JP2005192610A - グルコース濃度測定装置 - Google Patents
グルコース濃度測定装置 Download PDFInfo
- Publication number
- JP2005192610A JP2005192610A JP2003435180A JP2003435180A JP2005192610A JP 2005192610 A JP2005192610 A JP 2005192610A JP 2003435180 A JP2003435180 A JP 2003435180A JP 2003435180 A JP2003435180 A JP 2003435180A JP 2005192610 A JP2005192610 A JP 2005192610A
- Authority
- JP
- Japan
- Prior art keywords
- light
- glucose concentration
- living body
- photodetector
- spectroscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*C1CC(CCC[Cn])CCC1 Chemical compound C*C1CC(CCC[Cn])CCC1 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
【課題】 非侵襲的なグルコース濃度測定において、低いコストで十分な分解能を確保して、測定精度を保持する。
【解決手段】 生体Aに照射する光を発生する光源2を有する光照射部3と、生体A表面に配置され生体A内で拡散あるいは透過した光を生体A外部において受光する受光部4と、該受光部4において受光された光を分光する分光器5と、該分光器5において分光された光を検出する光検出器6とを備え、前記光検出器6が複数備えられるとともに、前記分光器5において分光された光を各光検出器6に向けて分岐させる光分岐部7を備えるグルコース濃度測定装置1を提供する。
【選択図】 図1
Description
この発明は、グルコース濃度測定装置に関するものである。
従来、糖尿病の判断のために血中グルコース濃度測定が行われており、特に、糖尿病患者のインシュリン投与量を決定する血糖値を検査するために、グルコース濃度の測定が行われている。グルコース濃度の測定は、一般に、指や腕から採取した血液を直接分析することにより行われている。患者の体内における血液中のグルコース濃度は、食事の前後や運動後などの測定条件によって変化するため、正確な血糖値を得るためには、頻繁なグルコース濃度測定が必要である。
しかしながら、採血した血液を直接分析する上記方法は、グルコース濃度の測定の度に注射針等を刺して採血しなければならず、患者にかかる負担が大きいという問題がある。
しかしながら、採血した血液を直接分析する上記方法は、グルコース濃度の測定の度に注射針等を刺して採血しなければならず、患者にかかる負担が大きいという問題がある。
この問題を解決するために、指、腕、耳朶などの生体組織に対し、外部から近赤外光を照射して生体内で拡散させ、生体外に出射された光を検出する非侵襲的なグルコース濃度測定方法が提案されている(例えば、特許文献1参照。)。この特許文献1の方法は、複数本の発光ファイバと複数本の受光ファイバとを束ねて構成した光ファイババンドルを用意し、該光ファイババンドルを構成する各光ファイバの先端面を生体表面に接触状態に配置する。そして、ハロゲンランプから複数の発光ファイバに集光した近赤外光をそれら発光ファイバの先端面から照射することにより、生体内に入射させ、生体内において拡散されて生体表面から生体外に戻る光を複数の受光ファイバにおいて受光するとともに、受光された光のスペクトルを分析することによりグルコースの濃度を算出するものである。
特開2000−131322号公報(図3等)
特許文献1に示される方法は、受光ファイバにより受光した光を回折格子ユニットにより分光し、分光された光をアレイ型受光素子ユニットで受光する。アレイ型受光素子ユニットとしては、素子数が128素子、256素子または512素子のものがよく使われる。これらのアレイ型受光素子ユニットを比較すると、例えば、同じ波長帯域をこれらの素子で受光した場合には、256素子の受光素子ユニットが128素子の受光素子ユニットより2倍分解能がよい。また、512素子の受光素子ユニットは、256素子の受光素子ユニットの2倍の分解能を有している。しかしながら、512素子の受光素子ユニットは、256素子の受光素子ユニットと比較して、また、256素子の受光素子ユニットは128素子の受光素子ユニットと比較して、素子数が増加した分、急激にコストが高くなるという問題がある。
一方、生体内に含まれるグルコースは、水や脂肪などの他の成分に対し、極めて微量であるため、このグルコースの特徴をとらえて定量的な分析を行うには、分光器に高い分解能が要求されている。
この発明は上述した事情に鑑みてなされたものであって、低いコストで十分な分解能を確保して、測定精度を保持することができるグルコース濃度測定装置を提供することを目的とする。
上記目的を達成するために、この発明は、以下の手段を提供する。
請求項1に係る発明は、生体に照射する光を発生する光源を有する光照射部と、生体表面に配置され生体内で拡散あるいは透過した光を生体外部において受光する受光部と、該受光部において受光された光を分光する分光器と、該分光器において分光された光を検出する光検出器とを備え、前記光検出器が複数備えられるとともに、前記分光器において分光された光を各光検出器に向けて分岐させる光分岐部を備えるグルコース濃度測定装置を提供する。
請求項1に係る発明は、生体に照射する光を発生する光源を有する光照射部と、生体表面に配置され生体内で拡散あるいは透過した光を生体外部において受光する受光部と、該受光部において受光された光を分光する分光器と、該分光器において分光された光を検出する光検出器とを備え、前記光検出器が複数備えられるとともに、前記分光器において分光された光を各光検出器に向けて分岐させる光分岐部を備えるグルコース濃度測定装置を提供する。
この発明によれば、光照射部の光源から発せられた光が、生体に照射され、生体内において拡散あるいは透過した光が受光部により受光される。受光された光は分光器において分光され、光分岐部によって分岐されて複数の光検出器により検出される。すなわち、分光された光が、複数の光検出器により検出されるので、各光検出器には異なる波長帯域の光が検出されることになる。また、各光検出器に検出される光の波長帯域は、分光された全ての光を検出する場合と比較して十分に狭い波長帯域となっている。したがって、分解能の低い光検出器を用いても、精度を下げずに測定を行うことが可能となり、製品コストの低減を図ることができる。
上記発明においては、前記光分岐部が、前記分光器において分光された光の内、グルコースの吸収のある波長帯域の光を各光検出器に向かわせるものであることが好ましい。
このように構成することで、各光検出器に向かわせる光の波長帯域をさらに狭めることができ、光検出器の分解能を上げることなく測定精度を向上することが可能となる。
このように構成することで、各光検出器に向かわせる光の波長帯域をさらに狭めることができ、光検出器の分解能を上げることなく測定精度を向上することが可能となる。
また、上記発明において、各光検出器の感度を個別に設定可能とすることにより、その波長帯域で最もS/N比が高くなるように設定することが可能となり、測定精度をより向上することができる。
また、上記発明においては、前記受光部が複数の光ファイバからなり、該受光部を構成する複数の光ファイバが、前記分光器に向けて光を照射する照射端面を、分光器による分光方向に交差する方向に配列されていることとしてもよい。
この発明によれば、複数の光ファイバからの光が分光器に向けて照射され、それぞれ分光されて光検出器により検出される。この場合に、各光ファイバの照射端面が分光方向に交差する方向に配列されていることにより、光検出器においては広い検出面積で検出することが可能となる。その結果、光検出器の検出面積を有効利用してより多くの情報量を確保して測定精度を向上することが可能となる。
この発明によれば、複数の光ファイバからの光が分光器に向けて照射され、それぞれ分光されて光検出器により検出される。この場合に、各光ファイバの照射端面が分光方向に交差する方向に配列されていることにより、光検出器においては広い検出面積で検出することが可能となる。その結果、光検出器の検出面積を有効利用してより多くの情報量を確保して測定精度を向上することが可能となる。
また、上記発明においては、前記光分岐部が、分光器により分光された光の光路に配置され、分光器による分光方向に沿って異なる方向に傾斜する複数の反射面を備えるミラーからなることとしてもよい。
このように構成することで、分光方向に沿って配される異なる波長帯域の光がミラーの複数の反射面によって反射されて、異なる方向に配置されている光り検出器により検出される。したがって、簡易に波長帯域を分離し、測定精度を向上し、あるいは製品コストを低減することが可能となる。
このように構成することで、分光方向に沿って配される異なる波長帯域の光がミラーの複数の反射面によって反射されて、異なる方向に配置されている光り検出器により検出される。したがって、簡易に波長帯域を分離し、測定精度を向上し、あるいは製品コストを低減することが可能となる。
また、上記発明においては、前記光分岐部が、分光器により分光された光の光路に配置され、該光の一部を少なくとも1つの光検出器に向けて反射するミラーからなることとしてもよい。
この発明によれば、分光器により分光された光の少なくとも一部はミラーにより反射されて、少なくとも1つの光検出器により検出され、他の部分は、ミラーにより反射されることなくそのまま他の光検出器により検出される。これによっても、より簡易な構成で波長帯域ごとに異なる光検出器により検出を行うことが可能となる。
この発明によれば、分光器により分光された光の少なくとも一部はミラーにより反射されて、少なくとも1つの光検出器により検出され、他の部分は、ミラーにより反射されることなくそのまま他の光検出器により検出される。これによっても、より簡易な構成で波長帯域ごとに異なる光検出器により検出を行うことが可能となる。
また、本発明は、生体に照射する光を発生する光源を有する光照射部と、生体表面に配置され生体内で拡散あるいは透過した光を生体外部において受光する受光部と、該受光部において受光された光を分光する分光器と、該分光器において分光された光を検出する光検出器とを備え、前記分光器において分光された光を複数の光束に分離した後、分離された少なくとも2つの光束を同一の光検出器に指向させる光分岐部と、該光分岐部により分離された各光束を選択的に遮断可能なシャッタとを備えるグルコース濃度測定装置を提供する。
この発明によれば、分光器において分光された光は、光分岐部の作動により、複数の光束に分離された後に同一の光検出器に向かわせられる。そして、シャッタの作動により、光分岐部によって分離された各光束が選択的に光検出器に到達させられる。その結果、光検出器を単一のものとしても、上記と同様の作用を達成することが可能となり、より、簡易かつ低コストにグルコース濃度を測定することができる。
本発明に係るグルコース濃度測定装置によれば、高価な高分解能の光検出器を用いることなく、安価に精度よくグルコース濃度を測定することができるという効果がある。
以下、本発明の一実施形態に係るグルコース濃度測定装置について図面を参照して説明する。
本実施形態に係るグルコース濃度測定装置1は、図1に示されるように、生体Aに照射する光を発生する光源2を有する光照射部3と、生体A表面に配置され生体A内で拡散あるいは透過した光を生体A外部において受光する受光部4と、受光された光を分光する分光器5と、分光された光を検出する光検出器6とを備えている。また、本実施形態に係るグルコース濃度測定装置1は、光検出器6を2つ備えるとともに、分光器5において分光された光を各光検出器6に向けて分岐させる光分岐部7を備えている。
本実施形態に係るグルコース濃度測定装置1は、図1に示されるように、生体Aに照射する光を発生する光源2を有する光照射部3と、生体A表面に配置され生体A内で拡散あるいは透過した光を生体A外部において受光する受光部4と、受光された光を分光する分光器5と、分光された光を検出する光検出器6とを備えている。また、本実施形態に係るグルコース濃度測定装置1は、光検出器6を2つ備えるとともに、分光器5において分光された光を各光検出器6に向けて分岐させる光分岐部7を備えている。
光照射部3は、ハロゲンランプ等の光源2と、該光源2から発せられた光を集光する集光レンズ8と、集光された光を生体A表面まで導光する照射用光ファイバ9とを備えている。受光部4は、複数の受光用光ファイバ10を備えている。照射用光ファイバ9と受光用光ファイバ10とは、それぞれ図2に示されるように、中心に配される照射用光ファイバ9の周囲に所定の間隔をあけて複数配置された照射端面および受光端面を備え、照射プローブ11によって一体的に固定されている。照射プローブ11は、その先端面11aを生体A表面に密着させることにより、照射用光ファイバ9および受光用光ファイバ10の端面をそれぞれ生体A表面に密着させることができるようになっている。
前記分光器5は、図1に示す例では、例えば、グレーティングである。分光器(以下グレーティングという。)5は、受光用光ファイバ10によって受光された光を、該受光用光ファイバ10の照射端面10aから受光して反射する際に、光の波長に応じて回折角度を異ならせることで、受光された光を一方向に沿って分光することができるようになっている。図1中、符号12は、受光用光ファイバ10の照射端面10aから出射された光をグレーティング5に入射させるレンズである。
光検出器6は、例えば、PbSリニアアレイセンサ、あるいは、InGaAsリニアアレイセンサである。
光検出器6は、例えば、PbSリニアアレイセンサ、あるいは、InGaAsリニアアレイセンサである。
前記光分岐部7は、図1に示されるように、グレーティング5から出射された光の光軸に対して、異なる角度で傾斜配置された2つの反射面13a,13bを有するミラー13により構成されている。各反射面13a,13bは、グレーティング5による分光方向に沿って並んで配置されており、グレーティング5から出射された光を短い波長帯域の光と長い波長帯域の光とに分岐するようになっている。
各反射面13a,13bの傾斜角度は、グレーティング5からの光の光軸に対して±45°に設定されている。これにより、反射面13a,13bにおいて反射された光は、グレーティング5からの光の光軸に対して±90°の方向に反射されるようになっている。
また、上記2つの光検出器6は、前記ミラー13を挟んで対向配置されており、光軸を±90°曲げられた光をそれぞれ受光するようになっている。また、各光検出器6は、個別に感度の調整が可能である。
また、上記2つの光検出器6は、前記ミラー13を挟んで対向配置されており、光軸を±90°曲げられた光をそれぞれ受光するようになっている。また、各光検出器6は、個別に感度の調整が可能である。
このように構成された本実施形態に係るグルコース濃度測定装置1の作用について以下に説明する。
本実施形態に係るグルコース濃度測定装置1によれば、光源2から発せられた光は、集光レンズ8によって照射用光ファイバ9の端面に集光され、照射用光ファイバ9を介して測定プローブ11まで導光される。
本実施形態に係るグルコース濃度測定装置1によれば、光源2から発せられた光は、集光レンズ8によって照射用光ファイバ9の端面に集光され、照射用光ファイバ9を介して測定プローブ11まで導光される。
測定プローブ11の先端面11aを生体Aの表面に密着状態に配置しておくことにより、照射用光ファイバ9を通して導光されてきた光はその端面から生体A内に入射させられることになる。生体A内に入射された光は、入射方向に沿って生体A内を進行する間に、生体組織に衝突して拡散される。光は、通過する生体組織や体液の成分に応じて、特定の波長領域の光を吸収される。したがって、生体A内で拡散されることにより生体Aの表面に戻って生体A外に出射された光は、通過した生体組織や体液に応じた特定の波長領域の光量が低下していることになる。
生体A外に出射された光は、測定プローブ11によって生体A表面に密着状態に配されている受光用光ファイバ10の一端面において受光され、受光用光ファイバ10内を導光されて他端に配されている照射端面10aから出射される。照射端面10aにはレンズ12が対向配置されているので、出射された光はレンズ12によって集光されてグレーティング5に入射される。
グレーティング5に入射された光は、グレーティング5において分光された後にミラー13に入射される。ミラー13には、入射方向に対して異なる角度で傾斜した2つの反射面13a,13bが備えられているので、一の反射面13aによって反射された短い波長帯域の光は、その反射面13aに対向配置されている一の光検出器6に入射される。また、他の反射面13bによって反射された長い波長帯域の光は、その反射面13bに対向配置されている他の光検出器6に入射される。
すなわち、全ての波長帯域の光を、十分な分解能で検出するために、例えば、256個の素子を有するリニアアレイが必要であった場合に、本実施形態に係るグルコース濃度測定装置1によれば、当該256素子のリニアアレイに代えて、128素子のリニアアレイを2個用意すれば足りる。
具体的には、図3に示されるように、約1400nm〜約2400nmの波長帯域の光を検出するために256素子のリニアアレイによれば、1素子あたり約3.9nmの分解能を有する。これに対して、本実施形態に係るグルコース濃度測定装置によれば、上記波長帯域を約1400nm〜約1900nmと約1900nm〜約2400nmに分割し、それぞれ約500nmの波長帯域の光を半分の分解能の128素子のリニアアレイによって検出するので、上記256素子のリニアアレイを用いたときと同じ分解能を達成することができる。
しかしながら、256素子のリニアアレイは、128素子のリニアアレイと比較するとその価格は数倍以上である。したがって、本実施形態に係るグルコース濃度測定装置1のように、安価な128素子のリニアアレイを2個採用することにより、光検出器6に要するコストを大幅に削減することができるという効果がある。さらに、一方の光検出器6(図中光検出器1)の感度を、該一方の光検出器6(図中光検出器1)が測定する吸光度の測定範囲を含む値に調節し、他方の光検出器6(図中光検出器2)の感度を該他方の光検出器6(図中光検出器2)が測定する吸光度の測定範囲を含む値に調節することにより、測定精度をより向上させることができる。
なお、本実施形態に係るグルコース濃度測定装置1においては、ミラー13の反射面13a,13bおよびこれに対向する光検出器6をそれぞれ2個ずつ設けたが、これに代えて、3個以上設けてもよい。この場合に、さらに分解能の低い光検出器6を使用でき、それによってコスト削減効果が向上する可能性がある。
また、反射面13a,13bを2カ所有するミラー13を例に挙げ、グレーティング5から出射されてきた光を全て反射させる構成について説明したが、これに代えて、図4に示されるように、グレーティング5から出射された光束の一部をミラー14によって反射させ、他の部分を何ら光学系に通過させることなくそのまま他の光検出器6に入射させるようにしてもよい。このようにすることで、さらに構成を簡易化して、製品コストを下げることができる。
また、図5に示されるように、ミラー14の一部にハーフミラー部14aを設け、2つの光検出器6に入射させる光の波長帯域を重複させることにしてもよい。例えば、図6に示されるように、約1800〜1900nmの波長帯域を2つの光検出器6が両方とも受光するようにオーバーラップさせる。このようにすることで、2つの光検出器6からの検出信号を同一の信号として比較することが可能となる。
したがって、各光検出器6の感度を、各光検出器6が測定する吸光度の測定範囲を含む値に調節する際に、それぞれの波長帯域における最適な感度を採用することができ、それによって、測定精度をより向上させることができる。
したがって、各光検出器6の感度を、各光検出器6が測定する吸光度の測定範囲を含む値に調節する際に、それぞれの波長帯域における最適な感度を採用することができ、それによって、測定精度をより向上させることができる。
また、グレーティング5から出射されてきた光を全て光検出器6に入射させる構成について説明したが、これに代えて、図7に示されるように、グレーティング5から出射されたきた光の内、グルコース濃度の測定に必要な波長帯域A1,A2の光のみを光検出器6に入射させることにしてもよい。例えば、約1800nm〜約2000nmの波長帯域A3の光は、水による吸収が強すぎるために、グルコース濃度の測定に有用な情報を多く含んでいない。そこで、約1400nm〜約1800nmの波長帯域A1の光を一方の光検出器6に、約2000nm〜約2400nmの波長帯域A2の光を他方の光検出器6にそれぞれ入射させることにより、1つの光検出器6の受光する波長帯域を約400nmとすることができる。したがって、上記と同じ128素子のリニアアレイを2個使用した場合でも、1素子あたりの分解能を約3.125nmとすることができ、測定精度をさらに向上することができるという利点がある。
具体的には、例えば、図8に示されるように、不要な波長帯域A3にあわせて、ミラー15を一部切り欠いて、該切欠15aを通して不要な波長帯域A3の光を通過させることにより廃棄し、残りの波長帯域A1,A2に対応する光は反射面15b,15cにより光検出器6に向けて反射させることにしてもよい。また、図9に示されるように、一部に非反射処理、例えば、黒色塗料15dを塗布することにより、光検出器6への入射を防止することにしてもよい。
また、光源2として、ハロゲンランプを例に挙げて説明したが、これに限定されるものではなく、ハロゲンランプの他、キセノンランプ、メタルハライドランプ、高圧水銀ランプ、ASE(Amplified Spontaneous Emission)光源、SLD(Super Luminescence Diode)光源等でもよい。また、図10に示されるように、ASE光源やSLD光源等の広帯域光源16〜20を複数使用するとともに、各広帯域光源16〜20の波長帯域を異ならせておき、これらの広帯域光源16〜20からの光をマルチプレクサ21のような合波手段によって合波したものを測定光として使用することにしてもよい。
広帯域光源16〜20は、例えば、グルコース濃度の測定に必要とされる近赤外光領域(波長約1400〜1700nm)を5つの波長領域に分割したぞれぞれの波長帯域を割り当てられている。具体的には、広帯域光源16は、1430〜1520nm、広帯域光源17は、1520〜1610nm、広帯域光源18は、1650〜1690nm、広帯域光源19は、1360〜1430nm、広帯域光源20は、1610〜1650nmの波長帯域を有している。
広帯域光源16〜20は、それぞれ数10〜数100nm程度の帯域を有し、数10μm程度の空間的に比較的小さく、高輝度の光を発生するので、単一の光ファイバ30にも容易に集光でき、高輝度の測定光を実質的に1点から生体A内に入射させることができる。したがって、各受光用光ファイバ10に受光される光の光路長の幅を小さく設定することができる。その結果、グルコース濃度の測定精度を向上できる利点がある。
マルチプレクサ21は、例えば、図11に示されるように、各広帯域光源16〜20からの光を入射させる5個の入射部22〜26と単一の出射部27とを有するボックス28内に、4個のダイクロイックミラー29を配置して構成されている。各ダイクロイックミラー29は、第2から第5の入射部23〜26近傍にそれぞれ入射方向に対して傾斜配置されている。
第2の入射部23近傍に配置されているダイクロイックミラー29は、第1の入射部22から入射された光を反射して第3の入射部24に向かわせる機能と、第2の入射部23から入射された光を透過させて、第1の入射部22からの光と合波させ、同一の経路を通して第3の入射部24に向かわせる機能とを備えている。第3の入射部近傍24に配置されているダイクロイックミラー29は、第2の入射部23近傍に配置されているダイクロイックミラー29から送られてきた第1および第2の入射部22,23から入射されて合波された光を第4の入射部25に向けて反射するとともに、第3の入射部24において入射されてきた光を透過させることで合波するように構成されている。
第4、第5の入射部25,26近傍のダイクロイックミラー29も同様に機能する。その結果、出射部27から出射される光は、第1〜第5の入射部22〜26から入射された5つの光が合波された単一の光として出射されるようになっている。すなわち、マルチプレクサ21の出射部27から出射される光は、5つの波長帯域を全て含有する光である。
この場合において、本実施形態に係るグルコース濃度測定装置1は、第1〜第5の入射部22〜26に入射される光を発する広帯域光源16〜20の順序を以下の通りに設定するのが好ましい。
すなわち、出射部に最も近い第5の入射部26には広帯域光源(ASE2)17が接続され、その次に近い第4の入射部25には広帯域光源(ASE3)18が接続され、第3の入射部24には広帯域光源(SLD2)20、第2の入射部23には広帯域光源(ASE1)16、そして、出射部27から最も離れた第1の入射部22には広帯域光源(SLD1)19が接続される。
この接続順序により、グルコースに特徴的な吸収特性を有する波長帯域の光ほど出射部27に近い位置に入射させ、ダイクロイックミラー29による損失をできるだけ少なくして、生体Aに照射することができるようになっている。
すなわち、出射部に最も近い第5の入射部26には広帯域光源(ASE2)17が接続され、その次に近い第4の入射部25には広帯域光源(ASE3)18が接続され、第3の入射部24には広帯域光源(SLD2)20、第2の入射部23には広帯域光源(ASE1)16、そして、出射部27から最も離れた第1の入射部22には広帯域光源(SLD1)19が接続される。
この接続順序により、グルコースに特徴的な吸収特性を有する波長帯域の光ほど出射部27に近い位置に入射させ、ダイクロイックミラー29による損失をできるだけ少なくして、生体Aに照射することができるようになっている。
各広帯域光源22〜26とマルチプレクサ21とは光ファイバ30により接続されている。上述したように広帯域光源22〜26は空間的に小さい径の光を発する光源であるため、光ファイバ30の端面に近接して配置しても比較的小さなNAで光ファイバ30の端面に集光させることができる。したがって、広帯域光源22〜26から発せられた光のほぼ全部を光ファイバ30に入射させることができる。光ファイバ30としては、特に制限はなく、シングルモードファイバであってもマルチモードファイバであってもよい。
また、マルチプレクサ21としては、図12に示されるようなファイバカプラ35を利用したものを採用してもよい。
また、マルチプレクサ21としては、図12に示されるようなファイバカプラ35を利用したものを採用してもよい。
また、照射プローブ11において、照射用光ファイバ9を中心に受光用光ファイバ10をその周囲に配置する構成としたが、逆の配置にしても構わない。つまり、受光用光ファイバ10を中心に配置し、その周囲に一定の間隔をあけて照射用光ファイバ9を複数配置する構成としてもよい。
次に、本発明の第2の実施形態に係るグルコース濃度測定装置31について、図13〜図15を参照して以下に説明する。
なお、本実施形態の説明において、上述した第1の実施形態に係るグルコース濃度測定装置1と構成を共通とする箇所に同一符号を付して説明を省略する。
なお、本実施形態の説明において、上述した第1の実施形態に係るグルコース濃度測定装置1と構成を共通とする箇所に同一符号を付して説明を省略する。
本実施形態に係るグルコース濃度測定装置31は、光源32および受光用光ファイバ33の配列において第1の実施形態に係るグルコース濃度測定装置1と相違している。
本実施形態の光源32は、4個のASE光源32a〜32dとこれらのASE光源32a〜32dから発せられた光を合波するマルチプレクサ34とを備えている。
本実施形態の光源32は、4個のASE光源32a〜32dとこれらのASE光源32a〜32dから発せられた光を合波するマルチプレクサ34とを備えている。
ASE光源32aは、1500〜1600nm、ASE光源32bは、1600〜1700nm、ASE光源32cは、2100〜2200nm、ASE域光源32dは、2200〜2300nmの波長帯域を有している。図14に示されるように、ASE光源32a,32bによる約1500〜約1700nmの波長帯域(OT:オーバートーン領域)、およびASE光源32c、32dによる約2100〜約2300nmの波長帯域(CM:コンビネーション領域)は、それぞれグルコースの特徴的な吸収特性を有する波長領域である。
したがって、一方の光検出器6は、2つのASE光源32a,32bからの約200nmの波長帯域の光を受光し、他方の光検出器6は、他の2つのASE光源32c,32dからの約200nmの波長帯域の光を受光するので、上記と同じ128素子の光検出器6を使用することとすれば、1素子あたり1.56nmの分解能を達成することができ、さらに測定精度を高めることができる。
受光用光ファイバ33は、測定プローブ11からファイババンドルとして取り出され、その先端に配される照射端面33aが、図15に示されるように一列に配列されている。この配列方向は、グレーティング5による光の分光方向に対して直交する方向である。これにより、各受光用光ファイバ33の照射端面33aから出射された光は、グレーティング5によって一方向に分光されるが、分光方向に対して直交する方向に所定の幅を有する光束として光検出器6により検出される。
すなわち、光検出器6においては、広い検出面積を有効に利用して、多くの情報を得ることができる。特に、光検出器6を長方形状のアレイセンサにより構成すれば、一辺を分光方向、他辺を光ファイバ33の照射端面33aの配列方向として、検出面全体に光を受光して、最大限の情報量を得ることができるので好ましい。
すなわち、光検出器6においては、広い検出面積を有効に利用して、多くの情報を得ることができる。特に、光検出器6を長方形状のアレイセンサにより構成すれば、一辺を分光方向、他辺を光ファイバ33の照射端面33aの配列方向として、検出面全体に光を受光して、最大限の情報量を得ることができるので好ましい。
次に、この発明の第3の実施形態に係るグルコース濃度測定装置40について、図16を参照して以下に説明する。
本実施形態に係るグルコース濃度測定装置40は、光分岐部41の構造において上記各実施形態に係るグルコース濃度測定装置1,31と相違している。
本実施形態に係るグルコース濃度測定装置40は、光分岐部41の構造において上記各実施形態に係るグルコース濃度測定装置1,31と相違している。
本実施形態における光分岐部41は、3枚のミラー42〜44と、1枚のダイクロイックミラー45と、2つのシャッタ46,47とを備えている。第1のミラー42は、グレーティング5から発せられた光の光路上に配置され、光束の一部を反射して2つの光路に分離するようになっている。第2のミラー43は、前記第1のミラー42によって反射されずに通過した残りの光束を反射させて、光検出器6に向かわせる方向に屈折させるようになっている。
第3のミラー44は、前記第1のミラー42によって反射された光束を、前記第2のミラー43により反射された光束と交差する方向に反射させるように配置されている。前記ダイクロイックミラー45は、前記第2のミラー43と光検出器6との間の光の光路上の前記第3のミラー44により反射された光束との交差点に配置され、該第2のミラー43により反射された光束を透過させとともに、第3のミラー44から反射されてきた光束を第2のミラー43により反射された光束と一致する光路に屈折させるようになっている。
シャッタ46、47は、第1のミラー42によって分離された2つの光束の光路上にそれぞれに配置されている。各シャッタ46,47は独立して、あるいは、同期して開閉するようになっており、一方のシャッタ46が一方の光束の通過を許容しているときには、他方のシャッタ47が他方の光束を遮断するようになっている。図中、符号48はシャッタの動作を制御するシャッタ制御部である。
このように構成された本実施形態に係るグルコース濃度測定装置40によれば、シャッタ46,47の作動により、第1のミラー42によって分離された2つの光束の内の一方の光束のみが光検出器6に入射されるので、光検出器6の素子数を減らしても高い分解能の測定を行うことができる。また、2つの光束を1つの光検出器6で検出するので、光検出器6の数が少なくてすみ、光束の分割数を増やせば増やすほど、光検出器6に要するコストを抑えることができる。したがって、2分割のみならず、3分割以上に光束を分割することにしてもよい。
なお、上記各実施形態においては、分光器としてグレーティング5を例に挙げて説明したがこれに限定されるものではなく、他の分光器を採用してもよい。また、ミラー13,42〜44の種類は、特に限定されるものではない。
A 生体
1,31,40 グルコース濃度測定装置
2 光源
3 光照射部
4 受光部
5 グレーティング(分光器)
6 光検出器
7 光分岐部
13,14 ミラー
13a,13b 反射面
33 光ファイバ
33a 照射端面
46,47 シャッタ
1,31,40 グルコース濃度測定装置
2 光源
3 光照射部
4 受光部
5 グレーティング(分光器)
6 光検出器
7 光分岐部
13,14 ミラー
13a,13b 反射面
33 光ファイバ
33a 照射端面
46,47 シャッタ
Claims (7)
- 生体に照射する光を発生する光源を有する光照射部と、生体表面に配置され生体内で拡散あるいは透過した光を生体外部において受光する受光部と、該受光部において受光された光を分光する分光器と、該分光器において分光された光を検出する光検出器とを備え、
前記光検出器が複数備えられるとともに、
前記分光器において分光された光を各光検出器に向けて分岐させる光分岐部を備えるグルコース濃度測定装置。 - 前記光分岐部が、前記分光器において分光された光の内、グルコースの吸収のある波長帯域の光を各光検出器に向かわせる請求項1に記載のグルコース濃度測定装置。
- 前記各光検出器の感度を個別に調整可能である請求項1または請求項2に記載のグルコース濃度測定装置。
- 前記受光部が複数の光ファイバからなり、
該受光部を構成する複数の光ファイバが、前記分光器に向けて光を照射する照射端面を、分光器による分光方向に交差する方向に配列されている請求項1から請求項3のいずれかに記載のグルコース濃度測定装置。 - 前記光分岐部が、分光器により分光された光の光路に配置され、分光器による分光方向に沿って異なる方向に傾斜する複数の反射面を備えるミラーからなる請求項1から請求項4のいずれかに記載のグルコース濃度測定装置。
- 前記光分岐部が、分光器により分光された光の光路に配置され、該光の一部を少なくとも1つの光検出器に向けて反射するミラーからなる請求項1から請求項4のいずれかに記載のグルコース濃度測定装置。
- 生体に照射する光を発生する光源を有する光照射部と、生体表面に配置され生体内で拡散あるいは透過した光を生体外部において受光する受光部と、該受光部において受光された光を分光する分光器と、該分光器において分光された光を検出する光検出器とを備え、
前記分光器において分光された光を複数の光束に分離した後、分離された少なくとも2つの光束を同一の光検出器に指向させる光分岐部と、該光分岐部により分離された各光束を選択的に遮断可能なシャッタとを備えるグルコース濃度測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003435180A JP2005192610A (ja) | 2003-12-26 | 2003-12-26 | グルコース濃度測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003435180A JP2005192610A (ja) | 2003-12-26 | 2003-12-26 | グルコース濃度測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005192610A true JP2005192610A (ja) | 2005-07-21 |
Family
ID=34815378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003435180A Pending JP2005192610A (ja) | 2003-12-26 | 2003-12-26 | グルコース濃度測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005192610A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009301120A (ja) * | 2008-06-10 | 2009-12-24 | Glory Ltd | 生体検知センサ |
JP2011501121A (ja) * | 2007-10-12 | 2011-01-06 | エスペ3アッシュ | 流体分析用の分光測定デバイス |
WO2016088568A1 (ja) * | 2014-12-02 | 2016-06-09 | 浜松ホトニクス株式会社 | 分光測定装置および分光測定方法 |
JP2019138752A (ja) * | 2018-02-09 | 2019-08-22 | セイコーエプソン株式会社 | 検出装置 |
-
2003
- 2003-12-26 JP JP2003435180A patent/JP2005192610A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011501121A (ja) * | 2007-10-12 | 2011-01-06 | エスペ3アッシュ | 流体分析用の分光測定デバイス |
JP2009301120A (ja) * | 2008-06-10 | 2009-12-24 | Glory Ltd | 生体検知センサ |
WO2016088568A1 (ja) * | 2014-12-02 | 2016-06-09 | 浜松ホトニクス株式会社 | 分光測定装置および分光測定方法 |
CN107003183A (zh) * | 2014-12-02 | 2017-08-01 | 浜松光子学株式会社 | 分光测定装置及分光测定方法 |
KR20170092520A (ko) * | 2014-12-02 | 2017-08-11 | 하마마츠 포토닉스 가부시키가이샤 | 분광 측정 장치 및 분광 측정 방법 |
JPWO2016088568A1 (ja) * | 2014-12-02 | 2017-09-07 | 浜松ホトニクス株式会社 | 分光測定装置および分光測定方法 |
US9952101B2 (en) | 2014-12-02 | 2018-04-24 | Hamamatsu Photonics K.K. | Spectrometry device and spectrometry method |
CN109341857A (zh) * | 2014-12-02 | 2019-02-15 | 浜松光子学株式会社 | 分光测定装置及分光测定方法 |
KR102343121B1 (ko) * | 2014-12-02 | 2021-12-24 | 하마마츠 포토닉스 가부시키가이샤 | 분광 측정 장치 및 분광 측정 방법 |
JP2019138752A (ja) * | 2018-02-09 | 2019-08-22 | セイコーエプソン株式会社 | 検出装置 |
JP7069786B2 (ja) | 2018-02-09 | 2022-05-18 | セイコーエプソン株式会社 | 検出装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6571117B1 (en) | Capillary sweet spot imaging for improving the tracking accuracy and SNR of noninvasive blood analysis methods | |
US5341805A (en) | Glucose fluorescence monitor and method | |
JP3875798B2 (ja) | 血中成分濃度の無血測定装置の作動方法及び無血測定装置 | |
AU744758B2 (en) | Non-invasive measurement of analyte in the tympanic membrane | |
KR102049144B1 (ko) | 레이저 기반의 질병 진단 시스템 | |
CA2383727A1 (en) | Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths | |
JPH05203566A (ja) | 光学活性物質の濃度の定量的決定方法および装置 | |
JP4973751B2 (ja) | 生体成分測定装置 | |
US20120057164A1 (en) | Biological information measuring apparatus | |
US20070293766A1 (en) | Transmission Based Imaging for Spectroscopic Analysis | |
JP3683059B2 (ja) | 眼球から発生する光による眼内物質の測定装置 | |
US10478106B2 (en) | Probe, system, and method for non-invasive measurement of blood analytes | |
EP1447651B1 (en) | Optical measuring device with wavelength-selective light source | |
JP2005192610A (ja) | グルコース濃度測定装置 | |
JP4483052B2 (ja) | 非侵襲血糖計 | |
US10568506B2 (en) | Optical fiber-based spectroreflectometric system | |
JP2005224530A (ja) | グルコース濃度測定装置 | |
JP2007151962A (ja) | 生体内成分測定装置 | |
KR19990029222A (ko) | 혈중성분 농도의 무혈측정 방법 및 장치 | |
JP2005028005A (ja) | グルコース濃度測定装置 | |
JP2005192612A (ja) | グルコース濃度測定装置 | |
JP2005312743A (ja) | グルコース濃度測定装置 | |
WO2024176940A1 (ja) | 非侵襲計測装置 | |
JP2005265592A (ja) | グルコース濃度測定装置 | |
SU247601A1 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091124 |