JP2005188783A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005188783A
JP2005188783A JP2003427845A JP2003427845A JP2005188783A JP 2005188783 A JP2005188783 A JP 2005188783A JP 2003427845 A JP2003427845 A JP 2003427845A JP 2003427845 A JP2003427845 A JP 2003427845A JP 2005188783 A JP2005188783 A JP 2005188783A
Authority
JP
Japan
Prior art keywords
refrigeration
temperature
compressor
space
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427845A
Other languages
Japanese (ja)
Inventor
Hidetake Hayashi
Minoru Tenmyo
Isahiro Yoshioka
功博 吉岡
稔 天明
秀竹 林
Original Assignee
Toshiba Consumer Marketing Corp
Toshiba Corp
Toshiba Kaden Seizo Kk
東芝コンシューママーケティング株式会社
東芝家電製造株式会社
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Consumer Marketing Corp, Toshiba Corp, Toshiba Kaden Seizo Kk, 東芝コンシューママーケティング株式会社, 東芝家電製造株式会社, 株式会社東芝 filed Critical Toshiba Consumer Marketing Corp
Priority to JP2003427845A priority Critical patent/JP2005188783A/en
Publication of JP2005188783A publication Critical patent/JP2005188783A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B1/00Compression machines, plant, or systems with non-reversible cycle
    • F25B1/10Compression machines, plant, or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B5/00Compression machines, plant, or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plant, or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/173Speeds of the evaporator fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B5/00Compression machines, plant, or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plant, or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of properly controlling a freezing space and a refrigeration space respectively at their storage temperatures by controlling a two-stage compression type capacity-variable refrigeration cycle having a cooling unit for freezing and a cooling unit for refrigeration on the basis of freezing space temperature information. <P>SOLUTION: In this refrigerator wherein the freezing cycle is composed of a capacity-variable compressor 9 having a compressing element composed of a low stage-side compressing part 9a and a high stage-side compressing part 9b and driven by an invertor, a switch valve 11 mounted at an outlet side of a condenser 10 receiving a discharge gas from the compressor and controlling a flow rate with a refrigerant flow channel, and the cooling unit 4 for freezing and the cooling unit 5 of refrigeration respectively connected from the switch valve through decompression devices 12, 13, a rotational frequency of the compressor is determined on the basis of a freezing space temperature Fa and its target value Fr. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二段圧縮式の能力可変圧縮機を用いた冷蔵庫に係り、特に貯蔵空間温度により圧縮機の回転数を決定するものに関する。   The present invention relates to a refrigerator using a two-stage compression type variable capacity compressor, and more particularly to a refrigerator that determines the rotation speed of a compressor according to a storage space temperature.
近年、冷蔵庫は、インバータ制御による能力可変の圧縮機を搭載したものが多く、その冷凍能力を可変することにより、負荷に対応する冷却性能を得るとともに消費電力の低減をはかるようにしている。   In recent years, refrigerators are often equipped with a variable capacity compressor by inverter control. By varying the refrigeration capacity, cooling performance corresponding to the load is obtained and power consumption is reduced.
家庭用として普及している冷蔵庫は、−18〜−20℃程度に冷却される冷凍空間と、+1〜+5℃程度に保持する冷蔵や野菜保存空間を有するものが一般的であり、単一の冷却器により双方の空間を冷却するものにおいては、ダンパーなどにより冷凍および冷蔵空間への冷気流の分配を制御し、全体の負荷に応じて圧縮機を駆動あるいは停止し、インバータ制御によるものはさらに圧縮機の回転数を制御することによって双方の貯蔵空間を所定の温度に保持していた。   Refrigerators that are widely used for home use generally have a freezing space that is cooled to about -18 to -20 ° C and a refrigerated or vegetable storage space that is maintained at about +1 to + 5 ° C. In the case of cooling both spaces with a cooler, the distribution of the cold air flow to the refrigeration and refrigeration space is controlled by a damper or the like, the compressor is driven or stopped according to the overall load, and the inverter control further Both storage spaces were maintained at a predetermined temperature by controlling the rotation speed of the compressor.
また、冷凍および冷蔵空間のそれぞれに冷却器を備えたタイプにおいては、冷媒の流路を切り替えることにより前記各冷却空間に配置した冷却器への冷媒流を分配制御し、冷却空間全体の温度や温度差などの負荷に応じて圧縮機を制御している。   Further, in a type in which a refrigerator is provided in each of the refrigeration and refrigeration spaces, distribution control of the refrigerant flow to the coolers arranged in the respective cooling spaces is performed by switching the refrigerant flow paths, and the temperature of the entire cooling space can be controlled. The compressor is controlled according to the load such as temperature difference.
一方、現在、市場に供されている冷凍冷蔵庫に用いられている冷媒圧縮機は、圧縮機ケース内に単一の圧縮部が存在する、いわゆる一段圧縮方式であるが、近年では、図13に示すように、密閉容器内にモーターと低段圧縮要素(39a)と高段圧縮要素(39b)とを備えた二段圧縮機(39)を設け、高段圧縮要素(39a)からの吐出管(46)に接続した凝縮器(40)の出口側に中間圧用膨張装置(43)を接続し、低段側圧縮要素(39a)の吐出側ならびに高段側圧縮要素(39b)の吸入側と中間圧用吸入パイプ(47)とを連通させて、この中間圧用吸入パイプ(47)と前記中間圧用膨張装置(43)との間に中間圧用蒸発器(35)を接続するとともに、凝縮器(40)の出口側と接続した低圧用膨張装置(42)と二段圧縮機の低段圧縮要素の吸入側(45)との間に低圧用蒸発器(34)を接続してなり、低段圧縮要素(39a)の吐出側と高段圧縮要素(39b)の吸入側とを密閉容器(39)内に連通させることで、庫内の温度制御の精度を高めるとともに庫内各部の温度の均一化や高効率化、低消費電力化をはかるようにした二段圧縮冷凍冷蔵装置の思想が公開されている。(例えば、特許文献1参照)
特開2001−74325公報
On the other hand, the refrigerant compressor currently used in the refrigerator-freezer on the market is a so-called one-stage compression system in which a single compression unit is present in the compressor case. As shown, a two-stage compressor (39) having a motor, a low-stage compression element (39a), and a high-stage compression element (39b) is provided in a sealed container, and a discharge pipe from the high-stage compression element (39a). An intermediate pressure expansion device (43) is connected to the outlet side of the condenser (40) connected to (46), and the discharge side of the low-stage compression element (39a) and the suction side of the high-stage compression element (39b) An intermediate pressure suction pipe (47) is communicated, and an intermediate pressure evaporator (35) is connected between the intermediate pressure suction pipe (47) and the intermediate pressure expansion device (43), and a condenser (40 ) Between the low pressure expansion device (42) connected to the outlet side and the suction side (45) of the low-stage compression element of the two-stage compressor The low-pressure evaporator (34) is connected to the container, and the discharge side of the low-stage compression element (39a) and the suction side of the high-stage compression element (39b) are communicated with each other in the sealed container (39). The idea of a two-stage compression refrigeration system that increases the accuracy of temperature control in the interior and makes the temperature of each part in the cabinet uniform, high efficiency, and low power consumption is disclosed. (For example, see Patent Document 1)
JP 2001-74325 A
上記特許文献1に記載の冷凍サイクルでは、冷蔵用冷却器である中間圧用蒸発器(35)の蒸発温度を冷凍用冷却器である低圧用蒸発器(34)より高くすることによってサイクル効率が向上する。しかしながら二段圧縮サイクルによる冷凍用冷却器(34)の吸込管は圧縮機の低段側圧縮部(39a)に直結し、冷蔵用冷却器(35)の吸込管(47)が圧縮機(39)の中間圧部に接続しているため、冷凍空間の冷凍能力は冷蔵用冷却器(35)へ流れる冷媒の影響を受けにくいものであり、冷凍側の負荷と冷蔵側の負荷とのトータルの負荷で圧縮機(39)の回転数を制御する従来の方法では、例えば、冷凍空間の冷却度合が充分で、冷蔵空間が冷却過多のような場合には、圧縮機の回転数を低下させることになり、結果的に冷凍空間の冷却が不足してしまう問題を生じていた。   In the refrigeration cycle described in Patent Document 1, cycle efficiency is improved by making the evaporation temperature of the intermediate pressure evaporator (35), which is a refrigeration cooler, higher than the low pressure evaporator (34), which is a refrigeration cooler. To do. However, the suction pipe of the refrigeration cooler (34) in the two-stage compression cycle is directly connected to the lower stage compression section (39a) of the compressor, and the suction pipe (47) of the refrigeration cooler (35) is connected to the compressor (39 ), The refrigeration capacity of the refrigeration space is not easily affected by the refrigerant flowing into the refrigeration cooler (35), and the total of the load on the refrigeration side and the load on the refrigeration side In the conventional method of controlling the rotation speed of the compressor (39) with the load, for example, when the cooling degree of the refrigeration space is sufficient and the refrigeration space is excessively cooled, the rotation speed of the compressor is reduced. As a result, there has been a problem that cooling of the freezing space is insufficient.
本発明は上記点を考慮してなされたものであり、冷凍用および冷蔵用冷却器を有し二段圧縮式とした能力可変冷凍サイクルを、冷凍空間温度情報により制御することで、冷凍空間と冷蔵空間とをそれぞれの貯蔵温度で適切に制御できるようにした冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above points, and by controlling a variable capacity refrigeration cycle having a refrigeration and refrigeration cooler and a two-stage compression type based on refrigeration space temperature information, An object of the present invention is to provide a refrigerator in which the refrigerated space can be appropriately controlled at each storage temperature.
上記課題を解決するために、本発明の冷蔵庫は、圧縮要素が低段側圧縮部と高段側圧縮部により構成されたインバータ駆動による能力可変の圧縮機と、この圧縮機からの吐出ガスを受ける凝縮器の出口側に設けられた冷媒流路とともに流量を制御する切替弁と、この切替弁からそれぞれ減圧装置を介して接続された冷凍用冷却器および冷蔵用冷却器とから冷凍サイクルを形成した冷蔵庫において、冷凍空間温度とその目標値により前記圧縮機の回転数を決定することを特徴とするものである。   In order to solve the above-described problems, a refrigerator according to the present invention includes an inverter-driven compressor having a variable compression element composed of a low-stage side compression unit and a high-stage side compression unit, and a discharge gas from the compressor. A refrigeration cycle is formed from a switching valve for controlling the flow rate together with a refrigerant flow path provided on the outlet side of the condenser to be received, and a refrigeration cooler and a refrigeration cooler connected from the switching valve via a pressure reducing device, respectively. In the refrigerator, the number of rotations of the compressor is determined based on the freezing space temperature and its target value.
また、請求項2の発明による冷蔵庫は、圧縮要素が低段側圧縮部と高段側圧縮部により構成されたインバータ駆動による能力可変の圧縮機と、この圧縮機からの吐出ガスを受ける凝縮器の出口側に設けられた冷媒流路とともに流量を制御する切替弁と、この切替弁からそれぞれ減圧装置を介して接続された冷凍用冷却器および冷蔵用冷却器とから冷凍サイクルを形成した冷蔵庫において、冷凍空間温度とその目標値とともに冷蔵空間温度とその目標値により圧縮機の回転数を決定するものであって、回転数決定の際には、冷蔵空間より冷凍空間側の温度情報のフィードバック量を大きくすることを特徴とするものである。   According to a second aspect of the present invention, there is provided a refrigerator having a variable capacity compressor driven by an inverter whose compression elements are constituted by a low-stage compression section and a high-stage compression section, and a condenser that receives discharge gas from the compressor. In a refrigerator that forms a refrigeration cycle from a switching valve that controls the flow rate together with a refrigerant flow path provided on the outlet side of the refrigeration, and a refrigeration cooler and a refrigeration cooler that are connected to the switching valve via a decompression device, respectively. The compressor rotation speed is determined by the refrigeration space temperature and the target value together with the refrigeration space temperature and the target value. When the rotation speed is determined, the amount of feedback of temperature information on the refrigeration space side from the refrigeration space is determined. It is characterized by increasing.
この構成によって、冷凍用および冷蔵用冷却器の双方を各貯蔵空間の冷却に応じた蒸発温度として冷凍サイクルの効率向上とともにそれぞれの冷却器への流路切り替えや流量など冷媒流制御が可能になるのみでなく、冷凍空間と冷蔵空間を同時に冷却することで各空間内の温度変動を抑制し、各空間温度を適切に制御することができる。   With this configuration, both the refrigeration cooler and the refrigeration cooler can be evaporated at temperatures corresponding to the cooling of each storage space, and the efficiency of the refrigeration cycle can be improved, and the flow of the refrigerant to the respective coolers can be controlled and the refrigerant flow can be controlled. In addition, the temperature fluctuation in each space can be suppressed by simultaneously cooling the refrigerated space and the refrigerated space, and each space temperature can be controlled appropriately.
以下、図面に基づき本発明の1実施形態について説明する。図2に縦断面図を示す冷蔵庫本体(1)は、断熱箱体の内部に貯蔵空間を形成し、仕切壁により冷凍室や製氷室の冷凍空間(2)、冷蔵室や野菜室の冷蔵空間(3)など複数の貯蔵室に区分している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The refrigerator main body (1) whose longitudinal cross-sectional view is shown in FIG. 2 forms a storage space inside the heat insulation box, and the partition wall separates the freezing space (2) of the freezing room and ice making room, and the refrigerating space of the refrigerating room and vegetable room. (3) and so on.
各貯蔵室は、冷凍空間や冷蔵空間毎に配置した冷凍用冷却器(4)と冷蔵用冷却器(5)、および冷気循環ファン(6)(7)によってそれぞれ所定の設定温度に冷却保持されるものであり、各冷却器(4)(5)は、本体背面下部の機械室(8)に設置した圧縮機(9)から供給される冷媒によって冷却される。   Each storage room is cooled and held at a predetermined set temperature by a refrigeration cooler (4), a refrigeration cooler (5), and a cold air circulation fan (6) (7) arranged for each refrigeration space or refrigeration space. Each cooler (4) (5) is cooled by the refrigerant supplied from the compressor (9) installed in the machine room (8) at the lower back of the main body.
図1は、上記本発明の冷蔵庫における冷凍サイクルを示すものであり、前記圧縮機(9)、凝縮器(10)、冷媒流路の切替弁(11)、および並列に接続した前記冷凍用および冷蔵用冷却器(4)(5)を環状に連結している。前記凝縮器(10)は、平板状にして前記機械室(8)の前方における冷蔵庫本体(1)の外底面空間に配設されており、凝縮器(10)で液化した冷媒は切替弁(11)を介してそれぞれ減圧装置である毛細管(12)(13)を経由して冷凍用冷却器(4)あるいは冷蔵用冷却器(5)に供給され、蒸発することで冷却器を低温化し、冷気ファン(6)(7)による循環によって貯蔵室内を所定の空気温度に冷却するものであり、蒸発気化した冷媒は、アキュムレータ(14)を介して再び圧縮機(9)に戻るよう構成されている。   FIG. 1 shows a refrigeration cycle in the refrigerator of the present invention. The compressor (9), the condenser (10), the refrigerant flow switching valve (11), and the refrigeration and The refrigeration coolers (4) and (5) are connected in an annular shape. The condenser (10) is flat and disposed in the outer bottom space of the refrigerator body (1) in front of the machine room (8). The refrigerant liquefied by the condenser (10) 11) is supplied to the refrigeration cooler (4) or the refrigeration cooler (5) via the capillaries (12) and (13), which are decompression devices, respectively, and evaporates to lower the temperature of the cooler. The storage chamber is cooled to a predetermined air temperature by circulation through the cold air fans (6) and (7), and the evaporated vaporized refrigerant is configured to return to the compressor (9) again through the accumulator (14). Yes.
しかして、圧縮機(9)は、その詳細を図3に示すように、圧縮要素が低段側圧縮部(9a)と高段側圧縮部(9b)により構成されたレシプロ式の二段圧縮機であり、密閉ケース(9c)内に収納した電動機構(9d)の回転軸(9e)の回転で偏心して回転する偏心軸(9f)によってコンロッド(9g)を往復運動させるよう構成している。   As shown in detail in FIG. 3, the compressor (9) has a reciprocating two-stage compression in which the compression element is composed of a low-stage compression section (9a) and a high-stage compression section (9b). The connecting rod (9g) is reciprocated by an eccentric shaft (9f) that rotates eccentrically by the rotation of the rotating shaft (9e) of the electric mechanism (9d) housed in the sealed case (9c). .
コンロッド(9g)の先端にはボールジョイント(9h)でピストン(9i)が嵌め固定されており、シリンダー(9j)内のピストン(9i)の往復運動によって前記低段側圧縮部(9a)と高段側圧縮部(9b)に対して交互に冷媒を吸い込み、圧縮して吐出するものであり、上記圧縮部へのボールジョイント(9h)の採用により、容積効率を向上させ、2つの圧縮部(9a)(9b)を必要とする二段圧縮機(9)の外形スペースの拡大を抑制している。   A piston (9i) is fitted and fixed to the tip of the connecting rod (9g) by a ball joint (9h), and the piston (9i) in the cylinder (9j) is reciprocated with the low-stage compression section (9a). The refrigerant is alternately sucked into the stage side compression section (9b), compressed and discharged, and by adopting the ball joint (9h) to the compression section, the volume efficiency is improved, and the two compression sections ( The expansion of the external space of the two-stage compressor (9) that requires 9a) and (9b) is suppressed.
低段側圧縮部(9a)の吸込み口(9k)には、前記冷凍用冷却器(4)からアキュムレータ(14)を介して連結した吸込み管(15)の端部を接続しており、圧縮した冷媒ガスを吐出する吐出口(9m)をケース(9c)内に開口させ、高段側圧縮部(9b)の吐出口(9n)は、凝縮器(10)への吐出管(16)に接続している。   The suction port (9k) of the low-stage compression section (9a) is connected to the end of the suction pipe (15) connected via the accumulator (14) from the refrigeration cooler (4), and is compressed. The discharge port (9m) for discharging the refrigerant gas is opened in the case (9c), and the discharge port (9n) of the higher stage compression section (9b) is connected to the discharge pipe (16) to the condenser (10). Connected.
前記アキュムレータ(14)は、気液を分離し、冷却器(4)で蒸発しきれなかった液状冷媒を貯留してガス状冷媒のみを送り出し、圧縮機(9)のシリンダー(9j)に液冷媒が流入することによる支障を防止する作用をおこなうものであり、本実施例では、冷凍用冷却器(4)の後段にのみ設けている。   The accumulator (14) separates gas and liquid, stores the liquid refrigerant that could not be evaporated by the cooler (4), sends out only the gaseous refrigerant, and supplies the liquid refrigerant to the cylinder (9j) of the compressor (9). In this embodiment, it is provided only at the rear stage of the refrigeration cooler (4).
前記冷蔵用冷却器(5)からの吸込み管(17)は密閉ケース(9c)内の中間圧となる空間部に導入するよう接続している。したがって、冷蔵用冷却器(5)からの吸込み冷媒は直接圧縮機のシリンダー内に流入しないため、冷蔵用冷却器(5)の後段にはアキュムレータを設ける必要は特になく、設置する場合は小形のものでよい。そして、冷蔵用冷却器側の吸込み管(17)から吸い込まれた冷媒ガスは、前記低段側圧縮部(9a)の吐出口(9m)から吐出される冷媒ガスとともに連通する高段側圧縮部(9b)の吸込み口(9p)に吸い込まれ圧縮されるように構成している。   The suction pipe (17) from the refrigeration cooler (5) is connected so as to be introduced into a space portion serving as an intermediate pressure in the sealed case (9c). Accordingly, since the refrigerant sucked from the refrigeration cooler (5) does not flow directly into the cylinder of the compressor, it is not particularly necessary to provide an accumulator after the refrigeration cooler (5). Things can be used. And the refrigerant | coolant gas suck | inhaled from the suction pipe (17) by the side of the refrigerator for refrigeration communicates with the refrigerant | coolant gas discharged from the discharge port (9m) of the said low stage | side compression part (9a). It is configured to be sucked into the suction port (9p) of (9b) and compressed.
前記圧縮機(9)は、インバータ制御により能力可変となっており、冷凍および冷蔵空間の検出温度や目標設定温度との差、温度変化率などに基づいて、例えば、30〜70Hz間で回転周波数を決定し、マイコンなどから構成される制御装置によって運転される。   The compressor (9) is variable in capacity by inverter control, and has a rotational frequency between 30 and 70 Hz, for example, based on the difference between the detected temperature of the refrigeration and refrigerated spaces, the target set temperature, the temperature change rate, etc. And is operated by a control device including a microcomputer.
切替弁(11)は、圧縮機(9)からの吐出ガスを受ける凝縮器(10)の出口側に設けられて冷却器(4)(5)側への冷媒流路切り替えとともに流量を制御するものであり、図4に示すように、弁ケース(18)内に冷凍用冷却器(4)側への弁口A(19a)と冷蔵側冷却器(5)への弁口B(19b)とを形成した弁座(19)を設け、弁座(19)に対して弁体(20)をその上部に配置した三方弁である。   The switching valve (11) is provided on the outlet side of the condenser (10) that receives the discharge gas from the compressor (9), and controls the flow rate together with the refrigerant flow switching to the coolers (4) and (5) side. As shown in FIG. 4, in the valve case (18), a valve port A (19a) to the refrigeration cooler (4) side and a valve port B (19b) to the refrigeration side cooler (5) are provided. This is a three-way valve that is provided with a valve seat (19) that is formed with a valve body (20) disposed above the valve seat (19).
弁体(20)は、前記弁口A(19a)およびB(19b)と回転軌跡上でそれぞれ対応するように所定長さに亙って円弧状に延び、回転軸(20c)の中心から回転移動半径を相違させた2箇所の断面V字状の凹溝A(20a)および凹溝B(20b)を所定の端縁形状に成形した厚肉段部(20d)の下面に形成しており、弁座(19)の上面と弁体(20)を密接重合しつつ、上部に設けた図示しないステッピングモータによる0〜85のパルスステップで回転駆動するものである。   The valve body (20) extends in a circular arc over a predetermined length so as to correspond to the valve ports A (19a) and B (19b) on the rotation locus, and rotates from the center of the rotation shaft (20c). The groove A (20a) and the groove B (20b) having two V-shaped cross sections with different moving radii are formed on the lower surface of the thick step (20d) formed into a predetermined edge shape. The upper surface of the valve seat (19) and the valve body (20) are intimately polymerized, and are rotationally driven by 0 to 85 pulse steps by a stepping motor (not shown) provided on the upper portion.
この切替弁(11)は、冷凍サイクル制御信号によるパルス信号で弁体(20)を回転させ、所定のパルス位置で前記弁体の回転半径外側の凹溝A(20a)と弁口A(19a)とが上下に重合し連通した場合には、流入弁口(21)から弁ケース(18)内に流入した冷媒が、凹溝A(20a)の前記厚肉段部(20d)の開放端縁からV字状の凹溝A(20a)内に進入し、凹溝Aと連通する弁口A(19a)から流出して冷凍用毛細管(12)に導入され、冷凍用冷却器(4)で蒸発気化するものである。   The switching valve (11) rotates the valve body (20) by a pulse signal based on the refrigeration cycle control signal, and the groove A (20a) and the valve port A (19a) outside the rotation radius of the valve body at a predetermined pulse position. ) Are superposed vertically and communicated with each other, the refrigerant that has flowed into the valve case (18) from the inlet valve port (21) is opened at the open end of the thick-walled step (20d) in the groove A (20a). It enters the V-shaped concave groove A (20a) from the edge, flows out from the valve port A (19a) communicating with the concave groove A, is introduced into the freezing capillary (12), and the freezing cooler (4) It will evaporate.
一方、同様に回転半径内側の凹溝B(20b)と弁口B(19b)とが連通した場合には、凹溝B(20b)に流入した冷媒は連通する弁口B(19b)から冷蔵用毛細管(13)に流入して冷蔵用冷却器(5)で蒸発する。   On the other hand, similarly, when the concave groove B (20b) on the inner side of the rotation radius and the valve port B (19b) communicate with each other, the refrigerant flowing into the concave groove B (20b) is refrigerated from the communicating valve port B (19b). It flows into the capillary tube (13) and evaporates with the refrigeration cooler (5).
また、冷蔵側である凹溝B(20b)は、V字状溝が回転先端から厚肉段部(20d)の開放端に向かうにしたがってその断面積が随時拡大するように形成されており、弁体(20)の回転によって、最小から最大の流通開口面積となって弁口B(19b)に連通するようにしており、流路の切り替えや流量調整はきめ細かく制御できることから、パルスによる回転制御によって冷媒流量を効率よくリニアに変更することができる。   Further, the concave groove B (20b) on the refrigeration side is formed such that the cross-sectional area thereof is expanded as the V-shaped groove is directed from the rotating tip toward the open end of the thick-walled step (20d), By rotating the valve body (20), the minimum and maximum flow opening area is communicated with the valve port B (19b), and the flow control and flow rate adjustment can be finely controlled. Can efficiently change the refrigerant flow rate linearly.
三方弁(20)における弁の開放制御は、冷凍用冷却器(4)と冷蔵用冷却器(5)への弁(19a)(19b)の開口度を双方とも全開、あるいは全閉、および冷凍側弁開口を絞って冷蔵側を全開したり、あるいは冷蔵側の弁開口を絞って冷凍側を全開するなど種々のパターンを選択できるが、本実施例では、冷凍用冷却器(4)と冷蔵用冷却器(5)とを並列に接続しており、冷却制御は冷凍冷蔵側の同時冷却と冷凍側のみ冷却の2通りとしている。   The opening control of the three-way valve (20) is performed by fully opening or closing both the opening degrees of the valves (19a) and (19b) to the refrigeration cooler (4) and the refrigeration cooler (5). Various patterns can be selected, such as squeezing the side valve opening to fully open the refrigeration side, or squeezing the refrigeration side valve opening to fully open the refrigeration side. In this embodiment, the refrigeration cooler (4) and refrigeration are selected. The cooling device (5) is connected in parallel, and cooling control is performed in two ways: simultaneous cooling on the freezer side and cooling only on the freezer side.
冷凍側弁口A(19a)から流出した冷媒は、冷凍空間(2)における冷却温度に即した蒸発温度になるよう設定した毛細管(12)を通過し減圧されて冷凍用冷却器(4)において−25℃程度で蒸発し、冷蔵用弁口B(19b)からも同様に、冷蔵空間(3)での冷却温度に近似する−5℃程度の蒸発温度になるよう設定した冷蔵用毛細管(13)を介して冷蔵用冷却器(5)に冷媒が送られ蒸発する。   The refrigerant that has flowed out of the freezing side valve port A (19a) passes through the capillary tube (12) that is set to have an evaporation temperature corresponding to the cooling temperature in the freezing space (2), and is reduced in pressure in the freezing cooler (4). The refrigeration capillary tube (13) is set so as to evaporate at about -25 ° C and to reach an evaporation temperature of about -5 ° C, which is similar to the cooling temperature in the refrigeration space (3), similarly from the refrigeration valve port B (19b). ) To the refrigeration cooler (5) and evaporate.
なお、前記冷凍サイクルにおける冷凍用および冷蔵用毛細管(12)(13)は、冷凍用冷却器(4)および冷蔵用冷却器(5)での冷媒蒸発温度に温度差をつけるため、冷凍側毛細管(12)の絞りを強くしている結果、前記のように冷凍冷蔵双方へ冷媒を流す場合は必然的に抵抗の小さい冷蔵側に流れやすくなり、冷凍側へは流れにくくなる傾向にあって、極端な場合は冷凍側には冷媒が流れない状況が発生する。   The refrigeration and refrigeration capillaries (12) and (13) in the refrigeration cycle have a temperature difference in the refrigerant evaporation temperature between the refrigeration cooler (4) and the refrigeration cooler (5). As a result of strengthening the throttle of (12), when the refrigerant is allowed to flow to both refrigeration and refrigeration as described above, it inevitably tends to flow to the refrigeration side having a low resistance, and tends to be difficult to flow to the refrigeration side. In extreme cases, the refrigerant may not flow on the freezing side.
これを改善するため前記切替弁(11)においては、冷凍および冷蔵空間(2)(3)の各冷却のための冷媒流制御とともに、いわゆる冷媒の片流れを防止するため、冷媒の流れやすい冷蔵側への冷媒流量をやや絞るようにする制御を加えている。   In order to improve this, in the switching valve (11), the refrigerant flow control for cooling each of the refrigeration and the refrigeration spaces (2) and (3) and the so-called single flow of the refrigerant are prevented, so that the refrigerant flows easily. A control is added to reduce the refrigerant flow rate to a little.
そして、冷凍側の凹溝A(20a)と弁口A(19a)とが連通して全開であれば、冷蔵側の冷媒流状態にほとんど影響されることなく冷凍側冷却器(4)はほぼ所定の冷凍能力を得られることになり、冷蔵側の冷凍能力についても、前記切替弁(11)の凹溝B(20b)と弁口(19b)との連通状態による閉から開の範囲、および圧縮機(9)の回転数変化できめ細かく制御できるものである。   If the concave groove A (20a) on the refrigeration side and the valve port A (19a) communicate with each other and are fully open, the refrigeration side cooler (4) is almost unaffected by the refrigerant flow state on the refrigeration side. A predetermined refrigerating capacity can be obtained, and the refrigerating capacity on the refrigeration side is also in a range from closed to open due to the communication state between the concave groove B (20b) of the switching valve (11) and the valve port (19b), and The compressor (9) can be finely controlled by changing the rotation speed.
上記の冷媒流制御によって、冷蔵用冷却器(5)の蒸発温度を冷凍側と温度差をつけて高くすることができ、冷蔵室温を1〜2℃に冷却することができるが、冷蔵用冷却器(5)の伝熱表面積を大きくして冷蔵空間冷却への熱交換量を大きくするようにすれば、さらに蒸発温度を上げることも可能であり、この場合は、冷蔵空間(3)の冷却温度と冷却器温度との温度差がより小さくなって冷蔵用冷却器(5)に付着する霜の量が少なくなり、空間内の乾燥を防いで庫内の湿度を高く保持する効果を奏する。   With the above refrigerant flow control, the evaporating temperature of the refrigeration cooler (5) can be increased with a temperature difference from the refrigeration side, and the refrigeration room temperature can be cooled to 1-2 ° C. If the heat transfer surface area of the vessel (5) is increased to increase the amount of heat exchange for cooling the refrigerated space, the evaporation temperature can be further increased. In this case, the refrigerated space (3) is cooled. The temperature difference between the temperature and the cooler temperature becomes smaller and the amount of frost adhering to the refrigeration cooler (5) is reduced, which has the effect of preventing the drying in the space and keeping the humidity in the cabinet high.
なお、一般の家庭用冷蔵庫においては、冷凍空間と冷蔵空間の冷却に必要とする冷凍能力はほぼ同等であることから、冷蔵用冷却器(5)の伝熱表面積を冷凍用冷却器(4)と同等あるいはより大きくすることにより、各冷却空間を効率的に冷却することが可能となる。   In general refrigerators for home use, the refrigeration capacity required for cooling the refrigeration space and the refrigeration space is substantially the same. Therefore, the heat transfer surface area of the refrigeration cooler (5) is set to the refrigeration cooler (4). It becomes possible to cool each cooling space efficiently by making it equal to or larger than.
次に冷凍サイクルの動作について説明する。電源投入によって圧縮機(9)が駆動されると、圧縮され高温高圧となった冷媒ガスは吐出管(16)から凝縮器(10)に吐出されて切替弁(11)に至る。切替弁(11)は前記のように種々のパターン設定が可能であるが、前記電源投入の際には、冷凍、冷蔵空間(2)(3)とも未冷却の状態であるので、弁口A(19a)、B(19b)は全開状態になり、冷媒は冷凍用および冷蔵用毛細管(12)(13)に流入して減圧され冷凍用および冷蔵用冷却器(4)(5)にそれぞれ流入して各蒸発温度で蒸発し、各冷却器を所定温度に冷却する。   Next, the operation of the refrigeration cycle will be described. When the compressor (9) is driven by turning on the power, the refrigerant gas compressed to high temperature and high pressure is discharged from the discharge pipe (16) to the condenser (10) and reaches the switching valve (11). The switching valve (11) can be set in various patterns as described above, but when the power is turned on, the freezing and refrigeration spaces (2) and (3) are in an uncooled state. (19a) and B (19b) are fully opened, and the refrigerant flows into the freezing and refrigeration capillaries (12) and (13) and is depressurized to flow into the freezing and refrigeration coolers (4) and (5), respectively. Then, it evaporates at each evaporation temperature and cools each cooler to a predetermined temperature.
冷凍用冷却器(4)からの冷媒はアキュムレータ(14)に流入し、万一冷却器中で蒸発しきれなかった液冷媒が残っている場合はアキュムレータ(14)内部に貯留され、ガス冷媒のみが吸込み管(15)から圧縮機(9)の低段側圧縮部(9a)に吸い込まれる。また、冷蔵用冷却器(5)で蒸発した冷媒は吸込み管(17)を経由して前記圧縮機(9)の中間圧となっている密閉ケース(9c)内に導入される。   The refrigerant from the refrigeration cooler (4) flows into the accumulator (14). If liquid refrigerant that could not be evaporated in the cooler remains, it is stored inside the accumulator (14) and only the gas refrigerant is stored. Is sucked into the lower stage compression section (9a) of the compressor (9) from the suction pipe (15). Further, the refrigerant evaporated in the refrigeration cooler (5) is introduced into the hermetic case (9c) having an intermediate pressure of the compressor (9) through the suction pipe (17).
冷凍用冷却器(4)から低段側圧縮部(9a)に吸い込まれ、圧縮されて吐出口(9m)からケース(9c)内に吐出された冷媒ガスと冷蔵用冷却器(5)から密閉ケース(9c)の中間圧部に流入した冷媒ガスとは合流して吸込み口(9p)から高段側圧縮部(9b)に吸い込まれ、圧縮されて吐出口(9n)から吐出管(17)に吐出され凝縮器(10)に導かれる冷凍サイクルを形成する。   The refrigerant gas sucked into the lower stage compression section (9a) from the refrigeration cooler (4), compressed, and discharged from the discharge port (9m) into the case (9c) and sealed from the refrigeration cooler (5) The refrigerant gas that has flowed into the intermediate pressure portion of the case (9c) merges and is sucked into the high-stage compression portion (9b) from the suction port (9p) and is compressed and discharged from the discharge port (9n) to the discharge pipe (17). To form a refrigeration cycle which is discharged to the condenser (10).
したがって、上記冷凍サイクルによれば、冷凍空間(2)および冷蔵空間(3)のそれぞれの設定温度に合わせた蒸発温度になるように毛細管(12)(13)をそれぞれに備えた冷凍および冷蔵用冷却器(4)(5)を設置し、冷蔵用冷却器(5)で蒸発した冷媒ガスを冷凍側より圧力の高い中間圧のまま直接圧縮機ケース(9c)内の中間圧部に吸い込ませることで、冷蔵用冷却器(5)の蒸発温度を冷凍用冷却器(4)に対し室内冷却温度に即して高くすることができるだけでなく、圧縮機入力が小さくなるのでサイクル効率を上げ、消費電力を低減することができる。   Therefore, according to the refrigeration cycle, for the refrigeration and refrigeration each having the capillaries (12) and (13) so as to have the evaporation temperature in accordance with the set temperatures of the refrigeration space (2) and the refrigeration space (3). The coolers (4) and (5) are installed, and the refrigerant gas evaporated in the refrigeration cooler (5) is directly sucked into the intermediate pressure portion in the compressor case (9c) with the intermediate pressure higher than that on the freezing side. Thus, not only can the evaporating temperature of the refrigeration cooler (5) be increased in accordance with the indoor cooling temperature with respect to the refrigeration cooler (4), but the compressor input is reduced, so that the cycle efficiency is increased, Power consumption can be reduced.
また、冷蔵用冷却器(5)の蒸発温度を上昇させて冷蔵空間との温度差を少なくすることで冷却器(5)に付着する霜量を少なくし、冷蔵空間内の乾燥を防いで庫内の湿度を高く保ち、食品鮮度を長期に亙って保持することができるものであり、さらに、冷凍用および冷蔵用冷却器(4)(5)の双方に同時に冷媒を流し冷却することができるため、従来の交互冷却方式に比べて各室内の温度変動を抑制することができる。   Further, by increasing the evaporation temperature of the refrigeration cooler (5) to reduce the temperature difference from the refrigeration space, the amount of frost adhering to the cooler (5) is reduced, and drying in the refrigeration space is prevented. The inside humidity can be kept high and the freshness of the food can be maintained for a long period of time. Furthermore, the refrigerant can be simultaneously poured into both the freezing and refrigeration coolers (4) and (5) for cooling. Therefore, temperature fluctuation in each room can be suppressed as compared with the conventional alternating cooling method.
なお、冷凍サイクルは、図1と同一部分に同一符号を附した図5に示すように、前記圧縮機(9)、凝縮器(10)、冷媒流路の切替弁(11)に対して、冷凍用冷却器(4)および冷蔵用冷却器(5)を直列に連結し、切替弁(11)から冷蔵用毛細管(13)と冷蔵用冷却器(5)をバイパスする側路管(22)を気液分離器(23)を介して冷凍用毛細管(12)から冷凍用冷却器(4)に接続するとともに、前記気液分離器(23)の上方と圧縮機(9)の密閉ケース(9c)内の中間圧部となる空間部とを吸込み管(24)で接続するようにしてもよい。   In addition, as shown in FIG. 5 which attached | subjected the same code | symbol to the same part as FIG. 1, a refrigerating cycle is with respect to the said compressor (9), a condenser (10), and the switching valve (11) of a refrigerant | coolant flow path. Refrigeration cooler (4) and refrigeration cooler (5) are connected in series, and bypass tube (22) bypassing refrigeration capillary tube (13) and refrigeration cooler (5) from switching valve (11) Is connected to the refrigeration cooler (4) from the refrigeration capillary (12) via the gas-liquid separator (23), and above the gas-liquid separator (23) and the sealed case ( You may make it connect the space part used as the intermediate pressure part in 9c) by a suction pipe (24).
このようにすれば、冷媒は、前記と同様に制御される切替弁(11)により、冷蔵用冷却器(5)および冷凍用冷却器(4)に同時に、あるいは選択的に流れ、側路管(22)あるいは冷蔵用冷却器(5)からの冷媒は、気液分離器(23)においてガス状冷媒と液状冷媒に分離され、液状冷媒は冷凍用冷却器(4)側へ流れ、ガス状冷媒は冷蔵側吸込み管(24)を通って圧縮機(9)の中間圧部に帰還するとともに液状冷媒は冷凍用冷却器(4)で再び低温で蒸発して圧縮機(9)の低段側に戻るものであり、前述の実施例と同様にサイクル効率よく、各貯蔵室内を所定温度に冷却できる作用効果を奏する。   In this way, the refrigerant flows simultaneously or selectively into the refrigeration cooler (5) and the refrigeration cooler (4) by the switching valve (11) controlled in the same manner as described above. (22) or the refrigerant from the refrigeration cooler (5) is separated into a gaseous refrigerant and a liquid refrigerant in the gas-liquid separator (23), and the liquid refrigerant flows to the refrigeration cooler (4) side, The refrigerant passes through the refrigeration side suction pipe (24) and returns to the intermediate pressure portion of the compressor (9), and the liquid refrigerant evaporates again at a low temperature in the refrigeration cooler (4), and the lower stage of the compressor (9). It returns to the side, and there is an effect that the respective storage chambers can be cooled to a predetermined temperature with high cycle efficiency as in the above-described embodiment.
図6は、冷凍用冷却器(4)および冷蔵用冷却器(5)の蒸発温度、さらに凝縮器(10)の凝縮温度を一定の値として、所定の回転数で圧縮機(9)を運転した際の冷凍側と冷蔵側との冷凍能力を示したものであり、縦軸に冷蔵側の冷凍能力、横軸に冷凍側の冷凍能力をとっている。図中、a点は切替弁により冷蔵側冷却器(5)のみに冷媒を流した場合を示し、b点は冷凍側冷却器(4)のみに流した場合、c点は冷凍用および冷蔵用冷却器(4)(5)の双方へ弁開口(19a)(19b)を全開の状態で冷媒を流した場合を示している。   FIG. 6 shows that the compressor (9) is operated at a predetermined rotational speed with the evaporating temperature of the refrigeration cooler (4) and the refrigeration cooler (5) and further the condensing temperature of the condenser (10) as constant values. The refrigeration capacity on the refrigeration side and the refrigeration side is shown with the refrigeration capacity on the ordinate and the refrigeration capacity on the refrigeration side on the horizontal axis. In the figure, point a shows the case where the refrigerant is flowed only to the refrigeration side cooler (5) by the switching valve, point b shows the case where it flows only to the refrigeration side cooler (4), point c is for freezing and refrigeration. A case is shown in which the refrigerant is allowed to flow to both the coolers (4) and (5) with the valve openings (19a) and (19b) fully opened.
このグラフにおいて、冷凍用冷却器(4)から圧縮機(9)の低段側圧縮部(9a)に直接吸い込まれる冷媒の質量あるいは体積は低段圧縮部のシリンダー排除容積で決定されるものであり、対応する冷凍力は、冷凍側のみ流しの場合が69Wであるのに対し冷凍冷蔵同時流しに場合は64Wであり、冷蔵用冷却器(5)から圧縮機(9)の中間圧部に戻る冷媒の影響をあまり受けることなくほぼ一定となることを表している。   In this graph, the mass or volume of the refrigerant sucked directly from the refrigeration cooler (4) into the lower stage compression section (9a) of the compressor (9) is determined by the cylinder exclusion volume of the lower stage compression section. Yes, the corresponding refrigeration power is 69 W for the freezing side only, but 64 W for the freezing and refrigeration simultaneous flow, from the refrigeration cooler (5) to the intermediate pressure part of the compressor (9). It shows that it is almost constant without being affected by the returning refrigerant.
これに対して冷蔵側は、冷蔵用冷却器(5)から圧縮機(9)に吸い込まれる冷媒量に対応する冷凍力が、冷蔵側のみの場合は155Wに対し、冷凍冷蔵同時流しの場合は75W程度まで大きく低下するものであり、冷蔵側の冷凍能力は、冷凍用冷却器(4)から吸い込まれる冷媒の有無、すなわち冷蔵用冷却器(5)からの冷媒のみか、冷凍用冷却器(4)から吸い込まれる冷媒との合流量になるかで大きく変化することになる。   On the other hand, on the refrigeration side, the refrigeration power corresponding to the amount of refrigerant sucked into the compressor (9) from the refrigeration cooler (5) is 155 W in the case of only the refrigeration side, while in the case of simultaneous freezing and refrigeration flow The refrigerating capacity on the refrigeration side is greatly reduced to about 75 W, and the presence or absence of refrigerant sucked from the refrigerating cooler (4), that is, only the refrigerant from the refrigerating cooler (5), or the refrigerating cooler ( Depending on the combined flow rate with the refrigerant sucked from 4), it will change greatly.
また、一般に冷蔵空間の室内温度は+3〜5℃であるのに対し、冷凍空間温度は−18〜−20℃であることから室外温度との温度差が大きくなり、冷凍空間の冷却に必要な冷凍能力は、冷蔵空間に必要とする値より大きくなるものであり、このように、冷凍側の冷凍能力が冷蔵側の冷凍能力より大きい場合、すなわち、冷凍側の負荷が冷蔵側より大きいと設定した場合の冷凍運転は、図6を模式的に表した図7に示すように、冷凍側の冷凍能力が大きいエリアである図中の斜線エリア部分を用いることになる。   In general, the indoor temperature of the refrigerated space is +3 to 5 ° C., whereas the temperature of the refrigerated space is −18 to −20 ° C., so that the temperature difference from the outdoor temperature becomes large, which is necessary for cooling the frozen space. The refrigeration capacity is larger than the value required for the refrigeration space. Thus, when the refrigeration side refrigeration capacity is larger than the refrigeration side refrigeration capacity, that is, the load on the refrigeration side is set larger than the refrigeration side. In the freezing operation in this case, as shown in FIG. 7 schematically showing FIG. 6, a hatched area portion in the figure, which is an area having a large freezing capacity on the freezing side, is used.
それゆえ、前述のごとく、冷凍側の冷凍能力は冷蔵用冷却器(5)から戻る冷媒の影響を受けにくいことから、冷凍空間の冷却制御は圧縮機(9)の回転数によって制御すればよく、冷却不足の場合には矢印で示すように、圧縮機(9)の回転数を上げて冷凍力を増大し、冷却過剰の場合はその回転数を低下あるいは停止することで冷却温度を適正に保持することができるものである。そして、冷蔵側は圧縮機(9)の回転数ではなく、切替弁(11)の弁開口の開閉制御で冷媒流量を調整することによりその冷却温度を制御するようにする。   Therefore, as described above, the refrigeration capacity on the refrigeration side is not easily affected by the refrigerant returning from the refrigeration cooler (5), and thus the cooling control of the refrigeration space may be controlled by the rotational speed of the compressor (9). If the cooling is insufficient, as shown by the arrow, increase the number of rotations of the compressor (9) to increase the refrigeration power, and if it is excessively cooled, decrease or stop the number of rotations to properly adjust the cooling temperature. It can be held. The refrigeration side controls the cooling temperature by adjusting the flow rate of the refrigerant not by the rotation speed of the compressor (9) but by opening / closing control of the valve opening of the switching valve (11).
制御ブロック図である図8により本発明の圧縮機回転数制御の1実施例を説明する。冷温度センサーにより検知された凍空間、例えば冷凍室(4)の室内温度(Fa)は、所定の目標値(Fr)と比較され、その偏差が圧縮機の周波数決定のためのPIDコントローラ(25)に入力される。   One embodiment of the compressor rotation speed control according to the present invention will be described with reference to FIG. 8 which is a control block diagram. The freezing space detected by the cold temperature sensor, for example, the room temperature (Fa) of the freezing room (4) is compared with a predetermined target value (Fr), and the deviation is a PID controller (25 for determining the frequency of the compressor). ).
そして冷凍空間(2)の温度が目標値(Fr)より高ければ、偏差によりPID計算値が増加し、圧縮機(9)の回転数を所定量増加することで冷凍空間(2)の冷却を促進し所定温度に導くよう運転制御する。また、冷凍空間(2)温度が目標値(Fr)より低ければ逆に回転数を低下、あるいは停止して冷凍力を低下させるものである。   If the temperature of the refrigeration space (2) is higher than the target value (Fr), the PID calculation value increases due to the deviation, and the refrigeration space (2) is cooled by increasing the rotational speed of the compressor (9) by a predetermined amount. Operation control is performed so as to promote and lead to a predetermined temperature. On the other hand, if the temperature of the refrigeration space (2) is lower than the target value (Fr), the rotational speed is decreased or stopped to decrease the refrigeration power.
次に、本発明の圧縮機回転数制御の他の実施例について説明する。前記実施例は、冷凍空間(2)の温度情報によって圧縮機(9)の回転数を制御するものであったが、冷蔵庫の運転条件によっては、冷凍空間(2)に対して冷蔵空間(3)の冷凍能力が不足する場合も想定される。   Next, another embodiment of the compressor rotation speed control according to the present invention will be described. Although the said Example controlled the rotation speed of the compressor (9) with the temperature information of freezing space (2), depending on the driving | running conditions of a refrigerator, it is refrigerated space (3) with respect to freezing space (2). ) Is also assumed to be insufficient.
そこで、冷凍空間(2)の温度情報とともに冷蔵空間(3)の温度情報も入力して図7における斜線エリア内で圧縮機(9)を運転させれば、圧縮機(9)の回転数を上げ冷凍能力を増加させることで、冷凍空間(2)とともに冷蔵空間(3)の冷凍能力も増加することができる。   Therefore, if the temperature information of the refrigerated space (3) is input together with the temperature information of the refrigerated space (2) and the compressor (9) is operated in the hatched area in FIG. 7, the rotational speed of the compressor (9) is set. By increasing the raising refrigeration capacity, the refrigeration capacity of the refrigerated space (3) can be increased together with the refrigerated space (2).
しかしながら、冷凍空間(2)が目標値以下に冷却されている場合の圧縮機(9)の回転数の増加は、冷凍空間(2)を不必要に冷却し無駄な電力を消費することになるため、図9に示すブロック図では、冷凍空間温度(Fa)とその目標値(Fr)とともに冷蔵空間温度(Ra)とその目標値(Rr)をPIDコントローラ(25)に入力するが、圧縮機(9)の回転数決定の際には、冷凍空間側の庫内温度(Fa)と目標温度(Fr)との偏差データ値を、例えば2倍に加算して入力するなど、冷蔵空間(3)より冷凍空間(2)側の温度情報データのフィードバック量を大きくしたものである。   However, an increase in the rotational speed of the compressor (9) when the refrigerated space (2) is cooled to a target value or less will unnecessarily cool the refrigerated space (2) and consume wasteful power. Therefore, in the block diagram shown in FIG. 9, the refrigeration space temperature (Ra) and its target value (Rr) are input to the PID controller (25) together with the refrigeration space temperature (Fa) and its target value (Fr). When determining the rotational speed in (9), the deviation data value between the internal temperature (Fa) on the freezing space side and the target temperature (Fr) is input, for example, by adding twice, and the like. ) Is a larger amount of feedback of temperature information data on the freezing space (2) side.
これにより、圧縮機(9)の回転数は、実際より大きく見做された偏差値である冷凍空間(2)側のフィードバックされた温度情報により、冷凍側を基準に決定されるが、冷凍空間(2)が充分冷却されている場合には、圧縮機(9)の回転数を上げることなく切替弁(11)による冷蔵用冷却器(5)への冷媒流を制御するによって冷蔵側の冷凍能力を増減し、冷凍側の過冷却を招くことなく冷蔵側を適温になるよう制御するものである。   Thereby, the rotational speed of the compressor (9) is determined based on the refrigeration side based on the temperature information fed back on the refrigeration space (2) side, which is a deviation value that is considered to be larger than the actual value. When (2) is sufficiently cooled, refrigeration on the refrigeration side is performed by controlling the refrigerant flow to the refrigeration cooler (5) by the switching valve (11) without increasing the rotational speed of the compressor (9). The capacity is increased or decreased, and the refrigeration side is controlled to have an appropriate temperature without causing overcooling on the refrigeration side.
なお、前記実施例では、冷蔵空間(3)の温度情報を加味して圧縮機(9)の回転数を決定するものについて説明したが、万一外気温が低下して冷蔵空間(3)温度が目標値(Rr)より低くなったような場合は、そのフィードバック信号により圧縮機(9)の回転数が下がり、その結果として冷凍空間(2)側の冷凍能力が低下してしまう問題が発生する。   In addition, although the said Example demonstrated what determined the rotation speed of a compressor (9) in consideration of the temperature information of refrigeration space (3), an external temperature should fall and refrigeration space (3) temperature by any chance. Is lower than the target value (Rr), the feedback signal reduces the rotational speed of the compressor (9), resulting in a problem that the refrigeration capacity on the refrigeration space (2) side is reduced. To do.
図10は、このような万一の場合に対応するブロック図であり、冷蔵空間(3)温度が目標値(Rr)より高い場合のみにその温度情報をフィードバックする関数(Fx)を入れるものであり、冷蔵空間温度(Ra)と目標値(Rr)との差が小さい場合はその値が入力されるが、マイナスの場合はゼロ信号がPIDコントローラ(25)に入力されるようにする。   FIG. 10 is a block diagram corresponding to such a case, in which a function (Fx) that feeds back temperature information only when the temperature of the refrigerated space (3) is higher than the target value (Rr) is inserted. Yes, if the difference between the refrigerated space temperature (Ra) and the target value (Rr) is small, the value is input, but if it is negative, a zero signal is input to the PID controller (25).
この制御により、冷蔵空間(3)の負荷が軽くて目標設定値(Rr)より実温度(Ra)が低くなる場合でも、冷凍空間(2)はその温度情報による冷凍力で目標値(Fr)を維持するものであり、冷凍力の低下によって冷凍空間(2)温度が目標値(Fr)より高くなってしまうことを防ぐことができる。   By this control, even when the load of the refrigerated space (3) is light and the actual temperature (Ra) is lower than the target set value (Rr), the freezing space (2) has the target value (Fr) with the refrigerating power based on the temperature information. It is possible to prevent the temperature of the refrigeration space (2) from becoming higher than the target value (Fr) due to a decrease in the refrigeration power.
さらに他の実施例を説明する。図11は、圧縮機(9)をある一定回転数で駆動し、凝縮温度が一定の条件における冷蔵用冷却器(5)の温度を変化させた際の冷凍用および冷蔵用サイクルの冷凍能力(QF1)(QR1)の変化を示したものである。   Still another embodiment will be described. FIG. 11 shows the refrigeration capacity of the refrigeration cycle and the refrigeration cycle when the compressor (9) is driven at a certain rotational speed and the temperature of the refrigeration cooler (5) is changed under the condition that the condensation temperature is constant. This shows the change in QF1) (QR1).
このとき、冷蔵用冷却器(5)は、その表面温度を下げることによりその冷凍能力(QR1)を低下させ、上げることで能力を上昇させることができるものであり、また冷凍側の冷凍能力(QF1)は、冷却器温度が、例えば−23.5℃と一定であって、冷蔵側の冷凍能力の変動によっても大きな影響を受けないことがわかる。   At this time, the refrigeration cooler (5) can reduce its refrigeration capacity (QR1) by lowering its surface temperature and increase its capacity by raising it. It can be seen that QF1) has a constant cooler temperature of, for example, -23.5 ° C, and is not significantly affected by fluctuations in the refrigeration capacity on the refrigeration side.
そして、冷蔵用冷却器(5)については、冷蔵用ファン(7)の回転数を変化、例えば、回転数を下げれば、冷蔵用冷却器(5)での熱交換量が低下して冷却器(5)の表面温度が下がる結果、冷凍サイクルの冷凍能力(QR1)も低下するものであり、逆に、ファン(7)の回転数を上げれば熱交換量が増加することで冷却器(5)の表面温度が上昇し、サイクルの冷凍能力(QR1)は増大することになる。   And about the refrigerator (5) for refrigeration, if the rotation speed of the refrigeration fan (7) is changed, for example, if the rotation speed is lowered, the amount of heat exchange in the refrigeration cooler (5) will decrease, and the cooler As a result of the lowering of the surface temperature of (5), the refrigeration capacity (QR1) of the refrigeration cycle also decreases, and conversely, if the rotational speed of the fan (7) is increased, the amount of heat exchange increases and the cooler (5 ) And the cycle refrigerating capacity (QR1) increases.
すなわち、冷蔵空間(3)の冷却制御については、冷蔵用ファン(7)の回転数を増減させることによって空間温度を制御できるものであり、冷蔵空間温度(Ra)がその目標値(Rr)より高い場合は、冷蔵側冷却ファン(7)の回転数を上げることで冷却でき、目標値(Rr)以下に過冷却されている場合はファン回転数を下げることで冷凍力を弱めて所定の適温に制御することができる。   That is, with regard to the cooling control of the refrigerated space (3), the space temperature can be controlled by increasing or decreasing the rotational speed of the refrigeration fan (7), and the refrigerated space temperature (Ra) is more than the target value (Rr). If it is high, it can be cooled by increasing the number of revolutions of the refrigeration side cooling fan (7), and if it is undercooled below the target value (Rr), the cooling power is reduced by decreasing the number of revolutions of the fan to achieve a predetermined optimum temperature. Can be controlled.
また図12は、冷凍用冷却器(4)の温度を変化させた際の冷凍用および冷蔵用サイクルの冷凍能力(QF2)(QR2)の変化を示したものであり、冷凍用冷却器(4)の温度を下げることにより、冷凍用冷却器(4)を通って圧縮機(9)の低段側に吸い込まれる冷媒循環量が減り、冷凍側サイクルの能力(QF2)が低下する。また、圧縮機(9)の低段側から高段側圧縮部に送られる冷媒量も少なくなるため、高段側圧縮部の排除容積の関係から冷蔵用冷却器(5)から中間圧部に戻り高段側圧縮部に吸い込まれる冷媒量が増加することになり、冷蔵側サイクルの冷凍能力(QR2)は増大することになる。   FIG. 12 shows changes in the refrigeration capacity (QF2) (QR2) of the refrigeration and refrigeration cycles when the temperature of the refrigeration cooler (4) is changed. ) Is reduced, the refrigerant circulation amount sucked into the lower stage side of the compressor (9) through the refrigeration cooler (4) is reduced, and the capacity (QF2) of the refrigeration side cycle is reduced. Further, since the amount of refrigerant sent from the lower stage side of the compressor (9) to the higher stage compression section is also reduced, the refrigeration cooler (5) is changed from the refrigeration cooler (5) to the intermediate pressure section because of the excluded volume of the higher stage compression section. The amount of refrigerant sucked into the return higher stage compression section will increase, and the refrigeration capacity (QR2) of the refrigeration side cycle will increase.
このことから、冷蔵空間(3)の温度が目標値(Rr)より高く冷却が不足している場合、あるいは、冷凍空間(2)の冷凍力が過大な場合は、冷凍側冷却ファン(6)の回転数を下げ、冷凍用冷却器(4)での熱交換量を少なくして冷却器(4)の表面温度を下げることで、冷蔵側のサイクル能力(QR2)を増大させ、あるいは冷凍側のサイクル能力(QF2)を低下させて、それぞれの冷却空間を適温に制御することができる。   Therefore, when the temperature of the refrigerated space (3) is higher than the target value (Rr) and the cooling is insufficient, or when the refrigeration capacity of the refrigerated space (2) is excessive, the refrigeration side cooling fan (6) The cycle capacity (QR2) on the refrigeration side is increased or the refrigeration side is reduced by reducing the surface temperature of the cooler (4) by reducing the heat exchange amount in the cooler for freezing (4) The cycle capacity (QF2) can be reduced and each cooling space can be controlled to an appropriate temperature.
上記により、冷凍空間(2)と冷蔵空間(3)は、冷凍用冷却器(4)への冷媒流しとともに冷蔵用冷却器(5)へ冷媒を同時に流して蒸発温度を高くできることから、サイクル効率よく冷却することができ、各貯蔵空間に随時投入される温度負荷に対しても三方弁からなる冷媒流制御切替弁(11)による的確な冷媒量の分配により、冷凍空間および冷蔵空間の温度変動を抑制して各空間温度を適切に制御することができる。   As described above, since the refrigerating space (2) and the refrigerating space (3) can flow the refrigerant to the refrigerating cooler (5) simultaneously with the flow of the refrigerant to the refrigerating cooler (4), the evaporation temperature can be increased. Fluctuation in temperature in the refrigeration and refrigeration spaces due to accurate refrigerant distribution by the refrigerant flow control switching valve (11), which consists of a three-way valve, even for temperature loads that can be cooled well and are introduced to each storage space as needed Thus, each space temperature can be controlled appropriately.
以上説明した冷凍サイクルでは、冷凍および冷蔵用冷却器(4)(5)への冷媒流を双方同時に流す制御ができることにより、従来の2つの冷却器に交互に冷媒を流す制御に比べて、一方の冷却器に冷媒が偏ることがなく、冷凍サイクルに必要とされる冷媒量が必要以上に増大することはない。したがって、炭化水素系冷媒など可燃性冷媒を採用した場合も冷媒充填量を少なくすることができるので、安全性が向上する。   In the refrigeration cycle described above, the refrigerant flow to the refrigeration and refrigeration coolers (4) and (5) can be controlled to flow at the same time. The refrigerant is not biased to the cooler, and the amount of refrigerant required for the refrigeration cycle does not increase more than necessary. Therefore, even when a flammable refrigerant such as a hydrocarbon-based refrigerant is employed, the amount of refrigerant charged can be reduced, and safety is improved.
なお、上記実施例における二段圧縮機(9)は、圧縮機ケース(9c)内の圧力を中間圧としたもので説明したが、これに限らず、特に図示しないが、低圧ケースとして冷凍用冷却器からの吸込み管を圧縮機ケース内空間に連通させ、冷蔵用冷却器からの吸込み管は低段側圧縮部の吐出口と高段側圧縮部の吸込口との連結部に接続するようにしてもよい。また同様に、高圧ケースとして、冷凍用冷却器からの吸込み管を低段側圧縮部の吸込み口に接続するとともに、冷蔵用冷却器からの吸込み管は低段側圧縮部の吐出口と高段側圧縮部の吸込口との連結部に接続し、高段側圧縮部からの吐出ガスを高圧ケース内から凝縮器への吐出管へ吐出するようにしてもよい。   The two-stage compressor (9) in the above embodiment has been described with the pressure in the compressor case (9c) being an intermediate pressure. However, the invention is not limited to this. The suction pipe from the cooler is communicated with the space inside the compressor case, and the suction pipe from the refrigeration cooler is connected to the connection part between the discharge port of the low-stage compression unit and the suction port of the high-stage compression unit. It may be. Similarly, as a high-pressure case, the suction pipe from the refrigeration cooler is connected to the suction port of the low-stage compression unit, and the suction pipe from the refrigeration cooler is connected to the discharge port of the low-stage compression unit and the high stage. You may make it connect to the connection part with the suction inlet of a side compression part, and may discharge the discharge gas from a high stage side compression part from the inside of a high pressure case to the discharge pipe to a condenser.
本発明によれば、二段圧縮式冷凍サイクル構成により、サイクル効率を向上した冷蔵庫に利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can utilize for the refrigerator which improved cycle efficiency with the two-stage compression type refrigerating cycle structure.
本発明の1実施形態を示す冷蔵庫の冷凍サイクル図である。It is a refrigerating cycle diagram of a refrigerator showing one embodiment of the present invention. 図1の冷凍サイクルを搭載した冷蔵庫の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the refrigerator carrying the refrigeration cycle of FIG. 図1における二段圧縮機の詳細を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detail of the two-stage compressor in FIG. 図1における三方弁の要部の詳細を示す平面図である。It is a top view which shows the detail of the principal part of the three-way valve in FIG. 冷凍サイクルの他の実施例を示す構成図である。It is a block diagram which shows the other Example of a refrigerating cycle. 冷凍および冷蔵側冷凍能力と冷媒流との関係グラフである。It is a graph of the relationship between the refrigeration and refrigeration side refrigeration capacity and the refrigerant flow. 図6の模式図である。It is a schematic diagram of FIG. 圧縮機回転数制御のブロック図である。It is a block diagram of compressor rotation speed control. 図8の制御に冷蔵温度情報を付加した回転数制御ブロック図である。It is a rotational speed control block diagram which added the refrigeration temperature information to the control of FIG. 図9の制御をさらに改良した回転数制御ブロック図である。FIG. 10 is a rotation speed control block diagram obtained by further improving the control of FIG. 9. 本発明の冷蔵用冷却器温度を変化させた場合の冷凍および冷蔵冷凍能力の変化を示す説明図である。It is explanatory drawing which shows the change of freezing at the time of changing the cooler temperature for refrigeration of this invention, and refrigeration freezing capacity. 本発明の冷凍用冷却器温度を変化させた場合の冷凍および冷蔵冷凍能力の変化を示す説明図である。It is explanatory drawing which shows the change of freezing and refrigeration freezing ability at the time of changing the cooler temperature for freezing of this invention. 従来の冷蔵庫の冷凍サイクル図である。It is a freezing cycle figure of the conventional refrigerator.
符号の説明Explanation of symbols
1 冷蔵庫本体 2 冷凍空間 3 冷蔵空間
4 冷凍用冷却器 5 冷蔵用冷却器 6、7 冷却ファン
8 機械室 9 二段圧縮機 9a 低段圧縮部
9b 高段圧縮部 9c ケース 10 凝縮器
11 切替弁 12 冷凍用毛細管 13 冷蔵用毛細管
14 アキュムレータ 15 冷凍側吸込み管 16 吐出管
17、24 冷蔵側吸込み管 18 弁ケース 19 弁座
19a 冷凍側弁口A 19b 冷蔵側弁口B 20 弁体
20a 冷凍側凹溝A 20b 冷蔵側凹溝B 20c 回転軸
20d 厚肉段部 21 流入弁口 22 側路管
23 気液分離器 25 PIDコントローラ
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 2 Refrigeration space 3 Refrigeration space 4 Refrigeration cooler 5 Refrigeration cooler 6, 7 Cooling fan 8 Machine room 9 Two stage compressor 9a Low stage compression part 9b High stage compression part 9c Case 10 Condenser
11 Switching valve 12 Refrigeration capillary 13 Refrigeration capillary
14 Accumulator 15 Refrigeration side suction pipe 16 Discharge pipe
17, 24 Refrigeration side suction pipe 18 Valve case 19 Valve seat
19a Refrigeration side valve port A 19b Refrigeration side valve port B 20 Valve body
20a Refrigeration side groove A 20b Refrigeration side groove B 20c Rotating shaft
20d Thick stepped portion 21 Inlet valve port 22 Side pipe
23 Gas-liquid separator 25 PID controller

Claims (5)

  1. 圧縮要素が低段側圧縮部と高段側圧縮部により構成されたインバータ駆動による能力可変の圧縮機と、この圧縮機からの吐出ガスを受ける凝縮器の出口側に設けられた冷媒流路とともに流量を制御する切替弁と、この切替弁からそれぞれ減圧装置を介して接続された冷凍用冷却器および冷蔵用冷却器とから冷凍サイクルを形成した冷蔵庫において、冷凍空間温度とその目標値により前記圧縮機の回転数を決定することを特徴とする冷蔵庫。   A compressor with variable capacity driven by an inverter, in which the compression element is composed of a low-stage compression section and a high-stage compression section, and a refrigerant flow path provided on the outlet side of the condenser that receives the discharge gas from the compressor In a refrigerator in which a refrigeration cycle is formed from a switching valve that controls the flow rate, and a refrigeration cooler and a refrigeration cooler that are connected to the switching valve via a decompression device, the compression is performed according to the refrigeration space temperature and its target value. A refrigerator characterized by determining the number of rotations of the machine.
  2. 圧縮要素が低段側圧縮部と高段側圧縮部により構成されたインバータ駆動による能力可変の圧縮機と、この圧縮機からの吐出ガスを受ける凝縮器の出口側に設けられた冷媒流路とともに流量を制御する切替弁と、この切替弁からそれぞれ減圧装置を介して接続された冷凍用冷却器および冷蔵用冷却器とから冷凍サイクルを形成した冷蔵庫において、冷凍空間温度とその目標値とともに冷蔵空間温度とその目標値により圧縮機の回転数を決定するものであって、回転数決定の際には、冷蔵空間より冷凍空間側の温度情報のフィードバック量を大きくすることを特徴とする冷蔵庫。   A compressor with variable capacity driven by an inverter, in which the compression element is composed of a low-stage compression section and a high-stage compression section, and a refrigerant flow path provided on the outlet side of the condenser that receives the discharge gas from the compressor In a refrigerator in which a refrigeration cycle is formed from a switching valve for controlling a flow rate, and a refrigeration cooler and a refrigeration cooler connected to the switching valve via a decompression device, respectively, the refrigeration space together with the refrigeration space temperature and its target value A refrigerator that determines the number of rotations of a compressor based on a temperature and a target value thereof, wherein the amount of feedback of temperature information on the refrigeration space side is larger than that in a refrigerated space when the number of rotations is determined.
  3. 冷蔵空間温度がその目標値より高い場合のみにその温度情報を圧縮機回転数の決定に採用することを特徴とする請求項2記載の冷蔵庫。   3. The refrigerator according to claim 2, wherein the temperature information is used for determining the compressor speed only when the temperature of the refrigerated space is higher than the target value.
  4. 冷蔵空間温度がその目標値より高い場合は、冷蔵側冷却ファンの回転数を大きくすることを特徴とする請求項1乃至3のいずれかに記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein when the refrigerated space temperature is higher than the target value, the number of rotations of the refrigeration side cooling fan is increased.
  5. 冷蔵空間温度がその目標値より高い場合は、冷凍側冷却ファンの回転数を低下させることを特徴とする請求項1乃至4のいずれかに記載の冷蔵庫。
    The refrigerator according to any one of claims 1 to 4, wherein when the temperature of the refrigerated space is higher than the target value, the rotational speed of the refrigeration side cooling fan is decreased.
JP2003427845A 2003-12-24 2003-12-24 Refrigerator Pending JP2005188783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427845A JP2005188783A (en) 2003-12-24 2003-12-24 Refrigerator

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003427845A JP2005188783A (en) 2003-12-24 2003-12-24 Refrigerator
KR1020067014363A KR20060132869A (en) 2003-12-24 2004-11-30 Refrigerator
US10/584,205 US20070144190A1 (en) 2003-12-24 2004-11-30 Refrigerator
PCT/JP2004/017761 WO2005061970A1 (en) 2003-12-24 2004-11-30 Refrigerator
CNB2004800387606A CN100417876C (en) 2003-12-24 2004-11-30 Refrigerator
TW093140058A TWI257472B (en) 2003-12-24 2004-12-22 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005188783A true JP2005188783A (en) 2005-07-14

Family

ID=34708912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427845A Pending JP2005188783A (en) 2003-12-24 2003-12-24 Refrigerator

Country Status (6)

Country Link
US (1) US20070144190A1 (en)
JP (1) JP2005188783A (en)
KR (1) KR20060132869A (en)
CN (1) CN100417876C (en)
TW (1) TWI257472B (en)
WO (1) WO2005061970A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183089A (en) * 2006-01-04 2007-07-19 Valeo Systemes Thermiques Expansion module for dual-evaporator air conditioning system
KR100785118B1 (en) 2006-08-07 2007-12-11 엘지전자 주식회사 Refrigerator
KR20130126092A (en) * 2012-05-10 2013-11-20 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
JP2014031947A (en) * 2012-08-03 2014-02-20 Mitsubishi Electric Corp Refrigerator-freezer
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180874A (en) * 2003-12-22 2005-07-07 Toshiba Consumer Marketing Corp Refrigerator
JP4811080B2 (en) * 2006-03-28 2011-11-09 トヨタ自動車株式会社 COOLING SYSTEM, AUTOMOBILE MOUNTING THE SAME, AND COOLING SYSTEM CONTROL METHOD
JP4699285B2 (en) * 2006-05-29 2011-06-08 株式会社 長谷川電気工業所 Operation control method of cold / hot water pump in air conditioning equipment
JP4327823B2 (en) * 2006-06-15 2009-09-09 トヨタ自動車株式会社 COOLING SYSTEM, AUTOMOBILE MOUNTING THE SAME, AND COOLING SYSTEM CONTROL METHOD
WO2008105055A1 (en) * 2007-02-26 2008-09-04 Hoshizaki Denki Kabushiki Kaisha Cooling storage and method for controlling compressor for the cooling storage
CN101809372B (en) * 2007-09-28 2013-12-18 大金工业株式会社 Compressor operation control device and air conditioner using same
KR101314622B1 (en) * 2007-11-05 2013-10-07 엘지전자 주식회사 Controlling method for the refrigerator
KR101314621B1 (en) 2007-11-05 2013-10-07 엘지전자 주식회사 Controlling method for the refrigerator
CN101539151B (en) * 2008-03-18 2013-06-12 海尔集团公司 Method and device for controlling inverter compressor
KR101815579B1 (en) * 2010-07-28 2018-01-05 엘지전자 주식회사 Refrigerator and method for driving thereof
JP5931329B2 (en) * 2010-10-07 2016-06-08 株式会社東芝 refrigerator
CN102080918B (en) * 2011-01-04 2012-08-22 合肥美的荣事达电冰箱有限公司 Method and device for controlling refrigerator noise
KR101721110B1 (en) * 2011-06-08 2017-04-10 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
EP2532991B1 (en) * 2011-06-08 2019-10-30 LG Electronics Inc. Refrigerating cycle apparatus and method for operating the same
JP5738174B2 (en) * 2011-12-27 2015-06-17 住友重機械工業株式会社 Cryopump system, cryogenic system, control device for compressor unit, and control method therefor
KR101904870B1 (en) * 2012-01-30 2018-10-08 엘지전자 주식회사 Apparatus and method for controlling compressor, and refrigerator having the same
JP5847626B2 (en) * 2012-03-26 2016-01-27 ハイアールアジア株式会社 Refrigerator and operation method thereof
US9228762B2 (en) * 2013-02-28 2016-01-05 Whirlpool Corporation Refrigeration system having dual suction port compressor
US9347694B2 (en) 2013-02-28 2016-05-24 Whirlpool Corporation Dual suction compressor with rapid suction port switching mechanism for matching appliance compartment thermal loads with cooling capacity
US10145589B2 (en) * 2013-03-15 2018-12-04 Whirlpool Corporation Net heat load compensation control method and appliance for temperature stability
DE102014116437B3 (en) * 2014-11-11 2015-12-17 E³Xpert Ug (Haftungsbeschränkt) Heat pump apparatus
CN105241144B (en) * 2015-11-12 2017-12-26 珠海格力电器股份有限公司 A kind of closing method of low temperature unit, system, low temperature unit and refrigeration system
US10126032B2 (en) * 2015-12-10 2018-11-13 TestEquity LLC System for cooling and methods for cooling and for controlling a cooling system
CN108474612B (en) * 2015-12-15 2021-02-05 Lg电子株式会社 Refrigerator and control method thereof
CN106766526A (en) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 Connection in series-parallel Dual-evaporator refrigeration system, the refrigerator with the system and control method
WO2020042768A1 (en) * 2018-08-28 2020-03-05 艾默生环境优化技术(苏州)有限公司 Refrigerant circulation system
CN111623545A (en) * 2020-04-28 2020-09-04 珠海格力电器股份有限公司 Refrigerating system and control method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148868A (en) * 1935-07-15 1939-02-28 Honeywell Regulator Co Control system
US2458560A (en) * 1946-08-13 1949-01-11 Westinghouse Electric Corp Two temperature refrigeration apparatus
US3119240A (en) * 1962-06-19 1964-01-28 Philco Corp Refrigeration apparatus with defrost means
KR900000809B1 (en) * 1984-02-09 1990-02-17 미쓰비시전기 주식회사 Room-warming/cooling and hot-water supplying heat-pump apparatus
JP2557903B2 (en) * 1987-09-10 1996-11-27 株式会社東芝 Air conditioner
US5056328A (en) * 1989-01-03 1991-10-15 General Electric Company Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
JPH037853A (en) * 1989-06-05 1991-01-16 Toshiba Corp Air conditioner
US6286326B1 (en) * 1998-05-27 2001-09-11 Worksmart Energy Enterprises, Inc. Control system for a refrigerator with two evaporating temperatures
KR100268502B1 (en) * 1998-07-30 2000-10-16 윤종용 Uniform cooling apparatus for refrigerator and control method thereof
JP2000146398A (en) * 1998-11-09 2000-05-26 Toshiba Ave Co Ltd Device for controlling refrigerator
JP2002277082A (en) * 2001-03-15 2002-09-25 Matsushita Refrig Co Ltd Freezer
US6532754B2 (en) * 2001-04-25 2003-03-18 American Standard International Inc. Method of optimizing and rating a variable speed chiller for operation at part load
JP3922891B2 (en) * 2001-05-11 2007-05-30 株式会社東芝 refrigerator
JP2003207248A (en) * 2002-01-15 2003-07-25 Toshiba Corp Refrigerator
JP2005180874A (en) * 2003-12-22 2005-07-07 Toshiba Consumer Marketing Corp Refrigerator
US20080156009A1 (en) * 2006-12-28 2008-07-03 Whirlpool Corporation Variable capacity modular refrigeration system for kitchens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183089A (en) * 2006-01-04 2007-07-19 Valeo Systemes Thermiques Expansion module for dual-evaporator air conditioning system
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor
KR100785118B1 (en) 2006-08-07 2007-12-11 엘지전자 주식회사 Refrigerator
KR20130126092A (en) * 2012-05-10 2013-11-20 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
KR101940488B1 (en) * 2012-05-10 2019-01-21 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
JP2014031947A (en) * 2012-08-03 2014-02-20 Mitsubishi Electric Corp Refrigerator-freezer

Also Published As

Publication number Publication date
TWI257472B (en) 2006-07-01
CN100417876C (en) 2008-09-10
WO2005061970A1 (en) 2005-07-07
TW200526912A (en) 2005-08-16
CN1898505A (en) 2007-01-17
KR20060132869A (en) 2006-12-22
US20070144190A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US20200292224A1 (en) Refrigerator and control method thereof
JP3628612B2 (en) Refrigeration cooler, condenser and method of operating a centrifugal compressor in a refrigeration cooler
CN100439816C (en) Refrigerator
KR100360006B1 (en) Transcritical vapor compression cycle
US7533537B2 (en) Methods and apparatus for controlling refrigerators
CN1289033B (en) Refrigerator
KR100356095B1 (en) Refrigerator
KR101815579B1 (en) Refrigerator and method for driving thereof
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
KR100511698B1 (en) Scroll compressor and air conditioner
US6938430B2 (en) Refrigerating device
US6935127B2 (en) Refrigerator
JP3861912B2 (en) Refrigeration equipment
KR100833441B1 (en) Freezing apparatus
EP2835601B1 (en) Refrigerator and control method thereof
US8418489B2 (en) Control of supercritical refrigeration system
EP2587193B1 (en) Air conditioner
US6715305B2 (en) Two-evaporator refrigerator having a controlled variable throttler
KR100964779B1 (en) Freezing device
JP4363997B2 (en) Refrigeration equipment
US20130186129A1 (en) Refrigerator
JP6292480B2 (en) Refrigeration equipment
KR100525401B1 (en) refrigerator
CN1898505A (en) Refrigerator
KR20120011656A (en) Refrigerator and controlling method of the same