった。 Conventionally, in the field of optical disk resin molding such as CD and DVD media, the field of resin or glass molding for optical lenses, and the field of resin molding for optical components such as liquid crystal light guide plates, SUS420J2 of JIS steel grade or similar stainless steel is used. Cutting and grinding molds were used. In cases where extremely high accuracy is required, such as plastic optical parts, amorphous steel such as Ni-P is applied to the SUS420J2 equivalent steel, and then the surface is finished by cutting with a diamond tool. In some cases, copper alloys with few impurities were similarly cut and finished.
一方、耐食性と硬度を両立させる材料として、例えばCが0.08質量%(以下、%と示す)以下でSiを2.0〜5.0%、Crを6.0〜10.0%含む析出硬化系ステンレスが提案されている。そして、このステンレス鋼に、さらに適量のMn,Ni,Mo,Cu,Nb,Ta,Ti,Coを添加して、高硬度の達成を目的とした改良鋼が提案されている(特許文献1)。この改良鋼は高硬度と高耐食性の両立という点で優れた材料である。
上述した光ディスクや光学部品成形用の金型のうち、SUS420J2からなるものは耐食性と高硬度の点である程度のレベルが得られる点では有利であるものの、達成される硬度はせいぜい55HRCが限界であり、成形ショットを重ねる場合の鏡面度の維持が不十分であるという問題があった。Ni−Pめっきや銅合金を適用したものでは更に硬さが低く、長期安定成形に不利となる。 Of the molds for molding optical disks and optical parts described above, those made of SUS420J2 are advantageous in that a certain level can be obtained in terms of corrosion resistance and high hardness, but the achieved hardness is limited to 55 HRC at most. There is a problem that the mirror surface is not sufficiently maintained when the molding shots are overlapped. A material to which Ni-P plating or a copper alloy is applied has a lower hardness, which is disadvantageous for long-term stable forming.
また、SUS420J2レベルの耐食性は、水冷を要する光ディスク成形用の金型の場合だと、長期量産する為に十分とはいえない問題もあった。更に、SUS420J2は組織中にミクロンオーダーのクロム炭化物析出を伴う為、成形面には厳密な平滑鏡面が得られにくい問題点もあった。この問題は、サブナノオーダーの平均面粗さを目指す次世代高密度光ディスクを実用化する上で大きな問題となる。 Further, the corrosion resistance of the SUS420J2 level is not sufficient for long-term mass production in the case of a mold for optical disc molding that requires water cooling. Furthermore, since SUS420J2 is accompanied by micron-order chromium carbide precipitation in the structure, there is also a problem that it is difficult to obtain a strict smooth mirror surface on the molding surface. This problem becomes a big problem when putting the next generation high density optical disk aiming at the average surface roughness of the sub-nano order into practical use.
本発明の目的は、極めて高い表面精度が要求されるプラスチックまたはガラス部品を成形するための、特殊な金型分野において、従来のSUS420J2の超鏡面仕上性の上記問題点を解決し、さらに、SUS420J2以上の耐食性と高硬度の特性を具備した、鏡面成形性に優れた金型およびその製造方法を提供することである。 The object of the present invention is to solve the above-mentioned problems of the super-mirror finish of SUS420J2 in a special mold field for molding plastic or glass parts that require extremely high surface accuracy, and further, SUS420J2 An object of the present invention is to provide a mold having the above-mentioned corrosion resistance and high hardness, and having excellent mirror formability, and a method for producing the same.
本発明者は、上記の問題を検討した結果、耐食性と高硬度、そして他の金型用途には類のない極めて平滑鏡面の成形面こそが求められる、このような特殊な金型材料にこそ、最適量のSi量が添加されたステンレス鋼が最適であることを突きとめた。そして、56HRC以上の硬さが達成できる成分組成を見いだすと共に、該硬さに調質し、切削加工又は研削・研磨加工やラッピング加工等の機械加工を施して成形面とすることで、その成形面の超鏡面仕上性と成形時の鏡面維持性を大きく改善できることを見いだした。そして、このステンレス鋼は、消耗電極式再溶解法により得ることが、本発明の金型に最適であることも見いだし、本発明に到達した。 As a result of examining the above problems, the present inventor has found such a special mold material that requires corrosion resistance, high hardness, and a molding surface having a very smooth mirror surface that is unmatched in other mold applications. It was found that stainless steel to which an optimum amount of Si was added was optimum. And while finding the component composition that can achieve a hardness of 56 HRC or higher, tempering the hardness, and performing machining such as cutting or grinding / polishing or lapping to form a molding surface, the molding It has been found that the super-mirror finish of the surface and the mirror surface maintenance during molding can be greatly improved. And, it was found that this stainless steel is optimal for the mold of the present invention to be obtained by a consumable electrode type remelting method, and the present invention has been reached.
すなわち本発明は、プラスチックまたはガラス部品を成形するための金型であって、質量%でC:0.15%以下、Cr:6.0〜12.0%、S:0.003%以下であり、Si:1.5〜5.0%を含有するステンレス鋼からなることを特徴とする鏡面成形性に優れた金型である。好ましくは、上記のステンレス鋼は、質量%でMn:0.05〜3.0%、Ni:4.0〜10.0%、Mo:0.2〜8.0%、Cu:6.0%以下、Nb:5.0%以下、Ta:8.0%以下、Al:2.0%以下、Ti:3.0%以下、Co:20.0%以下のうちの1種または2種以上を含むことを特徴とする鏡面成形性に優れた金型である。そして、更に好ましくは、成形面の硬さが56HRC以上であることを特徴とする鏡面成形性に優れた金型である。 That is, the present invention is a mold for molding a plastic or glass part, and in mass%, C: 0.15% or less, Cr: 6.0 to 12.0%, S: 0.003% or less. Yes, it is made of stainless steel containing Si: 1.5 to 5.0%, and is a mold excellent in mirror formability. Preferably, the stainless steel is Mn: 0.05 to 3.0%, Ni: 4.0 to 10.0%, Mo: 0.2 to 8.0%, Cu: 6.0 by mass%. % Or less, Nb: 5.0% or less, Ta: 8.0% or less, Al: 2.0% or less, Ti: 3.0% or less, Co: 20.0% or less It is the metal mold | die excellent in the mirror surface moldability characterized by including the above. More preferably, the mold is excellent in mirror formability, characterized in that the molding surface has a hardness of 56 HRC or more.
そして、本発明の金型の製造方法は、プラスチックまたはガラス部品を成形するための金型の製造方法であって、消耗電極式再溶解法を行なうことにより得た、質量%でC:0.15%以下、Cr:6.0〜12.0%、S:0.003%以下であり、Si:1.5〜5.0%を含有するステンレス鋼を、56HRC以上の硬さに調質し、機械加工を行なって成形面とすることを特徴とする鏡面成形性に優れた金型の製造方法である。 And the manufacturing method of the metal mold | die of this invention is a manufacturing method of the metal mold | die for shape | molding a plastic or glass component, Comprising: By mass% obtained by performing a consumable electrode type remelting method, C: 0.00 Stainless steel containing 15% or less, Cr: 6.0 to 12.0%, S: 0.003% or less, and containing Si: 1.5 to 5.0% to a hardness of 56 HRC or more In addition, the present invention is a method for producing a mold excellent in mirror formability, characterized in that it is machined to form a molding surface.
本発明によれば、耐食性に優れる金型の超鏡面仕上性と鏡面維持性を飛躍的に改善することができ、光ディスクや光学レンズ等の極めて表面精度を要求されるプラスチックまたはガラス部品の長期安定成形の実用化にとって欠くことのできない技術となる。 According to the present invention, it is possible to drastically improve the super mirror finish and mirror surface maintainability of a mold having excellent corrosion resistance, and long-term stability of plastic or glass parts that require extremely high surface accuracy such as optical disks and optical lenses. This technology is indispensable for the practical application of molding.
上述したように、本発明の重要な特徴は、優れた耐食性に加えて、最適量のSi量を添加したステンレス鋼とし、更には他の構成元素の種類および最適量をも見直した金型とすることで、成形面の高硬さと超鏡面仕上性、そして成形時の鏡面維持性をも大きく改善できること、更には、このステンレス鋼に最適な製造方法をも見いだしたことにある。 As described above, an important feature of the present invention is a stainless steel to which an optimum amount of Si is added in addition to excellent corrosion resistance, and a mold that has also reviewed the types and optimum amounts of other constituent elements. By doing so, the high hardness of the molding surface, the super mirror finish, and the mirror surface maintenance during molding can be greatly improved, and furthermore, an optimum manufacturing method for this stainless steel has been found.
まず、本発明の成分組成について説明する。Cを0.15%以下に規定することによって、金型組織中の硬質炭化物の析出サイズをサブミクロンオーダーに抑え、超鏡面仕上性を実現することができる。好ましくは0.08%以下である。Crはステンレス鋼の耐食性を確保するための不可欠な成分であって、本発明の金型用途の場合、6.0%未満では耐食性が不十分である。しかし、12.0%を超えると所定の硬度、望ましくは56HRC以上の硬度が得られにくくなるため為、Crは6.0〜12.0%とした。 First, the component composition of the present invention will be described. By defining C to be 0.15% or less, the precipitation size of hard carbides in the mold structure can be suppressed to the submicron order, and super-mirror finish can be realized. Preferably it is 0.08% or less. Cr is an indispensable component for ensuring the corrosion resistance of stainless steel, and in the case of the mold application of the present invention, the corrosion resistance is insufficient at less than 6.0%. However, if it exceeds 12.0%, it becomes difficult to obtain a predetermined hardness, desirably a hardness of 56 HRC or higher. Therefore, Cr is set to 6.0 to 12.0%.
Siは本発明の金型に強度を与える主要な元素である。そして本発明の金型用途にとってこそ重要な鏡面仕上性を実現するための根幹元素である。即ち、従来の微細炭化物による析出強化機構に頼らずに、マトリックスの焼戻し軟化抵抗を高めて高温焼戻し時の高硬度を達成することにより、優れた鏡面仕上性を得るものである。1.5%未満ではその効果が不十分であるが、5.0%を越えると靭性等に悪影響を及ぼす為、本発明では1.5〜5.0%と規定した。好ましくは2.0%以上である。 Si is a main element that gives strength to the mold of the present invention. And it is a basic element for realizing the mirror finish that is important for the mold application of the present invention. In other words, an excellent mirror finish is obtained by increasing the temper softening resistance of the matrix and achieving a high hardness during high-temperature tempering without relying on a precipitation strengthening mechanism by conventional fine carbides. If it is less than 1.5%, the effect is insufficient, but if it exceeds 5.0%, the toughness is adversely affected. Therefore, in the present invention, it is defined as 1.5 to 5.0%. Preferably it is 2.0% or more.
SはMnと軟質化合物を形成し、超鏡面仕上性に悪影響を及ぼすことから、やはり本発明にとっての調整が重要な主要元素である。本発明では、0.003%以下に規制することによって鏡面仕上性を達成している。 Since S forms a soft compound with Mn and adversely affects the super mirror finish, it is still an important main element for the present invention. In the present invention, the mirror finish is achieved by limiting the content to 0.003% or less.
次に、上述のステンレス鋼にとっての望ましい成分組成として、本用途に適した具体的な成分組成を示す。Mnは鋼の脱酸剤として働き、0.05%以上の含有が好ましいが、多すぎると金型組織中のオーステナイト量が増加しすぎて所定の硬度が得られにくくなる。よって、Mnは0.05〜3.0%が好ましい。Niは鋼に耐食性を付与するとともに、Crとのバランスで鋼の相変態を望ましい特性、すなわち固溶化熱処理冷却時にオーステナイト単相から低炭素マルテンサイト単相へと変態させるのに望ましい特性とする為、4.0%以上が好ましい。しかし、10.0%を越えるとオーステナイト量が増大しすぎて所定の硬度が得られにくくなる為、Niは4.0〜10.0%が好ましい。 Next, a specific component composition suitable for this application is shown as a desirable component composition for the above-mentioned stainless steel. Mn acts as a deoxidizer for steel and is preferably contained in an amount of 0.05% or more. However, if it is too much, the amount of austenite in the mold structure increases excessively and it becomes difficult to obtain a predetermined hardness. Therefore, Mn is preferably 0.05 to 3.0%. Ni imparts corrosion resistance to the steel and makes the phase transformation of the steel desirable due to the balance with Cr, that is, the desired property for transformation from the austenite single phase to the low carbon martensite single phase during solution heat treatment cooling. 4.0% or more is preferable. However, if it exceeds 10.0%, the amount of austenite increases too much and it becomes difficult to obtain a predetermined hardness. Therefore, Ni is preferably 4.0 to 10.0%.
Moは耐食性を向上させると同時に、固溶化および時効処理による硬さ調質(焼入れ焼戻し)の際の時効硬化に寄与する主要な元素の一つである。上記の効果を得る場合、0.2%未満であると効果が不十分であるが、8.0%を越えて添加しても特性への有効性は低い為、Moは0.2%〜8.0%とすることが好ましい。更に望ましくは2.0%以下である。Cuは時効の際の析出硬化に寄与する主要な元素であり、耐食性も向上させる。しかし、6.0%を超えると熱間加工性が損なわれるので、Cuは6.0%以下が望ましい。なお、特に本発明に望ましい調質硬さである56HRC以上を付与する為にはCuの添加は好ましいものであり、3.0%以上の添加が有効である。 Mo is one of the main elements contributing to age hardening during solidification and tempering (quenching and tempering) by solid solution and aging treatment as well as improving corrosion resistance. When the above effect is obtained, the effect is insufficient if it is less than 0.2%, but even if added over 8.0%, the effect on the characteristics is low, so Mo is 0.2% to It is preferable to set it to 8.0%. More desirably, it is 2.0% or less. Cu is a main element that contributes to precipitation hardening during aging, and also improves corrosion resistance. However, if it exceeds 6.0%, hot workability is impaired, so Cu is desirably 6.0% or less. In addition, in order to provide 56 HRC or more, which is particularly desirable tempering hardness for the present invention, addition of Cu is preferable, and addition of 3.0% or more is effective.
Nbはステンレス鋼の時効硬さを上昇させる効果があるが、5.0%を越えると熱間加工性に悪影響が生ずるので、添加あるいは含有するとしても5.0%以下が望ましい。更に望ましくは0.5%以下である。TaもNb同様にステンレス鋼の時効硬さを上昇させる効果があるが、やはり8.0%を越えると熱間加工性に悪影響が生ずるので、添加あるいは含有するとしても8.0%以下が望ましい。そして、Al,Tiも析出硬化に寄与する元素であるが、Alにおいては2.0%を越えると、そしてTiにおいては3.0%を超えると靭性を低下させるので、Alは2.0%以下、Tiは3.0%以下にそれぞれ調整することが望ましい。Tiについては2.0%以下とすることが更に望ましい。 Nb has the effect of increasing the aging hardness of stainless steel, but if it exceeds 5.0%, the hot workability is adversely affected. Therefore, even if added or contained, Nb is preferably 5.0% or less. More desirably, it is 0.5% or less. Ta, like Nb, has the effect of increasing the aging hardness of stainless steel, but if it exceeds 8.0%, the hot workability is adversely affected. Therefore, even if added or contained, it is preferably 8.0% or less. . Al and Ti are also elements that contribute to precipitation hardening, but if Al exceeds 2.0%, and if Ti exceeds 3.0%, the toughness decreases, so Al is 2.0%. Hereinafter, Ti is desirably adjusted to 3.0% or less. More preferably, Ti is 2.0% or less.
Coは耐食性の改善に加えて、マトリックスの固溶強化により、金型使用時の硬さ上昇に寄与する重要な元素である。しかし、20.0%を越えると機械加工性(切削,研削,ラッピング加工性)が損なわれるので、添加する場合であっても、20.0%以下とすることが望ましい。 Co is an important element that contributes to an increase in hardness when the mold is used by strengthening the solid solution of the matrix in addition to improving the corrosion resistance. However, if it exceeds 20.0%, the machinability (cutting, grinding, lapping workability) is impaired, so even if it is added, it is desirable to make it 20.0% or less.
本発明の金型は、このような成分組成を満たすステンレス鋼からなるものであって、残部を実質的にFeとする鋼とすることができる。例えば上述の元素種以外はFeと他の元素は総計で10%以下、5%以下といったステンレス鋼や、残部はFeおよび不可避的不純物で構成されるステンレス鋼であれば、優れた耐食性と高硬度、そして鏡面成形性および維持性を達成できる。 The metal mold | die of this invention consists of stainless steel which satisfy | fills such a component composition, Comprising: The remainder can be made into steel substantially made of Fe. For example, other than the above-mentioned element types, Fe and other elements are stainless steel with a total of 10% or less and 5% or less, and the balance is stainless steel composed of Fe and inevitable impurities. Excellent corrosion resistance and high hardness , And can achieve mirror formability and maintainability.
更に上述したように、本発明の金型は、その成形面の硬さが56HRC以上のものを採用し、そして達成しているところにも重要な特徴がある。成形面における56HRC以上の硬度は鏡面磨きの粗研磨時にキズをつけ難くし、鏡面仕上を容易にすると同時に成形中の鏡面維持性をも改善できるものである。そして、このような高硬さを達成するためにも、上記のステンレス鋼の成分組成は重要な要素である。 Further, as described above, the mold of the present invention has an important feature in that a molding surface having a hardness of 56 HRC or more is adopted and achieved. Hardness of 56HRC or higher on the molding surface makes it difficult to scratch during rough polishing of mirror polishing, facilitates mirror finishing, and at the same time improves mirror surface maintenance during molding. In order to achieve such high hardness, the composition of the stainless steel is an important factor.
そして、本発明の金型は、それを構成するステンレス鋼の成分組成に加えて、例えばそれが消耗電極式再溶解法により得られたものであることが望ましい。すなわち、真空アーク再溶解法(VAR)やエレクトロスラグ再溶解法(ESR)といった消耗電極式再溶解法を行なうことにより得られたステンレス鋼は、それを機械加工する際には、鏡面仕上時のピンホール発生要因となるアルミナ等の非金属介在物が低減されており、より安定した超鏡面仕上性を実現できる。消耗電極式再溶解法は1回又は複数回行なってもよく、それにより得られた鋼塊には鍛造や圧延等による熱間加工を行なってもよい。 And in addition to the component composition of the stainless steel which comprises the metal mold | die of this invention, it is desirable that it is what was obtained by the consumable electrode type remelting method, for example. That is, stainless steel obtained by performing a consumable electrode type remelting method such as a vacuum arc remelting method (VAR) or an electroslag remelting method (ESR) is used for mirror finishing. Non-metallic inclusions such as alumina that cause pinholes are reduced, and more stable super mirror finish can be realized. The consumable electrode type remelting method may be performed once or a plurality of times, and the steel ingot obtained thereby may be hot-worked by forging or rolling.
まず、真空アーク再溶解法により得た鋼塊を熱間加工して、表1に示す化学成分の、残部Feおよび不可避的不純物でなる試料を準備した。そして、これら試料に熱処理を行なって、所定の硬さに調質した。熱処理条件と硬さは表2に示す。 First, a steel ingot obtained by the vacuum arc remelting method was hot-worked to prepare a sample composed of the remaining Fe and unavoidable impurities of the chemical components shown in Table 1. And these samples were heat-treated and tempered to a predetermined hardness. The heat treatment conditions and hardness are shown in Table 2.
そして、これら調質後の試料に、光ディスク用金型の成形面加工に適用されている鏡面研磨条件での鏡面加工を施し、その加工面を評価した。表3には、その加工前の各試料における非金属介在物の測定結果を示しておく。 Then, the tempered samples were subjected to mirror surface processing under the mirror polishing conditions applied to the molding surface processing of the optical disk mold, and the processed surfaces were evaluated. Table 3 shows the measurement results of nonmetallic inclusions in each sample before processing.
図1および表4は、本発明および従来鋼の鏡面加工結果であって、その加工面のプロファイルより得られるものである。鏡面の高さプロファイルを見れば、従来鋼のSUS420J2系の試料は微細な凹凸が多いが、本発明はそれが少ないことが判る。この凸部は硬質炭化物やその他の硬質化合物の存在を示しており、よって本発明であれば、金型成形面に超平滑鏡面を得られやすいので、成形品の表面は乱反射を抑えることが可能であり、高密度光ディスクや光学レンズ、光学部品の成形に適した金型とすることができる。 FIG. 1 and Table 4 show the results of mirror finishing of the present invention and conventional steel, which are obtained from the profile of the machined surface. From the mirror height profile, it can be seen that the conventional steel SUS420J2-based sample has many fine irregularities, but the present invention has few. This convex portion indicates the presence of hard carbides and other hard compounds. Therefore, according to the present invention, it is easy to obtain an ultra-smooth mirror surface on the mold molding surface, so that the surface of the molded product can suppress irregular reflection. Thus, a mold suitable for molding a high-density optical disk, an optical lens, or an optical component can be obtained.
高度の耐食性と高硬度を有する本発明の金型は、光ディスクや光学レンズに加えて、同様の特性を必要とするガラス繊維等の強化剤を含有するPPS樹脂など、所謂スーパーエンプラの成形用金型としても適用できる。 The mold of the present invention having a high degree of corrosion resistance and high hardness is a so-called super engineering plastic molding die such as PPS resin containing a reinforcing agent such as glass fiber that requires similar characteristics in addition to an optical disk and an optical lens. It can also be applied as a mold.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004367265A JP2005220439A (en) | 2004-01-06 | 2004-12-20 | Die with superior formability into mirror plane, and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004000840 | 2004-01-06 | ||
JP2004367265A JP2005220439A (en) | 2004-01-06 | 2004-12-20 | Die with superior formability into mirror plane, and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005220439A true JP2005220439A (en) | 2005-08-18 |
Family
ID=34996306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004367265A Pending JP2005220439A (en) | 2004-01-06 | 2004-12-20 | Die with superior formability into mirror plane, and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005220439A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006249536A (en) * | 2005-03-11 | 2006-09-21 | Sumitomo Metal Ind Ltd | Metal material to be mirror polished |
JP2008088550A (en) * | 2006-09-08 | 2008-04-17 | Hitachi Metals Ltd | High-hardness, precipitation-hardening stainless steel excellent in toughness |
-
2004
- 2004-12-20 JP JP2004367265A patent/JP2005220439A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006249536A (en) * | 2005-03-11 | 2006-09-21 | Sumitomo Metal Ind Ltd | Metal material to be mirror polished |
JP2008088550A (en) * | 2006-09-08 | 2008-04-17 | Hitachi Metals Ltd | High-hardness, precipitation-hardening stainless steel excellent in toughness |
JP4560802B2 (en) * | 2006-09-08 | 2010-10-13 | 日立金属株式会社 | High hardness precipitation hardened stainless steel with excellent toughness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100794157B1 (en) | Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same | |
JP2010174319A (en) | Steel for plastic molding mold, and plastic molding mold | |
JPWO2008123159A1 (en) | Precipitation hardening type martensitic stainless cast steel with excellent machinability and manufacturing method thereof | |
JP4938658B2 (en) | Martensitic stainless steel for injection mold and injection mold frame | |
JP4154623B2 (en) | Weldable and repairable steel used in the manufacture of plastic molds | |
TWI435938B (en) | High-characteristic steel for solid parts | |
JP5311202B2 (en) | Method for producing age-hardening stainless steel | |
TWI633193B (en) | Steel for mold | |
JP4560802B2 (en) | High hardness precipitation hardened stainless steel with excellent toughness | |
TW200401042A (en) | Steel block for the manufacture of moulds for the injection moulding of plastics materials or for the manufacture of metal-working tools | |
JP2010051982A (en) | Welding material for repairing mold | |
JP4207165B2 (en) | High hardness stainless steel excellent in mirror finish and method for producing the same | |
JP2005220439A (en) | Die with superior formability into mirror plane, and manufacturing method therefor | |
JP7392330B2 (en) | Mold steel and molds | |
JP3469462B2 (en) | Steel for plastic molds with excellent mirror finish and machinability | |
JP4487257B2 (en) | Cold die steel with excellent size reduction characteristics | |
JP2004277818A (en) | Free cutting steel for metal mold for molding plastic | |
JP2006077274A (en) | Steel for mold for molding plastic having excellent mirror finishing property | |
JP2008308753A (en) | Steel for mold for molding plastic having excellent specularity | |
JP5776959B2 (en) | Die steel with excellent hot workability | |
JP6359241B2 (en) | Corrosion-resistant plastic molding steel with excellent specularity | |
CN111041343A (en) | Steel for mold | |
TW202037733A (en) | Economical plastic tooling cores for mold and die sets | |
JP2000087178A (en) | Prehardened steel for metal mold for plastic molding | |
JPS63114942A (en) | Steel for prehardening metal mold for plastic molding |