JP2005190865A - 低温型燃料電池システム - Google Patents

低温型燃料電池システム Download PDF

Info

Publication number
JP2005190865A
JP2005190865A JP2003431859A JP2003431859A JP2005190865A JP 2005190865 A JP2005190865 A JP 2005190865A JP 2003431859 A JP2003431859 A JP 2003431859A JP 2003431859 A JP2003431859 A JP 2003431859A JP 2005190865 A JP2005190865 A JP 2005190865A
Authority
JP
Japan
Prior art keywords
pressure
electrode
fuel
negative pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003431859A
Other languages
English (en)
Inventor
Masaru Ogawa
賢 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2003431859A priority Critical patent/JP2005190865A/ja
Publication of JP2005190865A publication Critical patent/JP2005190865A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 低温型燃料電池の「低温動作」というメリットを生かしつつ、セル内で生成される水を効果的に排除でき、水の滞留に起因する悪影響が生じることのない低温型燃料の運転システムを提供する。
【解決手段】 低温型燃料電池スタック2から排出される燃料極排燃料と空気極排空気とを配管路211、221で改質器12に送り、そのバーナ12bで燃焼させて改質ガスを製造し、燃料極22に供給する構成を備えたシステムにあって、改質器炉内の燃焼排ガスを排気する排ガス吸引ブロワー51を設ける。排ガス吸引ブロワー51による排気力により、改質器本体12aの炉内および電池スタック2内を大気圧よりも低い負圧(セル動作温度で水が気化する圧力)とすることで、電池スタック2内で生成される水を、蒸気化して排出可能とする。
【選択図】 図1

Description

本発明は、固体高分子形燃料電池(PEFC)等の、動作温度が比較的低い低温型燃料電池の運転システムに関するものである。
動作温度が比較的低い固体高分子形燃料電池(PEFC)は、起動停止が迅速で、また取り扱いも容易なために、家庭や業務用の小型電源や自動車用の動力源として期待されている。図7は、都市ガス等の炭化水素系燃料を使用した、改質器72を具備する従来の常圧型PEFCのシステム構成を示すブロック図である。かかる構成において、都市ガス等の燃料ガスは脱硫器71でイオウ分を除去され、水蒸気と混合されて、バーナ72bで700〜800℃に昇温された改質器本体72aに送られ、改質器本体72a内部で水素、一酸化炭素、二酸化炭素の混合ガス(改質ガス)に改質される。この改質ガスは熱交換器73で冷却されて一酸化炭素変成器74に入り、一酸化炭素成分は水蒸気と反応して水素と二酸化炭素に変換され、その一酸化炭素濃度は一定値(数%)以下とされる。PEFCの電池動作温度は60〜90℃程度であり、かかる低温では一酸化炭素による電極触媒の被毒性が大きいため、選択酸化器75を設け、燃料電池セルに入る改質ガス組成中の一酸化炭素濃度が10ppm以下とされる。その後、改質ガスは加湿器76でセル加湿用の水分を加えて燃料電池スタック77の燃料極771に送られる。
電池スタック77内では改質ガス中の水素ガスの大部分は燃料極771で電極触媒の作用により水素イオンとなり、電解質773を通って空気極772に移動する。空気極772では、空気中の酸素ガスは電極触媒の作用により酸素イオンとなり、燃料極771から移動してきた水素イオンと反応して水を生成する。一般に、燃料極771での水素利用率は70〜80%で、残りは余剰として排出される(燃料極排ガス、或いは燃料排ガスと呼ばれる)。また、空気極772での空気中の酸素利用率は50〜60%で、残りは余剰として排出される(空気極排空気、或いは排空気と呼ばれる)。通常、この余剰の燃料排ガスと排空気は改質器のバーナ72bに導入され、改質器加熱用燃料として使用される。以上説明したようなシステムは、家庭用PEFCとしては500W,1kW,700W,1.2kWが、業務用PEFCとしては3〜5kW,30kW,200kW級が開発中であり、各所で実用試験がなされている。
なお、燃料電池を負圧運転することに関し、若干の先行例が存在する。例えば特許文献1には、改質器排ガス系統に排ガスブロワーを設置し、燃料ガス圧縮機と空気圧縮機とを一体化することにより、設備コストと電動機ランニングコストの低減を図る技術が開示されている。また特許文献2には、改質器排ガス系統に排ガスブロワーを設置して改質炉内部のみを負圧運転することにより、改質系の圧損を低減してシステムの運用性を向上させる技術も開示されている。さらに特許文献3には、燃料電池発電システムにおいて電池セルの一部に電圧低下が認められれば、運転圧力を高圧側に変更してセル電圧の低下を防ぐ技術が開示されている。
特開昭61−29076号公報 特開平11−250925号公報 特開2001−210339号公報
上述した通り、PEFCの電池動作温度は60〜90℃と低いのであるが、このような低温動作が間接的な要因となって、空気極で生成される水がセル特性を低下させてしまうことがある。この点を図8及び図9に基づいて説明する。先ず図8は、PEFCの動作原理を示す説明図である。燃料ガス中に添加されている水分は、水素イオンと共に電気浸透現象により電解質中を空気極へ向けて移動する(プロトン同伴水)。また、空気極では水素イオンと酸素が反応して水が生成され、従って空気極の水は原理的に過剰となり易いと言える。この水は主として空気極側の溝を通して排出されるが、その一部は電解質を通して燃料極にも移動(逆拡散水)して排出されることになる。ここで、PEFCの動作温度が60〜90℃と低温であることから、排出される水は蒸気ではなく液体状態となる。そこで、この液体の水を燃料ガス通路や空気通路を通して電池スタックの外部に排出させるために、これら通路を細長くしてガス流速や空気流速を早くすることにより、燃料ガスや空気とともに水を吹き飛ばして排出できるようなセパレータ構造が多用されている。しかし、セル面で発生した水が燃料ガス通路や空気通路に溜まると、燃料ガスや空気の流れを阻害することとなり、結果としてセル特性が低下してしまうものである。
図9は、固体高分子形燃料電池セルの寿命要因について示した説明図である。図示する通り、寿命要因としては抵抗分極、活性化分極、及び濃度分極が挙げられるが、このうち抵抗分極は電気抵抗によるものであり、材質の劣化やセル間の接触面圧に変化がなければ経時的な変化は少なく、セル寿命の支配要因にはならない。一方、活性化分極は触媒のシンタリング(触媒表面積の減少)によるものであって、発電時間の経過と伴に、触媒粒子が凝結して大きくなることにより触媒表面積が減少するものである。触媒表面積の減少は反応面積が減少することに繋がることから、セル特性は低下する。このような触媒シンタリング現象は回復不可能であり、セル寿命の支配要因の一つである。また、濃度分極はガス拡散や水素イオンの移動に関係し、水ハンドリングの影響を大きく受ける。固体高分子形燃料電池セル寿命の支配要因については、まだ未解明な面が多いものの、水ハンドリングが最も大きい影響を持つと考えられている。そして、水ハンドリングの原因の一つとして挙げられるのが、セル内で生成された水がセルの空気や燃料ガス溝の出口側で滞留し、燃料ガスや空気の流れを阻害する点である。
また、セル面の水分布については、燃料ガスや特に空気出口側では水が過剰となりフラッディング現象を起こしやすくなる。これは、セル面で水が過剰となるとガス拡散層に水が詰まり、ガスが拡散する細孔を閉塞し、水素や酸素ガスをセル触媒面に送れなくなるためである。この結果、セル電圧が低下するのみでなく、最悪の場合は燃料ガスの欠乏となり、セルが損傷するに至る。さらに、高分子の電解質膜は水が過剰となると膨潤し、イオン伝導性の低下や膜抵抗の増加が生じる。なお、発電によりセル面で水が増加するのは、りん酸形燃料電池(PAFC)でも同じであるが、PAFCは動作温度が200℃程度であるため、燃料極や空気極で生成される水は水蒸気の状態となっており、従って燃料ガスや空気と共に外部に排出されやすい状態にあり、セル寿命を支配するほど大きい問題とはなっていない。
このような事情に鑑みて、PEFCでもセル運転条件の最適化を図って運転し、余剰となる水の滞留を極力少なくさせる必要がある。しかし、PEFCで広く使用されているナフィオン系の高分子膜は耐熱温度が100℃以下のために、常圧動作では水を蒸気として排出することができない。現在、耐熱温度が120〜180℃程度の高分子膜の開発も進められているが、高分子膜は低コスト化の課題もあり、現在実用化の見通しは得られていない。さらに、動作温度を高くすることはPEFCの低温で動作するという様々なメリットを放棄することであり、また180〜200℃級での動作ならば既にPAFCが実用化されていることから、好ましい対応策とは言えない。
従って本発明は、低温型燃料電池の「低温動作」というメリットを生かしつつ、セル内で生成される水を効果的に排除でき、水の滞留に起因する悪影響が生じることのない低温型燃料の運転システムを提供することを目的とする。
本発明の請求項1にかかる低温型燃料電池システムは、燃料極と空気極とを有する低温型燃料電池スタックと、該電池スタック内を負圧にする負圧機構とを具備してなり、前記負圧機構は、電池動作温度において、電池スタック内で生成される水を蒸気化して電池スタック外へ排出可能とするものであることを特徴とする。この構成によれば、大気圧下では電池動作温度において液体の「水」として存在してしまう電池スタック内生成水(このように、電池スタック内生成水が「水」の状態で存在してしまう如き電池動作温度のものを、本明細書では「低温型」燃料電池と称している)を、負圧機構により電池スタック内を負圧にすることで「蒸気」となし得るようにし、蒸発作用により水分の排出を促進させて燃料ガス通路や空気通路等に滞留しないようにすることができる。
請求項2にかかる低温型燃料電池システムは、請求項1において、前記負圧機構は、電池スタック内の燃料極と空気極とを、共通の排気手段により負圧にするものであることを特徴とする。上記請求項1にかかる発明において、電池スタック内を負圧にする手法は特に限定はなく、例えば燃料極及び空気極にそれぞれ別個に排気手段を設けるようにしても良いが、請求項2の構成のように、燃料極と空気極とを共通の排気手段により負圧にするようにすれば、両者間には配管系統の圧損分の差圧しか発生しないために、燃料極と空気極との差圧の制御機構を簡素化できることになる。
請求項3にかかる低温型燃料電池システムは、請求項1において、改質器を備え、低温型燃料電池スタックから排出される燃料極排燃料と空気極排空気とを前記改質器が備えるバーナで燃焼させて改質ガスを製造し、燃料極に供給する構成を具備すると共に、前記改質器炉内の燃焼排ガスを排気する排ガス吸引ブロワーを具備してなり、前記負圧機構は、前記排ガス吸引ブロワーによる排気力により、改質器炉内および電池スタック内を大気圧よりも低い負圧とするものであることを特徴とする。この構成によれば、改質器を備えたシステムにあって、燃料極排燃料と空気極排空気とを改質器バーナへ供給するための配管系統を活用して、排ガス吸引ブロワーにより改質器炉内および電池スタック内を負圧化できる、つまり排ガス吸引ブロワーという共通の排気手段にて燃料極と空気極とを負圧にできるので、両者間には配管系統の圧損分の差圧しか発生しないために、燃料極と空気極との差圧の制御機構を簡素化することができる。
本発明の請求項4にかかる低温型燃料電池システムは、燃料極と空気極とを有する低温型燃料電池スタックと、該電池スタック内の空気極を負圧にする負圧機構とを具備してなり、前記負圧機構は、電池動作温度において、空気極内で生成される水を蒸気化して電池スタック外へ排出可能とするものであることを特徴とする。この構成によれば、例えば改質器を具備しない純水素等を燃料として使用する低温型燃料電池システムにおいて、空気極内で生成される水を、負圧機構により空気極内を負圧にすることで「蒸気」となし得るようにし、蒸発作用により水分の排出を促進させることができる。この場合、燃料極は必ずしも負圧にする必要はなく、空気極との差圧が許容範囲内であれば常圧にしても構わない。
請求項5にかかる低温型燃料電池システムは、請求項4において、前記負圧機構は、空気極から排出される空気極排空気を排気する排空気吸引ブロワーからなり、該排空気吸引ブロワーによる吸引力により、電池スタックの空気極内を大気圧よりも低い負圧とするものであることを特徴とする。この構成によれば、負圧機構としての排空気吸引ブロワーにより、本来的に水分除去が必要な空気極を負圧にして、生成される水分を蒸気として効果的に除去できるようになる。
請求項6にかかる低温型燃料電池システムは、請求項1〜5いずれかにおいて、前記負圧機構は、その負圧化動作を制御する制御手段を具備してなり、前記制御手段は、燃料極と空気極との差圧を検知する差圧検知部と、燃料極の圧力を制御する燃料極圧力制御部と、空気極の圧力を制御する空気極圧力制御部とを備え、燃料極と空気極との差圧を一定値以内に制御可能とするものであることを特徴とする。この構成によれば、燃料極及び空気極の圧力制御を別個に行うことができ、燃料極と空気極との差圧調整も容易に行えるようになる。
請求項7にかかる低温型燃料電池システムは、請求項6において、前記制御手段は、燃料極と空気極との極間差圧強度の制限値内において、燃料極よりも空気極の動作圧力を低く設定する制御が可能であることを特徴とする。この構成によれば、例えば運転圧力値として、水分を補給する側である燃料極よりも、水分が過剰となる空気極の動作圧力を、両極の差圧制限値内で所定値だけ(例えば5〜数十Pa程度)低く設定して制御し、燃料極は飽和圧力よりも高くして水が蒸気として蒸発することを防止し、空気極では飽和圧力よりも低くして生成水を蒸気として蒸発させて水を除去するといった制御を行うことが可能となる。
請求項8にかかる低温型燃料電池システムは、請求項6において、前記制御手段に負圧運転可否判定部を備え、負圧運転を選択的に実行可能としたことを特徴とする。電池スタックを負圧運転すると、水素・酸素ガス分圧の低下により発生電圧は低下するが、この構成によれば、当該低温型燃料電池システムを常時負圧運転とするのではなく、水分除去が必要なときに適宜、負圧運転をさせることができるようになる。
請求項9にかかる低温型燃料電池システムは、請求項7において、前記負圧運転可否判定部は、当該低温型燃料電池システムの低負荷運転時に負圧運転を行うように運転制御するものであることを特徴とする。この構成によれば、深夜等の燃料電池の低負荷運転時には燃料ガス流量や空気流量が減少するために電池スタック内で燃料ガスや空気の偏流が発生しやすいが、かかる低負荷時期に負圧運転を行うと見かけ上燃料ガスや空気量の体積が増加するため、燃料ガスや空気の偏流を防ぐことが可能となる。
本発明の請求項1にかかる低温型燃料電池システムによれば、電池スタック内で生成された水を負圧機構により蒸気の状態とさせるので、その蒸発作用により水分の排出を促進させて燃料ガス通路や空気通路等に滞留しないようにすることができる。従って燃料ガスや空気の流れが電池スタック内での生成水で阻害されることはなく、電池特性(セル特性)の低下を抑止することができるという効果を奏する。
請求項2にかかる低温型燃料電池システムによれば、燃料極と空気極とを共通の排気手段により負圧にするので、両者間には配管系統の圧損分の差圧しか発生せず、燃料極と空気極との差圧の制御機構を簡素化できる。従って、負圧機構を構成する制御設備や制御系を簡素化でき、装置設備の低コスト化を図ることができる。
請求項3にかかる低温型燃料電池システムによれば、改質器を具備するシステムにあって、燃料極排燃料と空気極排空気とを改質器バーナへ供給するための配管系統を活用し、排ガス吸引ブロワーにより改質器炉内および電池スタック内を負圧化できるので、両者間には配管系統の圧損分の差圧しか発生せず、燃料極と空気極との差圧の制御機構を簡素化することができる。従って、上記と同様に負圧機構を構成する制御設備や制御系を簡素化でき、装置設備の低コスト化を図ることができる。
本発明の請求項4にかかる低温型燃料電池システムによれば、例えば改質器を備えないシステムにあって、電池スタックの空気極内で生成された水を負圧機構により蒸気の状態とさせるので、その蒸発作用により水分の排出を促進させて燃料ガス通路や空気通路等に滞留しないようにすることができる。従って、燃料ガスや空気の流れが電池スタック内で生成される水により阻害されることはなく、電池特性の低下を抑止することができるという効果を奏する。
請求項5にかかる低温型燃料電池システムによれば、負圧機構としての排空気吸引ブロワーにより、本来的に水分除去が必要な空気極を負圧にして、生成される水分を蒸気として効果的に除去できるので、電池特性の低下を抑止することができるようになる。
請求項6にかかる低温型燃料電池システムによれば、燃料極及び空気極の圧力制御を別個に行うことができ、燃料極と空気極との差圧調整も容易に行えるようになるので、差圧調整のための制御設備や制御系を簡素化でき、装置設備の低コスト化を図ることができるようになる。
請求項7にかかる低温型燃料電池システムによれば、燃料極は飽和圧力よりも高くして水が蒸気として蒸発することを防止し、空気極では飽和圧力よりも低くして生成水を蒸気として蒸発させて水を除去するといった制御を行うことができるので、燃料極での水不足に起因するドライアップ現象による電池電圧の低下を未然に防止できるようになる。
請求項8にかかる低温型燃料電池システムによれば、低温型燃料電池システムを常時負圧運転とするのではなく、水分除去が必要なときに適宜、負圧運転をさせることができるので、電池電圧の低下が生じてもさほど影響の無い時期を選んで負圧運転を行うというシステム運用が行えるようになる。
請求項9にかかる低温型燃料電池システムによれば、低負荷時期に負圧運転を行うことで見かけ上燃料ガスや空気量の体積が増加し、燃料ガスや空気の偏流を防ぐことができるので、セルの長寿命化を図ることができる。
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。
(第1実施形態)
図1は、本発明の一実施形態にかかる低温型燃料電池システムS1のシステム構成を示すシステム構成図である。このシステムS1は固体高分子形燃料電池(PEFC)システムであって、その基本構成として、脱硫器11、改質器本体12aとバーナ12bとからなる改質器12、熱交換器13、一酸化炭素変成器14、選択酸化器15、加湿器16及び電池本体部としての電池スタック2を備えている。
この基本構成において、脱硫器11は、燃料ガスとしての都市ガス(プロパンガス、ナフサ、灯油等でもよい。)中に含まれる付臭材としてのイオウ分を除去するもので、その都市ガスから供給を受けるように、ガス供給管と接続されている。改質器12は、脱硫器11のガス出口側に接続され、脱硫された都市ガスと水蒸気とをバーナ12bで加熱して反応させることにより、二酸化炭素と水素とを主成分とする改質ガスを生成するものである。熱交換器13は、前記改質器12で生成された改質ガスが導入され、該改質ガスを冷却するものである。一酸化炭素変成器14は、改質器12のガス出口側に接続され、セル電極の被毒及び発電効率の低下を防止するために、改質ガス中に含まれる一酸化炭素を二酸化炭素に変化させるものである。選択酸化器15は、セル電極の被毒防止を行うため、一酸化炭素変成器14から送られてきた改質ガス中に含まれるCO濃度を低下させるためのものである。さらに加湿器16は、当該改質ガスを電池スタック2(燃料極21)へ送るに際し、適当な水分を付加するためのものである。
電池スタック2は、燃料極21、空気極22、及び燃料極21と空気極22との間に介在される電解質23を備える。燃料極21及び空気極22は、例えばカーボンブラックの微粒子にPt系貴金属を担持した触媒をポリマーに分散してカーボンペーパーに塗布したものが用いられる。また電解質23はナフィオン系高分子ポリマー等からなる高分子膜が用いられる。そして、燃料極21と空気極22との間に電解質23としての高分子膜を挟んで熱圧着され、膜/電極接合体(MEA)を構成している。実際には前記MEAの両側に流路基板が配置され、燃料極21には水素が、空気極22には酸素がそれぞれ供給されるようなセル構造とされている。電池スタック2は、このようなセル構造を複数備えた集合体から成っている。
さらにこのシステムS1は、電池スタック2に対しガスや空気の供給を行うと共に、電池スタック2から排出される排ガスや排空気を放出したり、前記改質器バーナ12bへ導いたりするための配管路211、221、222、223、50、及び第1制御弁〜第5制御弁31〜35が備えられている。
燃料極21の入口側には、前述の通り加湿器16を経て改質ガスが供給可能とされており、第1制御弁31によりその流量(燃料ガス流量)が調整可能とされている。また燃料極21の出口側には、改質器12のバーナ12bへ燃料極排ガスを送るための配管路211が接続されており、第2制御弁32により燃料極圧力が調整可能とされている。
空気極22の入口側には、該空気極22へ酸素を取り入れるための配管路223が接続されており、第3制御弁33によりその流量(流入空気量)が調整可能とされている。また空気極22の出口側には、改質器12のバーナ12bへ空気極排空気を送るための配管路221が接続されている。なお、配管路221には分岐配管路222が設けられており、第4制御弁34により空気極排空気に大気を供給して空気極22の圧力が調整可能とされている。
さらに改質器バーナ12の燃焼室出口側には、バーナ12bにおいて燃料極排ガスと空気極排空気とを燃焼反応させることで生じた燃焼排ガスを導出するための配管路50の一端側が接続されており、第5制御弁35によりその燃焼排ガス流量が調整可能とされている。この配管路50には、前記燃焼排ガスから熱を回収すると共に水分を除去する排熱・水回収装置53が付設されている。
一方配管路50の他端側は、該配管路50、改質器本体12aの燃焼室、配管路211、221を通して電池スタック2内に至る配管系統の排気をなし得る排ガス吸引ブロワー51が接続されている。すなわち、排ガス吸引ブロワー51はタービン翼等を備え、該タービン翼を回転駆動させるための電動機52の駆動により吸引動作を行い、前記配管系統を介して電池スタック2内を負圧にすることが可能(すなわち燃料極21及び空気極22共通の排気手段)とされている。なお、電池スタック2には、このような負圧化動作を行う場合に、燃料極21と空気極22との差圧を管理するための差圧計25が設置されている。また図1では図示を省略しているが、燃料極21と空気極22には、それぞれの極内圧力を計測するための圧力計が備えられている。
また本低温型燃料電池システムS1は、図2の制御ブロック図に示すように、差圧計25並びに燃料極用圧力計21S、空気極用圧力計22Sの計測結果に基づき、上記第1制御弁〜第5制御弁31〜35及び排ガス吸引ブロワー51を駆動する電動機52を制御するための制御手段6を有している。この制御手段6は、圧力検知部61、差圧検知部62、燃料極圧力制御部63、空気極圧力制御部64、改質器圧力制御部65、ブロワー制御部66、負圧運転設定部67、及び負圧運転可否判定部68を備えている。
圧力検知部61は、燃料極21及び空気極22の圧力をそれぞれ検出する燃料極用圧力計21S、空気極用圧力計22Sが計測した圧力データ値を取り込み、該データ値を適宜A/D変換する等して、これらの圧力制御部にデータを送信するものである。差圧検知部62は、差圧計25が計測した差圧データ値を取り込み、同様に該データ値を適宜A/D変換する等して、これらの圧力制御部にデータを送信するものである。
燃料極圧力制御部63は、前記圧力検知部61及び差圧検知部62から送信された燃料極21に関する圧力情報に基づき、第1制御弁31及び第2制御弁32の開閉調整を行い、燃料極21への燃料ガス流量と排燃料ガス流量を制御することで、燃料極21を所定の圧力(負圧)に制御するものである。また空気極圧力制御部64は、前記圧力検知部61及び差圧検知部62から送信された空気極21に関する圧力情報に基づき、第3制御弁33及び第4制御弁34の開閉調整を行い、空気極22への流入空気量と、改質器バーナ12bへの供給空気量を制御することで、空気極22を所定の圧力(負圧)に制御するものである。この空気極22における「所定の圧力」の設定に際しては、セル温度測定計26(図1では図示省略している)が計測した電池スタック2の動作温度(セル温度)に基づいて、当該空気極22において水が気化することが可能な圧力に設定することが望ましい。また、前記燃料極圧力制御部63による燃料極21における「所定の圧力」の設定に際しては、前記の如く設定された空気極22の圧力に対し、セルの耐差圧許容値を考慮した上で圧力設定を行うようにすることが望ましい。
改質器圧力制御部65は、改質器バーナ12bの燃焼室内を所定の圧力(負圧)に制御するために、第5制御弁35の開閉調整を行うものである。本実施形態では、排ガス吸引ブロワー51の吸引動作による負圧機構を採用しているので、前記排ガス吸引ブロワー51を駆動させるブロワー電動機52の出力調整を行うブロワー制御部66と連繋して、前記燃焼室内の圧力調整が行われる。なお、燃料極21及び空気極22を負圧にするための吸引源も排ガス吸引ブロワー51であることから、実際には燃料極圧力制御部63、空気極圧力制御部64、改質器圧力制御部65及びブロワー制御部66が連繋して、第1制御弁31〜第5制御弁35の開閉調整、並びにブロワー電動機13の出力調整が行われる。
負圧運転設定部67は、本低温型燃料電池システムS1が備える上述の負圧機構を、いつ動作させるかについての設定を受け付けるものである。例えば数日〜十数日に一回、或いは週末や夜間にのみ負圧運転を行う等、システム運用者が定める負圧機構動作情報を受け付け、この情報に従って負圧機構(本実施形態では排ガス吸引ブロワー51と第1制御弁31〜第5制御弁35)を動作させる。また負圧運転可否判定部68は、負圧運転設定部67にて設定された負圧運転時期において、本低温型燃料電池システムS1の負荷状況等を判断材料として、負圧運転を行うのに適した状況かの判定を行うものである。もし、負荷状況等からして不適な場合であれば、負圧運転設定部67に設定された負圧機構動作情報に関わらず、システムを通常運転に維持させる。
このように構成された低温型燃料電池システムS1の動作について説明する。
まず、都市ガス供給源などの燃料源から供給された燃料ガス(天然ガス)は、脱硫器11へ送られてイオウ分が除去され、図示省略の熱交換器で500℃程度に予熱された後に、水蒸気と共に改質器12の改質器本体12aへ送られる。改質器本体12aの改質側の圧力は常圧、負圧あるいは加圧反応でもよく、改質器12へ導入された脱硫後天然ガスと水蒸気との混合ガスは、改質触媒中において、改質器バーナ12bにて700〜800℃に加熱されて反応し、水素、一酸化炭素、二酸化炭素に分離されて改質ガスが生成される。続いて、この改質ガスは熱交換器13で冷却された後に一酸化炭素変成器14へ導入され、当該改質ガスが含んでいる一酸化炭素は、一酸化炭素変成器14で水素と二酸化炭素とに変換される。その後、改質ガスは選択酸化器15を経ることで一酸化炭素濃度が数10ppm以下とされ、加湿器16で所定の水分を加えられた後に、この水素リッチな改質ガスはPEFC電池スタック2の燃料極21へ導入される。
電池スタック2の作動温度は60〜90℃とされ、導入された水素の大部分(約80%)が消費されて燃料極21で水素イオンになり、この水素イオンは電解質23を通って空気極22に移動する。空気極22には、配管路223を経由して空気が導入されるようになっており(この空気を送るための送気装置等を設けても良い)、該空気中の酸素を取り込んでこれをイオン化し、この酸素イオンと空気極22に移動してきた前記の水素イオンとが反応して電気を発生するものである。
前記燃料極21での水素の利用率は、前述の通り80%程度であり、残りは燃料極排ガスとして排出される。また、空気極22での空気中の酸素利用率は50〜60%程度であり、残りは空気極排空気として排出される。これら燃料極排ガスと空気極排空気とは、それぞれの極に連結されている配管路211、221を通して改質器12のバーナ12bに導入され、該改質器バーナ12bにおいて燃焼反応させる構成とされており、前記燃料極排ガスと空気極排空気との有効活用が図られている。
燃料極排ガスと空気極排空気との燃焼反応後に生じる改質器本体12aの燃焼排ガスは、排熱・水回収熱交換器53により冷却されると共に水分が回収され、電動機52により駆動される排ガス吸引ブロワー51にて大気中に放出される。この排ガス吸引ブロワー51は、前述の通り配管路50、及び配管路211、221を通して、その吸引動作によって改質器本体12aの燃焼室と電池スタック2(燃料極21と空気極22)内を負圧にすることを可能とする機能も備えており、該排ガス吸引ブロワー51と第1〜第5制御弁31〜35、及び差圧計25とからなる負圧機構により、かかる負圧制御(圧力制御)が行われる。かかる負圧制御により、大気圧下では電池動作温度において液体の「水」として存在してしまう電池スタック2内の生成水を、負圧機構により電池スタック2内を負圧にすることで「蒸気」となし得るようにし、蒸発作用により水分の排出を促進させて燃料ガス通路や空気通路等に滞留させることなく、排ガス吸引ブロワー51の排気作用で外部に排出させる(この水分は専ら排熱・水回収熱交換器53にて回収される)ものである。
このような低温型燃料電池システムS1の負圧運転制御を、図2の制御ブロック図及び図3に示す制御フローチャートに基づいて説明する。なお、ここで言う「負圧運転」とは、単純に大気圧よりも低い圧力での運転を指すのではなく、電池スタック2内で生成される水を水蒸気として排出可能な程度の負圧による運転を指す。先ず、負圧運転制御にあたり、当該システムS1につき負圧運転を行うべき時期であるか(ステップS11)、及び(ステップS11でYesの場合に)負圧運転を行うのに適しているかが可能か(ステップS12)が判断される。当該負圧運転は、一定の部分負荷以下(例えば50%負荷以下)になれば、常時行うようにしても良いが、負圧運転に伴い水素・酸素ガス分圧が低下して電池電圧が低下することとなり、また電池スタック2の内部における水が過剰となり、ガス通路の閉塞や高分子膜の膨潤が顕在化するには一定の時間が必要(例えば数日や数十日の場合、あるいはもっと長く月単位で顕在化する場合もある。)であることから、一定の周期を決めて負圧運転をして定期的に電池スタック中の水分を除去する運用とすることが好ましいことになる。具体的には、制御手段6の負圧運転設定部67にシステム運用者等により設定された負圧機構動作情報に従って、例えば数日〜十数日に一回、或いは週末や夜間に、負圧運転許容信号を発生させるようにし、該負圧運転許容信号が発生されている場合に、ステップS11でYesと判断させるようにする。
続いて、ステップS12で負圧運転を行うのに適しているかが判断されるが、かかる判断は負圧運転可否判定部68にて、例えば当該燃料電池システムS1の負荷状況等を勘案して判断がなされる。かかる判断を省略し、前記負圧運転設定部67へ設定された負圧機構動作情報のみに基づいて運転可否を判定するようにしても勿論良い。しかし、負荷状況を考慮した上で負圧運転への移行を行うようにすれば、例えば需要電力負荷が低い深夜には当該燃料電池システムS1は部分負荷運転となるが、この際に電池スタック2の動作圧力を下げることにより、セル面での水の水蒸気化を促進させることができる一方で、燃料電池システムS1全体でのガスボリュウムは減少しないこととなるために、電池スタック2内でのガス偏流を防止できるようになる。この結果、最低負荷の切り下げ範囲が広くなり、広い負荷領域での運用が可能となるものである。従って、負圧運転可否判定部68において、例えば本燃料電池システムS1が適用されている設備の過去の使用実績等から負荷パターンを求めておき、例えば深夜や週末の電力需要が少ない時の最低負荷の切り下げ時に定期的に負圧運転を行い、セル特性の改善を行わせるようにすることも可能となる。具体的な運用例としては、例えば負圧運転設定部67に10日に一回の負圧運転指示が設定されている場合に、負圧運転可否判定部68において、その日のうちで負荷が低い時期を負荷の現況や過去の運転データから予測・判定することで、負圧運転時期(負荷運転時間帯)が定められる(ステップS12でYes又はNoの判断を行う)。
負圧運転可否判定部68から負圧運転に適しているとの信号が出力された場合(ステップS12でYesの場合)、排ガス吸引ブロワー51が負圧運転モードで動作するようブロワー電動機52の出力を増加させ、排ガス吸引ブロワー51の排出流量を多くすると共に、第1〜第5制御弁31〜35の制御を行うための負圧運転モードへ移行される(ステップS13)。かかる制御は、燃料極用圧力計21S、空気極用圧力計22S及び差圧計25による各極の圧力/両極の差圧計測データを、制御手段6の圧力検知部61と差圧検知部62とが受領し、該計測データに基づいて、燃料極圧力制御部63、空気極圧力制御部64、及び改質器圧力制御部65が、第1〜第5制御弁31〜35に対する制御信号をそれぞれ発生し、またブロワー制御部66がブロワー電動機52に対する制御信号を発生することで為される(ステップS14以下の処理)。
具体的には、まず空気極22及び燃料極21における負圧制御値の設定がなされる(ステップS14)。すなわち、空気極圧力制御部64により、セル温度測定計26が計測した電池スタック2の動作温度(セル温度)に基づいて、当該空気極22において水が気化することが可能な圧力が求められ、これが空気極22の負圧制御値とされる。また、燃料極21における負圧制御値の設定は、前記空気極22の設定圧力値に対し、セルの耐差圧許容値を考慮した上で決定される。従って燃料極圧力制御部63は、空気極圧力制御部64にて設定された空気極22の負圧制御値に基づいて、燃料極21における負圧制御値を決定する。このように設定された負圧制御値に基づいて、ブロワー電動機52の出力を増加させて排ガス吸引ブロワー51の排出流量を多くすると共に第1〜第5制御弁31〜35が適宜制御され、電池スタック2内(空気極22及び燃料極21)を負圧にする動作が開始される(ステップS15)。
電池スタック2内の圧力が低下すると、まず空気極用圧力計22Sにより空気極22の圧力が検知され(ステップS16)、空気極圧力制御部64により該空気極22の圧力が所定値にあるか否かが判定される(ステップS161)。そして、未だ圧力が高く所定値でないと判定された場合(ステップS161でNoの場合)に、第5制御弁35を調整する(併せて第3制御弁33を調整しても良い)ことで排ガス吸引ブロワー51の排出流量をさらに増加させ、空気極22(及び改質器バーナ部)をより負圧化させる。一方、空気極22の圧力が下がり過ぎた場合は、第4制御弁34を調整することで、改質器バーナ12bに供給される空気極排空気に空気を追加するようにし、負圧値を上昇させるようにする。空気極圧力制御部64では、このような第4制御弁34及び第5制御弁35の制御信号が生成され、図示省略のこれら制御弁の駆動機構へ前記制御信号が送信される。次に、燃料極21について、燃料極用圧力計21Sにより燃料極21の圧力が検知され(ステップS17)、燃料極圧力制御部63により該燃料極21の圧力が所定値にあるか否かが判定される(ステップS171)。そして、所定値でないと判定された場合(ステップS171でNoの場合)に、燃料極21の圧力は、第1制御弁31を調整することで燃料極21へ導入される燃料ガスの流量が制御されると共に、第2制御弁32を調整することで燃料極から排出される排燃料ガス流量が制御され、目標とする負圧値に制御される。燃料極圧力制御部63では、このような第1制御弁31及び第2制御弁32の制御信号が生成され、図示省略のこれら制御弁の駆動機構へ前記制御信号が送信される(ステップS172)。
このような負圧制御における負圧化の程度としては、PEFCのセル動作温度が80℃の場合の飽和圧力は0.48atであり、90℃の飽和圧力は0.72atであり、また95℃の飽和圧力は0.86atであることから、電池スタック2(燃料極21及び空気極22)の動作圧力を0.48〜0.86atの範囲の程度において制御することが望ましい。
なお、電池スタック2を負圧化すべき理由の一つとして、現状で電解質23用の高分子膜として汎用されているナフィオン系高分子膜の耐熱温度が100℃以下に制限されており、該耐熱温度を越えないよう、100℃以下の温度領域で水分を水蒸気として蒸発させる必要があることが挙げられる。従って、将来的に電解質23用の高分子膜の耐熱温度が100℃近辺に向上するようになれば、電池スタック2内の動作圧力を常圧近くに近づけることも可能である。
また、改質器本体12aの燃焼室の圧力制御は、改質器圧力制御部65による第5制御弁35の調整と、ブロワー制御部66による排ガス吸引ブロワー51の電動機52の回転数制御により行われる。これら制御は、上記ステップS142における燃料極21の圧力制御と、S152における空気極22の圧力制御と同期して行われ、実際は、燃料極圧力制御部63、空気極圧力制御部64、及び改質器圧力制御部65は協働して第1〜第5制御弁31〜35、及びブロワー電動機52の制御信号を生成する。
ところで、燃料極21と空気極22との圧力関係については、燃料極21の圧力が、空気極2の圧力よりも大きい状態にあることが望ましい。燃料極圧力>空気極圧力の関係とする意義は次の通りである。すなわち、電池スタック2の内部での水生成箇所は空気極22であり、空気極22での水が過剰となる一方、燃料極21では、水素イオンは水を伴って空気極22に移動するために常時水を補給する必要がある。水が不足すると、ドライアップ現象と呼ばれるセル電圧の低下が発生するため、空気極22の水は除去し、燃料極21の水は除去しないのが理想的となる。このため、空気極22の圧力は飽和圧力よりも低くし水蒸気としての蒸発を促進し、燃料極21の圧力は飽和圧力よりも高くし水蒸気として蒸発しないように圧力を制御することが理想的な圧力関係となる。従って、前記理想的な圧力関係になるべく近付けるために、燃料極21と空気極22とを次に述べる極間差圧強度の制限値内で、燃料極21よりも空気極22の動作圧力を低く設定することにより、セルの長寿命化が図れることとなるものである。
続いて、燃料極21と空気極22との差圧が差圧計25により検知され(ステップS18)、燃料極21と空気極22との差圧が、極間差圧強度の制限値内であるかが差圧検知部62により判定される(ステップS181)。このように差圧を検知(監視)するのは、燃料極21と空気極22とは上記の通り高分子膜からなる電解質23で仕切られているだけなので、燃料極21の(出口)圧力と空気極22の(出口)圧力との圧力差(極間差圧)が大きいと、電解質23がこの極間差圧により破損してしまうからである。かかる破損を防止かるために、極間差圧は300mmAq程度以下、好ましくは100mmAq以下に抑制することが望ましい。
燃料極21と空気極22との差圧が、極間差圧強度の制限値内でない場合(ステップS181でNo)、差圧が制限値を超えないように、燃料極圧力制御部63は燃料極21の圧力を下げるよう制御信号を発生し、第1制御弁31及び第2制御弁32が制御される(ステップS172)。このステップS172における制御は、先に説明したステップS15における制御と協働して行われ、結局燃料極圧力制御部63、空気極圧力制御部64、改質器圧力制御部65、及びブロワー制御部66は、燃料極用圧力計21S、空気極用圧力計22S、及び差圧計25の計測データに基づいて、(1)空気極22の圧力は所定値か(ステップS161)、(2)燃料極21の圧力は所定値か(ステップS171)を総合的に判定しつつ、第1〜第5制御弁31〜35、及びブロワー電動機52の制御信号をそれぞれ生成するものである。
一方、極間差圧強度の制限値内である場合(ステップS181でYes)、電池スタック2内の水分の除去に相応な所定期間、現状の制御条件で負圧運転が行われる(ステップS19)。そして所定期間、負圧運転が継続された後、排ガス吸引ブロワー51を通常運転モード運転に切り換える等し、さらに第1〜第5制御弁31〜35の開度を調整する等して、負圧運転が停止され、本低温型燃料電池システムS1は通常運転(常圧運転;電池スタック2内の水が気化しない圧力、つまり大気圧に近い負圧又は大気圧)へ復帰される。
(第2実施形態)
図4は、本発明の他の実施形態にかかる低温型燃料電池システムS2のシステム構成を示すシステム構成図である。このシステムS2は固体高分子形燃料電池(PEFC)システムである点は先の第1実施形態と同様であるが、改質器を用いず、純水素等の水素ガスを燃料として用いるタイプの低温型燃料電池システムS2を示している。なお、以下の説明において、第1実施形態と重複する部分については説明を省略乃至簡略化する。
このシステムS2は、電池部分の基本構成として、燃料である水素ガスに所定の水分を付加する加湿器160と、第1実施形態において用いたものと同様な、燃料極21、空気極22、及び電解質23を具備する電池スタック2とを備えている。
さらにこのシステムS2は、電池スタック2の燃料極21及び空気極22に対しそれぞれガスや空気の供給を行うと共に、燃料極21及び空気極22から排出される排ガスや排空気を放出するための配管路212、213、224、225及び第1制御弁〜第4制御弁41〜44が備えられている。
燃料極21の入口側には、加湿器160を経て水素ガスが供給可能とする配管路212が接続されており、第1制御弁41によりその流量(燃料ガス流量)が調整可能とされている。また燃料極21の出口側には、燃料極21中に滞留する不純物ガス(第1実施形態でいう燃料極排ガス。なお、実質的には水素はほとんど消費されるので燃料極排ガスは存在しない)を排出するための配管路213が接続されており、第2制御弁42によりその流量(燃料極排ガス流量)が調整可能とされている。
空気極22の入口側には、該空気極22へ酸素を取り入れるための配管路224が接続されており、第3制御弁43によりその流量(流入空気量)が調整可能とされている。また空気極22の出口側には、空気極排空気を排出するための配管路225の一端側が接続されており、第4制御弁44により空気極圧力が調整可能とされている。そして配管路225の他端側には、ブロワー電動機52にて駆動され、該配管路225を通して空気極22を吸引して負圧に為し得る排ガス吸引ブロワー51が接続されている。なお、電池スタック2には、このような負圧化動作を行う場合に、燃料極21と空気極22との差圧を管理するための差圧計25が設置されている。また、配管路225には、前記空気極排空気中に含まれる水分を除去するための水回収装置54が付設されている。さらに、図4では図示を省略しているが、燃料極21と空気極22には、それぞれの極内圧力を計測するための圧力計が備えられている。
また本低温型燃料電池システムS2は、図5の制御ブロック図に示すように、差圧計25並びに燃料極用圧力計21S、空気極用圧力計22Sの計測結果に基づき、上記第1制御弁〜第4制御弁41〜44及び排ガス吸引ブロワー51を駆動する電動機52を制御するための制御手段60を備えている。この制御手段60は、圧力検知部61、差圧検知部62、燃料極圧力制御部63、空気極圧力制御部64、ブロワー制御部66、負圧運転設定部67、及び負圧運転可否判定部68を備えている。この制御手段60において、改質器圧力制御部65が存在しない他は、第1実施形態で示した制御手段6と実質的に同様な構成であるので、説明を省略する。
このように構成された低温型燃料電池システムS2の動作について説明する。
燃料ガスとしての水素ガスは、加湿器160により一定の水分を加えられ、電池スタック2の燃料極21に供給される。この燃料ガス中の水素は、燃料極21内でほぼ100%使用されるために、燃料極排ガスは実質的に生じず、第2制御弁2を間歇的に開閉して燃料ガス中に含まれている不純物を大気に放出できるよう構成されている。
一方、電池スタック2の空気極22は、排ガス吸引ブロワー51により負圧に制御されるため、その圧力差で空気極22には配管路224を通して大気から空気が流れ込む。また配管路225は空気極排空気を排出するが、該排空気中には多くの水蒸気が含まれているために水回収装置54で水を回収して排ガス吸引ブロワー51に送られる(空気極排空気が吸引される)。このように、排ガス吸引ブロワー51と第1制御弁〜第4制御弁41〜44、及び差圧計25からなる負圧機構により、空気極22の負圧制御が行われ、かかる負圧制御により、大気圧下では電池動作温度において液体の「水」として存在してしまう空気極2内の生成水を、空気極22内を負圧にすることで空気極22内において「蒸気」となし得るようにし、蒸発作用により水分の排出を促進させて燃料ガス通路や空気通路等に滞留させることなく、排ガス吸引ブロワー51の排気作用で外部に排出させる(この水分は専ら水回収熱交換器54にて回収される)ものである。
このような低温型燃料電池システムS2の負圧運転制御を、図5の制御ブロック図及び図6に示す制御フローチャートに基づいて説明する。先ず、負圧運転制御にあたり、当該システムS2につき負圧運転を行うべき時期であるか(ステップS21)、及び(ステップS21でYesの場合に)負圧運転を行うのに適しているかが可能か(ステップS22)が判断される。この点、第1実施形態と同様に、負圧運転設定部67では設定された負圧機構動作情報に基づき、及び負圧運転可否判定部68では負荷状況等に基づき、それぞれYes、Noが判断される。
負圧運転可否判定部68から負圧運転に適しているとの信号が出力された場合(ステップS22でYesの場合)、排ガス吸引ブロワー51が負圧運転モードで動作するようブロワー電動機52の出力を増加させ、排ガス吸引ブロワー51の排出流量を多くすると共に、第1〜第4制御弁41〜44の制御を行うための負圧運転モードへ移行される(ステップS23)。かかる制御は、燃料極用圧力計21S、空気極用圧力計22S及び差圧計25による各極の圧力/両極の差圧計測データを、制御手段60の圧力検知部61と差圧検知部62とが受領し、該計測データに基づいて、燃料極圧力制御部63及び空気極圧力制御部64が、第1〜第4制御弁41〜44に対する制御信号をそれぞれ発生し、またブロワー制御部66がブロワー電動機52に対する制御信号を発生することで為される(ステップS24以下の処理)。
具体的には、まず空気極22及び燃料極21における負圧制御値の設定がなされる(ステップS24)。すなわち、空気極圧力制御部64により、セル温度測定計26が計測した電池スタック2の動作温度(セル温度)に基づいて、当該空気極22において水が気化することが可能な圧力が求められ、これが空気極22の負圧制御値とされる。また、燃料極21における負圧制御値の設定は、前記空気極22の設定圧力値に対し、セルの耐差圧許容値を考慮した上で決定される。従って燃料極圧力制御部63は、空気極圧力制御部64にて設定された空気極22の負圧制御値に基づいて、燃料極21における負圧制御値を決定する。このように設定された負圧制御値に基づいて、ブロワー電動機52の出力を増加させて排ガス吸引ブロワー51の排出流量を多くすると共に、第3制御弁43及び第4制御弁44が適宜制御され、空気極22を負圧にする動作が開始される(ステップS25)。
電池スタック2内の圧力が低下すると、まず空気極用圧力計22Sにより空気極22の圧力が検知され(ステップS26)、空気極圧力制御部64により該空気極22の圧力が所定値にあるか否かが判定される(ステップS261)。そして、未だ圧力が高く所定値でないと判定された場合(ステップS261でNoの場合)に、第4制御弁44を調整することで排ガス吸引ブロワー51の排出流量をさらに増加させ、空気極22(及び改質器バーナ部)をより負圧化させる。併せて、空気極22の圧力は、第3制御弁43を調整することで配管路224を介して空気極22へ流入する空気の量が制御されると共に、第4制御弁44を調整することで空気極22から排出される排空気流量が制御されることでも調整され、目標とする負圧値に制御される。空気極圧力制御部64では、このような第3制御弁43及び第4制御弁44の制御信号が生成され、図示省略のこれら制御弁の駆動機構へ前記制御信号が送信される。
次に、燃料極21について、燃料極用圧力計21Sにより燃料極21の圧力が検知され(ステップS27)、燃料極圧力制御部63により該燃料極21の圧力が所定値にあるか否かが判定される(ステップS271)。そして、所定値でないと判定された場合(ステップS271でNoの場合)に、燃料極21の圧力は、第1制御弁41を調整することで燃料極21へ導入される燃料ガスの流量が制御されることにより、目標とする負圧値に制御される。すなわち本実施形態では、燃料極21は排ガス吸引ブロワー51により負圧化しない構成であるため、専ら第1制御弁41の調整により圧力制御が行われる。第2制御弁42は、燃料極中に滞留する不純物ガスを放出するために、定期的に開閉される。燃料極圧力制御部63では、このような第1制御弁41及び第2制御弁42の制御信号が生成され、図示省略のこれら制御弁の駆動機構へ前記制御信号が送信される(ステップS272)。
次に、燃料極21の圧力が所定値であると判定された場合(ステップS271でYesの場合)、燃料極21と空気極22との差圧が差圧計25により検知され(ステップS28)、燃料極21と空気極22との差圧が、極間差圧強度の制限値内であるかが差圧検知部62により判定される(ステップS281)。燃料極21と空気極22との差圧が、極間差圧強度の制限値内でない場合(ステップS281でNo)、差圧が制限値を超えないように、燃料極圧力制御部63は燃料極21の圧力を下げるよう制御信号を発し、第1制御弁41が制御される(ステップS272)。このステップS272における制御は、先に説明したステップS25における制御と協働して行われ、結局燃料極圧力制御部63、空気極圧力制御部64、改質器圧力制御部65、及びブロワー制御部66は、燃料極用圧力計21S、空気極用圧力計22S、及び差圧計25の計測データに基づいて、(1)空気極22の圧力は所定値か(ステップS261)、(2)燃料極21の圧力は所定値か(ステップS271)を総合的に判定しつつ、第1制御弁41、第3制御弁43、第4制御弁44、及びブロワー電動機52の制御信号をそれぞれ生成するものである。
一方、極間差圧強度の制限値内である場合(ステップS281でYes)、電池スタック2内(空気極22内)の水分の除去に相応な所定期間、現状の制御条件で負圧運転が行われる(ステップS29)。そして所定期間、負圧運転が継続された後、排ガス吸引ブロワー51を通常運転モード運転に切り換える等し、さらに第1制御弁41、第3制御弁43、第4制御弁44の開度を調整する等して、負圧運転が停止され、本低温型燃料電池システムS1は通常運転(常圧運転;電池スタック2内の水が気化しない圧力、つまり大気圧に近い負圧又は大気圧)へ復帰される。なお第2制御弁42は、負圧運転中か否かに関わらず、燃料極21へ滞留する不純物ガスを排除すべく、適宜開閉動作がなされる。
以上説明した通りの低温型燃料電池システムS1、S2によれば、電池スタック2若しくは空気極22を負圧化し、セル面で生成される水を蒸気の状態で取り出すようにするので、水蒸気の拡散が速やかに行われ、水素や酸素ガスの拡散がし易くなり、濃度分極が低減するために、セル電圧の向上を図ることが可能となる。この結果として、負圧運転によるセル電圧の低下分と、濃度分極の改善によるセル電圧向上分とが相殺し、常圧運転と同等、あるいはより高いセル特性を得ることが可能となる。
すなわち、PEFCを減圧運転すれば水素・酸素ガス分圧の低下によりセル電圧は低下する。このガス分圧が低下することによるセル電圧の低下値は下式により表せる。
ΔV=k1og(P/P
ΔV:圧力低下によるセル電圧低下
k :係数 80℃で104.9mV,85℃で106.4mV,
90℃で107.9mV,95℃で109.4mV
:圧力低下時
:元の圧力
セル温度80℃での飽和蒸気圧は0.4829atよりΔV=104.9×log(0.48/1)=−33.4mV
セル温度85℃での飽和蒸気圧は0.5894atよりΔV=106.4×log(0.59/1)=−24mV
セル温度90℃での飽和蒸気圧は0.7149atよりΔV=107.9×log(0.715/1)=−15mV
セル温度95℃での飽和蒸気圧は0.8619atよりΔV=109.4×log(0.862/1)=−6.8mV
以上の通り、若干セル電圧が低下する。しかしながら、これは一般的なセル電圧である約600〜700mVから比べると数%の僅かな低下である。反面、本発明にかかるシステムでは、セル面での生成水の発生を水蒸気の状態で取り出すことに基づく、濃度分極の改善によるセル電圧向上効果が寄与するので、常圧運転と同等、あるいはより高いセル特性が得られるものである。
また、セル動作温度で生成する水が蒸気となるように電池スタック2(空気極22)の動作圧力(セル動作圧力)を設定するため、電池スタック2の特に空気極22の出口での水の滞留がなくなる。さらに、水の過剰による固体高分子膜(電解質23)の膨潤が防止され、固体高分子膜の機械強度の低下を防げるとともに、水素イオンの移動抵抗も減少し、比較的セル寿命が短いとされる固体高分子形燃料電池のセル寿命を長くすることができ、運用性や経済性を向上させることができる。
さらに、セル面で生成される水が水蒸気として蒸発するため、セル面から潜熱を奪うという副次的作用を奏することとなる。これにより、セル面から多くの熱が除去されることなり、沸騰水冷却効果によりセル冷却効果が大幅に改善される。かかるセル冷却効果の改善により、一般的に2セル毎に一枚ずつ挿入されている冷却板を、4〜5セル毎に減少させることが可能となり、冷却板減少によるコスト低減効果と共に、設備装置のコンパクト化を図ることも可能となる。
また、上述の実施形態のように、負圧運転設定部67及び負圧運転可否判定部68を設け、需要電力負荷が低いときに、燃料電池システムの負圧運転を行うようにすることで、セル面での水の水蒸気化を促進させると共に、燃料電池システム全体でのガスボリュウムの減少を防止でき、これにより電池スタック内でのガス偏流を防止できると共に、最低負荷の切り下げ範囲が広くなり、広い負荷領域での運用が可能となる。特に、深夜や週末の電力需要が少ない時の最低負荷の切り下げは経済性に大きい影響を与えるため、その効果は著大となる。
本発明は、発電容量としては数Wから数百MW級の家庭用・業務用や自家用発電設備、および自動車等の移動用動力用電源として使用する固体高分子形燃料電池発電システムに関するものである。また、ダイレクトメタノール形燃料電池等の携帯用燃料電池にも適用可能である。
本発明の第1実施形態にかかる低温型燃料電池システムS1のシステム構成を示すシステム構成図である。 本発明の第1実施形態にかかる低温型燃料電池システムS1の制御ブロック図である。 本発明の第1実施形態にかかる低温型燃料電池システムS1の制御フローチャートである。 本発明の第2実施形態にかかる低温型燃料電池システムS2のシステム構成を示すシステム構成図である。 本発明の第2実施形態にかかる低温型燃料電池システムS2の制御ブロック図である。 本発明の第2実施形態にかかる低温型燃料電池システムS2の制御フローチャートである。 従来の固体高分子形燃料電池システムのシステム構成を示すブロック図である。 固体高分子形燃料電池の動作原理を示す説明図である。 固体高分子形燃料電池セルの寿命要因にについて示した説明図である。
符号の説明
S1、S2 低温型燃料電池システム
11(71) 脱硫器
12(72) 改質器
12a(72a) 改質器本体
12b(72b) 改質器バーナ
13(73) 熱交換器
14(74) 一酸化炭素変成器
15(75) 選択酸化器
16、160(76) 加湿器
2(77) 燃料電池スタック
21(771) 燃料極
22(772) 空気極
23(773) 電解質
25 差圧計
26 セル温度測定計
211〜213、221〜225 配管路
21S 燃料極用圧力計
22S 空気極用圧力計
31〜35 第1〜第5制御弁(第1実施形態)
41〜44 第1〜第4制御弁(第2実施形態)
51(781) 排ガス吸引ブロワー
52(782) 電動機
53 排熱・水回収装置
54 水回収装置
6 制御手段
61 圧力検知部
62 差圧検知部
63 燃料極圧力制御部
64 空気極圧力制御部
65 改質器圧力制御部
66 ブロワー制御部
67 負圧運転設定部
68 負圧運転可否判定部

Claims (9)

  1. 燃料極と空気極とを有する低温型燃料電池スタックと、該電池スタック内を負圧にする負圧機構とを具備してなり、
    前記負圧機構は、電池動作温度において、電池スタック内で生成される水を蒸気化して電池スタック外へ排出可能とするものであることを特徴とする低温型燃料電池システム。
  2. 前記負圧機構は、電池スタック内の燃料極と空気極とを、共通の排気手段により負圧にするものであることを特徴とする請求項1記載の低温型燃料電池システム。
  3. 改質器を備え、低温型燃料電池スタックから排出される燃料極排燃料と空気極排空気とを前記改質器が備えるバーナで燃焼させて改質ガスを製造し、燃料極に供給する構成を具備すると共に、前記改質器炉内の燃焼排ガスを排気する排ガス吸引ブロワーを具備してなり、
    前記負圧機構は、前記排ガス吸引ブロワーによる排気力により、改質器炉内および電池スタック内を大気圧よりも低い負圧とするものであることを特徴とする請求項1記載の低温型燃料電池システム。
  4. 燃料極と空気極とを有する低温型燃料電池スタックと、該電池スタック内の空気極を負圧にする負圧機構とを具備してなり、
    前記負圧機構は、電池動作温度において、空気極内で生成される水を蒸気化して電池スタック外へ排出可能とするものであることを特徴とする低温型燃料電池システム。
  5. 前記負圧機構は、空気極から排出される空気極排空気を排気する排空気吸引ブロワーからなり、該排空気吸引ブロワーによる吸引力により、電池スタックの空気極内を大気圧よりも低い負圧とするものであることを特徴とする請求項4記載の低温型燃料電池システム。
  6. 前記負圧機構は、その負圧化動作を制御する制御手段を具備してなり、前記制御手段は、燃料極と空気極との差圧を検知する差圧検知部と、燃料極の圧力を制御する燃料極圧力制御部と、空気極の圧力を制御する空気極圧力制御部とを備え、燃料極と空気極との差圧を一定値以内に制御可能とするものであることを特徴とする請求項1〜5いずれかに記載の低温型燃料電池システム。
  7. 前記制御手段は、燃料極と空気極との極間差圧強度の制限値内において、燃料極よりも空気極の動作圧力を低く設定する制御が可能であることを特徴とする請求項6記載の低温型燃料電池システム。
  8. 前記制御手段に負圧運転可否判定部を備え、負圧運転を選択的に実行可能としたことを特徴とする請求項6記載の低温型燃料電池システム。
  9. 前記負圧運転可否判定部は、当該低温型燃料電池システムの低負荷運転時に負圧運転を行うように運転制御するものであることを特徴とする請求項8記載の低温型燃料電池システム。
JP2003431859A 2003-12-26 2003-12-26 低温型燃料電池システム Withdrawn JP2005190865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431859A JP2005190865A (ja) 2003-12-26 2003-12-26 低温型燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431859A JP2005190865A (ja) 2003-12-26 2003-12-26 低温型燃料電池システム

Publications (1)

Publication Number Publication Date
JP2005190865A true JP2005190865A (ja) 2005-07-14

Family

ID=34789740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431859A Withdrawn JP2005190865A (ja) 2003-12-26 2003-12-26 低温型燃料電池システム

Country Status (1)

Country Link
JP (1) JP2005190865A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269910A (ja) * 2007-04-19 2008-11-06 Toyota Motor Corp 燃料電池システムおよび燃料電池システムにおける不純物排出方法
JP2008269911A (ja) * 2007-04-19 2008-11-06 Toyota Motor Corp 燃料電池システムおよび燃料電池システムにおけるガス圧力調節方法
JP2010108619A (ja) * 2008-10-28 2010-05-13 Toyota Motor Corp 燃料電池運転制御方法及び燃料電池システム
JP2010113906A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd 膜電極接合体、セパレータ及び燃料電池
JP2011103300A (ja) * 2009-11-10 2011-05-26 Belenos Clean Power Holding Ag 燃料電池/バッテリ受動型ハイブリッド電源を動作させる方法
JP2016096114A (ja) * 2014-11-17 2016-05-26 東京瓦斯株式会社 燃料電池システム
CN112366336A (zh) * 2020-10-14 2021-02-12 广东国鸿氢能科技有限公司 一种用于质子交换膜燃料电池的吹扫方法及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269910A (ja) * 2007-04-19 2008-11-06 Toyota Motor Corp 燃料電池システムおよび燃料電池システムにおける不純物排出方法
JP2008269911A (ja) * 2007-04-19 2008-11-06 Toyota Motor Corp 燃料電池システムおよび燃料電池システムにおけるガス圧力調節方法
JP2010108619A (ja) * 2008-10-28 2010-05-13 Toyota Motor Corp 燃料電池運転制御方法及び燃料電池システム
JP2010113906A (ja) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd 膜電極接合体、セパレータ及び燃料電池
JP2011103300A (ja) * 2009-11-10 2011-05-26 Belenos Clean Power Holding Ag 燃料電池/バッテリ受動型ハイブリッド電源を動作させる方法
JP2016096114A (ja) * 2014-11-17 2016-05-26 東京瓦斯株式会社 燃料電池システム
CN112366336A (zh) * 2020-10-14 2021-02-12 广东国鸿氢能科技有限公司 一种用于质子交换膜燃料电池的吹扫方法及系统
CN112366336B (zh) * 2020-10-14 2021-11-23 广东国鸿氢能科技有限公司 一种用于质子交换膜燃料电池的吹扫方法及系统

Similar Documents

Publication Publication Date Title
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
JP4644064B2 (ja) 燃料電池システム
CN101764244B (zh) 燃料电池系统中氢进入阴极入口的方法和控制
JP5490102B2 (ja) 水素生成装置、燃料電池システム、水素生成装置の運転方法
JP5596758B2 (ja) 燃料電池システム及びその制御方法
JP2001143732A (ja) 固体高分子型燃料電池発電システム及びその運転方法
US8765314B2 (en) Fuel cell system and method for stopping operation of fuel cell system
US10985388B2 (en) Method and apparatus for estimating hydrogen crossover loss of fuel cell system
US20100221620A1 (en) Fuel cell system and operation method thereof
JP4687039B2 (ja) 固体高分子形燃料電池システム
US20100248045A1 (en) Fuel cell system and method for operating the same
KR100505472B1 (ko) 연료전지 시스템
JP2005190865A (ja) 低温型燃料電池システム
JP2008300057A (ja) 燃料電池システム
JP2008198440A (ja) 燃料電池システム
JP2007053015A (ja) 燃料電池システム
KR20140126862A (ko) 냉 시동성 개선을 위한 연료 전지 시스템 및 그 제어 방법
JP2004288562A (ja) 燃料電池発電システム
JP4593119B2 (ja) 燃料電池発電装置
JP4919314B2 (ja) 可逆セルの運転制御方法及び燃料電池の運転方法
JP2005251517A (ja) 燃料電池システム
JP2005108698A (ja) 燃料電池システム
JP2003142136A (ja) 燃料電池システム
JP2004342332A (ja) 燃料電池システム
JP2020047400A (ja) 固体酸化物形燃料電池システム

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306