JP4207165B2 - High hardness stainless steel excellent in mirror finish and method for producing the same - Google Patents

High hardness stainless steel excellent in mirror finish and method for producing the same Download PDF

Info

Publication number
JP4207165B2
JP4207165B2 JP2006036573A JP2006036573A JP4207165B2 JP 4207165 B2 JP4207165 B2 JP 4207165B2 JP 2006036573 A JP2006036573 A JP 2006036573A JP 2006036573 A JP2006036573 A JP 2006036573A JP 4207165 B2 JP4207165 B2 JP 4207165B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
hardness
mirror finish
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006036573A
Other languages
Japanese (ja)
Other versions
JP2007146273A (en
Inventor
義之 井上
文夫 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006036573A priority Critical patent/JP4207165B2/en
Publication of JP2007146273A publication Critical patent/JP2007146273A/en
Application granted granted Critical
Publication of JP4207165B2 publication Critical patent/JP4207165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、耐食性に優れたステンレス鋼の鏡面性、及び硬さを向上させたことで、特に光ディスクや光学レンズ等の、極めて高い表面精度を要求されるプラスチックやガラス部品の超鏡面成形に使用する耐腐食摩耗金型等に最適なステンレス鋼と、その製造方法に関するものである。   The present invention improves the specularity and hardness of stainless steel with excellent corrosion resistance, and is used for ultra-mirror surface molding of plastics and glass parts that require extremely high surface accuracy, such as optical disks and optical lenses. The present invention relates to a stainless steel that is most suitable for a corrosion-resistant wear mold and the like, and a manufacturing method thereof.

従来、CD、DVDメディア等の光ディスク樹脂成形の分野、光学レンズ用樹脂又はガラス成形の分野、液晶導光板等の光学部品用樹脂成形の分野には、JIS鋼種のSUS420J2又はそれに類似するステンレス鋼を切削加工及び研削加工した金型が用いられていた。プラスチックの光学部品など極めて精度の要求される場合には、上記SUS420J2相当鋼にNi−Pなどのアモルファスめっきを行ったのち、ダイヤモンドバイトによる切削加工を行って成形面に仕上げる場合もあった。不純物の少ない銅合金を同様に切削加工して仕上げる場合もあった。   Conventionally, in the field of optical disk resin molding such as CD and DVD media, the field of resin or glass molding for optical lenses, and the field of resin molding for optical components such as liquid crystal light guide plates, SUS420J2 of JIS steel grade or similar stainless steel is used. Cutting and grinding molds were used. In cases where extremely high accuracy is required, such as plastic optical parts, after the amorphous steel such as Ni-P is applied to the SUS420J2-equivalent steel, the molded surface may be finished by cutting with a diamond tool. In some cases, copper alloys with few impurities were similarly cut and finished.

一方、耐食性と硬度を両立させる材料として、SKD11系やSUS440C系がある。そして、例えばCが0.08質量%(以下、%と示す)以下でSiを2.0〜5.0%、Crを6.0〜10.0%含む析出硬化系ステンレスが提案されている。そして、このステンレス鋼に、さらに適量のMn,Ni,Mo,Cu,Nb,Ta,Ti,Coを添加して、高硬度の達成を目的とした改良鋼が提案されている(特許文献1)。
特開2001−107194号公報
On the other hand, there are SKD11 type and SUS440C type as materials that achieve both corrosion resistance and hardness. For example, a precipitation hardening stainless steel having a C content of 0.08% by mass or less (hereinafter referred to as%) and containing 2.0% to 5.0% Si and 6.0% to 10.0% Cr has been proposed. . An improved steel aiming at achieving high hardness by adding an appropriate amount of Mn, Ni, Mo, Cu, Nb, Ta, Ti, Co to this stainless steel has been proposed (Patent Document 1). .
JP 2001-107194 A

上述した光ディスクや光学部品成形用の金型のうち、SUS420J2からなるものは耐食性と高硬度の点である程度のレベルが得られる点では有利であるものの、達成される硬度はせいぜい55HRCが限界であり、使用中の成形ショットを重ねた際の耐摩耗性が不十分であるという問題があった。Ni−Pめっきや銅合金を適用したものでは、更に硬さが低く、長期安定成形に不利となる。   Among the molds for molding optical disks and optical components described above, those made of SUS420J2 are advantageous in that a certain level is obtained in terms of corrosion resistance and high hardness, but the achieved hardness is limited to 55 HRC at most. There is a problem that the wear resistance is insufficient when the molding shots in use are stacked. In the case of applying Ni-P plating or a copper alloy, the hardness is further low, which is disadvantageous for long-term stable forming.

また、SUS420J2レベルの耐食性は、水冷を要する光ディスク成形用や、使用中に腐食性ガスを発生するようなプラスチック成形用といった金型の場合だと、長期量産する為に十分とはいえない問題もあった。更に、SUS420J2は組織中にミクロンオーダーの大きなクロム炭化物析出を伴う為、成形面には厳密な平滑鏡面が得られにくい問題点もあった。この問題は、サブナノオーダーの平均面粗さを目指す次世代高密度光ディスクを実用化する上で大きな問題となる。   In addition, SUS420J2 level corrosion resistance is not sufficient for long-term mass production in the case of molds for optical disk molding that requires water cooling and plastic molding that generates corrosive gas during use. there were. Furthermore, since SUS420J2 is accompanied by large chromium carbide precipitates on the order of microns in the structure, there is a problem that it is difficult to obtain a strict smooth mirror surface on the molding surface. This problem becomes a big problem when putting the next generation high density optical disk aiming at the average surface roughness of the sub-nano order into practical use.

一方、高硬度(58HRC以上)と耐食性を求められる用途に従来使用されているSKD11系やSUS440C系の溶製鋼、または粉末鋼においても、水冷を要する光ディスク成形用や、使用中に腐食性ガスを発生するようなプラスチック成形用といった金型において、長期量産する為に耐食性は十分ではなかった。また、これらの材料は硬質の合金炭化物を含んでいるため、超鏡面仕上性となると、改良の余地がある。   On the other hand, SKD11-based and SUS440C-based molten steels or powdered steels that are conventionally used for applications that require high hardness (58HRC or higher) and corrosion resistance are also used for optical disk molding that requires water cooling, and corrosive gas is used during use. In molds for plastic molding that occur, corrosion resistance is not sufficient for long-term mass production. In addition, since these materials contain hard alloy carbides, there is room for improvement when the super mirror finish is achieved.

そして、特許文献1に記載の改良鋼は、高硬度と高耐食性の両立という点で従来鋼より優れた材料ではあるが、その達成される最高硬さは、径20mmの丸棒という小さな鋼片を用いての、しかも固溶化処理時の冷却条件には高硬度化に有利な水冷(急冷)を採用してでさえ、その後の時効処理で58HRCの辺りが限界である。実際に使用される光ディスクや光学部品成形用の金型となれば、このような小さな鋼片では対応が難しく、しかも固溶化処理時の冷却条件も熱処理歪を抑制するための空冷等の徐冷が望ましい。特許文献1の改良鋼の場合、実際に想定される上記の実金型条件を適用すれば、それこそ達成硬さは58HRCにも満たない。   And although the improved steel described in Patent Document 1 is a material superior to the conventional steel in terms of both high hardness and high corrosion resistance, the maximum hardness achieved is a small steel piece called a round bar having a diameter of 20 mm. Even when water cooling (rapid cooling) advantageous for increasing the hardness is adopted as the cooling condition at the time of the solution treatment, the limit is around 58HRC in the subsequent aging treatment. If it is an optical disk or mold for molding optical components that is actually used, it is difficult to handle with such a small steel piece, and the cooling conditions during the solution treatment are also slow cooling such as air cooling to suppress heat treatment strain. Is desirable. In the case of the improved steel of Patent Document 1, if the above-described actual mold conditions are applied, the achieved hardness is less than 58 HRC.

加えて、特許文献1に記載の改良鋼が達成する鏡面性は、従来鋼よりは優れてはいるものの、組織中に炭化物より軟らかいラーベス相が多く析出している。高硬度の組織を得ることは、優れた鏡面性の達成に重要な要件であることから、光ディスクや光学部品成形用の超鏡面仕上性が要求される分野において、特許文献1の改良鋼には更なる改良の余地がある。   In addition, although the specularity achieved by the improved steel described in Patent Document 1 is superior to that of conventional steel, many Laves phases that are softer than carbides are precipitated in the structure. Obtaining a structure with high hardness is an important requirement for achieving excellent specularity. Therefore, in the field where super-mirror finish for optical disk and optical component molding is required, the improved steel of Patent Document 1 There is room for further improvement.

本発明の目的は、上記の課題を解決した、特には極めて高い表面精度が要求されるプラスチックまたはガラス部品を成形する特殊な金型等の、工具や部品分野に最適な、鏡面仕上性に優れた高硬度ステンレス鋼およびその製造方法を提供することである。   The object of the present invention is to solve the above-mentioned problems, and particularly excellent in mirror finish, which is optimal for the field of tools and parts such as special molds for molding plastic or glass parts that require extremely high surface accuracy. Another object of the present invention is to provide a high hardness stainless steel and a method for producing the same.

本発明者は、上記の課題を検討した結果、耐食性と高硬度、そして他の金型用途には類のない極めて平滑鏡面の成形面こそが求められる、上記のような特殊な金型材料にも適用するためにこそ、Mo量の規制、及び最適量のSi量が添加されたステンレス鋼が最適であることを突きとめた。そして、固溶化処理の冷却に空冷といった徐冷条件を適用しても59HRC以上、それこそ水冷といった急冷条件であれば61HRCもの高硬さが達成できる成分組成を見いだすと共に、これらのステンレス鋼こそは、消耗電極式再溶解法により得ることが、本発明の効果を発揮するために最適であることも見いだし、本発明に到達した。   As a result of studying the above-mentioned problems, the present inventor has developed a special mold material as described above, which requires corrosion resistance, high hardness, and a molding surface having a very smooth mirror surface that is unmatched in other mold applications. Therefore, it was found that the stainless steel added with the regulation of the amount of Mo and the optimum amount of Si was the most suitable for the application. And even when applying slow cooling conditions such as air cooling to the cooling of the solution treatment, we found a component composition that can achieve a hardness as high as 61 HRC if it is a quenching condition of 59 HRC or higher, which is water cooling. The inventors have found that obtaining by the consumable electrode type remelting method is optimal for exhibiting the effects of the present invention, and have reached the present invention.

すなわち本発明は、質量%でC:0.01%以下、Si:1.5〜3.0%未満、Mn:3.0%以下、Cr:6.0〜12.0%、Ni:4.0〜10.0%、Co:10.0%以下、Cu:6.0%以下、Ti:0.5〜3.0%、Al:0.07〜2.0%を含有し、Moは1.0%以下に、Nは0.01%以下に規制され、残部はFeおよび不可避的不純物からなることを特徴とする鏡面仕上性に優れた高硬度ステンレス鋼である。好ましくはSi:2.0〜3.0%未満あるいはさらにMoは0.5%以下に規制される。1.0%以下のNbあるいはさらに1.0%以下のTaまたは、0.1%以下のZrを含有してもよい。更に好ましくは、硬さが59HRC以上のステンレス鋼である。 That is, in the present invention, by mass%, C: 0.01 % or less, Si: 1.5 to less than 3.0 %, Mn: 3.0% or less, Cr: 6.0 to 12.0%, Ni: 4 0.0-10.0%, Co: 10.0% or less, Cu: 6.0% or less, Ti: 0.5-3.0 %, Al: 0.07-2.0 % , Mo Is a high-hardness stainless steel excellent in mirror finish, characterized in that N is restricted to 1.0% or less, N is 0.01% or less, and the balance is made of Fe and inevitable impurities. Preferably, Si: 2.0 to less than 3.0% or Mo is further restricted to 0.5% or less. You may contain 1.0% or less Nb or 1.0% or less Ta, or 0.1% or less Zr. More preferably, it is a stainless steel having a hardness of 59 HRC or more.

そして本発明は、消耗電極式再溶解法を行うことにより得た、質量%でC:0.01%以下、Si:1.5〜3.0%未満、Mn:3.0%以下、Cr:6.0〜12.0%、Ni:4.0〜10.0%、Co:10.0%以下、Cu:6.0%以下、Ti:0.5〜3.0%、Al:0.07〜2.0%を含有し、Moは1.0%以下に、Nは0.01%以下に規制され、残部はFeおよび不可避的不純物のステンレス鋼を、59HRC以上の硬さに調質することを特徴とする鏡面仕上性に優れた高硬度ステンレス鋼の製造方法である。ステンレス鋼は1.0%以下のNbあるいはさらに1.0%以下のTaまたは、0.1%以下のZrを含有してもよい。上記の調質に好ましくは、1000〜1150℃の固溶化処理を行い、400〜550℃の時効処理を行うものである。 And this invention is obtained by performing a consumable electrode type remelting method, C: 0.01 % or less, Si: 1.5 to less than 3.0 %, Mn: 3.0% or less, Cr, : 6.0 to 12.0%, Ni: 4.0 to 10.0%, Co: 10.0% or less, Cu: 6.0% or less, Ti: 0.5 to 3.0%, Al: Containing 0.07 to 2.0 % , Mo is controlled to 1.0% or less, N is controlled to 0.01% or less, and the balance is made of Fe and unavoidable impurity stainless steel with a hardness of 59 HRC or more. It is a method for producing a high-hardness stainless steel excellent in mirror finish, characterized by tempering. The stainless steel may contain 1.0% or less Nb, or 1.0% or less Ta, or 0.1% or less Zr. Preferably, the tempering is performed at 1000 to 1150 ° C. and aging at 400 to 550 ° C.

本発明によれば、耐食性に優れる高硬度ステンレス鋼の超鏡面仕上性と耐摩耗性を飛躍的に改善することができることから、特に金型に適用することで、光ディスクや光学レンズ等の極めて表面精度を要求されるプラスチックまたはガラス部品の長期安定成形の実用化にとって欠くことのできない技術となる。   According to the present invention, it is possible to drastically improve the super-mirror finish and wear resistance of high hardness stainless steel having excellent corrosion resistance. This technology is indispensable for the practical application of long-term stable molding of plastic or glass parts that require precision.

上述したように、本発明の重要な特徴は、優れた耐食性に加えて、最適量のSi量を添加したステンレス鋼とし、更には他の構成元素の種類および最適量、特にはMoの作用効果を見直したステンレス鋼とすることで、高硬度と超鏡面仕上性、そして耐摩耗性をも大きく改善できたところ、更には、このステンレス鋼に最適な製造方法をも見いだしたところにある。   As described above, an important feature of the present invention is stainless steel to which an optimum amount of Si is added in addition to excellent corrosion resistance, and further, the type and optimum amount of other constituent elements, particularly the effect of Mo. As a result of revising the stainless steel, high hardness, super mirror finish, and wear resistance have been greatly improved, and an optimum manufacturing method for this stainless steel has also been found.

まず、本発明の成分組成について説明する。
ステンレス鋼の高硬度化手法としては、その組織中への硬質炭化物の析出作用を採用すると、超鏡面性が得られ難いことは上述の通りである。そこで、本発明のステンレス鋼では、その組織中には炭化物よりは適度に軟らかい金属間化合物を微細に析出させ、炭化物は低減かつ微細にすることにより、超鏡面性及び高硬度を得るものである。このためにステンレス鋼中のC量の調整は重要であり、Cを0.01%以下に管理することによって鋼組織中の硬質炭化物を低減しかつ、析出サイズをサブミクロンオーダーに抑え、超鏡面仕上性を実現することができる。好ましくは0.01%未満である。
First, the component composition of the present invention will be described.
As described above, as a technique for increasing the hardness of stainless steel, it is difficult to obtain super-specularity when a precipitation action of hard carbide in the structure is employed. Therefore, in the stainless steel of the present invention, an intermetallic compound that is moderately softer than carbide is finely precipitated in the structure, and the carbide is reduced and refined to obtain ultra-specularity and high hardness. . For this reason, it is important to adjust the amount of C in stainless steel. By controlling C to 0.01 % or less, hard carbides in the steel structure are reduced, and the precipitation size is suppressed to the submicron order. Finishability can be realized . Good Mashiku is less than 0.01%.

Siは、本発明のステンレス鋼に強度を与える主要な元素である。そして、本発明の想定する金型用途にも適用するためには重要な、鏡面仕上性を実現するための根幹元素である。即ち、従来の炭化物による析出強化機構に頼らずに、Cr、Ni、Co、Tiと共にG相を形成するという析出強化機構に寄与することで、優れた鏡面仕上性を得るものである。また、マトリックスに固溶したSiは耐食性(特に耐硫酸)を高める効果もある。1.5%未満ではその効果が不十分であるが、3.0%以上であると数十ミクロンオーダーの大きなラーベス相が多く析出して、それ自体が鏡面仕上性を劣化させると共に、Siや他の強化元素もラーベス相にとられるため、過剰に添加しても効果はない。よって、本発明では1.5〜3.0%未満と規定した。好ましくは2.0〜3.0%未満である。 Si is a main element that imparts strength to the stainless steel of the present invention. And it is an essential element for realizing mirror finish, which is important for application to the mold application assumed by the present invention. That is, excellent mirror finish is obtained by contributing to the precipitation strengthening mechanism of forming a G phase together with Cr, Ni, Co and Ti without relying on the conventional precipitation strengthening mechanism by carbide. Si dissolved in the matrix also has an effect of improving corrosion resistance (particularly sulfuric acid resistance). If it is less than 1.5%, the effect is insufficient, but if it is 3.0 % or more, a large Laves phase on the order of several tens of microns is precipitated, which itself deteriorates the mirror finish, and Si and Since other strengthening elements are also taken into the Laves phase, adding them in excess has no effect. Therefore, in the present invention, it is defined as 1.5 to less than 3.0 %. Preferably it is 2.0 to less than 3.0%.

Mnは、鋼の脱酸剤として働き、0.05%以上の含有が好ましいが、多すぎると組織中のオーステナイト量が増加しすぎて、所定の硬度が得られにくくなる。よって、Mnは3.0%以下とする。好ましくは0.8%以下である。   Mn acts as a deoxidizer for steel and is preferably contained in an amount of 0.05% or more. However, if it is too much, the amount of austenite in the structure increases excessively, making it difficult to obtain a predetermined hardness. Therefore, Mn is made 3.0% or less. Preferably it is 0.8% or less.

Crは、ステンレス鋼の耐食性を確保するための不可欠な成分であって、本発明の金型用途をも考慮すれば、6.0%未満では耐食性が不十分である。また、Si、Ni、Co、Tiと共にG相を形成し、析出強化に寄与する。しかし、12.0%を超えると所定の硬度、望ましくは59HRC以上の硬度が得られにくくなるため為、Crは6.0〜12.0%とした。   Cr is an indispensable component for ensuring the corrosion resistance of stainless steel, and considering the use of the mold of the present invention, the corrosion resistance is insufficient at less than 6.0%. Moreover, G phase is formed with Si, Ni, Co, and Ti, and it contributes to precipitation strengthening. However, if it exceeds 12.0%, it becomes difficult to obtain a predetermined hardness, desirably 59 HRC or higher. Therefore, Cr is set to 6.0 to 12.0%.

Niは、鋼に耐食性を付与するとともに、Crとのバランスで鋼の相変態を望ましい形態に、すなわち固溶化熱処理冷却時にオーステナイト単相から低炭素マルテンサイト単相へと変態させる作用を有する元素である。そして、Si、Cr、Co、Tiと共にG相を形成し、析出強化に寄与する。しかし、多過ぎるとオーステナイト量が増大しすぎて、所定の硬度が得られにくくなる。よって、本発明のNiは、4.0〜10.0%とする。   Ni is an element that imparts corrosion resistance to steel and has the effect of transforming the phase transformation of the steel into a desirable form in balance with Cr, that is, from austenite single phase to low carbon martensite single phase during solution heat treatment cooling. is there. And G phase is formed with Si, Cr, Co, and Ti, and it contributes to precipitation strengthening. However, if the amount is too large, the amount of austenite increases too much, and it becomes difficult to obtain a predetermined hardness. Therefore, Ni of the present invention is 4.0 to 10.0%.

Coは、耐食性の改善に加えて、Si、Cr、Ni、Tiと共にG相を形成し、析出強化に寄与する重要な元素である。しかし、過多の含有は機械加工性を損なうので、10.0%以下とする。   Co is an important element that contributes to precipitation strengthening by forming a G phase together with Si, Cr, Ni, and Ti in addition to improving corrosion resistance. However, since excessive content impairs machinability, it is made 10.0% or less.

Cuは、固溶化処理後の時効の際には、析出硬化に寄与すると共に、耐食性も向上させる。しかしながら、多くの含有は熱間加工性を損なうので、規制管理の重要な元素でもある。本発明では6.0%以下とするが、実金型に要する素材寸法に対応し得るためにも、望ましくは2.0%以下である。   Cu contributes to precipitation hardening and improves corrosion resistance during aging after the solution treatment. However, since a large amount impairs hot workability, it is an important element for regulatory management. Although it is 6.0% or less in the present invention, it is preferably 2.0% or less in order to cope with the material size required for the actual mold.

Tiは、固溶化および時効処理による硬さ調質の際の、時効硬化に寄与する主要な元素の一つである。即ち、Si、Cr、Ni、Coと共にG相を形成し、析出強化に寄与する重要な元素である。従って、0.5%以上の含有とする。しかし、多く含有すると靭性を低下させ、更に、数十ミクロンオーダーの大きなラーベス相が多くなり、それ自体が鏡面仕上性を劣化させると共に、Tiや他の強化元素もラーベス相にとられるため、過剰に添加しても効果はない。さらに、過剰のTiは炭化物や窒化物等を形成し、鏡面仕上性に悪影響を及ぼす。よって、本発明では0.5〜3.0%とする。望ましくは1.0〜2.5%である。   Ti is one of the main elements that contribute to age hardening during hardness tempering by solid solution and aging treatment. That is, it is an important element that forms a G phase together with Si, Cr, Ni, and Co and contributes to precipitation strengthening. Therefore, the content is 0.5% or more. However, if it is contained in a large amount, the toughness is lowered, and furthermore, a large Laves phase on the order of several tens of microns is increased, which itself deteriorates the mirror finish and Ti and other strengthening elements are also taken into the Laves phase. There is no effect even if added to. Furthermore, excess Ti forms carbides, nitrides, and the like, which adversely affects mirror finish. Therefore, it is 0.5 to 3.0% in the present invention. Desirably, it is 1.0 to 2.5%.

Alは、鋼の脱酸剤として働く元素である。すなわち、本発明が採用する強化機構は硬質炭化物の導入に頼るものではなく、逆に炭化物は鏡面仕上性に悪影響を及ぼすことから低減する必要がある為、Cは0.01%以下、望ましくは0.01%未満にまで規制する。従って、Cによる脱酸が行えないため、Alによる脱酸は有効である。しかし、多くのAl含有は靭性を低下させるので、本発明のAlは0.07〜2.0%とする。望ましくは0.07〜0.5%である。 Al is an element that acts as a deoxidizer for steel. Namely, strengthening mechanism to which the present invention is adopted is not rely on the introduction of hard carbide, since the carbide conversely it is necessary to reduce the possible adverse effects on the mirror surface finish properties, C 0.01% below, preferably Restrict to less than 0.01%. Accordingly, deoxidation with C cannot be performed, so deoxidation with Al is effective. However, since much Al content reduces toughness, Al of the present invention is made 0.07 to 2.0 % . Desirably, it is 0.07 to 0.5 % .

加えて、Alは、一方では、AlやAl/Mg複合酸化物の形成により鋼としての鏡面仕上性を劣化させることが懸念されるので、例えば脱酸後には、溶湯からは極力除去することが望ましい。または、消耗電極式再溶解法を積極的に導入することで、Al脱酸自体を省略することもできる。 In addition, Al, on the other hand, is feared to deteriorate the mirror finish of steel as a result of the formation of Al 2 O 3 and Al / Mg composite oxides. For example, after deoxidation, Al is removed from the molten metal as much as possible. It is desirable to do. Alternatively, Al deoxidation itself can be omitted by positively introducing a consumable electrode type remelting method.

Moは、耐食性を向上させると同時に、固溶化および時効処理による硬さ調質の際の時効硬化に寄与するものとして、従来添加のされてきた元素である。しかし、Moを添加するに伴い、数十ミクロンオーダーの大きなラーベス相が多くなり、これは鏡面仕上性を劣化させる。そして、Moに加え、他の強化元素もラーベス相にとられることから、これは高硬度化に悪影響を及ぼすこととなる。よって、本発明では、Moは1.0%以下に規制することこそが重要であって、望ましくは0.5%以下、さらに望ましくは0.4%未満に規制する。   Mo is an element that has been conventionally added as an element that improves corrosion resistance and contributes to age hardening during solidification and tempering by aging treatment. However, as Mo is added, a large Laves phase on the order of several tens of microns increases, which degrades the mirror finish. And, in addition to Mo, other strengthening elements are also taken into the Laves phase, which adversely affects the increase in hardness. Therefore, in the present invention, it is important to limit Mo to 1.0% or less, preferably 0.5% or less, and more preferably less than 0.4%.

Nは、Ti等と窒化物、炭窒化物を形成し、鏡面仕上性に悪影響を及ぼすことから、0.01%以下に規制する必要がある。望ましくは0.005%以下、さらに望ましくは0.003%以下に規制する。   N forms nitrides and carbonitrides with Ti and the like, and adversely affects the mirror finish. Therefore, N must be regulated to 0.01% or less. Desirably, it is regulated to 0.005% or less, and more desirably to 0.003% or less.

そして、本発明の成分組成において特に重要となるのが、含有するSiは低領域で管理すると共に、Moは規制するという、SiとMoの複合管理である。つまり、Moの作用効果を見直して、Moは1.0%以下に規制すること、及び1.5〜3.0%未満という最適量のSi量領域を突きとめることにより、大きなラーベス相の析出を抑えることができる。そして、固溶化処理の冷却条件に水冷や油冷を適用しなくとも、空冷条件で十分な使用硬さ、具体的には59HRC以上という高硬さを達成でき、問題の熱処理歪も小さくすることができる。そして、当然に水冷や油冷を適用してもよく、この場合であれば、61HRCにも達する、更なる高硬さを達成できる。 What is particularly important in the component composition of the present invention is the combined management of Si and Mo, in which the contained Si is managed in a low region and Mo is regulated. In other words, by reviewing the effect of Mo, limiting Mo to 1.0% or less, and finding the optimum amount of Si amount range of 1.5 to less than 3.0 %, precipitation of a large Laves phase Can be suppressed. And even if water cooling or oil cooling is not applied to the cooling conditions of the solution treatment, it is possible to achieve sufficient use hardness under the air cooling conditions, specifically high hardness of 59 HRC or more, and to reduce the heat treatment distortion in question. Can do. Naturally, water cooling or oil cooling may be applied. In this case, even higher hardness reaching 61 HRC can be achieved.

また、本発明の上記ステンレス鋼は、必要に応じて、Nbおよび/またはTaを含んでもよい。Nbは、ステンレス鋼の時効硬さを上昇させる効果があるが、過多の含有だと数十ミクロンオーダーの大きなラーベス相が多くなり、やはり鏡面仕上性が劣化し、Nbや他の強化元素をとられるため、過剰に添加しても効果はない。よって、添加あるいは含有するとしても1.0%以下が望ましい。更に望ましくは0.5%以下である。なお、上記の効果を得るにあたっては、0.1%以上の含有が望ましい。   The stainless steel of the present invention may contain Nb and / or Ta as necessary. Nb has the effect of increasing the aging hardness of stainless steel, but if it is contained excessively, a large Laves phase on the order of several tens of microns will increase, and the mirror finish will deteriorate, and Nb and other strengthening elements will be removed. Therefore, even if added excessively, there is no effect. Therefore, if added or contained, 1.0% or less is desirable. More desirably, it is 0.5% or less. In addition, in order to acquire said effect, containing 0.1% or more is desirable.

Taも、Nb同様に、ステンレス鋼の時効硬さを上昇させる効果があるが、やはり過多の含有は鏡面仕上性に悪影響を生じる。よって、添加あるいは含有するとしても1.0%以下が望ましい。更に望ましくは0.5%以下である。なお、上記の効果を得るにあたっては、0.1%以上の含有が望ましい。   Ta, like Nb, has the effect of increasing the aging hardness of stainless steel, but too much content also adversely affects the mirror finish. Therefore, if added or contained, 1.0% or less is desirable. More desirably, it is 0.5% or less. In addition, in order to acquire said effect, containing 0.1% or more is desirable.

あるいはさらに、本発明のステンレス鋼は、必要に応じて、Zrを含んでもよい。Zrは、鏡面に仕上げた時にピンホールの原因となるAlやAl/Mg複合酸化物をZrOに置換することによってピンホールを発生しないようにする効果があるが、過多の含有の場合、数十ミクロンオーダーの大きなラーベス相やZr系介在物が多くなり、やはり鏡面仕上性が劣化する。よって、添加あるいは含有するとしても0.1%以下が望ましい。更に望ましくは0.08%以下であるが、上記の効果を得るにあたっては、0.01%以上の含有が望ましい。 Alternatively, the stainless steel of the present invention may contain Zr as necessary. Zr has an effect to prevent the occurrence of pinholes by replacing causing pinholes as Al 2 O 3 and Al / Mg composite oxide when the mirror-finished to ZrO 2, excessive content of In this case, a large Laves phase on the order of several tens of microns and Zr inclusions increase, and the mirror finish is also deteriorated. Therefore, even if added or contained, 0.1% or less is desirable. The content is more preferably 0.08% or less, but in order to obtain the above effect, the content is preferably 0.01% or more.

更に上述したように、本発明のステンレス鋼は、その硬さが59HRC以上のものを採用することが望ましく、そしてこれを達成しているところにも重要な特徴がある。59HRC以上の硬度は鏡面磨きの粗研磨時にキズをつけ難くし、鏡面仕上げを容易にすると同時に耐摩耗性をも改善できるものである。そして、このような高硬度を達成するためにも、上記のステンレス鋼の成分組成は重要な要素である。よって、本発明のステンレス鋼をプラスチックやガラス部品等の、極めて高い表面精度が要求される製品の成形用金型に適用すれば、該硬さに調質し、切削加工又は研削・研磨加工やラッピング加工等の機械加工を施した成形面は、優れた超超鏡面仕上性と成形時の耐摩耗性を有する。   Further, as described above, it is desirable that the stainless steel of the present invention has a hardness of 59 HRC or more, and there is an important feature in that this is achieved. A hardness of 59 HRC or higher makes it difficult to scratch during rough polishing of mirror polishing, and facilitates mirror finishing and at the same time improves wear resistance. In order to achieve such high hardness, the component composition of the stainless steel is an important factor. Therefore, if the stainless steel of the present invention is applied to a molding die for products that require extremely high surface accuracy, such as plastics and glass parts, the hardness is tempered, and cutting or grinding / polishing is performed. Molded surfaces that have been machined such as lapping have excellent super-mirror finish and wear resistance during molding.

そして、本発明のステンレス鋼は、それを構成する上記の成分組成に加えて、例えばそれが消耗電極式再溶解法により得られたものであることが望ましい。すなわち、真空アーク再溶解法(VAR)やエレクトロスラグ再溶解法(ESR)といった消耗電極式再溶解法を行うことにより得られた本発明のステンレス鋼は、それを機械加工する際には、鏡面仕上げ時のピンホール発生要因となるアルミナ等の非金属介在物が低減されており、より安定した超鏡面仕上性を実現できる。消耗電極式再溶解法は1回又は複数回行ってもよく、それにより得られた鋼塊には鍛造や圧延等による熱間加工を行ってもよい。   And in addition to said component composition which comprises the stainless steel of this invention, it is desirable for it to be obtained by the consumable electrode type remelting method, for example. That is, the stainless steel of the present invention obtained by performing a consumable electrode type remelting method such as a vacuum arc remelting method (VAR) or an electroslag remelting method (ESR) is mirror-finished. Non-metallic inclusions such as alumina that cause pinholes during finishing are reduced, and more stable ultra-mirror finish can be realized. The consumable electrode type remelting method may be performed once or a plurality of times, and the steel ingot obtained thereby may be hot-worked by forging or rolling.

上記で得られた、本発明の成分組成の鋼塊を、鏡面仕上性に優れた59HRC以上の高硬度のステンレス鋼に調質するためには、1000〜1150℃の固溶化処理を行った後、400〜550℃の時効処理を行うことが望ましい。1000℃未満の固溶化処理ではラーベス相が固溶せず、鏡面仕上性、及び高硬度化に悪影響を及ぼし、1150℃を超える固溶化処理では、結晶粒が粗大化し、靭性が低下する。また、400℃未満の時効処理では、析出硬化相が析出しない為、59HRC以上の硬さが得られ難く、550℃を超える時効処理では、過時効となり、やはり59HRC以上の硬さが得られ難い。なお、本発明の調質においては、その固溶化処理後、サブゼロ処理を行ってから時効処理を行ってもよい。   In order to refining the steel ingot of the composition of the present invention obtained above to a high hardness stainless steel of 59HRC or higher with excellent mirror finish, after performing a solution treatment at 1000 to 1150 ° C. It is desirable to perform an aging treatment at 400 to 550 ° C. In the solution treatment at less than 1000 ° C., the Laves phase does not dissolve, which adversely affects the mirror finish and the increase in hardness. In the solution treatment at more than 1150 ° C., the crystal grains become coarse and the toughness decreases. In addition, since a precipitation hardening phase does not precipitate in an aging treatment of less than 400 ° C., it is difficult to obtain a hardness of 59 HRC or more. . In the tempering of the present invention, after the solution treatment, the aging treatment may be performed after the sub-zero treatment.

本発明のステンレス鋼の効果を示すにあたり、本実施例1では、固溶化処理の冷却条件に従来適用されてきた水冷を適用した場合の評価をする。まず真空誘導炉溶解(試料No.4は真空アーク再溶解)によって得た鋼塊を熱間加工して、表1に示す化学成分(mass%)の、残部Feおよび不可避的不純物でなる試料(寸法は15×15×30mm)を準備した。そして、これら試料に固溶化処理(1100℃)、サブゼロ処理(−78℃)、時効処理(480℃)の調質を行って、達成される硬さを評価した。なお、試料No.10は、真空アーク再溶解によって得た鋼塊を径200mmに熱間加工し、固溶化処理(1100℃)、時効処理(490℃)の調質を行った、大型の試料である。この試料は後述の実施例2,3での評価に用いる。 In showing the effect of the stainless steel of this invention, in this Example 1, it evaluates at the time of applying the water cooling conventionally applied to the cooling conditions of the solution treatment. First, a steel ingot obtained by vacuum induction furnace melting (sample No. 4 is vacuum arc remelting) is hot-worked, and a chemical component (mass%) shown in Table 1 consisting of the balance Fe and inevitable impurities ( The dimensions were 15 × 15 × 30 mm). These samples were subjected to a tempering treatment of a solution treatment (1100 ° C.), a sub-zero treatment (−78 ° C.), and an aging treatment (480 ° C.) to evaluate the hardness achieved. Sample No. No. 10 is a large sample obtained by hot working a steel ingot obtained by vacuum arc remelting to a diameter of 200 mm and tempering a solid solution treatment (1100 ° C.) and an aging treatment (490 ° C.) . This sample is used for evaluation in Examples 2 and 3 described later.

ここで、上記の固溶化処理の際の冷却は、水冷によるものとは別に、半冷15分の冷却速度に調整しても行った。半冷とは、固溶化処理温度から(固溶化処理温度+室温)の半分の温度まで冷却するのに要する時間のことである。そして、本実施例1においては、本発明のステンレス鋼が既述の実金型に適用された場合の径300mmの鋼材が油冷される時の冷却速度に相当する半冷15分の条件も適用した。得られた硬さを表2に示す。また、試料No.1,2,3,12については、その半冷15分を適用したものにつき、時効処理後のミクロ組織をそれぞれ図1〜4に示す。   Here, the cooling during the above-mentioned solution treatment was performed by adjusting to a cooling rate of 15 minutes of semi-cooling, separately from water cooling. Semi-cooling refers to the time required for cooling from the solution treatment temperature to half the temperature of (solution treatment temperature + room temperature). And in this Example 1, the condition of semi-cooling 15 minutes corresponding to the cooling rate when the steel material having a diameter of 300 mm when the stainless steel of the present invention is applied to the above-described actual mold is oil-cooled also. Applied. Table 2 shows the obtained hardness. Sample No. As for 1, 2, 3 and 12, the microstructure after aging treatment is shown in FIGS.

そして、硬さを調整した各試料の鏡面仕上性を評価するために、光ディスク用金型の成形面加工に適用されている鏡面研磨を想定した条件(アルミナ艶出し仕上げ)での鏡面加工を施し、加工後面の鏡面度を評価した。鏡面度の評価は、良好な鏡面度を呈しているSUS440C相当粉末鋼(59.8HRC)の鏡面度(顕微鏡拡大写真[×900倍]を図5に示す)を基準“○”とすることで、それより優れた鏡面度を呈したものを“◎”(図6)、若干の劣りが見られるが、使用上差支えのないものを“△”(図7)とした。なお、今回の準備試料においては、使用に耐え難い程の、鏡面度に劣る試料は無かった。結果を表3に示す。   Then, in order to evaluate the mirror finish of each sample with adjusted hardness, mirror finishing was performed under the conditions (alumina polishing finish) that assumed mirror polishing applied to the molding surface processing of optical disc molds. The specularity of the processed surface was evaluated. The evaluation of the specularity is based on the specularity (○) of the specularity of the SUS440C equivalent powder steel (59.8HRC) exhibiting good specularity (micrograph magnified photograph [× 900 times] is shown in FIG. 5). Those exhibiting superior specularity were marked with ““ ”(FIG. 6), and those with slight inferiority but without any difficulty in use were marked with“ Δ ”(FIG. 7). In addition, in this preparation sample, there was no sample which was inferior in specularity so that it was hard to endure use. The results are shown in Table 3.

表1の試料No.1〜9は、本発明を満たす鋼であり、試料No.5,6はそれぞれNb,Taを添加したものである。これらの試料は、Siの低域管理とMoの規制による複合効果によって、固溶化処理の冷却条件が半冷15分においても60HRC以上、それこそ水冷においては、試料No.2,3,4で約61HRCの硬さにまで達し、優れた高硬度特性が得られた。さらに、試料No.9の固溶化処理の冷却条件が水冷のものにおいては、61.4HRCもの硬さが得られた。また、Nb,Taを添加した試料No.5,6でも、固溶化処理の温度を1150℃で行うと、試料No.2,3,4と同等の硬さが得られる。そして、本発明を満たす鋼は、図1,2,3に試料No.1,2,3のミクロ組織を示す通りの、本発明のSiとMoの同時管理を採用したことによって、大きなラーベス相の析出がほぼ抑制されており、表3に示す通り、超鏡面仕上性にも優れた結果が得られた。   Sample No. in Table 1 1 to 9 are steels satisfying the present invention. Nos. 5 and 6 are added with Nb and Ta, respectively. These samples have a combined effect of Si low-frequency management and Mo regulation, so that the cooling conditions for the solution treatment are 60 HRC or more even when semi-cooled for 15 minutes. The hardness reached about 61 HRC at 2, 3 and 4, and excellent high hardness characteristics were obtained. Furthermore, sample no. When the cooling condition of the solid solution treatment No. 9 was water-cooled, a hardness of 61.4 HRC was obtained. In addition, sample Nos. To which Nb and Ta were added 5 and 6, when the solution treatment temperature was 1150 ° C., sample No. Hardness equivalent to 2, 3, 4 is obtained. The steel satisfying the present invention is shown in FIGS. By adopting the simultaneous management of Si and Mo of the present invention as shown in 1, 2 and 3 microstructures, the precipitation of large Laves phase is almost suppressed, and as shown in Table 3, the super mirror finish Excellent results were also obtained.

試料No.12は、SiおよびMoの高いものであるが、固溶化処理の冷却条件が半冷15分においては57HRC程度であり、水冷においても59HRCの硬さを達成できなかった。さらに、固溶化処理温度を1150℃に上げて、水冷を行った場合でも、59HRCに到達するのが限界である。鏡面仕上性についてはSUS420J2等の従来鋼よりは優れているものの、ミクロ組織を図4に示す通り、数十ミクロンオーダーの大きなラーベス相が数多く析出しており、表3に示す通り、超鏡面仕上性を阻害する。   Sample No. No. 12 is high in Si and Mo, but the cooling condition of the solution treatment is about 57 HRC when the cooling is semi-cooled for 15 minutes, and the hardness of 59 HRC cannot be achieved even with water cooling. Furthermore, even when the solution treatment temperature is increased to 1150 ° C. and water cooling is performed, it is the limit to reach 59HRC. Although the mirror finish is superior to conventional steels such as SUS420J2, many large Laves phases on the order of several tens of microns are precipitated as shown in Fig. 4, and as shown in Table 3, super mirror finish is achieved. Inhibits sex.

試料No.13,14は、試料No.12のSiは低く管理したものの、Moは依然として高いものである。試料No.13はSiが低い上にTiまでが比較的少ないため、固溶化処理の冷却条件が水冷においても硬さが57HRCに満たない。試料No.14は試料No.13にTiを増やしたことによって、固溶化処理の冷却条件が半冷15分において59HRCを満足し、水冷においては60HRCをも達成でき、硬度においては実金型への適用に十分満足する結果が得られた。しかし、鏡面仕上性については、Siを少なく制御したことによって、試料No.12よりは大きなラーベス相の析出を抑制することができたが、やはり多量のMoを含有し、超鏡面仕上性を満足するためには不十分である。   Sample No. 13 and 14 are sample Nos. Although 12 Si was controlled low, Mo is still high. Sample No. No. 13 is low in Si and relatively small in Ti, so the hardness is less than 57 HRC even if the cooling condition of the solution treatment is water cooling. Sample No. 14 is Sample No. By increasing Ti to 13, the cooling condition of the solution treatment satisfies 59 HRC in the semi-cooled 15 minutes, can achieve 60 HRC in the water cooling, and sufficiently satisfies the application to the actual mold in hardness. Obtained. However, with regard to the mirror finish, the sample No. Although the deposition of Laves phase larger than 12 could be suppressed, it still contained a large amount of Mo, which is insufficient to satisfy the super mirror finish.

次に本実施例2では、固溶化処理の冷却条件に空冷を適用した場合の評価をする。これは、実金型の製造において熱処理歪を抑えるための、有効な冷却条件である。表1の試料No.2及びNo.3において、固溶化処理(1100℃)を行った後、時効処理(480℃)を行った。サブゼロ処理は行わなかった。そして、固溶化処理の冷却条件は、上記の通りの、実金型(径300mm)での油冷を想定した半冷15分のものに加えて、同じく実金型に適用される径200mmの鋼材が空冷される時の、遅い冷却速度に相当する半冷70分の条件を適用した。それぞれの場合の硬さを表4に示す。そして、実際に径200mmの寸法を有する試料No.10については、その固溶化処理の冷却条件に空冷を適用したことから、半冷70分相当の冷却速度である。 Next, in the present Example 2, the case where air cooling is applied to the cooling conditions of the solution treatment is evaluated. This is an effective cooling condition for suppressing heat treatment distortion in the manufacture of a real mold. Sample No. in Table 1 2 and No. In No. 3, a solution treatment (1100 ° C.) was performed, followed by an aging treatment (480 ° C.). Sub-zero processing was not performed. And as for the cooling conditions of the solution treatment, in addition to the semi-cooled 15 minutes assuming oil cooling in the real mold (diameter 300 mm) as described above, the diameter of 200 mm is also applied to the real mold. A semi-cooled 70 minute condition corresponding to a slow cooling rate when the steel was air-cooled was applied. Table 4 shows the hardness in each case. And sample No. which actually has a diameter of 200 mm. For a 1 0, since the application of the air to the cooling conditions of the solution treatment, a cooling rate equivalent 70 minutes semi-cold.

そして、硬さを調整した各試料の鏡面仕上性を評価するために、実施例1に同様の鏡面加工を施し、加工後面の鏡面度を評価した。鏡面度の評価は、実施例1においてのSUS440C相当粉末鋼(59.8HRC)の鏡面度を基準“○”としての、実施例1に同じ評価方法による。結果を表5に示す。   And in order to evaluate the mirror finish of each sample which adjusted hardness, the mirror finish similar to Example 1 was given and the mirror finish of the processed surface was evaluated. The evaluation of the specularity is based on the same evaluation method as in Example 1, with the specularity of SUS440C equivalent powder steel (59.8HRC) in Example 1 as the reference “◯”. The results are shown in Table 5.

表2,4より、本発明を満たす試料No.2,3は、サブゼロ処理をしなくても59HRC以上の硬さが達成できる結果が得られた。さらに、実金型を想定した時の固溶化処理における、空冷以下の冷却速度(半冷70分)であっても、59HRC以上の硬さが達成できる結果が得られた。そして、これらのミクロ組織であっても、図1〜3の試料No.1〜3に同様の、数十ミクロンオーダーのラーベス相の析出は抑えられており、表5に示す通り、超鏡面仕上性をも達成されたものである。試料No.10は、実際に空冷を適用したものであるが、60HRC以上の硬さが得られた。そして、ミクロ組織についても、数十ミクロンオーダーのラーベス相の析出は抑えられており、表5に示す通り、超鏡面仕上性をも達成した。 From Tables 2 and 4, Sample No. satisfying the present invention was obtained. Nos. 2 and 3 were able to achieve a hardness of 59 HRC or higher without sub-zero treatment. Furthermore, even when the cooling rate was less than air cooling (semi-cooled 70 minutes) in the solution treatment when assuming a real mold, a result that a hardness of 59 HRC or higher could be achieved was obtained. And even if it is these microstructures, sample No. of FIGS. The deposition of the Laves phase on the order of several tens of microns, similar to 1 to 3, is suppressed, and as shown in Table 5, the super mirror finish is also achieved. Sample No. 10 was actually applied with air cooling, but a hardness of 60 HRC or higher was obtained. Also, with regard to the microstructure, precipitation of the Laves phase on the order of several tens of microns was suppressed, and as shown in Table 5, super mirror finish was also achieved.

本実施例3では、本発明を満たす試料No.10(60.5HRC)、及び比較材として、硬さと鏡面仕上性の良いSUS440C相当粉末鋼(59.9HRC)について耐食性の評価を行った。耐食性の評価はJIS−Z−2371の塩水噴霧試験法、及び試料(径10mm、長さ20mm)を50℃、1質量%の酸(塩酸、硫酸、硝酸)200mlに24時間浸漬し、その前後の重量減少分を腐食減量とする腐食減量テストを行った。本実施例3では、試験片有効面を360mmとしたレイティングナンバ法(JIS−Z−2371−付属書1;試験片有効面において、腐食欠陥の寸法及び数を0〜10の数字で評価する方法。腐食面積率50%を超えるものを0、全く腐食していないものを10とする。)を用いて評価した塩水噴霧試験の結果を表6に、腐食減量テストの結果を表7に示す。 In Example 3, the sample No. 1 satisfying the present invention was used. 10 (60.5HRC) and as a comparative material, SUS440C equivalent powder steel (59.9HRC) with good hardness and mirror finish was evaluated for corrosion resistance. Corrosion resistance was evaluated by immersing the salt spray test method of JIS-Z-2371 and a sample (diameter 10 mm, length 20 mm) in 200 ml of 1% by weight acid (hydrochloric acid, sulfuric acid, nitric acid) for 24 hours. Corrosion weight loss test was conducted in which the weight loss was reduced. In Example 3, the rating number method (JIS-Z-2371-Appendix 1; test piece effective surface was used to evaluate the size and number of corrosion defects with a number of 0 to 10 in which the effective surface of the test piece was 360 mm 2. Table 6 shows the results of the salt spray test and Table 7 shows the results of the corrosion weight loss test evaluated using the method. .

表6の塩水噴霧試験結果では、SUS440C相当粉末鋼は、塩水噴霧5時間後の腐食面積率が25%を超えており、24時間以降においては50%を超えている。しかし、本発明の試料No.10は、240時間後においても全く腐食しておらず、優れた耐食性をも有することが分かる。表7の腐食減量テストでは、本発明の試料No.10は、SUS440C相当粉末鋼と比較し、各酸に対して明らかに耐食性があることが分かる。   According to the results of the salt spray test in Table 6, the SUS440C equivalent powder steel has a corrosion area ratio of more than 25% after 5 hours of salt water spray, and exceeds 50% after 24 hours. However, sample no. It can be seen that No. 10 is not corroded at all even after 240 hours and has excellent corrosion resistance. In the corrosion weight loss test of Table 7, sample No. No. 10 is clearly corrosive resistant to each acid as compared with SUS440C equivalent powder steel.

高度の耐食性、鏡面性、及び高硬度を有する本発明のステンレス鋼は、光ディスクや光学レンズの成形用金型に加えて、同様の特性を必要とするガラス繊維等の強化剤を含有するPPS樹脂など、所謂スーパーエンプラの成形用金型としても適用できる。また、刃物や錠剤パンチ、精密機械部品等にも適用できる。   The stainless steel of the present invention having a high degree of corrosion resistance, specularity, and high hardness is a PPS resin containing a reinforcing agent such as glass fiber that requires similar characteristics in addition to a mold for molding optical disks and optical lenses. It can also be applied as a so-called super engineering plastic molding die. It can also be applied to cutting tools, tablet punches, precision machine parts, and the like.

本発明鋼のミクロ組織の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the microstructure of this invention steel. 本発明鋼のミクロ組織の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the microstructure of this invention steel. 本発明鋼のミクロ組織の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the microstructure of this invention steel. 比較鋼のミクロ組織を示す顕微鏡写真である。It is a microscope picture which shows the microstructure of comparative steel. SUS440C相当粉末鋼の鏡面加工面(評価○)を示す顕微鏡写真である。It is a microscope picture which shows the mirror-finishing surface (evaluation (circle)) of SUS440C equivalent powder steel. 本発明鋼の鏡面加工面(評価◎)の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the mirror-finishing surface (evaluation (double-circle)) of this invention steel. 比較鋼の鏡面加工面(評価△)の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the mirror surface processing surface (evaluation (triangle | delta)) of a comparative steel.

Claims (12)

質量%でC:0.01%以下、Si:1.5〜3.0%未満、Mn:3.0%以下、Cr:6.0〜12.0%、Ni:4.0〜10.0%、Co:10.0%以下、Cu:6.0%以下、Ti:0.5〜3.0%、Al:0.07〜2.0%を含有し、Moは1.0%以下に、Nは0.01%以下に規制され、残部はFeおよび不可避的不純物からなることを特徴とする鏡面仕上性に優れた高硬度ステンレス鋼。 C: 0.01 % or less, Si: 1.5 to less than 3.0 %, Mn: 3.0% or less, Cr: 6.0 to 12.0%, Ni: 4.0 to 10. 0%, Co: 10.0% or less, Cu: 6.0% or less, Ti: 0.5-3.0 %, Al: 0.07-2.0 % , Mo is 1.0% Below, N is restricted to 0.01% or less, and the balance consists of Fe and inevitable impurities, and is a high hardness stainless steel with excellent mirror finish. 質量%でSi:2.0〜3.0%未満であることを特徴とする請求項1に記載の鏡面仕上性に優れた高硬度ステンレス鋼。 The high-hardness stainless steel with excellent mirror finish according to claim 1, wherein Si is 2.0 to less than 3.0% by mass%. 質量%でMoを0.5%以下に規制したことを特徴とする請求項1または2に記載の鏡面仕上性に優れた高硬度ステンレス鋼。 The high-hardness stainless steel excellent in mirror finish according to claim 1 or 2, wherein Mo is regulated to 0.5% or less by mass%. 質量%でNb:1.0%以下であることを特徴とする請求項1ないし3のいずれかに記載の鏡面仕上性に優れた高硬度ステンレス鋼。 The high-hardness stainless steel excellent in mirror finish according to any one of claims 1 to 3, wherein Nb is 1.0% or less by mass%. 質量%でTa:1.0%以下であることを特徴とする請求項1ないし4のいずれかに記載の鏡面仕上性に優れた高硬度ステンレス鋼。 The high-hardness stainless steel excellent in mirror surface finish according to any one of claims 1 to 4, wherein Ta: 1.0% or less in mass%. 質量%でZr:0.1%以下であることを特徴とする請求項1ないし5のいずれかに記載の鏡面仕上性に優れた高硬度ステンレス鋼。 The high-hardness stainless steel excellent in mirror finish according to any one of claims 1 to 5, wherein the mass% is Zr: 0.1% or less. 硬さが59HRC以上であることを特徴とする請求項1ないし6のいずれかに記載の鏡面仕上性に優れた高硬度ステンレス鋼。 The high-hardness stainless steel excellent in mirror finish according to any one of claims 1 to 6, wherein the hardness is 59 HRC or more. 消耗電極式再溶解法を行うことにより得た、質量%でC:0.01%以下、Si:1.5〜3.0%未満、Mn:3.0%以下、Cr:6.0〜12.0%、Ni:4.0〜10.0%、Co:10.0%以下、Cu:6.0%以下、Ti:0.5〜3.0%、Al:0.07〜2.0%を含有し、Moは1.0%以下に、Nは0.01%以下に規制され、残部はFeおよび不可避的不純物のステンレス鋼を、59HRC以上の硬さに調質することを特徴とする鏡面仕上性に優れた高硬度ステンレス鋼の製造方法。 C: 0.01 % or less, Si: 1.5 to less than 3.0 %, Mn: 3.0% or less, Cr: 6.0 to 0.0% by mass% obtained by performing the consumable electrode type remelting method 12.0%, Ni: 4.0-10.0%, Co: 10.0% or less, Cu: 6.0% or less, Ti: 0.5-3.0 %, Al: 0.07-2 0.0 % is contained, Mo is controlled to 1.0% or less, N is controlled to 0.01% or less, and the balance is to refine Fe and inevitable impurities stainless steel to a hardness of 59 HRC or more. A manufacturing method of high hardness stainless steel with excellent mirror finish. ステンレス鋼は、質量%でNb:1.0%以下であることを特徴とする請求項8に記載の鏡面仕上性に優れた高硬度ステンレス鋼の製造方法。 The method for producing high-hardness stainless steel excellent in mirror finish according to claim 8, wherein the stainless steel is Nb: 1.0% or less in mass%. ステンレス鋼は、質量%でTa:1.0%以下であることを特徴とする請求項8または9に記載の鏡面仕上性に優れた高硬度ステンレス鋼の製造方法。 The method for producing high-hardness stainless steel with excellent mirror finish according to claim 8 or 9, wherein the stainless steel is Ta: 1.0% or less in mass%. ステンレス鋼は、質量%でZr:0.1%以下であることを特徴とする請求項8ないし10のいずれかに記載の鏡面仕上性に優れた高硬度ステンレス鋼の製造方法。 The method for producing a high-hardness stainless steel excellent in mirror finish according to any one of claims 8 to 10, wherein the stainless steel is Zr: 0.1% or less by mass%. 調質は、1000〜1150℃の固溶化処理を行い、400〜550℃の時効処理を行うことを特徴とする請求項8ないし11のいずれかに記載の鏡面仕上性に優れた高硬度ステンレス鋼の製造方法。 The tempering is performed at a solid solution treatment at 1000 to 1150 ° C and an aging treatment at 400 to 550 ° C, and the high hardness stainless steel having excellent mirror finish according to any one of claims 8 to 11 Manufacturing method.
JP2006036573A 2005-03-10 2006-02-14 High hardness stainless steel excellent in mirror finish and method for producing the same Expired - Fee Related JP4207165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036573A JP4207165B2 (en) 2005-03-10 2006-02-14 High hardness stainless steel excellent in mirror finish and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005067807 2005-03-10
JP2005308476 2005-10-24
JP2006036573A JP4207165B2 (en) 2005-03-10 2006-02-14 High hardness stainless steel excellent in mirror finish and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007146273A JP2007146273A (en) 2007-06-14
JP4207165B2 true JP4207165B2 (en) 2009-01-14

Family

ID=38208028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036573A Expired - Fee Related JP4207165B2 (en) 2005-03-10 2006-02-14 High hardness stainless steel excellent in mirror finish and method for producing the same

Country Status (1)

Country Link
JP (1) JP4207165B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311202B2 (en) * 2007-11-15 2013-10-09 日立金属株式会社 Method for producing age-hardening stainless steel
JP6806984B2 (en) * 2015-01-29 2021-01-06 株式会社不二越 Martensitic stainless steel die for optical parts Elliptical vibration cutting method

Also Published As

Publication number Publication date
JP2007146273A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR100794157B1 (en) Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same
JP5293596B2 (en) Precipitation hardening type martensitic stainless cast steel with excellent machinability and manufacturing method thereof
JP2007197784A (en) Alloy steel
JP2010539325A (en) Martensitic stainless steel, manufacturing method of parts made from this steel, and parts manufactured by this method
JP2007009321A (en) Steel for plastic molding die
JP5311202B2 (en) Method for producing age-hardening stainless steel
JP2013253277A (en) Maraging steel
JP4860774B1 (en) Cold work tool steel
JP4269293B2 (en) Steel for mold
JP4560802B2 (en) High hardness precipitation hardened stainless steel with excellent toughness
JP4207165B2 (en) High hardness stainless steel excellent in mirror finish and method for producing the same
JP2010051982A (en) Welding material for repairing mold
JP2010168639A (en) Steel for die-casting mold
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
JPH04198455A (en) Corrosion resisting alloy, hot roll and its production, and hot rolling mill
JP2015045071A (en) Steel for anticorrosive plastic molding die excellent in specularity
JP5668942B2 (en) Die steel excellent in hole workability and suppression of machining strain and method for producing the same
JP7392330B2 (en) Mold steel and molds
WO2022063095A1 (en) High-nickel alloy material and preparation method therefor, and iron casting
JP4487257B2 (en) Cold die steel with excellent size reduction characteristics
JP2004277818A (en) Free cutting steel for metal mold for molding plastic
JP6359241B2 (en) Corrosion-resistant plastic molding steel with excellent specularity
JP3469462B2 (en) Steel for plastic molds with excellent mirror finish and machinability
JP2005220439A (en) Die with superior formability into mirror plane, and manufacturing method therefor
CN111041343A (en) Steel for mold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees