JP2005200340A - Method for producing monocarboxylic acid - Google Patents

Method for producing monocarboxylic acid Download PDF

Info

Publication number
JP2005200340A
JP2005200340A JP2004007738A JP2004007738A JP2005200340A JP 2005200340 A JP2005200340 A JP 2005200340A JP 2004007738 A JP2004007738 A JP 2004007738A JP 2004007738 A JP2004007738 A JP 2004007738A JP 2005200340 A JP2005200340 A JP 2005200340A
Authority
JP
Japan
Prior art keywords
producing
reaction
monocarboxylic acid
hydrothermal
lower monocarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004007738A
Other languages
Japanese (ja)
Other versions
JP4501028B2 (en
Inventor
Heiji Enomoto
兵治 榎本
Houmei Kin
放鳴 金
Toshio Tojima
寿夫 東島
Hisanori Kishida
央範 岸田
Takehiko Moriya
武彦 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Zosen Corp
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Zosen Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP2004007738A priority Critical patent/JP4501028B2/en
Publication of JP2005200340A publication Critical patent/JP2005200340A/en
Application granted granted Critical
Publication of JP4501028B2 publication Critical patent/JP4501028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a lower monocarboxylic acid such as acetic acid, formic acid, etc., in a higher yield. <P>SOLUTION: The method for producing a lower monocarboxylic acid comprises subjecting an organic substance to oxidative decomposition by hydrothermal oxidation reaction. In the production method, a monocarboxylic acid is formed by decomposing an organic substance by hydrothermal reaction in the presence of an alkali catalyst under conditions of limited supply of oxygen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機物、特に糖類、例えばセルロース、澱粉等の多糖類やグルコースなどの単糖類から乳酸、酢酸、ギ酸等の低級モノカルボン酸を製造する方法に関する。本発明により、このような糖類を多く含む有機廃棄物を処理して有効利用することができる。   The present invention relates to a method for producing lower monocarboxylic acids such as lactic acid, acetic acid and formic acid from organic substances, particularly saccharides such as polysaccharides such as cellulose and starch, and monosaccharides such as glucose. According to the present invention, organic waste containing a large amount of such saccharides can be treated and effectively used.

家庭から排出される生ごみなどの一般廃棄物は、日本では年間1500〜5000万トンに達している。また、欧米諸国と異なって厨芥の多いことが日本の一般廃棄物の特長ともいわれる。また、厨芥以外にも、水産業廃棄物であるカキ殻やホタテ殻などの処理困難なものが含まれ、その処理が課題となっている。   General waste such as garbage from households reaches 1,500 to 50 million tons per year in Japan. Also, it is said that Japanese municipal waste is characterized by a large amount of soot, unlike in Europe and the United States. In addition to cocoons, oyster shells and scallop shells, which are fishery industry waste, are difficult to treat, and their treatment is an issue.

一方、路面凍結抑制剤として主に塩化カルシウムあるいは塩化ナトリウムが使用されているが、塩害の顕在化が懸念されている。塩害防止のため、塩化ナトリウムや塩化カルシウム系の路面凍結抑制剤に替わるものとして、酢酸カルシウム、酢酸マグネシウム系の路面凍結抑制剤(CMA)がある。CMAは路面凍結抑制に効果的である上に、道路施設や橋梁破損の原因となる腐食を抑制し、環境を汚染せず生態系にやさしい等の特性を有していることから、国内では札幌市や飛行場で使用されているが、価格が高価なため一般への普及は進んでいない。CMAが高価なのは、酢酸を安価に製造する技術が開発されていないことによる。   On the other hand, calcium chloride or sodium chloride is mainly used as a road surface freezing inhibitor, but there is concern about the manifestation of salt damage. In order to prevent salt damage, there are calcium acetate and magnesium acetate type road surface freezing inhibitors (CMAs) as alternatives to sodium chloride and calcium chloride type road surface freezing inhibitors. CMA is effective in suppressing road surface freezing, and also has the characteristics that it suppresses corrosion that causes damage to road facilities and bridges, and does not pollute the environment and is friendly to the ecosystem. Although it is used in cities and airfields, it is not widely used due to its high price. The reason why CMA is expensive is that a technique for producing acetic acid at low cost has not been developed.

本発明者らは先に超臨界水酸化反応を用いた有機廃棄物の処理方法を提案した(特許文献1参照)。この方法によると、有機物を含む水溶液を超臨界状態に保ち、その中に空気を吹き込むことで、超臨界酸化分解を行い、その際の反応温度、反応時間を制御することにより、酢酸を選択的に生成することができる。このようにして得られた酢酸にカキ殻等をカルシウム/マグネシウム源として反応させることにより、酢酸カルシウム、酢酸マグネシウム系の環境融和型の凍結抑制剤を製造することができる。   The present inventors have previously proposed a method for treating organic waste using a supercritical water oxidation reaction (see Patent Document 1). According to this method, an aqueous solution containing an organic substance is kept in a supercritical state, air is blown into the supercritical oxidative decomposition, and acetic acid is selectively controlled by controlling the reaction temperature and reaction time. Can be generated. By reacting oyster shells or the like as a calcium / magnesium source with the acetic acid thus obtained, a calcium acetate-magnesium acetate-based environmentally compatible freeze inhibitor can be produced.

さらに、本発明者らはより温和な条件で酢酸を製造する目的で研究を重ね、水熱反応と水熱酸化反応の2段階反応を行うことで、より温和な条件で酢酸を製造する方法を提案した(特許文献2参照)。この方法によると、有機物は200℃〜350℃、5〜30MPaの熱水中で水熱分解(水熱反応)されると、主としてヒドロキシメチルフルフラール(5−HMF)とフルフラール(2−FA)が生成することが解明された。さらに、5−HMFと2−FAの水溶液を200℃〜350℃、5〜30MPaの熱水中で酸素を供給しながら、酸化反応(水熱酸化反応)させると、酢酸およびギ酸が生成することが解明された。5−HMFおよび2−FAは、酢酸やギ酸に変換しやすい中間生成物と考えられる。   Furthermore, the present inventors have repeatedly studied for the purpose of producing acetic acid under milder conditions, and conducted a two-stage reaction of hydrothermal reaction and hydrothermal oxidation reaction, thereby producing a method for producing acetic acid under milder conditions. Proposed (see Patent Document 2). According to this method, when an organic substance is hydrothermally decomposed (hydrothermal reaction) in hot water at 200 to 350 ° C. and 5 to 30 MPa, mainly hydroxymethylfurfural (5-HMF) and furfural (2-FA) are obtained. It was elucidated to produce. Furthermore, acetic acid and formic acid are produced when an aqueous solution of 5-HMF and 2-FA is subjected to an oxidation reaction (hydrothermal oxidation reaction) while supplying oxygen in hot water at 200 to 350 ° C. and 5 to 30 MPa. Has been elucidated. 5-HMF and 2-FA are considered as intermediate products that are easily converted into acetic acid and formic acid.

特許文献2の方法により有機物(セルロース系バイオマス)から酢酸を製造する反応経路を図8に示す。   FIG. 8 shows a reaction route for producing acetic acid from an organic substance (cellulosic biomass) by the method of Patent Document 2.

このようにして、セルロースから得られる酢酸収率は、単純に、有機物を水熱酸化反応させて得られる酢酸の収率より高く、セルロースの全炭素の20%に達した。しかし、酢酸、ギ酸等の低級モノカルボン酸を利用するという観点からは、より一層の収率向上が要求される。
特開2001−129508号公報 特開2003−145090号公報
In this way, the acetic acid yield obtained from cellulose was simply higher than the acetic acid yield obtained by hydrothermal oxidation of organic matter, reaching 20% of the total carbon of the cellulose. However, further improvement in yield is required from the viewpoint of using lower monocarboxylic acids such as acetic acid and formic acid.
JP 2001-129508 A JP 2003-145090 A

本発明は、このような従来技術の実状に鑑み、酢酸、ギ酸等の低級モノカルボン酸をより高収率で製造する方法を提供することを課題とする。   An object of the present invention is to provide a method for producing lower monocarboxylic acids such as acetic acid and formic acid in higher yields in view of the actual state of the prior art.

本発明の第1のものは、有機物を水熱酸化反応により酸化分解して低級モノカルボン酸を製造する方法において、酸素の供給を制限した条件下でアルカリ触媒の存在下に有機物を水熱反応により分解してモノカルボン酸を生成することを特徴とするモノカルボン酸の製造方法である。   The first aspect of the present invention is a method for producing a lower monocarboxylic acid by oxidatively decomposing an organic substance by a hydrothermal oxidation reaction, wherein the organic substance is subjected to a hydrothermal reaction in the presence of an alkali catalyst under a condition in which supply of oxygen is restricted. This is a method for producing a monocarboxylic acid, wherein the monocarboxylic acid is produced by decomposition by the method.

第2発明は、有機物を水熱酸化反応により酸化分解して低級モノカルボン酸を製造する方法において、酸素の供給を制限した条件下でアルカリ触媒の存在下に有機物を水熱反応により分解してモノカルボン酸を中間体として生成する第1工程と、次いで酸素を供給して水熱酸化反応により前記中間体から低級モノカルボン酸を生成する第2工程とを含むことを特徴とする低級モノカルボン酸の製造方法である。   The second invention is a method for producing a lower monocarboxylic acid by oxidatively decomposing an organic substance by a hydrothermal oxidation reaction, wherein the organic substance is decomposed by a hydrothermal reaction in the presence of an alkali catalyst under conditions where oxygen supply is restricted. A lower monocarboxylic acid comprising a first step of producing a monocarboxylic acid as an intermediate, and then a second step of supplying oxygen and producing a lower monocarboxylic acid from the intermediate by a hydrothermal oxidation reaction It is a manufacturing method of an acid.

第1および第2発明の出発原料である有機物は、糖類、例えばセルロース系バイオマス、澱粉等の多糖類やグルコースなどの単糖類であってよい。また、有機物は厨芥類のような有機廃棄物に含まれるものであってもよい。有機物が上記のような糖類である場合、第1発明で得られるモノカルボン酸、および第2発明で中間体として得られるモノカルボン酸は、乳酸、または乳酸を主成分とする水溶性有機物である。   The organic substance that is the starting material of the first and second inventions may be a saccharide, for example, a polysaccharide such as cellulosic biomass or starch, or a monosaccharide such as glucose. The organic matter may be contained in organic waste such as moss. When the organic substance is a saccharide as described above, the monocarboxylic acid obtained in the first invention and the monocarboxylic acid obtained as an intermediate in the second invention are lactic acid or a water-soluble organic substance containing lactic acid as a main component. .

第2発明で得られる低級モノカルボン酸は上記中間体より低級の例えば酢酸、ギ酸である。   The lower monocarboxylic acid obtained in the second invention is, for example, acetic acid or formic acid lower than the above intermediate.

前記アルカリ触媒は、アルカリ金属またはアルカリ土類金属の水酸化物または炭酸塩であり、好ましくは水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸カリウム等である。前記アルカリ触媒は、また、貝殻、石灰岩、ドロマイトなどの自然界に存在するアルカリ性物質であってもよい。   The alkali catalyst is an alkali metal or alkaline earth metal hydroxide or carbonate, preferably calcium hydroxide, sodium hydroxide, potassium hydroxide, calcium carbonate, sodium carbonate, potassium carbonate or the like. The alkaline catalyst may also be an alkaline substance existing in nature such as a shell, limestone, or dolomite.

前記第1工程の水熱反応の条件は、好ましくは温度200〜450℃、圧力5〜40MPa、反応時間0.1〜10分、より好ましくは温度200〜350℃、圧力5〜30MPa、反応時間0.5〜5分である。酸素の供給を制限した条件とは酸素供給率が実質的に0%であることを意味する。酸素供給率とは、原料有機物中の炭素全量を二酸化炭素に変換するのに要する酸素量(100%)に対する割合である。   The conditions for the hydrothermal reaction in the first step are preferably a temperature of 200 to 450 ° C., a pressure of 5 to 40 MPa, a reaction time of 0.1 to 10 minutes, more preferably a temperature of 200 to 350 ° C., a pressure of 5 to 30 MPa, and a reaction time. 0.5-5 minutes. The condition that restricts the supply of oxygen means that the oxygen supply rate is substantially 0%. The oxygen supply rate is a ratio with respect to the oxygen amount (100%) required for converting the total amount of carbon in the raw organic material into carbon dioxide.

前記第2工程の水熱酸化反応は、温度200〜450℃、圧力5〜40MPa、酸素供給率30%以上、反応時間0.1〜10分の条件下で行われる。望ましくは、温度200〜350℃、圧力5〜30MPa、酸素供給率30〜100%、反応時間0.5〜5分の条件下で行われる
本発明方法により有機物(セルロース系バイオマス)から低級モノカルボン酸(酢酸、ギ酸)を製造する反応経路を図1に示す。
The hydrothermal oxidation reaction in the second step is performed under conditions of a temperature of 200 to 450 ° C., a pressure of 5 to 40 MPa, an oxygen supply rate of 30% or more, and a reaction time of 0.1 to 10 minutes. Preferably, it is carried out under the conditions of a temperature of 200 to 350 ° C., a pressure of 5 to 30 MPa, an oxygen supply rate of 30 to 100%, and a reaction time of 0.5 to 5 minutes. A reaction route for producing an acid (acetic acid, formic acid) is shown in FIG.

第1発明、すなわち第2発明の第1工程で、有機物として糖類、例えばセルロース系バイオマス、澱粉等の多糖類やグルコースなどの単糖類を上記条件で水熱反応に付して分解するに当たり、熱水溶液をアルカリ性に保つことで、主として乳酸が生成する。乳酸は5−HMFおよび2−FAよりも酢酸に変換し易い化合物であり、第2発明の第2工程で乳酸を上記条件で熱水中に酸素を供給しつつ酸化反応(水熱酸化反応)に付すことで、従来技術より高い収率で酢酸、ギ酸等の低級モノカルボン酸を得ることができる。   In the first process of the first invention, that is, the first process of the second invention, in order to decompose saccharides such as polysaccharides such as cellulosic biomass and starch and monosaccharides such as glucose by hydrothermal reaction under the above conditions, By keeping the aqueous solution alkaline, lactic acid is mainly produced. Lactic acid is a compound that is more easily converted to acetic acid than 5-HMF and 2-FA, and in the second step of the second invention, lactic acid is oxidized under the above conditions while supplying oxygen to hot water (hydrothermal oxidation reaction). As a result, lower monocarboxylic acids such as acetic acid and formic acid can be obtained in a higher yield than the prior art.

このようにして得られた酢酸およびギ酸、並びに中間体として得られた乳酸は種々の化学品の製造原料として利用できる。また、酢酸およびギ酸は環境融和型の凍結抑制剤の原料にも使用できる。また、本発明により、このような糖類を多く含む厨芥類廃棄物を処理して有効利用することができる。   Acetic acid and formic acid thus obtained and lactic acid obtained as an intermediate can be used as raw materials for various chemical products. Acetic acid and formic acid can also be used as raw materials for environmentally compatible freeze inhibitors. Further, according to the present invention, it is possible to treat and effectively use such waste waste containing a large amount of sugars.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実施例1
(反応装置)
実験装置には、ステンレス製の密閉反応容器(内容積6cm )を用いた。反応器の加熱には溶融塩恒温槽を用いた。
Example 1
(Reactor)
A stainless steel sealed reaction vessel (internal volume 6 cm 3 ) was used as the experimental apparatus. A molten salt thermostat was used for heating the reactor.

(操作条件)
原料と、純水と、水熱反応ではアルカリ試薬として水酸化カルシウムとを反応容器に入れて同容器を密閉し、温度200〜350℃、反応時間0.5〜5分、酸素供給率0〜100%の条件で反応を行った。酸素の供給は過酸化水素を用いて行った。
(Operating conditions)
In raw material, pure water, and hydrothermal reaction, calcium hydroxide as an alkali reagent is put in a reaction vessel and the vessel is sealed, temperature 200 to 350 ° C., reaction time 0.5 to 5 minutes, oxygen supply rate 0 to The reaction was performed at 100% condition. Oxygen was supplied using hydrogen peroxide.

(水熱反応(第1工程)の実験操作)
反応容器に0.2Mの水酸化カルシウム水溶液1.8mlと原料としてグルコース0.067gを入れ、反応温度300℃、反応時間0.5分、酸素供給率0%の条件で水熱反応させた。得られた反応混合物を液体クロマト分析装置(HPLC)で分析した。このHPLCクロマトグラムを図2に示す。この分析結果より、グルコースから乳酸が生成していることが確認された。
(Experimental operation of hydrothermal reaction (first step))
A reaction vessel was charged with 1.8 ml of a 0.2 M aqueous calcium hydroxide solution and 0.067 g of glucose as a raw material, and subjected to a hydrothermal reaction under the conditions of a reaction temperature of 300 ° C., a reaction time of 0.5 minutes, and an oxygen supply rate of 0%. The obtained reaction mixture was analyzed with a liquid chromatography analyzer (HPLC). The HPLC chromatogram is shown in FIG. From this analysis result, it was confirmed that lactic acid was produced from glucose.

グルコース0.067gを0.32Mの水酸化カルシウム水溶液中で、反応温度300℃〜400℃、反応時間0.5〜3分間、酸素供給率0%の条件で水熱反応させた。生じた乳酸の収率を図3に示す。乳酸収率は、下記式で求めた値である。   0.067 g of glucose was hydrothermally reacted in a 0.32 M calcium hydroxide aqueous solution under the conditions of a reaction temperature of 300 ° C. to 400 ° C., a reaction time of 0.5 to 3 minutes, and an oxygen supply rate of 0%. The yield of lactic acid produced is shown in FIG. The lactic acid yield is a value determined by the following formula.

乳酸収率=(生成した乳酸中の炭素重量)/(試料中の炭素重量)×100
図3から分かるように、乳酸収率は、反応温度300℃〜340℃で反応時間1分のとき最大で約50%であった。反応時間が長くなると乳酸収率は低下した。反応温度400℃では、反応時間0.5分以上で乳酸収率は35%以下であった。
Lactic acid yield = (carbon weight in produced lactic acid) / (carbon weight in sample) × 100
As can be seen from FIG. 3, the yield of lactic acid was about 50% at the maximum when the reaction temperature was 300 ° C. to 340 ° C. and the reaction time was 1 minute. The lactic acid yield decreased with increasing reaction time. At a reaction temperature of 400 ° C., the lactic acid yield was 35% or less after a reaction time of 0.5 minutes or longer.

(水熱酸化反応(第2工程)の実験操作)
乳酸を反応温度300℃、酸素供給率70%、反応時間0.5〜2分で水熱酸化反応させた。得られた有機酸すなわち低級モノカルボン酸の収率を図4に示す。
(Experimental operation of hydrothermal oxidation reaction (2nd step))
Lactic acid was subjected to a hydrothermal oxidation reaction at a reaction temperature of 300 ° C., an oxygen supply rate of 70%, and a reaction time of 0.5 to 2 minutes. The yield of the obtained organic acid, that is, the lower monocarboxylic acid is shown in FIG.

低級モノカルボン酸の収率および酸素供給率は、下記式で求めた値である。   The yield and oxygen supply rate of the lower monocarboxylic acid are values determined by the following formula.

低級モノカルボン酸収率=(生成した低級モノカルボン酸中の炭素重量)/(乳酸試料中の炭素重量)
酸素供給率=(供給した酸素重量)/
(乳酸試料中の炭素を完全燃焼するのに要する酸素重量)
図4から分かるように、反応時間1分のとき最大で42%の酢酸が生成した。また、反応温度300℃、反応時間1分、酸素供給率70%のとき、17%のギ酸が生成した。
Lower monocarboxylic acid yield = (carbon weight in produced lower monocarboxylic acid) / (carbon weight in lactic acid sample)
Oxygen supply rate = (weight of supplied oxygen) /
(Oxygen weight required to completely burn carbon in lactic acid sample)
As can be seen from FIG. 4, a maximum of 42% acetic acid was formed when the reaction time was 1 minute. When the reaction temperature was 300 ° C., the reaction time was 1 minute, and the oxygen supply rate was 70%, 17% formic acid was produced.

実施例2
実施例1のものと同じ反応容器に、グルコース0.067gと0.32Mの水酸化カルシウム水溶液1.8mlを入れて容器を密閉し、酸素供給率0%、温度300℃、反応時間1分の条件で水熱反応を行った。次いで、容器を開放し、過酸化水素を酸素供給率が70%になるように供給し、再び容器を密閉し、温度300℃、反応時間1分の条件で水熱酸化反応を行った。
Example 2
In the same reaction vessel as that of Example 1, 0.067 g of glucose and 1.8 ml of 0.32M calcium hydroxide aqueous solution were put, and the vessel was sealed, oxygen supply rate 0%, temperature 300 ° C., reaction time 1 minute. Hydrothermal reaction was performed under the conditions. Next, the container was opened, hydrogen peroxide was supplied so that the oxygen supply rate was 70%, the container was sealed again, and a hydrothermal oxidation reaction was performed under conditions of a temperature of 300 ° C. and a reaction time of 1 minute.

得られた反応混合物をHPLCで分析した。酢酸の収率は27%であった。こうして得られた酢酸には乳酸を経由しなかったものも含まれている。   The resulting reaction mixture was analyzed by HPLC. The acetic acid yield was 27%. The acetic acid obtained in this way includes those that did not go through lactic acid.

比較例1
水酸化カルシウムを用いない点を除いて実施例1の水熱反応(第1工程)と同様に、反応温度300℃、反応時間1分の条件で、グルコースの水熱反応を行った。得られた反応混合物をHPLCで分析した。このHPLCクロマトグラムを図5に示す。この分析結果より、実施例1とは異なり、グルコースからヒドロキシメチルフルフラール(5−HMF)およびフルフラール(2−FA)が主に生成していることが確認された。グルコースからの5−HMFおよび2−FAの収率は、それぞれ20%、25%であった。
Comparative Example 1
Similar to the hydrothermal reaction of Example 1 (first step) except that calcium hydroxide was not used, a hydrothermal reaction of glucose was performed under the conditions of a reaction temperature of 300 ° C. and a reaction time of 1 minute. The resulting reaction mixture was analyzed by HPLC. The HPLC chromatogram is shown in FIG. From this analysis result, unlike Example 1, it was confirmed that hydroxymethylfurfural (5-HMF) and furfural (2-FA) were mainly produced from glucose. The yields of 5-HMF and 2-FA from glucose were 20% and 25%, respectively.

5−HMFおよび2−FAの収率は、下記式で求めた値である。   The yields of 5-HMF and 2-FA are values determined by the following formula.

5−HMFおよび2−FAの収率=(5−HMFまたは2−FA中の炭素重量)
/(試料中の炭素重量)×100
つぎに、実施例1の水熱酸化反応(第2工程)と同様に、反応温度300℃、酸素供給率70%、反応時間1分の条件で、5−HMFおよび2−FAの水熱酸化反応を行った。5−HMFおよび2−FAからの酢酸の収率は、それぞれ18%および23%であった。
Yield of 5-HMF and 2-FA = (carbon weight in 5-HMF or 2-FA)
/ (Carbon weight in sample) × 100
Next, similarly to the hydrothermal oxidation reaction of Example 1 (second step), hydrothermal oxidation of 5-HMF and 2-FA under the conditions of a reaction temperature of 300 ° C., an oxygen supply rate of 70%, and a reaction time of 1 minute. Reaction was performed. Acetic acid yields from 5-HMF and 2-FA were 18% and 23%, respectively.

比較例2
水熱反応で水酸化カルシウムを用いない点を除いて実施例2と同様の条件で操作を行った。得られた反応混合物をHPLCで分析した。酢酸の収率は15%であった。こうして得られた酢酸には5−HMFや2−FAを経由しなかったものも含まれている。
Comparative Example 2
The operation was performed under the same conditions as in Example 2 except that calcium hydroxide was not used in the hydrothermal reaction. The resulting reaction mixture was analyzed by HPLC. The acetic acid yield was 15%. Acetic acid obtained in this way includes those that did not go through 5-HMF or 2-FA.

比較例3
実施例1と同様に反応温度300℃、酸素供給率70%、反応時間1分の条件で、グルコースを直接、水熱酸化反応に付した。グルコースからの酢酸の収率は10%程度と低かった。
Comparative Example 3
Similarly to Example 1, glucose was directly subjected to a hydrothermal oxidation reaction under the conditions of a reaction temperature of 300 ° C., an oxygen supply rate of 70%, and a reaction time of 1 minute. The yield of acetic acid from glucose was as low as about 10%.

実施例2、比較例2および比較例3における酢酸収率は、それぞれ27%、15%および10%であり、実施例1により酢酸が高収率で得られることが実証された。   The acetic acid yields in Example 2, Comparative Example 2 and Comparative Example 3 were 27%, 15% and 10%, respectively, and it was demonstrated that Example 1 yielded acetic acid in a high yield.

実施例3
水酸化カルシウムの濃度を0.07〜0.32Mの範囲で変えて、反応温度300℃、反応時間0.5分間の条件で、実施例1の水熱反応(第1工程)と同様にグルコースの水熱反応を行った。得られた乳酸の収率を図6に示す。水酸化カルシウム濃度が高いほど、乳酸の収率も高くなった。
Example 3
In the same manner as in the hydrothermal reaction of Example 1 (first step), the concentration of calcium hydroxide was changed in the range of 0.07 to 0.32 M, and the reaction temperature was 300 ° C. and the reaction time was 0.5 minutes. The hydrothermal reaction was performed. The yield of the obtained lactic acid is shown in FIG. The higher the calcium hydroxide concentration, the higher the yield of lactic acid.

実施例4
酸素供給率を70%〜100%の範囲で変えて、高圧の水溶液中で、反応温度300℃、反応時間1分間の条件で、実施例1の水熱酸化反応(第2工程)と同様に乳酸の水熱酸化反応を行った。得られた酢酸の収率を図7に示す。酸素供給率が70%のとき酢酸の収率が最も高く42%であった。
Example 4
In the same manner as in the hydrothermal oxidation reaction (second step) of Example 1 under the conditions of a reaction temperature of 300 ° C. and a reaction time of 1 minute in a high-pressure aqueous solution by changing the oxygen supply rate in the range of 70% to 100%. A hydrothermal oxidation reaction of lactic acid was performed. The yield of the acetic acid obtained is shown in FIG. When the oxygen supply rate was 70%, the acetic acid yield was the highest and was 42%.

本発明方法により有機物(セルロース系バイオマス)から低級モノカルボン酸(酢酸、ギ酸)を製造する反応経路を示すフローシートである。It is a flow sheet which shows the reaction path | route which manufactures lower monocarboxylic acid (acetic acid, formic acid) from organic substance (cellulose biomass) by the method of this invention. 実施例1の水熱反応(第1工程)で得られた反応混合物のHPLCクロマトグラムである。2 is an HPLC chromatogram of the reaction mixture obtained in the hydrothermal reaction (first step) of Example 1. FIG. 実施例1の水熱反応(第1工程)における反応時間と乳酸の収率との関係を示すグラフである。3 is a graph showing the relationship between the reaction time in the hydrothermal reaction (first step) of Example 1 and the yield of lactic acid. 実施例1の水熱酸化反応(第2工程)における反応時間と有機酸すなわち低級モノカルボン酸の収率との関係を示すグラフである。2 is a graph showing the relationship between the reaction time in the hydrothermal oxidation reaction of Example 1 (second step) and the yield of an organic acid, that is, a lower monocarboxylic acid. 比較例1水熱反応(第1工程)で得られた反応混合物のHPLCクロマトグラムである。It is a HPLC chromatogram of the reaction mixture obtained by the comparative example 1 hydrothermal reaction (1st process). 実施例2における水酸化カルシウムの濃度と乳酸の収率との関係を示すグラフである。3 is a graph showing the relationship between the concentration of calcium hydroxide and the yield of lactic acid in Example 2. 実施例3における酸素供給率と酢酸の収率との関係を示すグラフである。It is a graph which shows the relationship between the oxygen supply rate in Example 3, and the yield of acetic acid. 従来技術により有機物(セルロース系バイオマス)から酢酸を製造する反応経路を示すフローシートである。It is a flow sheet which shows the reaction path | route which manufactures acetic acid from organic substance (cellulosic biomass) by a prior art.

Claims (7)

有機物を水熱酸化反応により酸化分解して低級モノカルボン酸を製造する方法において、酸素の供給を制限した条件下でアルカリ触媒の存在下に有機物を水熱反応により分解してモノカルボン酸を生成することを特徴とするモノカルボン酸の製造方法。   In a method for producing lower monocarboxylic acids by hydrolytic oxidation of organic substances by hydrothermal oxidation, monocarboxylic acids are produced by hydrothermal reaction of organic substances in the presence of an alkali catalyst under conditions where oxygen supply is restricted. A process for producing a monocarboxylic acid, characterized by comprising: 有機物を水熱酸化反応により酸化分解して低級モノカルボン酸を製造する方法において、酸素の供給を制限した条件下でアルカリ触媒の存在下に有機物を水熱反応により分解してモノカルボン酸を中間体として生成する第1工程と、次いで酸素を供給して水熱酸化反応により前記中間体から低級モノカルボン酸を生成する第2工程とを含むことを特徴とする低級モノカルボン酸の製造方法。   In a method for producing a lower monocarboxylic acid by oxidizing and decomposing an organic substance by hydrothermal oxidation reaction, the monocarboxylic acid is intermediately decomposed by hydrothermal reaction in the presence of an alkali catalyst under the condition where oxygen supply is limited. A method for producing a lower monocarboxylic acid, comprising: a first step of producing a product, and then a second step of supplying oxygen and producing a lower monocarboxylic acid from the intermediate by a hydrothermal oxidation reaction. 前記アルカリ触媒がアルカリ金属またはアルカリ土類金属の水酸化物または炭酸塩であることを特徴とする請求項1または2に記載の低級モノカルボン酸の製造方法。   The method for producing a lower monocarboxylic acid according to claim 1 or 2, wherein the alkali catalyst is an alkali metal or alkaline earth metal hydroxide or carbonate. 前記アルカリ触媒が自然界に存在するアルカリ性物質であることを特徴とする請求項1または2に記載の低級モノカルボン酸の製造方法。   The method for producing a lower monocarboxylic acid according to claim 1 or 2, wherein the alkali catalyst is an alkaline substance existing in nature. 前記中間体が乳酸を主成分とする水溶性有機物であることを特徴とする請求項1〜4のいずれかに記載の低級モノカルボン酸の製造方法。   The method for producing a lower monocarboxylic acid according to any one of claims 1 to 4, wherein the intermediate is a water-soluble organic substance containing lactic acid as a main component. 前記第1工程の水熱反応が、温度200〜450℃、圧力5〜40MPa、反応時間0.1〜10分、好ましくは温度200〜350℃、圧力5〜30MPa、反応時間0.5〜5分の条件下で行われることを特徴とする請求項1〜5のいずれかに記載の低級モノカルボン酸の製造方法。   The hydrothermal reaction in the first step is performed at a temperature of 200 to 450 ° C., a pressure of 5 to 40 MPa, a reaction time of 0.1 to 10 minutes, preferably a temperature of 200 to 350 ° C., a pressure of 5 to 30 MPa, and a reaction time of 0.5 to 5 The method for producing a lower monocarboxylic acid according to any one of claims 1 to 5, wherein the method is carried out under the condition of minutes. 前記第2工程の水熱酸化反応が、温度200〜450℃、圧力5〜40MPa、酸素供給率30〜100%、反応時間0.1〜10分、好ましくは温度200〜350℃、圧力5〜30MPa、酸素供給率30〜100%、反応時間0.5〜5分のの条件下で行われることを特徴とする請求項1〜7のいずれかに記載の低級モノカルボン酸の製造方法。
条件下で行われることを特徴とする請求項1〜7のいずれかに記載の低級モノカルボン酸の製造方法。
The hydrothermal oxidation reaction of the second step is performed at a temperature of 200 to 450 ° C., a pressure of 5 to 40 MPa, an oxygen supply rate of 30 to 100%, a reaction time of 0.1 to 10 minutes, preferably a temperature of 200 to 350 ° C. and a pressure of 5 to 5. The process for producing a lower monocarboxylic acid according to any one of claims 1 to 7, which is carried out under conditions of 30 MPa, an oxygen supply rate of 30 to 100%, and a reaction time of 0.5 to 5 minutes.
The process for producing a lower monocarboxylic acid according to any one of claims 1 to 7, which is carried out under conditions.
JP2004007738A 2004-01-15 2004-01-15 Method for producing acetic acid Expired - Fee Related JP4501028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004007738A JP4501028B2 (en) 2004-01-15 2004-01-15 Method for producing acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007738A JP4501028B2 (en) 2004-01-15 2004-01-15 Method for producing acetic acid

Publications (2)

Publication Number Publication Date
JP2005200340A true JP2005200340A (en) 2005-07-28
JP4501028B2 JP4501028B2 (en) 2010-07-14

Family

ID=34821295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007738A Expired - Fee Related JP4501028B2 (en) 2004-01-15 2004-01-15 Method for producing acetic acid

Country Status (1)

Country Link
JP (1) JP4501028B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001043A1 (en) * 2005-06-29 2007-01-04 Hitachi Zosen Corporation Process for production of lactic acid and equipment for the production
JP2007039368A (en) * 2005-08-02 2007-02-15 Kyoto Univ Organic acid and method for producing the same
JP2008120796A (en) * 2006-10-20 2008-05-29 National Institute Of Advanced Industrial & Technology Method for producing lactic acid
JP2008222569A (en) * 2007-03-08 2008-09-25 Osaka Industrial Promotion Organization Method for producing organic acid
WO2008120979A1 (en) * 2007-04-03 2008-10-09 Stichting Deltares Microbiologically induced carbonate precipitation
JP2008273915A (en) * 2007-05-07 2008-11-13 Tohoku Univ Method for producing formic acid by wet oxidation of biomass
JP2009263241A (en) * 2008-04-22 2009-11-12 National Institute Of Advanced Industrial & Technology Method of preparing lactic acid
JP2010158613A (en) * 2009-01-07 2010-07-22 Nippon Meat Packers Inc Subcritical water treating method
KR20130114776A (en) * 2012-04-10 2013-10-21 에스케이이노베이션 주식회사 The method for producing organic acids from biomass
LU91993B1 (en) * 2012-05-03 2013-11-04 D 01 P A C Holding Process for the conversion of glycerin to organic salts
JP2013540735A (en) * 2010-09-17 2013-11-07 ヨットバッハ ゲーエムベーハー Process for the catalytic production of formic acid
CN107746375A (en) * 2017-09-15 2018-03-02 上海交通大学 A kind of method of house refuse optional water thermal oxide conversion production formic acid
CN115819219A (en) * 2022-11-23 2023-03-21 昆明理工大学 Method for preparing formic acid by hydrothermal oxidation and catalysis of biomass through CuO

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829740B2 (en) 2005-06-29 2010-11-09 Heiji Enomoto Process for production of lactic acid and equipment for the production
JP4906720B2 (en) * 2005-06-29 2012-03-28 兵治 榎本 Lactic acid production method and lactic acid production apparatus
WO2007001043A1 (en) * 2005-06-29 2007-01-04 Hitachi Zosen Corporation Process for production of lactic acid and equipment for the production
JP2007039368A (en) * 2005-08-02 2007-02-15 Kyoto Univ Organic acid and method for producing the same
JP2008120796A (en) * 2006-10-20 2008-05-29 National Institute Of Advanced Industrial & Technology Method for producing lactic acid
JP2008222569A (en) * 2007-03-08 2008-09-25 Osaka Industrial Promotion Organization Method for producing organic acid
WO2008120979A1 (en) * 2007-04-03 2008-10-09 Stichting Deltares Microbiologically induced carbonate precipitation
JP2008273915A (en) * 2007-05-07 2008-11-13 Tohoku Univ Method for producing formic acid by wet oxidation of biomass
JP2009263241A (en) * 2008-04-22 2009-11-12 National Institute Of Advanced Industrial & Technology Method of preparing lactic acid
JP2010158613A (en) * 2009-01-07 2010-07-22 Nippon Meat Packers Inc Subcritical water treating method
JP2013540735A (en) * 2010-09-17 2013-11-07 ヨットバッハ ゲーエムベーハー Process for the catalytic production of formic acid
KR20130114776A (en) * 2012-04-10 2013-10-21 에스케이이노베이션 주식회사 The method for producing organic acids from biomass
KR101926193B1 (en) 2012-04-10 2018-12-07 에스케이이노베이션 주식회사 The method for producing organic acids from biomass
LU91993B1 (en) * 2012-05-03 2013-11-04 D 01 P A C Holding Process for the conversion of glycerin to organic salts
WO2013164301A1 (en) * 2012-05-03 2013-11-07 D.01 P.A.C. Holding Method for reacting glycerin to form organic salts
US9193658B2 (en) 2012-05-03 2015-11-24 D.01 P.A.C. Holding Method for reacting glycerin to form organic salts
RU2617420C2 (en) * 2012-05-03 2017-04-25 Д.01 П.А.С. Холдинг Method for reacting glycerol to form organic salts
CN107746375A (en) * 2017-09-15 2018-03-02 上海交通大学 A kind of method of house refuse optional water thermal oxide conversion production formic acid
CN107746375B (en) * 2017-09-15 2021-03-30 上海交通大学 Method for producing formic acid by selective hydrothermal oxidative conversion of household garbage
CN115819219A (en) * 2022-11-23 2023-03-21 昆明理工大学 Method for preparing formic acid by hydrothermal oxidation and catalysis of biomass through CuO

Also Published As

Publication number Publication date
JP4501028B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
He et al. Application of hydrothermal reaction in resource recovery of organic wastes
JP4501028B2 (en) Method for producing acetic acid
Hülsey Shell biorefinery: A comprehensive introduction
JP4604194B2 (en) Method for hydrolysis of cellulose using catalyst and method for producing glucose using catalyst
Sewsynker-Sukai et al. Recent developments in the application of kraft pulping alkaline chemicals for lignocellulosic pretreatment: Potential beneficiation of green liquor dregs waste
Fan et al. Catalytic gasification of dewatered sewage sludge in supercritical water: Influences of formic acid on hydrogen production
JP2007020555A (en) Method for hydrolyzing polysaccharide substance such as cellulose or the like
JP2010279255A (en) Method for saccharifying biomass
JP2010501460A (en) Method for producing ammonia and sulfuric acid from a liquid stream containing ammonium sulfate
Yek et al. Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water
RU2509833C2 (en) Method and device for hydrolysis of cellulosic material
JP2013014737A (en) Method for obtaining high-thermogenic fuel and high-performance organism-rearing agent from biomass
JP2007039368A (en) Organic acid and method for producing the same
JP5059650B2 (en) Method for producing monosaccharide or oligosaccharide from polysaccharide
CN106753504B (en) A kind of method of biomass liquefying production liquid fuel
JP5320636B2 (en) Paper sludge-derived water-soluble saccharide production apparatus and paper sludge-derived water-soluble saccharide production method
JP2005232116A (en) Method for producing lactic acid, 5-hydroxymethylfurfural and furfural
JP5207510B2 (en) Method for producing formic acid by wet oxidation of biomass
JP2007074993A (en) Method for saccharifying biomass containing hemicellulose and saccharide given by the same
JP2005200321A (en) Method for producing 5-hydroxymethylfurfural and furfural
CN109628128B (en) CO (carbon monoxide)2Method for preparing furfural by hydrothermal liquefaction of agricultural and forestry waste under atmosphere
Wang et al. Hydrothermal conversion of cellulose into organic acids with a CuO oxidant
JP2009029796A (en) Method and system for producing polysaccharide-derived compound
CN101157945B (en) Technique for preparing glycerin ester rich in polyunsaturated fatty acid
JP2006141244A (en) Method for saccharifying lignocellulose and the resultant saccharide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees