JP2006249536A - Metal material to be mirror polished - Google Patents

Metal material to be mirror polished Download PDF

Info

Publication number
JP2006249536A
JP2006249536A JP2005069852A JP2005069852A JP2006249536A JP 2006249536 A JP2006249536 A JP 2006249536A JP 2005069852 A JP2005069852 A JP 2005069852A JP 2005069852 A JP2005069852 A JP 2005069852A JP 2006249536 A JP2006249536 A JP 2006249536A
Authority
JP
Japan
Prior art keywords
polishing
hardness
metal material
mirror
metallic inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005069852A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kuroda
篤彦 黒田
Futoshi Katsuki
太 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005069852A priority Critical patent/JP2006249536A/en
Publication of JP2006249536A publication Critical patent/JP2006249536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal material to be mirror polished by which the adverse influence of the existence of nonmetallic inclusions can be reduced and a sufficiently flat surface can be obtained. <P>SOLUTION: The existence ratio of the nonmetallic inclusions in the metal material is defined to be ≤0.05%. By controlling the amount of existence of the nonmetallic inclusions to a low concentration, the adverse influence of the nonmetallic inclusions can be reduced and sufficient flatness can be obtained. The hardness of a matrix of the metal material is defined to be ≥100 Vickers hardness. The difference in hardness between the metallic inclusions and the matrix can be decreased and the influence of the hidden nonmetallic inclusions can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、CD(Compact Disk),DVD(Digital Versatile Disk)等の光ディスクを大量に作製するためのスタンパ、各種電子機器内の反射鏡、超精密金型などを製造する際に、表面研磨によって鏡面が形成される鏡面研磨用の金属素材に関する。   The present invention uses surface polishing when manufacturing a stamper for manufacturing a large number of optical disks such as CD (Compact Disk) and DVD (Digital Versatile Disk), reflectors in various electronic devices, and ultra-precision molds. The present invention relates to a metal material for mirror polishing on which a mirror surface is formed.

CD,DVD等の光ディスクは、光ディスク用スタンパにピットが形成された情報記録面を樹脂基板に転写して製造される。ピットの長さ及び高さは極めて小さいので、スタンパの表面は高い平坦度が要求される。   An optical disc such as a CD or DVD is manufactured by transferring an information recording surface having pits formed on an optical disc stamper to a resin substrate. Since the length and height of the pit are extremely small, the surface of the stamper is required to have high flatness.

従来、平坦度が高いスタンパを製造する方法として、めっき法が知られていた。研磨して十分に洗浄した平坦なガラス基板にレジストを塗布した後、ベーキング処理によってレジスト膜をガラス基板に密着させ、そのレジスト膜にニッケル(Ni)浴中で電鋳を行ってニッケル膜を成長させてスタンパを製造していた。   Conventionally, a plating method has been known as a method of manufacturing a stamper having high flatness. After applying a resist to a flat glass substrate that has been polished and thoroughly cleaned, the resist film is brought into close contact with the glass substrate by baking, and the resist film is electroformed in a nickel (Ni) bath to grow a nickel film. The stamper was manufactured.

また、電鋳めっきを利用する方法とは異なり、圧延したニッケル板を研磨してスタンパを製造する方法(第1手法)が提案されている(例えば、特許文献1参照)。特許文献1には、圧延したニッケル板を材料として、その表面にラッピング処理を施した後に化学機械研磨を施し、その上にレジスト膜を形成して、スタンパを製造する技術が開示されている。   Further, unlike a method using electroforming plating, a method (first method) for manufacturing a stamper by polishing a rolled nickel plate has been proposed (for example, see Patent Document 1). Patent Document 1 discloses a technique for manufacturing a stamper by using a rolled nickel plate as a material, lapping the surface, performing chemical mechanical polishing, and forming a resist film thereon.

また、上記第1手法にめっき処理を加えたスタンパの製造方法(第2手法)が提案されている(例えば、特許文献2参照)。特許文献2には、圧延したニッケル板の表面に金属めっき(例えば、NiP合金)を施し、その金属めっき層に化学機械研磨を施し、その上にレジスト膜を形成することにより、ニッケル圧延板に存在する圧延疵などの影響を抑制したスタンパを製造する技術が開示されている。
特開2002−355749号公報 国際公開第2004/107335号パンフレット
In addition, a stamper manufacturing method (second method) in which plating is added to the first method has been proposed (see, for example, Patent Document 2). In Patent Document 2, the surface of a rolled nickel plate is subjected to metal plating (for example, NiP alloy), the metal plating layer is subjected to chemical mechanical polishing, and a resist film is formed thereon, thereby forming a nickel rolled plate. A technique for manufacturing a stamper in which the influence of existing rolling mills and the like is suppressed is disclosed.
JP 2002-355749 A International Publication No. 2004/107335 Pamphlet

ニッケル圧延板を作製する場合、電気炉などで溶解された金属ニッケルを鋳造工程で凝固させてスラブを製造し、製造したスラブに鍛造及び圧延などの処理を施して薄板状に仕上げることが一般的である。このような工程で作製されるニッケル圧延板を使用してスタンパを作製した場合に、非金属介在物の存在割合(存在量)が研磨処理後の表面品質に大きな影響を与えることを、本発明者は知見した。この非金属介在物は、ニッケルの溶解及び精錬の段階で発生する酸化物が主成分であって、これが金属材料(母材)の内部に巻き込まれたものである。   When producing rolled nickel plates, it is common to produce slabs by solidifying metallic nickel melted in an electric furnace or the like in the casting process, and then subjecting the produced slabs to forging and rolling to finish them into thin plates. It is. In the present invention, when a stamper is produced using a nickel rolled sheet produced in such a process, the presence ratio (abundance) of non-metallic inclusions has a great influence on the surface quality after polishing treatment. Found out. This non-metallic inclusion is mainly composed of an oxide generated at the stage of melting and refining of nickel, and is entangled inside a metal material (base material).

特許文献1及び2は、このような非金属介在物の存在を全く考慮しておらず、表面の十分な平坦化を実現できないという問題がある。また、特許文献2において、ニッケル圧延板に多量の非金属介在物が存在している場合、金属めっき層が均一に形成されない、所謂ピンホールと呼ばれるめっき欠陥が発生し、極端な場合にはニッケル圧延板と金属めっき層との間の接合が脆弱となって研磨処理中に金属めっき層が剥がれるなどの問題がある。   Patent Documents 1 and 2 do not consider the existence of such non-metallic inclusions at all, and there is a problem that sufficient planarization of the surface cannot be realized. Further, in Patent Document 2, when a large amount of non-metallic inclusions are present in a nickel rolled plate, a metal plating layer is not uniformly formed, so-called plating defects called pinholes are generated. There is a problem that the bonding between the rolled plate and the metal plating layer becomes brittle and the metal plating layer is peeled off during the polishing process.

また、特許文献1の研磨処理にあっては、素材の一部を除去するため、素材内での残留応力分布のバランスが崩される。この結果、乗馬の鞍状に素材が反り返る現象が研磨処理後に発生するという問題がある。   In addition, in the polishing process of Patent Document 1, since a part of the material is removed, the balance of the residual stress distribution in the material is lost. As a result, there is a problem that a phenomenon in which the material warps like a horseback saddle occurs after the polishing process.

本発明は斯かる事情に鑑みてなされたものであり、非金属介在物の存在の悪影響を低減して、表面を十分に平坦にすることができる鏡面研磨用の金属素材を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a metal material for mirror polishing that can reduce the adverse effects of the presence of non-metallic inclusions and sufficiently flatten the surface. And

本発明の他の目的は、研磨処理後の残留応力を均一化できて、反りの発生を防止できる鏡面研磨用の金属素材を提供することにある。   Another object of the present invention is to provide a metal material for mirror polishing that can make the residual stress after the polishing treatment uniform and prevent the occurrence of warpage.

請求項1に係る鏡面研磨用の金属素材は、圧延によって製造された、表面研磨によって鏡面が形成される鏡面研磨用の金属素材において、素材中の非金属介在物の存在割合が0.05%以下であることを特徴とする。   The metal material for mirror polishing according to claim 1 is manufactured by rolling, and the mirror polishing metal material formed by surface polishing has a non-metallic inclusion content of 0.05% in the material. It is characterized by the following.

第1発明にあっては、金属素材中の非金属介在物の存在割合を0.05%以下とする。よって、非金属介在物の存在量を低濃度に制御することにより、非金属介在物の悪影響は低減されて、十分な平坦度が得られる。   In the first invention, the ratio of non-metallic inclusions in the metal material is 0.05% or less. Therefore, by controlling the abundance of nonmetallic inclusions at a low concentration, the adverse effects of nonmetallic inclusions are reduced and sufficient flatness can be obtained.

請求項2に係る鏡面研磨用の金属素材は、請求項1において、母材の硬度がビッカース硬さで100以上であることを特徴とする。   The metal material for mirror polishing according to claim 2 is characterized in that, in claim 1, the hardness of the base material is 100 or more in terms of Vickers hardness.

表面上に存在する非金属介在物、及び、研磨処理中に新たに表面に出現する非金属介在物を皆無にすることは不可能である。また、研磨面の直下に隠れて存在する非金属介在物の研磨処理への影響も無視できない。そこで、第2発明にあっては、このような非金属介在物、特に研磨面の直下に隠れて存在する非金属介在物の影響を解消するために、母材の硬度を上げておく。具体的には母材の硬度をビッカース硬さで100以上としておく。よって、非金属介在物と母材との硬度差は小さくなり、研磨を施した際に平坦度が確保され、隠れている非金属介在物の影響は低減されることになり、十分な平坦度が得られる。   It is impossible to eliminate non-metallic inclusions existing on the surface and non-metallic inclusions newly appearing on the surface during the polishing process. In addition, the influence of the non-metallic inclusions hidden under the polishing surface on the polishing process cannot be ignored. Therefore, in the second invention, the hardness of the base material is increased in order to eliminate the influence of such non-metallic inclusions, particularly non-metallic inclusions hidden under the polished surface. Specifically, the hardness of the base material is set to 100 or more in terms of Vickers hardness. Therefore, the difference in hardness between the non-metallic inclusions and the base material is reduced, flatness is ensured when polished, and the influence of hidden non-metallic inclusions is reduced. Is obtained.

請求項3に係る鏡面研磨用の金属素材は、表面研磨によって鏡面が形成される鏡面研磨用の金属素材において、0.1%以上、0.8%以下の条件で圧延長手方向に伸びひずみが加えられていることを特徴とする。   The metal material for mirror polishing according to claim 3 is a metal material for mirror polishing in which a mirror surface is formed by surface polishing. In the metal material for mirror polishing, the elongation strain in the rolling longitudinal direction is 0.1% or more and 0.8% or less. Is added.

第3発明にあっては、表面に金属めっきが施された研磨処理前の素材に引張ひずみ、具体的には圧延後の母材に対して、0.1%以上、0.8%以下の圧延長手方向への伸びひずみを与えておく。よって、研磨処理後の残留応力が均一化して、板厚方向のひずみの均一性が得られ、反りは抑制される。   In the third aspect of the invention, tensile strain is applied to the material before the polishing treatment with the surface plated with metal, specifically, 0.1% or more and 0.8% or less with respect to the base material after rolling. An elongation strain in the rolling longitudinal direction is given. Therefore, the residual stress after the polishing process is made uniform, the uniformity of the strain in the thickness direction is obtained, and the warpage is suppressed.

請求項4に係る鏡面研磨用の金属素材は、請求項1乃至3のいずれかにおいて、表面に金属がめっきされていることを特徴とする。   A metal material for mirror polishing according to a fourth aspect is characterized in that the metal is plated on the surface in any one of the first to third aspects.

第4発明にあっては、表面に金属めっきが施されていて、そのめっき層を研磨するようになるため、圧延中に生じた疵の影響を受けない。基板となる圧延板に多くの非金属介在物が存在していると、ピンホールと呼ばれるめっき欠陥が発生したり、極端な場合には圧延板とめっき層との接合が脆弱となってめっき層が剥がれる可能性があるが、第3発明では存在する非金属介在物が少ないため、このような事態は発生せず、ピンホール欠陥も少なく十分な平坦度が得られる。   In the fourth invention, the surface is metal-plated and the plated layer is polished, so that it is not affected by wrinkles generated during rolling. If there are many non-metallic inclusions on the rolled plate that will be the substrate, plating defects called pinholes will occur or, in extreme cases, the bonding between the rolled plate and the plated layer will be brittle However, since there are few non-metallic inclusions present in the third invention, such a situation does not occur and there are few pinhole defects and a sufficient flatness can be obtained.

本発明では、金属素材中の非金属介在物の存在割合を0.05%以下とするようにしたので、非金属介在物の悪影響を低減できて、十分な平坦度を得ることができる。この結果、非常に平坦精度に優れた光ディスク用スタンパ、電子機器内の反射鏡、超精密金型などを提供することが可能となる。また、これらの製品の製造時における歩留りを向上することができる。   In the present invention, since the existence ratio of the nonmetallic inclusions in the metal material is set to 0.05% or less, the adverse effect of the nonmetallic inclusions can be reduced and sufficient flatness can be obtained. As a result, it is possible to provide a stamper for optical disks, a reflecting mirror in an electronic device, an ultra-precise mold, and the like that have excellent flatness accuracy. Moreover, the yield at the time of manufacture of these products can be improved.

また、本発明では、母材の硬度をビッカース硬さで100以上とするようにしたので、表面だけでなく研磨面の直下に隠れて存在する非金属介在物の悪影響を低減できて、更に十分な平坦度を得ることができる。   Further, in the present invention, since the hardness of the base material is set to 100 or more in terms of Vickers hardness, it is possible to reduce the adverse effects of non-metallic inclusions that are hidden not only on the surface but also directly under the polished surface, and more sufficiently Flatness can be obtained.

また、本発明では、圧延後の母材に対して0.1%以上、0.8%以下の圧延長手方向への伸びひずみを与えておくようにしたので、研磨処理後の残留応力を均一化できて、板厚方向のひずみの均一性が得られ、反りを抑制することができる。   In the present invention, since the elongation strain in the rolling longitudinal direction of 0.1% or more and 0.8% or less is given to the base material after rolling, the residual stress after polishing treatment is Uniformity can be obtained, uniformity of strain in the thickness direction can be obtained, and warpage can be suppressed.

また、本発明では、表面に金属めっきを施すようにして、圧延中に生じた疵の影響を回避することができ、また、非金属介在物が少ないので、ピンホールと呼ばれるめっき欠陥が発生すること.極端な場合には金属めっき層が剥離することを抑制できる。   Further, in the present invention, the surface is plated with metal so that the influence of wrinkles generated during rolling can be avoided, and since there are few non-metallic inclusions, plating defects called pinholes are generated. thing. In extreme cases, the metal plating layer can be prevented from peeling off.

前述した第1手法及び第2手法の問題点(表面の十分な平滑性の確保が困難)を解決するための本発明の手段である、非金属介在物の存在割合の抑制と、母材の硬度の規定とについて、以下に詳述する。   It is a means of the present invention for solving the problems of the first method and the second method described above (it is difficult to ensure sufficient smoothness of the surface), and suppressing the existence ratio of non-metallic inclusions, The definition of hardness will be described in detail below.

(非金属介在物の存在割合(材料の清浄度)の抑制に関して)
以下、材料の清浄度が研磨処理後の品質に与える影響を調査した結果(表1参照)と、その調査結果に基づく非金属介在物の存在割合の数値限定の理由とについて説明する。
(Regarding the suppression of the presence ratio of non-metallic inclusions (material cleanliness))
Hereinafter, the result of investigating the influence of the cleanliness of the material on the quality after the polishing process (see Table 1) and the reason for limiting the numerical value of the existence ratio of nonmetallic inclusions based on the investigation result will be described.

素材は純ニッケルを用い、その素材は電気炉で溶解後、連続鋳造で製造したスラブから採取した。非金属介在物の影響を調査するために、連続鋳造スラブの長手方向の先頭位置、中央位置及び最終凝固位置のそれぞれから素材を採取した。最終凝固位置では非金属介在物の濃度が最も高く、中央位置では定常的な凝固が行われているために非金属介在物の濃度は低い。   The material used was pure nickel, which was collected from a slab produced by continuous casting after melting in an electric furnace. In order to investigate the influence of non-metallic inclusions, materials were collected from each of the front position, the center position, and the final solidification position in the longitudinal direction of the continuously cast slab. The concentration of nonmetallic inclusions is highest at the final solidification position, and the concentration of nonmetallic inclusions is low because steady solidification is performed at the central position.

また、連続鋳造スラブの長手方向の中央付近で採取した素材から更に二次用溶解用のスラブを採取し、真空中でアーク溶接(VAR溶解)を行った。具体的には、直径100mm,長さ200mmのVAR用の素材を採取し、これを電極とすることでVAR溶解に供した。このVAR溶解を施す理由は、非金属介在物の濃度を更に低減させるためである。   Further, a secondary melting slab was further collected from the material collected near the center in the longitudinal direction of the continuous casting slab, and arc welding (VAR melting) was performed in a vacuum. Specifically, a VAR material having a diameter of 100 mm and a length of 200 mm was collected and used as an electrode for VAR dissolution. The reason for applying this VAR dissolution is to further reduce the concentration of non-metallic inclusions.

連続鋳造スラブの3種類及びVAR溶解後の鋳片1種類の合計4種類の素材から、熱間鍛造によって厚さ60mm,幅100mmの熱延スラブを製造した。製造した熱延スラブを1200℃に加熱した後、熱間圧延により厚さ4mmまで仕上げた。この段階で清浄度の評価用サンプルを採取した。各サンプルの熱延板を750℃で焼き鈍しした後、表面に発生したスケールを溶融塩及び酸洗により除去した。この後、厚さ1.00mmで一度中間焼鈍を施した後、冷間圧延により厚さ0.95mmまで仕上げた。   A hot-rolled slab having a thickness of 60 mm and a width of 100 mm was manufactured by hot forging from a total of four types of materials including three types of continuous cast slabs and one type of slab after VAR melting. The manufactured hot-rolled slab was heated to 1200 ° C. and then finished to a thickness of 4 mm by hot rolling. At this stage, a sample for cleanliness evaluation was collected. After the hot-rolled sheet of each sample was annealed at 750 ° C., the scale generated on the surface was removed by molten salt and pickling. Thereafter, intermediate annealing was performed once at a thickness of 1.00 mm, and then finished to a thickness of 0.95 mm by cold rolling.

冷延板の状態で採取した清浄度評価用のサンプルの圧延面を埋め込んで研磨し、清浄度を調査した。清浄度の評価は、JISG0555の点算法に従って実施した。表1に各サンプルの清浄度の評価結果を示す。ニッケル中の非金属介在物は形態及び組成によっていくつかの種類に分類されているが、表1ではそれらの合計の数値を示している。   The rolled surface of a sample for cleanliness evaluation collected in the state of a cold-rolled sheet was embedded and polished, and the cleanliness was investigated. The cleanliness was evaluated according to the point calculation method of JISG0555. Table 1 shows the evaluation results of the cleanliness of each sample. Nonmetallic inclusions in nickel are classified into several types according to their morphology and composition, and Table 1 shows the total values.

冷間圧延後の素材から直径180mmの円盤状素材を切り出し、研磨試験を行った。研磨試験は、冷間圧延後そのままのものと表面にめっきを施したものとに対して行った。なお、めっき処理は、無電解で厚さ10μmのめっきとした。   A disk-shaped material having a diameter of 180 mm was cut out from the material after cold rolling, and a polishing test was performed. The polishing test was performed on the one after cold rolling and the one plated on the surface. The plating treatment was electroless plating with a thickness of 10 μm.

各素材を定盤上に固定した後、ラッピング研磨、ポリッシング研磨及び化学機械研磨により仕上げまで研磨した。ラッピング研磨では、ニッケルめっきでダイヤモンド砥粒を固定した銅箔からなるダイヤモンドディスクを用いて行った。また、ポリッシング研磨は研磨油に懸濁したダイヤモンドスラリーで行った。さらに、化学機械研磨では、コロイダルシリカを懸濁したスラリーを用いた。定盤を100rpmの速度で回転させてラッピングフィルムを各素材に押しつけることで研磨した。   Each material was fixed on a surface plate, and then polished to finish by lapping polishing, polishing polishing and chemical mechanical polishing. The lapping polishing was performed using a diamond disk made of a copper foil in which diamond abrasive grains were fixed by nickel plating. Polishing polishing was performed with diamond slurry suspended in polishing oil. Further, in chemical mechanical polishing, a slurry in which colloidal silica is suspended is used. Polishing was performed by rotating the surface plate at a speed of 100 rpm and pressing the wrapping film against each material.

研磨処理後の各素材について半径の1/2の位置(中心から75mmの位置)から平坦度評価用の試験片を採取し、AFMにより表面粗さを測定した。表面粗さの測定では、100μm×100μmの範囲を対象とし、この中での平均粗さ(Ra)を算出した。この算出結果を表1に示す。また、表1では、この平均粗さ(Ra)が10nm以下の場合には研磨性が良好であると判定して”○”で評価し、10nmを超える場合には研磨性が不良であると判定して”×”で評価している。   For each material after the polishing treatment, a test piece for flatness evaluation was taken from a position of half the radius (position of 75 mm from the center), and the surface roughness was measured by AFM. In the measurement of the surface roughness, the average roughness (Ra) in the range of 100 μm × 100 μm was calculated. The calculation results are shown in Table 1. Moreover, in Table 1, when this average roughness (Ra) is 10 nm or less, it is judged that the abrasiveness is good and evaluated with “◯”, and when it exceeds 10 nm, the abrasiveness is poor. Judgment is made and evaluation is made with “×”.

表1の結果から、清浄度が0.055%である素材のみが研磨性不良となっている。また、めっきを施した素材は、施さない素材に比較して更に良好な研磨を施すことが可能である。 したがって、素材中の非金属介在物の存在割合(清浄度)が0.05%以下であれば、表面のめっきの有無に関係なく、研磨処理後の表面粗さは目標の10nm以下になることが分かる。よって、非金属介在物の存在割合を0.05%以下にすることにより、表面を十分に平坦化することができ、めっきを施すことによって更に良好となる。   From the results in Table 1, only the material having a cleanness of 0.055% has poor polishing properties. In addition, the plated material can be polished more satisfactorily than the untreated material. Therefore, if the existing ratio (cleanness) of non-metallic inclusions in the material is 0.05% or less, the surface roughness after the polishing process will be 10 nm or less, regardless of the presence or absence of surface plating. I understand. Therefore, the surface can be sufficiently flattened by setting the existence ratio of the nonmetallic inclusions to 0.05% or less, and further improved by plating.

素材中の非金属介在物の存在割合(清浄度)は、素材を直接研磨する場合も研磨処理後の表面状態に大きな影響を与える。この理由は、表面に出現した非金属介在物が研磨処理中に表面の平滑化に悪影響を及ぼすからである。つまり、非金属介在物は母材と硬さが異なるため、これらが混在しておれば必然的に研磨は不均一となって、研磨処理後の表面は平滑にならない。また場合によっては、延性に乏しい非金属介在物自体が、研磨処理中に破壊されて母材から剥離し、この剥離した非金属介在物が研磨のパッドによって素材に押しつけられる結果、研磨処理後の表面で平滑性が得られない。素材中の非金属介在物の存在割合(清浄度)が0.05%を超える場合には、表面に出現する非金属介在物が多くなるため、研磨処理後に平坦で均一な表面が得られない。   The existence ratio (cleanness) of non-metallic inclusions in the material greatly affects the surface state after the polishing process even when the material is directly polished. This is because non-metallic inclusions appearing on the surface adversely affect the smoothing of the surface during the polishing process. That is, since the non-metallic inclusions are different in hardness from the base material, if they are mixed, the polishing is inevitably non-uniform and the surface after the polishing process is not smooth. In some cases, non-metallic inclusions with poor ductility themselves are destroyed during the polishing process and peeled off from the base material, and the peeled non-metallic inclusions are pressed against the material by the polishing pad. Smoothness cannot be obtained on the surface. When the presence ratio (cleanness) of non-metallic inclusions in the material exceeds 0.05%, non-metallic inclusions appearing on the surface increase, so that a flat and uniform surface cannot be obtained after polishing treatment. .

なお、その存在割合(清浄度)が低くなればなるほど、表面の平坦度は向上するが、その反面、存在割合(清浄度)を低減するためのコストの上昇が避けられない。よって、素材中の非金属介在物の存在割合(清浄度)の下限は、経済的な背景を考慮して決定すれば良い。   In addition, although the flatness of the surface improves as the existence ratio (cleanness) becomes lower, on the other hand, an increase in cost for reducing the existence ratio (cleanness) is unavoidable. Therefore, the lower limit of the abundance ratio (cleanliness) of non-metallic inclusions in the material may be determined in consideration of economic background.

研磨前の素材の表面(おもて面及び/またはうら面)に金属めっきを施すことは、圧延素材の表面に存在するロールマークなどの凹凸またはうねりを消去し、研磨処理後の表面形状を更に改善するために有効である。この金属めっきの厚さは特に限定されるものではないが、最低2μm程度の厚さがあれば表面の凹凸を消去できる。一方、その上限に関しては、あまり厚いめっきを施す場合にはめっき工程の時間が長くなって、コストの上昇を招くことになるため、経済的背景を考慮して決定すれば良いが、片面で20μmを超える厚さは不要である。   Applying metal plating to the surface (front surface and / or back surface) of the material before polishing erases irregularities or undulations such as roll marks on the surface of the rolled material, and changes the surface shape after polishing. It is effective for further improvement. The thickness of the metal plating is not particularly limited, but the surface irregularities can be erased if the thickness is at least about 2 μm. On the other hand, the upper limit may be determined in consideration of the economic background, because the time of the plating process becomes longer when the plating is too thick, leading to an increase in cost. A thickness exceeding 1 is unnecessary.

(母材の硬度に関して)
以下、母材の硬度が研磨処理後の品質に与える影響を調査した結果(表2参照)と、その調査結果に基づく母材の硬度の数値限定の理由とについて説明する。
(Regarding the hardness of the base material)
Hereinafter, the result of investigating the influence of the hardness of the base material on the quality after the polishing process (see Table 2) and the reason for limiting the numerical value of the hardness of the base material based on the result of the investigation will be described.

上述したように連続鋳造スラブの長手方向の鋳片中央位置から採取した素材を元にして、厚さ1.00mmで中間焼鈍を施した素材を得た。この素材から最小0.02mmから最大0.5mmまで圧延し、母材の硬度を変化させた状態で上述した例と同様の手法にて研磨試験に供した。   As described above, based on the material collected from the center position of the slab in the longitudinal direction of the continuous cast slab, a material subjected to intermediate annealing with a thickness of 1.00 mm was obtained. This material was rolled from a minimum of 0.02 mm to a maximum of 0.5 mm, and subjected to a polishing test in the same manner as in the above example with the hardness of the base material changed.

圧延板の硬度は、その表面において荷重1kgの条件としてビッカース硬さを測定した。この際、硬度測定は5点で行い、それらの平均値を算出した。その算出結果と、研磨処理後の平均粗さ(Ra)及び平坦度の評価とを、表2に示す。なお、平均粗さ(Ra)の求め方及び平坦度の評価基準は、上述した例と同様である。   As for the hardness of the rolled plate, Vickers hardness was measured on the surface as a condition of a load of 1 kg. At this time, the hardness was measured at 5 points, and the average value thereof was calculated. Table 2 shows the calculation results and the evaluation of average roughness (Ra) and flatness after the polishing treatment. The method for obtaining the average roughness (Ra) and the evaluation criteria for the flatness are the same as in the above-described example.

表2の結果から、母材のビッカース硬さが100以上である素材では良好な平滑度を有する表面が得られることが分かる。よって、母材のビッカース硬さを100以上にすることにより、更に表面を十分に平坦化することができる。   From the results in Table 2, it can be seen that a material having a Vickers hardness of the base material of 100 or more can obtain a surface having good smoothness. Therefore, the surface can be further flattened by setting the Vickers hardness of the base material to 100 or more.

母材の硬度は、研磨処理後の表面の平滑性に大きな影響を与える。母材の硬度が低くて軟らかい素材では、研磨工程またはその前後の工程での取扱いによって傷が付き易くなる。また、研磨のスラリーに異物が混入した際などに受ける損傷も、軟らかい素材では影響が大きくなる。このような点から、母材の硬度がビッカース硬さで100未満の素材では、研磨の疵が大きくて残りやすい。よって、研磨に先立って加工硬化などの手法によって、母材の硬度をビッカース硬さで100以上にしておく必要がある。なお、この硬度の上限については、硬度が上がるにつれて研磨が容易になるため、特に規定するものではない。   The hardness of the base material greatly affects the smoothness of the surface after the polishing treatment. If the base material has a low hardness and is soft, the material is easily damaged by the handling in the polishing process or in the preceding and subsequent processes. In addition, damage caused when foreign matter is mixed in the polishing slurry is greatly affected by a soft material. From such a point, when the base material has a Vickers hardness of less than 100, polishing wrinkles are large and easily remain. Therefore, it is necessary to set the base material hardness to 100 or more in terms of Vickers hardness by a method such as work hardening prior to polishing. The upper limit of the hardness is not particularly specified because polishing becomes easier as the hardness increases.

次に、前述した第1手法の問題点(反り発生)を解決するための本発明の手段である伸びひずみの印加について、以下に詳述する。   Next, the application of elongation strain, which is a means of the present invention for solving the above-described problem (warp generation) of the first method, will be described in detail below.

(圧延後の伸びひずみに関して)
以下、圧延後の伸びひずみが研磨処理後の品質に与える影響を調査した結果(表3参照)と、その調査結果に基づく伸びひずみの数値限定の理由とについて説明する。
(Regarding elongation strain after rolling)
Hereinafter, the result of investigating the influence of the elongation strain after rolling on the quality after the polishing treatment (see Table 3) and the reason for limiting the numerical value of the elongation strain based on the investigation result will be described.

素材として、SUS304の成分を持つ幅500mm,厚さ0.3mmの冷間圧延されたコイルを使用した。このコイルに、テンションレベラーまたはストレッチャーにて、圧延長手方向に種々の伸びひずみを加えた。この伸びひずみの条件を表3に示す。そして、上述した例と同様の条件で研磨処理を施した。   A cold rolled coil having a width of 500 mm and a thickness of 0.3 mm having a SUS304 component was used as a material. Various elongation strains were applied to this coil in the longitudinal direction of rolling with a tension leveler or stretcher. Table 3 shows the conditions for the elongation strain. And the grinding | polishing process was performed on the conditions similar to the example mentioned above.

研磨処理終了後に研磨板を定盤上に載置し、その一端を定盤に固定する。さらに幅5mm、厚さ0.5mmのスペーサを定盤から浮き上がった研磨板のもう一端と定盤との間に挿入できるか否かを調べた。つまり、定盤上において研磨板の端に高さ0.5mm以上の反りが発生しているか否かを調べた。表3では、スペーサが挿入できない場合には0.5mm以上の反りが発生していないと判定して”○”で評価し、スペーサを挿入できた場合には0.5mm以上の反りが発生していると判定して”×”で評価している。   After the polishing process is completed, the polishing plate is placed on the surface plate, and one end thereof is fixed to the surface plate. Further, it was examined whether or not a spacer having a width of 5 mm and a thickness of 0.5 mm could be inserted between the other end of the polishing plate raised from the surface plate and the surface plate. That is, it was examined whether or not a warp having a height of 0.5 mm or more occurred on the edge of the polishing plate on the surface plate. In Table 3, when it is not possible to insert a spacer, it is judged that a warp of 0.5 mm or more has not occurred, and evaluated as “◯”. When a spacer can be inserted, a warp of 0.5 mm or more occurs. It is judged that it is judged as “×”.

表3の結果から、伸びひずみを加えていない素材では0.5mm以上の反りが発生しており、0.1%以上の伸びひずみを加えている素材では0.5mm以上の反りが発生していない。よって、圧延後の素材の長手方向に0.1%以上の伸びひずみを加えておくことにより、反りの発生を抑制することができる。   From the results of Table 3, warping of 0.5 mm or more occurs in the material not applied with elongation strain, and warping of 0.5 mm or more occurs in the material applied with elongation strain of 0.1% or more. Absent. Therefore, warpage can be prevented from occurring by adding an elongation strain of 0.1% or more in the longitudinal direction of the rolled material.

圧延後の材料では、圧延における材料とロールとの摩擦係数の局所的変動などにより、残留応力が不均一に存在している。このような材料を研磨した場合、材料内でつり合っている残留応力のバランスを崩すことになり、研磨処理終了後に素材が大きく反り返る現象が発生することがある。   In the material after rolling, the residual stress exists non-uniformly due to local fluctuations in the friction coefficient between the material and the roll in rolling. When such a material is polished, the balance of the residual stress balanced in the material is lost, and a phenomenon may occur in which the material greatly warps after completion of the polishing process.

このような反りを抑制するためには、材料中に存在する残留応力を均一化してやれば良く、この均一化には母材に圧延方向の伸びひずみを加えることが有効である。但し、この伸びひずみの量が0.1%を下回ると、残留応力の有効な均一性が得られず、研磨処理後の母材に反りが発生する。一方、伸びひずみの量が0.8%を上回ると、伸びひずみを加える工程で材料に伸びひずみ方向と平行な方向のしわが発生して問題である。よって、この伸びひずみの量は0.1%以上、0.8%以下の範囲、特に、0.5%程度が適している。この結果は、純ニッケル板でも同様であった。   In order to suppress such warpage, it is only necessary to make the residual stress existing in the material uniform. To make this uniform, it is effective to add elongation strain in the rolling direction to the base material. However, when the amount of the elongation strain is less than 0.1%, effective uniformity of the residual stress cannot be obtained, and the base material after the polishing treatment is warped. On the other hand, if the amount of elongation strain exceeds 0.8%, the material is wrinkled in the direction parallel to the elongation strain direction in the step of applying the elongation strain, which is a problem. Therefore, the amount of elongation strain is suitably in the range of 0.1% to 0.8%, particularly about 0.5%. This result was the same with a pure nickel plate.

なお、上述した例では純ニッケル、SUS304を材料として使用したが、これ以外に、工業用純チタン、オーステナイト系またはフェライト系のステンレス鋼、36%または42%のニッケルを含有する鉄−ニッケル合金、あるいは銅または銅合金、アルミニウムまたはアルミニウム合金などの材料であっても、本発明の条件を満たしている場合には、純ニッケルの場合と同様の効果を奏することは勿論である。   In the above example, pure nickel and SUS304 were used as materials, but in addition to this, pure titanium for industrial use, austenitic or ferritic stainless steel, iron-nickel alloy containing 36% or 42% nickel, Or even if it is materials, such as copper or copper alloy, aluminum, or an aluminum alloy, as long as the conditions of this invention are satisfy | filled, it is natural that there exists an effect similar to the case of pure nickel.

Figure 2006249536
Figure 2006249536

Figure 2006249536
Figure 2006249536

Figure 2006249536
Figure 2006249536



Claims (4)

圧延によって製造された、表面研磨によって鏡面が形成される鏡面研磨用の金属素材において、素材中の非金属介在物の存在割合が0.05%以下であることを特徴とする鏡面研磨用の金属素材。   A mirror-polished metal produced by rolling, wherein a mirror-polished metal material having a mirror surface formed by surface polishing has a non-metallic inclusion content of 0.05% or less in the material. Material. 母材の硬度がビッカース硬さで100以上であることを特徴とする請求項1記載の鏡面研磨用の金属素材。   The metal material for mirror polishing according to claim 1, wherein the hardness of the base material is 100 or more in terms of Vickers hardness. 表面研磨によって鏡面が形成される鏡面研磨用の金属素材において、0.1%以上、0.8%以下の条件で圧延長手方向に伸びひずみが加えられていることを特徴とする鏡面研磨用の金属素材。   A mirror-polishing metal material in which a mirror surface is formed by surface polishing, wherein elongation strain is applied in the rolling longitudinal direction under conditions of 0.1% or more and 0.8% or less. Metal material. 表面に金属がめっきされていることを特徴とする請求項1乃至3のいずれかに記載の鏡面研磨用の金属素材。   The metal material for mirror polishing according to any one of claims 1 to 3, wherein the surface is plated with a metal.
JP2005069852A 2005-03-11 2005-03-11 Metal material to be mirror polished Pending JP2006249536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069852A JP2006249536A (en) 2005-03-11 2005-03-11 Metal material to be mirror polished

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069852A JP2006249536A (en) 2005-03-11 2005-03-11 Metal material to be mirror polished

Publications (1)

Publication Number Publication Date
JP2006249536A true JP2006249536A (en) 2006-09-21

Family

ID=37090331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069852A Pending JP2006249536A (en) 2005-03-11 2005-03-11 Metal material to be mirror polished

Country Status (1)

Country Link
JP (1) JP2006249536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141805A (en) 2014-04-04 2016-12-09 가부시키가이샤 후지미인코퍼레이티드 Polishing composition for hard materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107335A1 (en) * 2003-05-29 2004-12-09 Sumitomo Metal Industries, Ltd. Stamper substrate and process for producing the same
JP2005220439A (en) * 2004-01-06 2005-08-18 Hitachi Metals Ltd Die with superior formability into mirror plane, and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107335A1 (en) * 2003-05-29 2004-12-09 Sumitomo Metal Industries, Ltd. Stamper substrate and process for producing the same
JP2005220439A (en) * 2004-01-06 2005-08-18 Hitachi Metals Ltd Die with superior formability into mirror plane, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141805A (en) 2014-04-04 2016-12-09 가부시키가이샤 후지미인코퍼레이티드 Polishing composition for hard materials

Similar Documents

Publication Publication Date Title
JP5294072B2 (en) Etching material manufacturing method and etching material
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP6428969B1 (en) Steel sheet and manufacturing method thereof
JP5815153B1 (en) Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP5480599B2 (en) Aluminum alloy plate for magnetic disk and manufacturing method thereof
TWI639714B (en) Steel plate
JP6057501B2 (en) Titanium plate for barrel polishing and manufacturing method thereof
KR101786235B1 (en) Manufacturing method of Fe-Ni based alloy strip
JP2017179590A (en) Aluminum alloy blank for magnetic disc and aluminum alloy substrate for magnetic disc
Shi et al. Surface‐Roughness‐Induced Plasticity in a Biodegradable Zn Alloy
US7641169B2 (en) Substrate for a stamper
JP2006249536A (en) Metal material to be mirror polished
JP4267562B2 (en) Manufacturing method of high grade non-oriented electrical steel sheet
JP3875175B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
CN115362500B (en) Aluminum alloy substrate for magnetic disk and magnetic disk using the same
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
JP4530559B2 (en) Method for producing austenitic stainless steel sheet with excellent surface gloss
JPH06228640A (en) Production of ferritic stainless steel sheet excellent in roping resistance
JP2011179100A (en) Aluminum alloy blank for magnetic disk having excellent machinability and method for producing the same
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same
JP2004332068A (en) Clad aluminum alloy substrate for magnetic disk, and its production method
JP2006231386A (en) Method for producing aluminum sheet and continuous casting-rolling apparatus for aluminum sheet
JP2023046294A (en) Metal band material manufacturing method and metal band material
JPH089746B2 (en) Magnetic disk substrate
JP3830240B2 (en) Aluminum alloy substrate for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Effective date: 20081027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713