TW200401042A - Steel block for the manufacture of moulds for the injection moulding of plastics materials or for the manufacture of metal-working tools - Google Patents

Steel block for the manufacture of moulds for the injection moulding of plastics materials or for the manufacture of metal-working tools Download PDF

Info

Publication number
TW200401042A
TW200401042A TW92107539A TW92107539A TW200401042A TW 200401042 A TW200401042 A TW 200401042A TW 92107539 A TW92107539 A TW 92107539A TW 92107539 A TW92107539 A TW 92107539A TW 200401042 A TW200401042 A TW 200401042A
Authority
TW
Taiwan
Prior art keywords
steel
item
steel block
content
manufacture
Prior art date
Application number
TW92107539A
Other languages
Chinese (zh)
Inventor
Jean Beguinot
Calvez Christian Le
Original Assignee
Usinor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usinor filed Critical Usinor
Publication of TW200401042A publication Critical patent/TW200401042A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Steel blocks for the manufacture of moulds for the injection moulding of plastics material or for the moulding of metals or for the manufacture of metal-working tools having a thickness > 20 mm, with a completely martensitic or martensito-bainitic structure, of which the hardness at all points is between 370 HB and 450 HB and of which the chemical composition of the steel comprises, in % by weight: 0.12% ≤ C ≤ 0.32%; Si ≤ 0.8%; Mn ≤ 2.5%; Ni ≤ 3%; Cr ≤ 3.5%; Mo + W/2 ≤ 2.2%; V + Nb/2 + Ta/4 ≤ 0.5%; A1 ≤ 0.4%; Ti + Zr/2 ≤ 0.1%; 0.0005% < B < 0.015%; S + Se + Te < 0.2%; Pb + Bi < 0.2%; Ca < 0.1%, the remainder being iron and impurities resulting from production, the chemical composition also satisfying the following equations: 3.2 ≤ Tr ≤ 6.5; 77 ≤ Dr ≤ 85; U ≤ 850; in which, for contents expressed in %: Tr = 1.8 x C + 1.1 x Mn + 0.7 x Ni + 0.6 x Cr + 1.6 x Mo*+ 0.5; Dr = 54 x C0.25 + 24.5 x (Mo*+ 3 x V*)0.30 + 1.58 x Mn + 0.74 x Ni + 1.8 x Si + 12.5 x (Cr)0.20; U = 1600 x C + 100 x (0.25 x Cr + Mo* + 4.5 x V*); R= 3.8 x C + 10 x Si + 3.3 x Mn + 2.4 x Ni + 1.4 x (Cr + Mo*); Mo*= Mo + W/2; V*= V+ Nb/2 + Ta/4; the contents of A1, Ti, Zv, N and B being such that: B ≥ 1/3 x K1 + 0.5 wherein K1= Min (I*;J*); I*= Max (;I) and J*= Max (O;J); I = Min (N; N-0.29(Ti+Zr/2- 5));xc J= Min( N: 0.5( N-0.5(N-0.52 A1+ (N-0.52 A1)2+283)) <SP>1/2</SP>.

Description

200401042 ⑴ 玖、發明說明 【發明所屬之技術領域】 本發明係關於可用於,特別是,製造塑料射出成形用 模具或用於製造金屬加工工具的鋼塊。 【先前技術】 塑料射出成形用模具一般係由硬度大約 3 00 HB的 鋼材所生產。然而,當這些模具使用於如工業上的塑膠或 熱硬性塑膠的製造時,最好使用更能抗磨損的較硬質鋼 材。因此使用包含大約 0 5 5 %的碳,1 7 5 %的鎳、鉻、 鈾和釩的 5 5 NCDV 7型鋼材。此種鋼材可製造硬度約 400 HB 的模具。然而,此種鋼材有許多缺點:難以機械 切削並且難以焊接。此外,此種鋼材經常有局部性偏析而 構成硬點,而不利於拋光或化學粒化。這兩項缺點尤其不 爲所欲,因爲製造模具必須具有顯著的機械切削性以及模 具一般能藉焊接及拋光或粒化加以重裝而修補。此外,這 些模具必須能夠用氮化使表面硬化,而不減損模具的硬 度。這些鋼材也使用於,例如藉由衝壓、打造或鍛造而製 造如輕質合金等的金屬模具或製造欲用於金屬加工的零件 用的之模具。爲達此應用,習知的鋼材與塑料模具用的模 具具有同樣的缺點。 【發明內容】 本發明的目的在於提出用於模具或金屬加工工具之鋼 (2) (2)200401042 塊以克服此等缺點,該鋼塊比先前技藝的鋼塊更容易焊 接、機械切削、拋光及顆粒,而且此種鋼材可用於硬度約 40 0 HB之零件的製造,即使在以氮化使表面硬化之後也 --樣,這表示該鋼塊所需的特性,特別是在硬度方面,必 須至少可用 5 3 0 °C 來锻鍊。 此發明係關於一種具有大於 20 mm並且可能達到 1 5 00 mm厚度的鋼塊,該鋼塊的結構係馬氏體或馬氏-貝 氏體,而所有點的硬度皆在 3 70 HB到 450 HB 之間, 用於製造模具或金屬加工之零件,此種鋼材的化學組成以 重量% %表示如下: 0 12 0% &lt; C &lt; 0 3 2 0 %200401042 玖 玖, Description of the invention [Technical field to which the invention belongs] The present invention relates to a steel block which can be used, in particular, for manufacturing a mold for plastic injection molding or for manufacturing a metal working tool. [Prior art] Plastic injection molding dies are generally produced from steel with a hardness of about 300 HB. However, when these molds are used in the manufacture of, for example, industrial plastics or thermosetting plastics, it is better to use harder steels that are more resistant to wear. Therefore, a 55 NCDV Type 7 steel containing approximately 0.55% carbon and 175% nickel, chromium, uranium and vanadium is used. This steel makes molds with a hardness of about 400 HB. However, this type of steel has many disadvantages: it is difficult to machine and it is difficult to weld. In addition, such steel often has local segregation and constitutes hard spots, which is not conducive to polishing or chemical graining. These two disadvantages are particularly undesirable because the mold must be made with significant mechanical machinability and the mold can generally be repaired by welding and polishing or pelletizing for reassembly. In addition, these molds must be able to harden the surface with nitriding without compromising the hardness of the mold. These steels are also used, for example, to make metal molds such as lightweight alloys by stamping, forging, or forging, or molds for parts intended for metal processing. To achieve this application, conventional steel molds have the same disadvantages as plastic molds. [Abstract] The purpose of the present invention is to propose a steel (2) (2) 200401042 block for molds or metal working tools to overcome these shortcomings. The steel block is easier to weld, machine cut, and polish than steel blocks of the prior art. And granules, and this steel can be used for the manufacture of parts with a hardness of about 40 0 HB, even after the surface is hardened by nitriding. This indicates that the properties required for the steel block, especially in terms of hardness, must be The chain can be forged at least 5 3 0 ° C. The invention relates to a steel block having a thickness of more than 20 mm and possibly up to 1500 mm. The structure of the steel block is martensite or martensite-bainite, and the hardness of all points is 3 70 HB to 450 Among HB, used for manufacturing molds or metalworking parts, the chemical composition of this steel is expressed as% by weight as follows: 0 12 0% &lt; C &lt; 0 3 2 0%

Si &lt; 0,8% Μη &lt; 2 5%Si &lt; 0,8% Μη &lt; 2 5%

Ni &lt; 3%Ni &lt; 3%

Cr &lt; 3 5%Cr &lt; 3 5%

Mo + W/2 &lt; 2 2% V + Nb/2 + Ta/4 &lt; 0 5% A1 &lt; 0 4%Mo + W / 2 &lt; 2 2% V + Nb / 2 + Ta / 4 &lt; 0 5% A1 &lt; 0 4%

Ti + Zr/2 &lt;0 1% - 硼,含量在 〇 ο ο 0 5 %到 〇 015 %之間, - 視情況需要添加的硫、硒和碲之中至少一個元 素,其總量低於或等於 02%, - 視情況需要添加的鉛和鉍之中至少一個元素,其 總量低於或等於 〇2%, (3) 200401042 0 1%, ,該鋼 - 視情況需要添加的鈣,含量低於或等於 剩餘物爲鐵及生產時產生的雑質 '銅亦係雜質 塊的化學組成也符合下列方程式: 3 2 &lt; Tr &lt; 6 5 77 &lt; Dr &lt; 85 U &lt; 850Ti + Zr / 2 &lt; 0 1%-boron, the content is between 〇ο ο 0 5% to 0 015%,-at least one element of sulfur, selenium and tellurium added as the case requires, the total amount is less than Or equal to 02%,-at least one element of lead and bismuth added as the case requires, the total amount of which is less than or equal to 0%, (3) 200401042 0 1%, the steel-calcium as the case requires, The content is less than or equal to the remainder being iron and the rhenium 'copper' which is produced during production. The chemical composition of the impurity block also conforms to the following equation: 3 2 &lt; Tr &lt; 6 5 77 &lt; Dr &lt; 85 U &lt; 850

Mo* + 3x V* &gt; 0 1% 式中,以下用 % 表示各含量:Mo * + 3x V * &gt; 0 1% where each content is expressed in% below:

Tr = 1 8x C + 1 lx Μη + 0.7x Ni + 0.6x CrTr = 1 8x C + 1 lx Μη + 0.7x Ni + 0.6x Cr

Mo* + 0 5Mo * + 0 5

Dr = 54x C 0 2 5 + 2 4 5 x (Mo* + 3x V*)° 30 + 1 + 0 74x Ni + 1 8x Si + 12 5x (Cr)0 20 u = 1600 x C + 1 OOx (0 25 x Cr + M 0 * + 4.5x \ R = 3 8x c - f 1 0 x Si + 3 3x M n + 2.4x Ni + 1 丨*) Mo* =Mo + W/2 V* = V + Nb/2 + Ta/4 硼、 鋁、 鈦 , 辑 及氮的 曰- 3里 以 里里 %的 千分之 B &gt; 1 /3 x K 1 + 0 5 表示 + 1 . 6 x 58x Mn ,4x (Cr K1 = Min (I* , J*)Dr = 54x C 0 2 5 + 2 4 5 x (Mo * + 3x V *) ° 30 + 1 + 0 74x Ni + 1 8x Si + 12 5x (Cr) 0 20 u = 1600 x C + 1 OOx (0 25 x Cr + M 0 * + 4.5x \ R = 3 8x c-f 1 0 x Si + 3 3x M n + 2.4x Ni + 1 丨 *) Mo * = Mo + W / 2 V * = V + Nb / 2 + Ta / 4 Boron, Aluminum, Titanium, and Nitrogen--3 Miles and Miles% B / 1000 &gt; 1/3 x K 1 + 0 5 means + 1.6 x 58x Mn, 4x (Cr K1 = Min (I *, J *)

Max (O , J) I* = Max (Ο , I)且 J* (4)200401042 J = Min {N , 0 5 [N - 0 5 2 A1 + ((N - 2 8 3 )1’2] } 較佳地化學組成如下: R &gt; 11 較佳地化學組成也可如下: R &lt; 2 7x Tr 最好矽的含量精確維持在 0 4 5%。 較佳地 U &lt; 7 5 0,更佳地 U S 7 0 0,又ΐ 6 5 0 ° 此外,更明顯地,當 U S 7 5 0,鋼材的· 下: 0 200% &lt; C &lt; 0 320% Si &lt; 0 3 0% 0 3 % &lt; Μη &lt; 1 . 8 % Ni &lt; 2% 0 5% &lt; Cr &lt; 2 5% Mo + W/2 &lt; 1 8% V + Nb/2 + Ta/4 &lt; 0 3% Mo* + 3x V* &gt; 0 3% 又更佳地,US650,並且: 0 220% &lt; C &lt; 0 2 8 0% Si &lt; 0 1 5% 0 8% &lt; Μη &lt; 1 6% Ni &lt; 2% 0 5 2A1)2 +Max (O, J) I * = Max (Ο, I) and J * (4) 200401042 J = Min {N, 0 5 [N-0 5 2 A1 + ((N-2 8 3) 1'2] } The preferred chemical composition is as follows: R &gt; 11 The preferred chemical composition may also be as follows: R &lt; 2 7x Tr The best silicon content is accurately maintained at 0 4 5%. Preferably U &lt; 7 5 0, Better US 7 0 0, and then 6 5 0 ° In addition, more obviously, when US 7 50, the lower of steel: 0 200% &lt; C &lt; 0 320% Si &lt; 0 3 0% 0 3% &lt; Μη &lt; 1.8% Ni &lt; 2% 0 5% &lt; Cr &lt; 2 5% Mo + W / 2 &lt; 1 8% V + Nb / 2 + Ta / 4 &lt; 0 3 % Mo * + 3x V * &gt; 0 3% Even better, US650, and: 0 220% &lt; C &lt; 0 2 8 0% Si &lt; 0 1 5% 0 8% &lt; Μη &lt; 1 6% Ni &lt; 2% 0 5 2A1) 2 +

佳地 US 學組成如The composition of Jiadi US

-10 - (5) 200401042 1 % &lt; C r &lt; 2 5 %-10-(5) 200401042 1% &lt; C r &lt; 2 5%

Mo + W/2 &lt; 1 5% V + Nb/2 + Ta/4 &lt; 0 2%Mo + W / 2 &lt; 1 5% V + Nb / 2 + Ta / 4 &lt; 0 2%

Mo* + 3χ V* &gt; 〇 4% 因此最好 Tr &gt; 45。 本發明也關於以本發明鋼塊機械 零件,該模具零件至少表面的部分係 而且所有點的硬度皆在 3 7 0 Η B到 根據本發明的鋼材也試圖用於金 以下將本發明更詳細地說明及例 限於以下的實施例。 用於模具或金屬加工的零件係以 製造,該鋼塊係機械切削以獲得均 構,並經鍛鍊以獲得所欲的硬度及延 具有高度可锻鍊性和顯著的可硬化性 經硬化的鋼材必須具有最大的可機械 導性。此熱傳導性有助於改善模具在 些不同的性質的組合原本係矛盾對立 鋼材越硬越不容易機械切削,並且可 加硫、銘、硒' 碲或鉛等合金元素來 些元素雖然可用於模具表面粒化,但 所以在用於模具的鋼材中必須限制此 如何,此等元素的添加並非完全適宜 成的函數而言’該鋼材的熱傳導性和 切削而成之鋼製模具 藉由氮化予以硬化, 4 5 0 ΗΒ 之間。 屬加工零件的製造。 示,但本發明不會受 機械切削實心鋼塊所 勻的馬氏-貝氏體結 展性。因此必須使用 的鋼材。然而,此等 切削性和最高的熱傳 作業時的生產率。這 的。事實上,已知該 機械切削性能藉由添 改善。然而,因爲這 卻不利於表面拋光, 等元素的添加。無論 的。亦知就該鋼材組 淬冷性呈反比變化。 (6) (6)200401042 因此’這些鋼材的必要條件係矛盾對立的。然而,在一新 穎的方法中’發明人發現可找到能產生實質上比習知鋼材 的性質更好的組合性質之組成範圍。另一方面,此等組成 的範圍係藉由該組成中各元素的含量分布以及其所依附的 配方而界定。 爲了獲得此等組合性質,鋼材必須包含: - 〇 120% 到 0 3 20% 的碳以形成碳化物,可使 該鋼材硬化而不過度減損可焊接性、韌性和可機械切削 性’而且碳含量較佳係介於0 2 0 0 %與0 3 2 0 %之間,更 佳介於 0 2 2 0 %及0 2 8 0 %之間; - 矽,含量低於 〇 8 %,而較佳低於 0 4 5 %,更佳 低於 〇 30%,又更佳低於 0 15%。通常此元素在鋼材生 產中係作爲除氧之用,但會對熱傳導性產生不利的影響。 然而,矽總以微量存在; - 錳,含量低於 2 5°/。,較佳 0 3% 到 1.8%,更 佳〇 8%到 16%之間,以獲得良好的淬冷性,而不會 造成過度偏析,過度偏析會減低製得模具良好的表面特性 之能力。錳總是存在,至少包含微量。此外,爲了捕捉以 雜質形態存在的硫,錳的含量最好高於 〇 1 %。如果硫係 添加以改善可機械切削性,錳的最低含量必須相對爲硫的 至少 5 倍,而以 7 倍爲佳; - 鎳,含量低於3%,較佳低於 2%。鎳可增加淬 冷性,但十分昂貴。它可能微量存在。然而’應用上要求 較大韌性和極均勻的硬度,減低錳含量而增加鎳含量係値 -12 - (7) (7)200401042 得的,以錳比鎳爲一比二的比率,有減低偏析的優點; - 絡,含量低於 3 5 °/〇 ’較佳在 〇 5 %到 2 5 °/〇 ’ 更佳在 1 %到 2 5 %之間。此元素可增加淬冷性’但過 多的鉻會提高碳化銘的濃度而對鉬、鎢、釩、鈮、鉅等兀 素造成不利的情況。所以鉻可以微量存在; - 鉬及/或鎢的含量爲Mo * = Mo + W/2的總和係低 於 2 2%,較佳低於 1 ,更佳低於 1 .5%。此等元素 有明顯的淬冷效果。此外,該元素會實質上降低中間退 火,這對於模具的印跡以至少 5 0 0 t 的溫度氮化作表面 處理時係有利的。然而,過多的鉬和鎢會減損可機械切削 性; - 視情況需要而添加釩、鈮、鉬之中至少一元素, 其含量爲 V* = V + Nb/2 + Ta/4的總和係低於 0 5%,較 佳低於 〇 . 3 %,較佳低於 0 2 %。這些元素可增加對中間 退火的耐性’特別是在以 5 5 0 °C 以上溫度鍛鍊時。鈮 及妲也會增加模具印跡的抗磨損能力。然而,過多的量會 減損可機械切削性及可焊接性; - 硼’含量在 0 0 0 0 5 % 到 0.0 1 5 %。此元素會實 質上增加淬冷性而不會對熱傳導性產生不利的影響。此 外’當該元素在焊接時遇到高沃斯田鐵化溫度而使得效用 '消失’最好可藉焊接加以修補。當含量在〇 000 5%之下 時’受限於分析方法,它沒有明顯的效果。在 0 〇 i 5% 以上’它會使鋼材變脆而不會增加其淬冷性; ' 視情況需要而添加之鋁的含量爲0 4 %,和視情 -13 (8) (8)200401042 況需要而添加的鈦、鍩之中至少一元素,Ti + Zr/2的總 和可達到 〇 1 %。這些元素係強除氧劑,此外,該等元素 會固定仍以雜質的形態存在的氮,該氮的含量至少係在 0 0 0 4% 到 〇 02 5% ,可能低於 〇 004 5% 或高於 0 0 2 5 %。然而’鋼材中包含硼時,較佳地氮含量必須低於 0 0 2 5 %。欲使硼完全地發揮功效必需包含鋁,鈦或锆。 鋁、鈦、錯可單獨或以此等元素其中之二或三種組合 使用,可保護硼免受氮的影響,由此使硼完全地發揮功 效。硼、鋁、鈦、鉻和氮含量以重量%的千分之一表示如 下: B &gt; l/3x K1 + 〇 5 K1 = Min (I* , J*) I* = Max (Ο,I)且 J* = Max (Ο,J) I = Min (N,N - 0 29 (Ti + Zr/2 - 5)) j = Min {N , 〇 5[N - 0 5 2 A1 + ((N - 0 5 2 Al)2 + 2 8 3 ) 1/2 ] } - 銅可以微量或雜質形式存在; - 視情況需要而添加小量的硫、硒、碲之中至少一 元素,此等元素的總含量必須低於0 200%。然而,如果 試圖以該鋼材用於抛光的、以化學方式粒化的表面的模具 之製造,此等元素的總含量必須低於 0 0 2 5 %,或較佳低 於 0 005% ; - 視情況需要而添加鉛、鉍之中至少一元素,此等 元素的總量係低於 〇 2%。如果試圖以該鋼材用於拋光、 (9) (9)200401042 粒化表面的模具之製造,最好不包含此等元素; - 視情況需要而添加的鈣,含量係低於0.100%。 如果試驗以該鋼材用於拋光、粒化表面的模具之製造,因 爲鈣對可機械切削性的正向作用須與硫在一起時才可達 到,所以最好不包含此元素,如果鋼塊必須經過拋光或粒 化,則最好限制鈣的含量; 該組成物剩餘的部分由鐵和生產中產生的雜質組成。 惟必須注意,本例中所有合金元素的最低含量並沒有限 制,即使沒有添加此等元素,該等元素仍能以極低含量的 至少殘餘物或不純物質之形式存在。在方才界定的極限範 圍內,爲了獲得所需的使用特性,鋼塊的組成必須有所選 擇。爲了此目的,其組成必須如下: - Tr = 1 8x C + 1 lx Μη + 0 7 χ Ν i + 0 6 χ C r + 1 6 χ Μ ο * + 〇 5代表鋼材的淬冷性,其値必須高於 3.2,較 佳高於 4 5,以獲得適當的淬冷性。特別是T r必須高於 4 5以獲得該鋼材零件上的馬氏-貝氏體結構而不含任何痕 量的珍珠結構,該鋼材的厚度可超過1 0 〇 〇 m m,甚至可 尚達 1500 mm;Mo * + 3χ V * &gt; 〇 4% Therefore, Tr &gt; 45 is preferred. The present invention also relates to a steel block mechanical part according to the present invention. At least a part of the surface of the mold part and the hardness of all points are 3 7 0 Η B. The steel according to the present invention is also intended to be used for gold. The present invention will be described in more detail. The description and examples are limited to the following examples. Parts used for mold or metal processing are manufactured. The steel block is mechanically cut to obtain a homogeneous structure, and is trained to obtain the desired hardness and hardness. Hardened steel with high malleability and remarkable hardenability Must have maximum mechanical conductivity. This thermal conductivity helps to improve the combination of different properties of the mold. Originally contradictory, the harder the steel, the harder it is to mechanically cut, and alloy elements such as sulfur, Ming, selenium, tellurium or lead can be added. The surface is granulated, but it must be limited in the steel used for the mold. The addition of these elements is not a completely suitable function. 'The thermal conductivity of the steel and the steel mold cut from the Hardened, between 4 5 0 ΗΒ. It belongs to the manufacture of processed parts. Shown, but the present invention is not affected by the martensitic-bainite ductility uniformly cut by mechanical cutting of solid steel blocks. Therefore, steel must be used. However, these machinability and highest heat transfer productivity. This. In fact, it is known that the mechanical cutting performance is improved by the addition. However, because this is not conducive to surface polishing, and other elements are added. Whatever. It is also known that the quenchability of this steel group varies inversely. (6) (6) 200401042 Therefore, the necessary conditions of these steels are contradictory. However, in a novel method, the inventors have found that a composition range can be found that produces a combination of properties that is substantially better than the properties of conventional steels. On the other hand, the scope of these compositions is defined by the content distribution of each element in the composition and the formula to which it depends. In order to achieve these combined properties, the steel must contain:-〇120% to 0 3 20% carbon to form carbides, which can harden the steel without unduly degrading weldability, toughness, and machinability 'and the carbon content It is preferably between 0 2 0 0% and 0 3 2 0%, more preferably between 0 2 2 0% and 0 2 8 0%;-Silicon, the content is lower than 0 8%, and preferably lower At 0 4 5%, more preferably less than 0 30%, and still more preferably less than 0 15%. Usually this element is used for deoxidation in steel production, but it will adversely affect the thermal conductivity. However, silicon is always present in trace amounts;-Manganese, below 25 ° /. It is preferably between 0.3% and 1.8%, and more preferably between 0.8% and 16% in order to obtain good quenchability without causing excessive segregation. Excessive segregation will reduce the ability to obtain good surface characteristics of the mold. Manganese is always present, at least in trace amounts. In addition, in order to capture sulfur in the form of impurities, the content of manganese is preferably higher than 0.01%. If sulfur is added to improve machinability, the minimum content of manganese must be at least 5 times, and preferably 7 times, relative to sulfur;-Nickel, less than 3%, preferably less than 2%. Nickel increases hardenability but is very expensive. It may be present in trace amounts. However, 'application requires greater toughness and extremely uniform hardness, reducing the manganese content and increasing the nickel content is 値 -12-(7) (7) 200401042. It is obtained by using manganese to nickel as a one to two ratio, which reduces segregation. The advantages are:-complex, content below 35 ° / 〇 ', preferably between 0.05% and 25 ° / 〇', more preferably between 1% and 25%. This element can increase the quenchability ', but too much chromium will increase the concentration of carbides and cause adverse conditions for molybdenum, tungsten, vanadium, niobium, and giant elements. Therefore, chromium can be present in trace amounts;-The sum of the content of molybdenum and / or tungsten is Mo * = Mo + W / 2 is less than 22%, preferably less than 1, and more preferably less than 1.5%. These elements have a significant quenching effect. In addition, this element can substantially reduce intermediate annealing, which is advantageous when the surface of the mold is nitrided for surface treatment at a temperature of at least 500 t. However, excessive molybdenum and tungsten will reduce the machinability;-Add at least one element of vanadium, niobium, and molybdenum as required, and its content is low as the sum of V * = V + Nb / 2 + Ta / 4 At 0 5%, preferably below 0.3%, more preferably below 0.2%. These elements can increase the resistance to intermediate annealing 'especially when exercising at temperatures above 550 ° C. Niobium and hafnium also increase the wear resistance of mold marks. However, excessive amounts will detract from machinability and weldability;-The content of boron 'is from 0 0 0 0 5% to 0.0 1 5%. This element will substantially increase hardenability without adversely affecting thermal conductivity. In addition, when the element encounters a high Vostian ironization temperature during welding, the effect 'disappears' is best repaired by welding. When the content is below 0 000 5%, it is limited by the analysis method, and it has no obvious effect. Above 0 〇i 5% 'It will make the steel brittle without increasing its hardenability;' The content of aluminum added as the case requires is 0 4%, and as appropriate -13 (8) (8) 200401042 If necessary, at least one element of titanium and hafnium is added, and the total of Ti + Zr / 2 can reach 0.01%. These elements are strong oxygen scavengers. In addition, these elements fix nitrogen that is still in the form of impurities. The nitrogen content is at least 0.004% to 0.025%, and may be less than 0045%. Above 0 0 2 5%. However, when boron is contained in the steel material, it is preferable that the nitrogen content be less than 0 2 25%. For boron to fully function, aluminum, titanium or zirconium must be included. Aluminum, titanium, and tungsten can be used alone or in combination of two or three of these elements to protect boron from nitrogen and thereby make boron fully functional. The boron, aluminum, titanium, chromium, and nitrogen contents are expressed in thousandths of a weight percent as follows: B &gt; l / 3x K1 + 〇5 K1 = Min (I *, J *) I * = Max (0, I) And J * = Max (Ο, J) I = Min (N, N-0 29 (Ti + Zr / 2-5)) j = Min {N, 〇5 [N-0 5 2 A1 + ((N- 0 5 2 Al) 2 + 2 8 3) 1/2]}-Copper can be present in trace or impurity form;-Add at least one element of sulfur, selenium, tellurium in small amounts as required, the total of these elements The content must be below 0 200%. However, if an attempt is made to use the steel for the production of molds for polished, chemically grained surfaces, the total content of these elements must be less than 0 25%, or preferably less than 0 005%;-depending on If necessary, at least one element of lead and bismuth is added, and the total amount of these elements is less than 0%. If you are trying to use this steel for polishing and (9) (9) 200401042 to mold the surface of granules, it is better not to include these elements; If the test is to use the steel for the polishing and graining of the mold, because the positive effect of calcium on machinability must be achieved with sulfur, it is best not to include this element. If the steel block must be After polishing or granulation, it is best to limit the calcium content; the remainder of the composition consists of iron and impurities produced in the production. However, it must be noted that the minimum content of all alloying elements in this example is not limited, and even if these elements are not added, these elements can still exist in the form of extremely low levels of at least residues or impurities. Within the limits defined just now, the composition of the steel block must be chosen in order to obtain the required service characteristics. For this purpose, its composition must be as follows:-Tr = 1 8x C + 1 lx Μη + 0 7 χ Ν i + 0 6 χ C r + 1 6 χ Μ * * + 〇5 represents the hardenability of the steel, which 値Must be higher than 3.2, preferably higher than 4 5 to obtain proper quenchability. In particular, T r must be higher than 4 5 to obtain a martensitic-bainite structure on the steel part without any trace pearl structure. The thickness of the steel may exceed 1000 mm, and may even reach 1500. mm;

Dr = 54x C° 2 5 + 24 5 x (Mo* + 3x V*) 0 3 0 + 1 58x Mn 十 〇 74χ Ni + 1.8x Si + 12.5x (Cr)020 的値必須 在7 7到8 5之間,以藉由碳化物達到適當的硬化,而 不會過度減損可機械切削性; • u = 1 600x c + 100X (° 25x Cr + Mo* + 4 5x V*) 的値係可機械切削性的指標(U値越低,可機械切削性 -15 - (10) (10)200401042 越好),該値須維持在 8 5 0以下,較佳在 7 5 〇以下, 更佳在 7〇0以下,又更佳在650以下; - R = 3 8 X C + 1 〇 X S i + 3 3 X Μ η + 2.4 X Ni + 1 . 4χ (C r + Μ ο * )的値會隨著熱阻抗率而變化,換句話說,熱傳 導的倒數必須低於 2 7 χ T r較佳。然而,就所有對於鋼 材所需特性的要求而言,此數値通常不能低於 Η 以 下’但較佳低於 2 0,更佳低於1 5,所以具體而言本發明 係有關於R値大於 1 1的鋼材,但係儘可能的低; - 就以上各重點而言,該組成也必須符合此方程式 Μ 〇 * + 3 χ V * 2 0 1 % ;當 U &lt; 7 5 0並且分析結果符合以下 的較佳範圍時: 0.2 00% &lt; C &lt; 0 3 20%Dr = 54x C ° 2 5 + 24 5 x (Mo * + 3x V *) 0 3 0 + 1 58x Mn 〇74χ Ni + 1.8x Si + 12.5x (Cr) 020 must be between 7 7 and 8 5 In order to achieve proper hardening by carbides without excessively degrading machinability; • sacrificial system of u = 1 600x c + 100X (° 25x Cr + Mo * + 4 5x V *) can be machined Index of mechanical properties (the lower the U 値, the better the machinability is -15-(10) (10) 200401042), the 値 must be maintained below 8500, preferably below 7500, and more preferably 7〇 0 or less, and more preferably 650 or less;-R = 3 8 XC + 1 〇XS i + 3 3 X Μ η + 2.4 X Ni + 1. 4χ (C r + Μ ο *) will follow the thermal impedance Rate, in other words, the reciprocal of heat conduction must be lower than 2 7 χ T r is better. However, for all requirements for the required characteristics of steel, this number 値 cannot usually be less than Η, but is preferably less than 20, more preferably less than 15, so the present invention relates specifically to R 値Steels greater than 1 1 but as low as possible;-In terms of the above points, the composition must also conform to this equation M 0 * + 3 χ V * 2 0 1%; when U &lt; 7 5 0 and analysis When the results meet the following preferred ranges: 0.2 00% &lt; C &lt; 0 3 20%

Si &lt; 0 3 0% 〇 3% &lt; Μη &lt; 1 8%Si &lt; 0 3 0% 〇 3% &lt; Μη &lt; 1 8%

Ni &lt; 2% 〇 5% &lt; Cr &lt; 2 5%Ni &lt; 2% 〇 5% &lt; Cr &lt; 2 5%

Mo + W/2 &lt; 1 8% V + Nb/2 + Ta/4 &lt; 0 3% 分桁結果必須爲:Mo * + 3 χ V * 2 0.3 %,當 U S 6 5 0 並且分析結果符合以下的又更佳範圍時: 0 22〇〇/0 &lt; c &lt; 0 2 8 0% s 1 s: 〇 1 5 % 0 8% &lt; Μη &lt; 1 6% Νί 5 2% (11) (11)200401042 1% &lt; Cr &lt; 2 5%Mo + W / 2 &lt; 1 8% V + Nb / 2 + Ta / 4 &lt; 0 3% The splitting result must be: Mo * + 3 χ V * 2 0.3%, when US 6 5 0 and the analysis results meet The following is a more preferable range: 0 22〇〇 / 0 &lt; c &lt; 0 2 8 0% s 1 s: 〇1 5% 0 8% &lt; Μη &lt; 1 6% Νί 5 2% (11) (11) 200401042 1% &lt; Cr &lt; 2 5%

Mo + W/2 &lt; 1 5% V + Nb/2 + Ta/4 &lt; 0 2% 分析組成必須滿足此方程式:Μ 〇 # + 3 x V * 2 0 4 %。 要利用此鋼材製造模具,該鋼材係以習知的方法製 造、鑄型及熱輥軋或熱锻造並且切削而獲得厚度大於 20 mm的鋼塊,可能超過 100 mm,而達到 400 mm,可能 的話6 0 0 m m甚至 1 5 0 0 m m。應該注意的爲,最小厚度 的鋼塊可能係薄如紙張或大的平板,而最大的厚度通常係 锻鍊的鋼塊。 鋼塊係視情況需要而在溫度高於 AC3且較佳低於 9 5 0 °C下在鍛鍊或熱旋轉時沃斯田鐵化,特別是鋼材包含 硼時,接著該鋼塊可在空氣、油或水中冷卻,依據鋼材的 厚度和淬冷性而定,以獲得整塊皆爲馬氏體或馬氏-貝氏 體的結構。最後,該等鋼塊係於高於 5 00°C 的溫度下鍛 鍊,較佳至少 5 5 0 °C,惟必須小於AC :。由此獲致硬度大 約在 3 70 HB至U 4 5 0 HB之間。 此種鋼塊當中,包括經拋光和視情況需要的粒化之印 跡的模具零件係以習知的方法機械切削。視情況需要而 定,此等零件係藉由如氣態的氮化而施以表面硬化。在氣 態氮化之後,除該零件經氮化的表面末端以外之處,此鋼 材的硬度大約在 3 70 HB 到 4 50 HB 之間。 【實施方式】 (12) (12)200401042 以下藉由實施例的方式加以比較,分析物的組成編列 於表1,分析物之Tr、Dr、U、R和 R/2,7Tr値編列在 表 2。 實施例 1、3 ' 5、6、9 到 1 5、1 7和 1 8表示本發 明,而實施例2 1到 2 6則作爲比較之用。此鋼材並未 添加硫、硒、碲、鉛、鉍和鈣,然而’該等鋼材包含 0 0 1 0 % 到 0 0 2 0 %的少量硫。 對於所有的鋼材,硬度HB已在鍛鍊淬冷的狀態下測 定過,換句話說,所有實施例中的馬氏體或馬氏-貝氏體 結構皆在 550 T:下锻鍊,惟獨實施例26在625°C下鍛 (13)200401042 表1 實例 C Si Μη Ni Cr Mo W V B * Al* Ti * N* 1 0 25 0 20 1 2 0 95 2 1 0 65 0 0 15 2 65 0 6 3 0 19 0 15 1 2 0 95 2 1 0 8 0 0 17 2 5 5 7 0 6 5 0 27 0 14 1 5 0 2 1 5 0 85 0 0 17 2 45 0 3 6 0 17 0 12 1 1 0 2 1 7 1 6 0 0 15 2 5 5 5 0 6 9 0 28 0 13 14 0 85 2 05 0 95 0 0 02 1 5 25 15 3 10 0 30 0 09 1 3 0 75 1 9 0 6 0 0 19 1 54 0 1 11 0 24 0 05 1 25 0 3 1 8 0 32 0 67 0 16 3 3 15 7 12 0 15 0 07 1 3 0 9 2 7 0 6 0 7 0 17 2 52 0 7 13 0 23 0 04 0.3 0 1 1.5 0.7 0 0 19 2 60 0 5 14 0 27 0.15 1.7 1 8 1 9 0 5 0 4 0 3 64 0 9 15 0 28 0 11 0 3 0 7 2 9 15 0.5 0 2 5 7 0 5 17 0.24 0 27 1 3 0 6 1 9 0 67 0 0 15 3 63 0 8 18 0.20 0 42 1 2 0 7 2 7 0 2 1 0 0.1 2 85 0 8 2 1 0.43 0.33 1 25 0 3 1 9 0 5 0 0 0 24 0 11 22 0 42 0 30 1 2 0 2 2 1 0 25 0 0 1 0 18 0 15 23 0.43 0 14 1 3 0 1 2 9 0 05 0 0 2 0 20 0 10 24 0 49 0 3 5 1 2 0 2 1 8 0 15 0 0 12 0 20 0 8 25 0 55 0 30 0 8 1 7 1 1 0 45 0 0 1 0 25 0 8 26 0 39 0 3 0 0 57 0 1 3 2 0 94 0 0 19 0 1 50 0 9 硼、氮、欽、銘,以%的千分之一表不。 (14)200401042 表2 實例 Tr Dr u R R/2,7Tr 1 5 24 80 9 5 8 5 13 0 92 3 5 3 7 8 1 549 12 5 0 86 5 4 72 80 9 6 11 10 9 0 85 6 5 74 8 1 1 542 10 6 0 68 9 5 8 9 8 14 603 13 2 0 83 1 0 5.1 82 6 673 11.6 0.85 11 4 65 79 6 567 9 69 0 77 12 5 97 79 1 479 12 8 0 8 13 3.33 77 9 56 1 5 58 0 62 14 6 38 83 6 17 16 1 0 93 15 6.36 84.9 696 11.3 0.66 17 4 99 8 1 3 589 12 9 0 96 18 5 41 8 1 9 5 70 15 4 1 0 5 2 1 4 3 80 6 786 13 1 1 13 22 3 88 8 1 795 12 3 1 18 23 4 09 8 3 1 856 11 7 1 06 24 3 66 8 1 9 898 12 5 1 2 7 25 4.44 84.8 998 14 1 17 26 4 82 87 7 8 84 12 4 0 95 硬度 HVHAZ同樣也在受熱影響區域焊接點的附近 測定,並且與不受熱影響之鹼金屬的硬度 Hvbasic比 -20 - (15)200401042 較,此等結果編列在表 3。 表3 實例 HB HVH AZ H VHAZ/HVbasic 1 3 9 3 5 5 0 1 2 7 3 3 95 492 1 13 5 402 5 5 5 1 26 6 403 45 8 1.03 9 402 5 77 13 1 10 420 5 9 1 1 28 11 3 90 527 1 23 12 3 7 5 462 1 12 13 3 70 500 1 23 14 420 5 77 1 25 15 43 5 5 77 1 21 17 3 93 5 3 8 1.24 18 402 5 16 1 17 2 1 3 93 7 17 1 66 22 402 708 1 6 23 42 5 726 1 5 5 24 4 10 75 1 1 6 7 2 5 42 5 795 1 7 26 43 5 689 1 58 此二表顯示了相似的硬度(HB )和相似的硬度係數 -21 - (16) (16)200401042Mo + W / 2 &lt; 1 5% V + Nb / 2 + Ta / 4 &lt; 0 2% The analytical composition must satisfy this equation: Μ 〇 # + 3 x V * 2 0 4%. To use this steel to make molds, the steel is manufactured by conventional methods, cast and hot rolled or hot forged and cut to obtain a steel block with a thickness of more than 20 mm, which may exceed 100 mm and reach 400 mm, if possible 600 mm or even 150 mm. It should be noted that the smallest thickness of steel blocks may be as thin as paper or large flat plates, while the largest thickness is usually forged chain steel blocks. The steel block is subject to circumstances, and the temperature is higher than AC3 and preferably lower than 9 50 ° C. During the exercise or hot rotation, Vossian iron is ironized, especially when the steel contains boron. Oil or water cooling depends on the thickness and hardenability of the steel to obtain a martensite or martensite-bainite structure. Finally, the steel blocks are forged at a temperature above 500 ° C, preferably at least 550 ° C, but must be less than AC :. The resulting hardness is approximately between 3 70 HB and U 4 50 HB. Among such steel blocks, mold parts including polished and optionally grained marks are mechanically cut in a conventional manner. Depending on the circumstances, these parts are surface hardened by, for example, gaseous nitriding. After the gas nitriding, the hardness of this steel is approximately 3 70 HB to 4 50 HB, except for the end of the part which has been nitrided. [Embodiment] (12) (12) 200401042 The following examples are used for comparison. The composition of the analyte is listed in Table 1. The Tr, Dr, U, R, and R / 2 of the analyte are listed in the table. 2. Examples 1, 3 '5, 6, 9 to 15, 5, 17 and 18 represent the present invention, while Examples 2 1 to 26 are used for comparison. This steel is not added with sulfur, selenium, tellurium, lead, bismuth, and calcium. However, these steels contain a small amount of sulfur from 0 0 10% to 0 2 0%. For all steels, the hardness HB has been measured in the exercise-quenched state. In other words, the martensite or martensite-bainite structure in all examples is at 550 T: the forged chain is the only example. 26 Forging at 625 ° C (13) 200401042 Table 1 Example C Si Mn Ni Cr Mo WVB * Al * Ti * N * 1 0 25 0 20 1 2 0 95 2 1 0 65 0 0 15 2 65 0 6 3 0 19 0 15 1 2 0 95 2 1 0 8 0 0 17 2 5 5 7 0 6 5 0 27 0 14 1 5 0 2 1 5 0 85 0 0 17 2 45 0 3 6 0 17 0 12 1 1 0 2 1 7 1 6 0 0 15 2 5 5 5 0 6 9 0 28 0 13 14 0 85 2 05 0 95 0 0 02 1 5 25 15 3 10 0 30 0 09 1 3 0 75 1 9 0 6 0 0 19 1 54 0 1 11 0 24 0 05 1 25 0 3 1 8 0 32 0 67 0 16 3 3 15 7 12 0 15 0 07 1 3 0 9 2 7 0 6 0 7 0 17 2 52 0 7 13 0 23 0 04 0.3 0 1 1.5 0.7 0 0 19 2 60 0 5 14 0 27 0.15 1.7 1 8 1 9 0 5 0 4 0 3 64 0 9 15 0 28 0 11 0 3 0 7 2 9 15 0.5 0 2 5 7 0 5 17 0.24 0 27 1 3 0 6 1 9 0 67 0 0 15 3 63 0 8 18 0.20 0 42 1 2 0 7 2 7 0 2 1 0 0.1 2 85 0 8 2 1 0.43 0.33 1 25 0 3 1 9 0 5 0 0 0 24 0 11 22 0 42 0 30 1 2 0 2 2 1 0 25 0 0 1 0 18 0 15 23 0.43 0 14 1 3 0 1 2 9 0 05 0 0 2 0 20 0 10 24 0 49 0 3 5 1 2 0 2 1 8 0 15 0 0 12 0 20 0 8 25 0 55 0 30 0 8 1 7 1 1 0 45 0 0 1 0 25 0 8 26 0 39 0 3 0 0 57 0 1 3 2 0 94 0 0 19 0 1 50 0 9 Boron, nitrogen, Qin, Ming, expressed in thousandths of a percent. (14) 200401042 Table 2 Examples Tr Dr u RR / 2,7Tr 1 5 24 80 9 5 8 5 13 0 92 3 5 3 7 8 1 549 12 5 0 86 5 4 72 80 9 6 11 10 9 0 85 6 5 74 8 1 1 542 10 6 0 68 9 5 8 9 8 14 603 13 2 0 83 1 0 5.1 82 6 673 11.6 0.85 11 4 65 79 6 567 9 69 0 77 12 5 97 79 1 479 12 8 0 8 13 3.33 77 9 56 1 5 58 0 62 14 6 38 83 6 17 16 1 0 93 15 6.36 84.9 696 11.3 0.66 17 4 99 8 1 3 589 12 9 0 96 18 5 41 8 1 9 5 70 15 4 1 0 5 2 1 4 3 80 6 786 13 1 1 13 22 3 88 8 1 795 12 3 1 18 23 4 09 8 3 1 856 11 7 1 06 24 3 66 8 1 9 898 12 5 1 2 7 25 4.44 84.8 998 14 1 17 26 4 82 87 7 8 84 12 4 0 95 The hardness HVHAZ is also measured near the welding point in the heat affected area, and compared with the hardness Hvbasic ratio of the alkali metal that is not affected by heat -20-(15) 200401042, these results are listed in table 3. Table 3 Examples HB HVH AZ H VHAZ / HVbasic 1 3 9 3 5 5 0 1 2 7 3 3 95 492 1 13 5 402 5 5 5 1 26 6 403 45 8 1.03 9 402 5 77 13 1 10 420 5 9 1 1 28 11 3 90 527 1 23 12 3 7 5 462 1 12 13 3 70 500 1 23 14 420 5 77 1 25 15 43 5 5 77 1 21 17 3 93 5 3 8 1.24 18 402 5 16 1 17 2 1 3 93 7 17 1 66 22 402 708 1 6 23 42 5 726 1 5 5 24 4 10 75 1 1 6 7 2 5 42 5 795 1 7 26 43 5 689 1 58 These two tables show similar hardness (HB) and similar Hardness coefficient -21-(16) (16) 200401042

Dr,根據本發明的鋼材相對於比較用的鋼材具有較好的可 機械切削性(較低的 U係數)。此外,因爲 HAZ硬 度較低且Η V H A Z / H v b a s i c的比率較低,本發明的鋼材 較適宜藉由焊接修補,特別是更適合用於修補後拋光。根 據本發明的鋼塊中,若碳含量低於或等於 〇 3 %時,以 HAZ HVHAZ計的硬度仍然會低於 65 0HV以及低於 600HV,若碳低於或等於 03% 時,HVHAZ / Hvbasic 的比率仍然會低於 1 5以及低於1 3。 再者,在大多數的範例中,淬冷性Tr相對於比較用 的鋼材更高,並且可超過 45,甚至到 5或 6,同時保 持其他方面好的性質,這使得所製造的鋼塊厚度可達到 1 5 00 mm,並且使該鋼塊的性質悉皆符合製造模具或金屬 加工零件所要求的水準。 此等鋼塊係適合用於製造塑料射出成形用模具的零件 或用於製造如輕合金等金屬用模具的零件。該鋼塊也適用 於製造金屬加工工具零件。Dr, the steel according to the present invention has better machinability (lower U-factor) than the comparative steel. In addition, because the hardness of HAZ is low and the ratio of Η V H A Z / H v b a s i c is low, the steel of the present invention is more suitable for repairing by welding, and is more suitable for polishing after repairing. In the steel block according to the present invention, if the carbon content is less than or equal to 0%, the hardness in terms of HAZ HVHAZ will still be less than 65 0HV and less than 600HV, and if the carbon is less than or equal to 03%, HVHAZ / Hvbasic The ratio will still be below 15 and below 13. Furthermore, in most examples, the quenchability Tr is higher than that of the comparative steel, and can exceed 45, or even 5 or 6, while maintaining other good properties, which makes the thickness of the ingot manufactured. It can reach 1 500 mm, and make the properties of the steel block meet the standards required for manufacturing molds or metal processing parts. These steel ingots are suitable for use in the production of parts for plastic injection molding dies or parts for metal dies such as light alloys. This steel block is also suitable for manufacturing metalworking tool parts.

Claims (1)

(1) (1)200401042 拾、申請專利範圍 1 一種鋼塊’其係用於製造塑料射出成形或金屬成 形用f吴具或用於製造金屬加工零件’該鋼塊具有大於20 mm的厚度,其結構爲完全地馬氏體或馬氏-貝氏體結 構,其所有點的硬度皆介於37〇 HB到45〇 JJB之間, 並且以重量°/。計,該鋼塊化學組成包括: 0 12% &lt; C &lt; 0 3 2% Si &lt; 0 8% Μη &lt; 2 5% Ni &lt; 3% Cr &lt; 3 5% Mo + W/2 &lt; 2 2% V + Nb/2 + Ta/4 &lt; 0 5% A1 &lt; 0.4% T i + Z r / 2 &lt; 0 1 % -硼,含量在 〇 0 0 0 5 % 到 〇 0 1 5 °/。之間, -視情況需要而添加硫、_和碲之中的一或多種元素,此 等元素的總量係低於或等於 02%, -視情況需要而添加鉛和鉍之中的一或多種元素,此等元 素的總量係低於或等於 02%, -視情況需要而添加鈣,含量低於或等於 01%, 剩餘物爲鐵和生產時產生之雜質,銅爲雜質,該鋼塊 的化學組成也符合以下的方程式: 3 2 &lt; Tr &lt; 6 5 -23 - (2) (2)200401042 77 &lt; Dr &lt; 85 U &lt; 850 Mo* + 3x V* &gt; 0 1% 式中,以 % 表示各含量如下: Tr = 1 8x C + 1 lx Μη + 0 7x Ni + 0 6x Cr + 1 6x Mo* + 0 5 Dr = 54x C° 2 5 + 2 4 5 x (Mo * + 3 x V*)° 3 0 + 1 5 8 x Mn + 0 74x Ni + 1 8x Si + 12 5x (Cr)0 20 U = 1 600x C + 1 OOx (0.25x Cr + Mo* + 4.5x V” R = 3 8x C + 1 Ox Si + 3 3 x Mn + 2 4x Ni + 1 4x (Cr + Mo*) Mo* = Mo + W/2 V* = V + Nb/2 + Ta/4 硼、鋁、鈦、鉻及氮的含量以重量%的千分之一表示 如下: B &gt; l/3x K1 + 0 5 K1 = Min (I* , J*) I* = Max (Ο,I)且 J* = Max (Ο,J) 1 = Min (N , N - 0 29 (Ti + Zr/2 - 5)) J = Min{N , 0 5 [N - 0 5 2 A1 + ((N - 0 5 2 Al)2 + 2 8 3 )1 /2 ] }。 2 如申請範圍第1項之鋼塊,其化學組成爲: R &gt; 11 3 如申請範圍第1或第2項之鋼塊,其中: -24 - (3) (3)200401042 R &lt; 20 4 如申請範圍第1項之鋼塊,其中 R &lt; 2 7x Tr 5 如 串 三 師 範 圍 第 1項之鋼塊 ,其中 矽 的 含量' 於 0 4 5 重: 量% ( 6 如 甲 二丰 目円 範 圍 第 1項之鋼塊, 其中 U &lt; 7 5 0。 7 如 串 三主 日円 範 圍 第 6項之鋼塊, 其中 U &lt; 700 ° 8 如 甲 三主 6円 範 圍 笛 7項之鋼塊, 其中 U &lt; 65 0 ° 9 如申 請範 ;圍 1第 ;6 至8項中任- 一項之 鋼 塊 ,其;(1) (1) 200401042 Scope of patent application 1 A steel block 'used to manufacture plastic injection molding or metal forming tools or used to manufacture metal processed parts' The steel block has a thickness greater than 20 mm, Its structure is completely martensite or martensite-bainite structure, and the hardness of all points is between 37 HB and 45 JPJB, and by weight ° /. In total, the chemical composition of the steel block includes: 0 12% &lt; C &lt; 0 3 2% Si &lt; 0 8% Μη &lt; 2 5% Ni &lt; 3% Cr &lt; 3 5% Mo + W / 2 &lt; 2 2% V + Nb / 2 + Ta / 4 &lt; 0 5% A1 &lt; 0.4% T i + Z r / 2 &lt; 0 1% -boron, content of 0 0 0 0 5% to 0 0 1 5 ° /. Between-one or more elements of sulfur, _ and tellurium are added as the case requires, the total amount of these elements is less than or equal to 02%,-one or more of lead and bismuth are added as the case requires A variety of elements, the total amount of these elements is less than or equal to 02%,-if necessary, calcium is added, the content is less than or equal to 01%, the remainder is iron and impurities produced during production, copper is an impurity, The chemical composition of the block also conforms to the following equation: 3 2 &lt; Tr &lt; 6 5 -23-(2) (2) 200401042 77 &lt; Dr &lt; 85 U &lt; 850 Mo * + 3x V * &gt; 0 1 % In the formula, each content is expressed in% as follows: Tr = 1 8x C + 1 lx Μη + 0 7x Ni + 0 6x Cr + 1 6x Mo * + 0 5 Dr = 54x C ° 2 5 + 2 4 5 x (Mo * + 3 x V *) ° 3 0 + 1 5 8 x Mn + 0 74x Ni + 1 8x Si + 12 5x (Cr) 0 20 U = 1 600x C + 1 OOx (0.25x Cr + Mo * + 4.5x V ”R = 3 8x C + 1 Ox Si + 3 3 x Mn + 2 4x Ni + 1 4x (Cr + Mo *) Mo * = Mo + W / 2 V * = V + Nb / 2 + Ta / 4 boron The content of aluminum, titanium, chromium and nitrogen in thousandths of a weight percent is expressed as follows: B &gt; l / 3x K1 + 0 5 K1 = Min (I *, J *) I * = Max (Ο, I) and J * = Max (Ο, J) 1 = Min (N, N-0 29 (Ti + Zr / 2-5)) J = Min {N, 0 5 [N-0 5 2 A1 + ((N-0 5 2 Al) 2 + 2 8 3) 1/2]}. 2 If the ingot of the application scope item 1, its chemical composition is: R &gt; 11 3 As the application scope item 1 Or the steel block of item 2, where: -24-(3) (3) 200401042 R &lt; 20 4 If the steel block of item 1 of the scope of application, where R &lt; 2 7x Tr 5 The ingot of the item, the content of silicon 'is less than 0 4 5 weight: the amount% (6 as in the second ingot of the second Erfeng Meng range, in which U &lt; 7 5 0. 7 For example, the steel block of item 6 in the range of the three main sundials, where U &lt; 700 ° 8 As for the steel block of item 7 of the range 3 of the main three sundial ranges, U &lt; 65 0 ° 9 As the application range; No. 6 to 8-steel block of any one, which; 0 220% &lt; C &lt; 0 320% Si &lt; 0 3 0% 0.3 % &lt; Μη &lt; 1 . 8 % Ni &lt; 2% 0 5% &lt; Cr &lt; 2 5% Mo + W/2 &lt; 1.8% V + Nb/2 + Ta/4 &lt; 0.3% Mo* + 3x V* &gt; 0 3% 10 如申請範圍第8項之鋼塊,其組成如下: 0 220% &lt; C &lt; 0 280% Si &lt; 0 15% 0 8% &lt; Μη &lt; 1 6% Ni &lt; 2% 1 % &lt; C r &lt; 2 5 % (4) (4)200401042 Mo + W/2 &lt; 1 5% V + Nb/2 + Ta/4 &lt; 0 2% Mo* + 3x V* &gt; 0 4% 11 如申請範圍第9項之鋼塊,其中 T r &gt;45。 12 如申請範圍第1 0項之鋼塊,其中 T r &gt;45。 13 一種以申請範圍第1至1 2項中任一項之鋼塊機械 切削而成之鋼模具零件,其至少一部分表面係藉由氮化而 硬化,且所有點的硬度皆介於3 70 HB到45 0HB之間。 -26 - 200401042 陸、(一)、本案指定代表圖為:第_圖 (二)、本代表圖之元件代表符號簡單說明: 柒、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案指定代表化學式為:第 化學式0 220% &lt; C &lt; 0 320% Si &lt; 0 3 0% 0.3% &lt; Μη &lt; 1.8% Ni &lt; 2% 0 5% &lt; Cr &lt; 2 5% Mo + W / 2 &lt; 1.8% V + Nb / 2 + Ta / 4 &lt; 0.3% Mo * + 3x V * &gt; 0 3% 10 If the steel block of the application scope item 8 has the following composition: 0 220% &lt; C &lt; 0 280% Si &lt; 0 15% 0 8% &lt; Μη &lt; 1 6% Ni &lt; 2% 1% &lt; C r &lt; 2 5% (4) (4) 200401042 Mo + W / 2 &lt; 1 5% V + Nb / 2 + Ta / 4 &lt; 0 2% Mo * + 3x V * &gt; 0 4% 11 As for the steel ingot in item 9 of the application scope, of which T r &gt; 45. 12 The steel ingot as described in item 10 of the scope of application, wherein T r &gt; 45. 13 A steel mold part mechanically cut from a steel block according to any one of the application scope 1 to 12, at least a part of the surface is hardened by nitriding, and the hardness of all points is between 3 70 HB To 45 0HB. -26-200401042 Lu, (a), the designated representative of this case is: Figure _ (b), the representative symbols of this representative diagram are briefly explained: 柒, if there is a chemical formula in this case, please reveal the chemical formula that can best show the characteristics of the invention : The chemical formula designated in this case is: the chemical formula
TW92107539A 2002-04-03 2003-04-02 Steel block for the manufacture of moulds for the injection moulding of plastics materials or for the manufacture of metal-working tools TW200401042A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0204114A FR2838137A1 (en) 2002-04-03 2002-04-03 STEEL FOR THE MANUFACTURE OF MOLDS FOR INJECTION MOLDING OF PLASTIC MATERIALS OR FOR THE MANUFACTURE OF TOOLS FOR THE WORKING OF METALS

Publications (1)

Publication Number Publication Date
TW200401042A true TW200401042A (en) 2004-01-16

Family

ID=28052056

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92107539A TW200401042A (en) 2002-04-03 2003-04-02 Steel block for the manufacture of moulds for the injection moulding of plastics materials or for the manufacture of metal-working tools

Country Status (5)

Country Link
AR (1) AR039236A1 (en)
AU (1) AU2003258843A1 (en)
FR (1) FR2838137A1 (en)
TW (1) TW200401042A (en)
WO (1) WO2003083154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831587A (en) * 2014-02-11 2014-06-04 马鞍山市恒毅机械制造有限公司 Electric upsetting type steel pull rod end forging process

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2286948B1 (en) * 2006-05-25 2008-08-16 Matz-Erreka, S.Coop ELEMENT OF THREADED STEEL FIXED TO THE BORO.
ES2293837B1 (en) * 2006-07-31 2009-04-01 Sidenor Industrial, S.L. MANUFACTURING PROCESS OF A STEEL, AND STEEL OBTAINED IN THIS PROCESS.
DE202012003298U1 (en) * 2012-03-30 2012-06-14 Buderus Edelstahl Gmbh Starting material for plastic molds or plastic mold
CA2942442C (en) * 2014-03-18 2022-12-13 Innomaq 21, Sociedad Limitada Extremely high conductivity low cost steel
CN105063512A (en) * 2015-08-26 2015-11-18 山西太钢不锈钢股份有限公司 Plastic die steel and manufacturing method thereof
TWI756226B (en) 2016-06-30 2022-03-01 瑞典商伍德赫爾恩股份有限公司 A steel for a tool holder
SE540108C2 (en) * 2016-09-26 2018-03-27 Uddeholms Ab Hot work tool steel
US10760150B2 (en) * 2018-03-23 2020-09-01 General Electric Company Martensitic alloy component and process of forming a martensitic alloy component
CN108714683B (en) * 2018-04-17 2020-05-08 常熟市虹桥铸钢有限公司 Preparation method of double-gate plate casting for petroleum machinery
CN108467999B (en) * 2018-04-27 2019-10-29 天长市协正塑业有限公司 A kind of high tougness die steel for plastics and its production method
JP7167483B2 (en) * 2018-05-15 2022-11-09 大同特殊鋼株式会社 Steel for die casting molds and die casting molds
TWI726451B (en) * 2019-10-21 2021-05-01 晟銘電子科技股份有限公司 Preparing method of molded article having nitrided layer and molded article thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392982B (en) * 1989-04-24 1991-07-25 Boehler Gmbh MARTENSITABLE STEEL
JP2881869B2 (en) * 1989-12-06 1999-04-12 大同特殊鋼株式会社 Steel for plastic molds with excellent weldability
FR2726287B1 (en) * 1994-10-31 1997-01-03 Creusot Loire LOW ALLOY STEEL FOR THE MANUFACTURE OF MOLDS FOR PLASTICS OR FOR RUBBER
JPH08165542A (en) * 1994-12-08 1996-06-25 Daido Steel Co Ltd Steel for metal mold for plastic molding, excellent in weldability
FR2729974B1 (en) * 1995-01-31 1997-02-28 Creusot Loire HIGH DUCTILITY STEEL, MANUFACTURING PROCESS AND USE
FR2745587B1 (en) * 1996-03-01 1998-04-30 Creusot Loire STEEL FOR USE IN PARTICULAR FOR THE MANUFACTURE OF MOLDS FOR INJECTION OF PLASTIC MATERIAL
FR2748036B1 (en) * 1996-04-29 1998-05-22 Creusot Loire LOW ALLOYED STEEL FOR THE MANUFACTURE OF MOLDS FOR PLASTIC MATERIALS
SE506918C2 (en) * 1996-06-26 1998-03-02 Uddeholm Tooling Ab Steel alloy, steel product made from the alloy and use of the alloy / product
FR2764308B1 (en) * 1997-06-04 1999-07-23 Thyssen France Sa PROCESS FOR THE MANUFACTURE OF A STEEL FOR LARGE DIMENSION MOLDS
CA2323952A1 (en) * 1999-01-28 2000-08-03 Yasutaka Okada Machine structural steel product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831587A (en) * 2014-02-11 2014-06-04 马鞍山市恒毅机械制造有限公司 Electric upsetting type steel pull rod end forging process

Also Published As

Publication number Publication date
FR2838137A1 (en) 2003-10-10
AR039236A1 (en) 2005-02-09
AU2003258843A1 (en) 2003-10-13
WO2003083154A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
JP4323324B2 (en) Large steel for producing injection molds for plastic materials or for manufacturing parts for metalworking
RU2379180C2 (en) Stainless martensitic steel for moulds and frames of moulds for casting under pressure
EP2218802B1 (en) Steel for mold for plastic molding and mold for plastic molding
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
TW200401042A (en) Steel block for the manufacture of moulds for the injection moulding of plastics materials or for the manufacture of metal-working tools
JP2007197784A (en) Alloy steel
CN1659299A (en) Cold work steel and cold work tool
JP2015101789A (en) Method for producing plastic molds from martensitic chromium steel and plastic molds
JP2004503677A (en) Steel alloys, plastic forming tools and tough hardened blanks for plastic forming tools
CN1671876A (en) Steel and mould tool for plastic materials made of the steel
CN102888567A (en) Pre-hardening steel used for mold for plastic molding
KR20020066990A (en) Steel for plastic moulds and method for the thermal treatment thereof
CN102732793A (en) Cold work tool steel
JP2017512253A (en) Stainless steel for plastic mold and its stainless steel mold
JP5641298B2 (en) Manufacturing method of steel for plastic molding dies
JPH11335782A (en) Steel for plastic molding die
JP5046398B2 (en) High nitrogen martensitic stainless steel
JP2018119177A (en) Hot tool steel excellent in thermal conductivity
RU2430186C2 (en) Heat-resistant steel
JP2007002333A5 (en)
KR20020001933A (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP2018131654A (en) Hot work tool steel having excellent toughness and softening resistance
JP2012149277A (en) Method for manufacturing steel for plastic molding die
JP2004277818A (en) Free cutting steel for metal mold for molding plastic
JP6177694B2 (en) Steel for cold press dies