JP3922891B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3922891B2
JP3922891B2 JP2001142409A JP2001142409A JP3922891B2 JP 3922891 B2 JP3922891 B2 JP 3922891B2 JP 2001142409 A JP2001142409 A JP 2001142409A JP 2001142409 A JP2001142409 A JP 2001142409A JP 3922891 B2 JP3922891 B2 JP 3922891B2
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
cooling
evaporator
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001142409A
Other languages
Japanese (ja)
Other versions
JP2002333254A (en
Inventor
正人 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001142409A priority Critical patent/JP3922891B2/en
Publication of JP2002333254A publication Critical patent/JP2002333254A/en
Application granted granted Critical
Publication of JP3922891B2 publication Critical patent/JP3922891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵室と冷凍室に蒸発器をそれぞれ設けた冷蔵庫に関する。
【0002】
【従来の技術】
一般に、冷蔵庫は圧縮機から吐出された冷媒が凝縮器、絞り機構(キャピラリーチューブ)、蒸発器を通り、再び圧縮機に戻る冷凍サイクルを構成し、一つ蒸発器で温度の異なる複数の部屋を冷却していた。
【0003】
一方、近年、冷蔵室と冷凍室にそれぞれ任意の口径のキャピラリーチューブを介して蒸発器を配置し、冷媒流路を切り替えて冷蔵室を冷却する冷蔵冷却モード(以下、Rモードという)と、冷凍室を冷却する冷凍冷却モード(以下、Fモードという)を交互に冷却すると共に、圧縮機の回転数を可変して各部屋の温度帯に適した蒸発温度に制御する冷蔵庫が提案されている。
【0004】
すなわち、圧縮機を出た冷媒は、3方弁で冷蔵室蒸発器につながる冷蔵キャピラリチューブと、冷凍室蒸発器につながる冷凍キャピラリチューブに流れを選択的に制御する。
【0005】
また、冷凍室蒸発器の出口にはアキュムレータと逆止弁がつながり、冷蔵室蒸発器の出口からつながるパイプと合流し、圧縮機に戻る(特願平11−173729号)。
【0006】
【発明が解決しようとする課題】
上記のようなFモードとRモードを交互に冷却する冷蔵庫においては、次のような問題点がある。
【0007】
即ち、冷凍室に温度の高い高負荷の食品が投入された場合に、交互冷却運転を行うと、冷凍室の庫内温度が上昇するにもかかわらず、Rモードで冷蔵室を冷却していると冷凍室が冷却されず、その庫内温度が上昇するという問題点がある。
【0008】
逆に、冷蔵室に温度の高い高負荷の食品が投入された場合に、交互冷却運転を行っていると、Fモードにおいて冷蔵室が冷却されず、その庫内温度が上昇するという問題点がある。
【0009】
そこで、本発明は上記問題点に鑑み、冷凍室または冷蔵室に温度の高い高負荷の食品が投入されても、その投入された部屋の温度の上昇を招くことなく各部屋を冷却することができる冷蔵庫を提供するものである。
【0010】
【課題を解決するための手段】
請求項1の発明は、圧縮機、凝縮器、切替弁が順次接続され、この切替弁には、冷蔵室蒸発器と冷凍室蒸発器とが、各々絞り機構を介して並列に接続された冷凍サイクルを有し、前記冷蔵室蒸発器、または、前記冷凍室蒸発器への冷媒流路を前記切替弁によって交互に切替えることによって、冷蔵室を冷却する冷蔵冷却モードと冷凍室を冷却する冷凍冷却モードを交互に行う冷蔵庫において、前記冷蔵庫の制御手段は、冷蔵室の庫内温度が所定温度範囲にあるときに、冷凍室の庫内温度が所定温度以上になったときに、または、冷凍室を強制的に冷却を行う強制冷却信号が入力したときに、冷凍冷却モードと、前記切替弁を全開状態にして前記冷蔵室蒸発器と前記冷凍室蒸発器のどちらにも冷媒が流れる同時冷却モードを交互に行う常時冷凍冷却運転を行い、その後、冷凍室の庫内温度が所定温度以下になったときに冷蔵冷却モードと冷凍冷却モードを交互に行う交互冷却運転を行うことを特徴とする冷蔵庫である。
【0011】
請求項2の発明は、圧縮機、凝縮器、切替弁が順次接続され、この切替弁には、冷蔵室蒸発器と冷凍室蒸発器とが、各々絞り機構を介して並列に接続された冷凍サイクルを有し、前記冷蔵室蒸発器、または、前記冷凍室蒸発器への冷媒流路を前記切替弁によって交互に切替えることによって、冷蔵室を冷却する冷蔵冷却モードと冷凍室を冷却する冷凍冷却モードを交互に行う冷蔵庫において、前記冷蔵庫の制御手段は、冷凍室の庫内温度が所定温度範囲にあるときに、冷蔵室の庫内温度が所定温度以上になったときに、または、冷蔵室を強制的に冷却を行う強制冷却信号が入力したときに、冷蔵冷却モードと、前記切替弁を全開状態にして前記冷蔵室蒸発器と前記冷凍室蒸発器のどちらにも冷媒が流れる同時冷却モードを交互に行う常時冷蔵冷却運転を行い、その後、冷蔵室の庫内温度が所定温度以下になったときに冷蔵冷却モードと冷凍冷却モードを交互に行う交互冷却運転を行うことを特徴とする冷蔵庫である。
【0012】
請求項3の発明は、前記冷蔵庫の制御手段は、冷蔵室の庫内温度が所定温度以上になり、かつ、冷凍室の庫内温度が所定温度以上になったときに、または、冷凍室及び冷蔵室を強制的に冷却を行う強制冷却信号が入力したときに、同時冷却モードを行い、その後、冷凍室の庫内温度、または、冷蔵室の庫内温度が所定温度以下になったときに、常時冷凍冷却運転、または、常時冷蔵冷却運転を行うことを特徴とする請求項1、2記載の冷蔵庫である。
【0013】
請求項4の発明は、前記圧縮機が能力可変型圧縮機であり、前記冷蔵室蒸発器には冷蔵室用冷気循環ファンが配され、前記冷凍室蒸発器には冷凍室用冷気循環ファンが配され、前記冷蔵庫の制御手段は、同時冷却モードにおいて、前記圧縮機の能力を上げ、前記冷凍室用冷気循環ファンを高速回転させ、前記冷蔵室用冷気循環ファンを低速回転させることを特徴とする請求項1記載の冷蔵庫である。
【0014】
請求項5の発明は、前記圧縮機が能力可変型圧縮機であり、前記冷蔵室蒸発器には冷蔵室用冷気循環ファンが配され、前記冷凍室蒸発器には冷凍室用冷気循環ファンが配され、前記冷蔵庫の制御手段は、同時冷却モードにおいて、前記圧縮機の能力を上げ、前記冷凍室用冷気循環ファンを低速回転させ、前記冷蔵室用冷気循環ファンを高速回転させることを特徴とする請求項2記載の冷蔵庫である。
【0015】
請求項6の発明は、前記圧縮機が能力可変型圧縮機であり、前記冷蔵室蒸発器には冷蔵室用冷気循環ファンが配され、前記冷凍室蒸発器には冷凍室用冷気循環ファンが配され、前記冷蔵庫の制御手段は、同時冷却モードにおいて、前記圧縮機の能力を上げ、前記冷凍室用冷気循環ファン及び前記冷蔵室用冷気循環ファンを高速回転させることを特徴とする請求項3記載の冷蔵庫である。
【0016】
請求項7の発明は、前記冷蔵庫の制御手段は、同時冷却モードにおいて、前記冷蔵室蒸発器の温度、または、前記冷凍室蒸発器の温度が所定温度以上になったときに交互冷却運転を行うことを特徴とする請求項1から6記載の冷蔵庫である。
【0017】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施例1を具体的に説明する。
【0018】
(1)冷蔵庫の構造
図1は、実施例1を示す間冷式冷蔵庫の断面図である。
【0019】
冷蔵庫本体1は、断熱箱体9と内箱8で形成されている。そして、断熱仕切壁2によって冷蔵温度帯(以下、R室という)30と冷凍温度帯(以下、F室という)40に区画され、これら部屋の冷気は完全に独立し、各冷気が混合することのない構造となっている。
【0020】
R室30の庫内は冷蔵仕切板3によって冷蔵室4と野菜室5とに仕切られ、F室40の庫内は第1冷凍室6と第2冷凍室7から成り、各室はそれぞれ開閉扉51〜54を有している。
【0021】
野菜室5の背面には冷蔵室蒸発器(以下、Rエバという)10と冷蔵室用冷気循環ファン(以下、Rファンという)11が配置され、Rファン11は庫内温度変動や扉開閉によって任意に運転される。そして、冷蔵室4の背面は、冷気をR室30内に供給するための冷気循環路18となっている。Rファン11は、インバータ制御で可変速である。
【0022】
冷凍室蒸発器(以下、Fエバという)12と冷凍室用冷気循環ファン(以下、Fファンという)13は第1及び第2冷凍室6、7の背壁に配置され、冷気を循環することで第1及び第2冷凍室6、7が冷却される。Fファン12は、インバータ制御で可変速である。
【0023】
冷蔵庫本体1の背壁下部の機械室14には、能力可変型の圧縮機15、凝縮器21がそれぞれ配置されている。また、凝縮器21を放熱するファン(以下、Cファンという)25を有する。このCファン25は、インバータ制御で可変速である。
【0024】
また、除霜ヒータ60,62が、Rエバ10,Fエバ12の下方に配置されている。
【0025】
さらに、冷蔵庫本体1の背面上部には、この冷蔵庫の制御を行うマイクロコンピュータよりなる制御部64が設けられている。
【0026】
(2)冷凍サイクルの構成
図2は、冷蔵庫の冷凍サイクルである。
【0027】
圧縮機15から吐出された不燃性冷媒は、凝縮器21を通った後、3方弁22の冷媒切換機構によって冷媒流路が切り替えられる。
【0028】
この3方弁22の一方の出口には冷蔵キャピラリーチューブ23とRエバ10が順次接続され、3方弁22の他方の出口には冷凍キャピラリーチューブ24とFエバ12とアキュームレータ16が順次接続されている。そして、この3方弁22は、冷媒を冷蔵キャピラリーチューブ23にのみ送る状態、冷凍キャピラリーチューブ24にのみ送る状態、どちらにも冷媒を送る全開状態、どちらにも冷媒を送らない全閉状態の4つの状態が実現できる。
【0029】
アキュームレータ16の出口配管には,機械室14内で逆止弁17が接続され、逆止弁17の出口側はRエバ10の出口配管と合流して圧縮機15の吸込側に繋がっている。
【0030】
(3)交互冷却運転
まず、上記冷蔵庫における交互冷却運転について説明する。
【0031】
交互冷却運転とは、圧縮機15で圧縮、加圧された高温の冷媒は凝縮器21で放熱され、それを出た冷媒は3方弁22に入り、Rエバ10またはFエバ12を冷却して下記で説明する冷蔵冷却モード(以下、Rモードという)と冷凍冷却モード(以下、Fモードという)を交互に行う運転をいう。
【0032】
(3−1)Rモード
Rモードでは、3方弁22を切り替え、冷蔵キャピラリチューブ23に冷媒を流し、Rエバ10で蒸発して、R室30を冷却する。蒸発してガス化した冷媒は圧縮機15に戻る。Fエバ12の温度はRモードの蒸発温度より低いため、冷媒がFエバ12に流れ込み再凝縮しないように逆止弁17がFエバ12側の流路に設置されている。
【0033】
(3−2)Fモード
Fモードでは、3方弁22を切り替え、冷凍キャピラリチューブ24に冷媒が流れるように冷媒流路を切り替え、Fエバ12で蒸発し、アキュムレータ16と逆止弁17を通り圧縮機15に戻る。
【0034】
そして、これら蒸発器10,12が強制対流で空気と熱交換する熱交換器であるので、Rモード時はRファン11、Fモード時はFファン13を冷媒流路の切替えと同時に運転し庫内を冷却する。
【0035】
(3−3)RモードとFモードの切り替えのタイミング
上記のようなRモードとFモードを交互に行う場合に、そのモードの切替えは、所定時間毎に行うか、またはR室30の庫内温度が設定温度(以下、Rモード開始温度という)TR1より高くなった場合、またはF室40の庫内温度が設定温度(以下、Fモード開始温度という)TF1より高くなった場合に各モードを開始する。
【0036】
(4)常時冷却運転
上記の交互冷却運転は、R室30,F室40に投入される食品の温度がそれほど高くない場合に行われるが、R室30またはF室40に温度の高い高負荷の食品(以下、高負荷食品という)が投入された場合は、常時冷却運転が行われる。その制御方法について、図7のフローチャート及び図3から図6のグラフに基づいて説明する。
【0037】
(4−1)常時冷凍冷却運転
交互冷却運転中に、F室40に高負荷食品が投入され、R室30は通常の庫内温度の範囲にある場合には、常時冷凍冷却運転が行われる。この運転について、図7のフローチャート及び図3のグラフに基づいて説明する。なお、図3のグラフにおいて、実線が本運転を示し、点線が従来の交互冷却運転を継続した場合を示す。
【0038】
ステップ1において、上記のような交互冷却運転が行われている。この状態で、高負荷食品がF室40に投入される。
【0039】
ステップ2において、高負荷食品がF室40に投入されたため、F室40の庫内温度が冷凍室高温検知レベルTF2に到達する。なお、この冷凍室高温検知レベルTF2は、FモードにおけるFモード開始温度TF1よりも高い温度とする。そしてステップ3に進む。
【0040】
ステップ3においては、R室30は通常の庫内温度の範囲にあるため、ステップ4に進む。
【0041】
ステップ4においては、F室40の庫内温度が高いため、Fモードをまず行いF室40の庫内温度を冷却する。そして、所定時間(例えば30分)後にステップ5に進む。
【0042】
ステップ5においては、3方弁22を全開状態にして、Rエバ10とFエバ12の両方に冷媒を送り、R室30とF室40を同時に冷却する同時冷却モードを行う。この同時冷却モードの場合に、能力可変型の圧縮機15の能力を最大とし、Fファン13を高速回転させ、Rファン11を低速回転させる。これによって、より多くの冷気がF室40に送られ冷却される。
【0043】
ステップ6において、図3に示すように、R室30の庫内温度が、冷凍室交互冷却開始レベル(以下、FC温度という)まで下がればステップ7に進み、下がらなければステップ4に戻って、Fモードと同時冷却モードとを更に交互に行う。
【0044】
ステップ7においては、F室40の庫内温度がFC温度まで下がると、交互冷却運転を開始するため、まずRモードを行う。そして、ステップ1の交互冷却運転に戻る。
【0045】
常時冷凍冷却運転を行うと、F室40に高負荷食品が投入されても、Fモードと同時冷却モードを交互に行うため、F室40の温度が確実に下がり(図3の実線の状態)、従来の交互冷却運転を続けた状態(図3の点線の状態)より、FC温度に到達する時間が早くなる。
【0046】
(4−2)常時冷蔵冷却運転
R室30に高負荷食品が投入され、F室40の庫内温度が通常の庫内温度の範囲にあると常時冷蔵冷却運転を行う。この運転について、図7のフローチャート及び図4のグラフに基づいて説明する。なお、図4のグラフにおいて、実線が本運転を示し、点線が従来の交互冷却運転を継続した場合を示す。
【0047】
ステップ1において、交互冷却運転が行われた状態で、R室30に高負荷食品が投入される。
【0048】
ステップ2において、F室40においては、庫内温度が上昇していないため、冷凍室高温検知レベルTF2に到達しておらず、ステップ8に進む。
【0049】
ステップ8において、R室30には高負荷食品が投入されているため、R室30の庫内温度は冷凍室高温検知レベルTR2に到達する。この場合に、冷蔵室高温検知レベルTR2は、Rモードの開始のためのRモード開始温度TR1より高いものとする。
【0050】
ステップ9において、R室30に高負荷食品が投入されたため、まずR室30をRモードによって冷却してステップ10に進む。
【0051】
ステップ10において、3方弁22を全開状態にして、Rエバ10とFエバ12に同時に冷媒を流し、F室40とR室30を同時に冷却する同時冷却モードを行う。この同時冷却モードの場合に、能力可変型圧縮機15の能力を最大とし、Fファン13は低速回転とし、Rファン11は高速回転とする。これによってより多くの冷気がR室30に送られ、冷却が迅速に行われる。
【0052】
ステップ11において、R室30の庫内温度が、図4に示すように、冷蔵室交互冷却開始レベル(以下、RC温度という)まで下がった場合には、ステップ12に進み、まだ下がっていなければステップ9に戻って、Rモードと同時冷却モードを交互に行う。
【0053】
ステップ12においては、R室30がRC温度まで下がったため、Fモードを行った後、交互冷却運転に復帰する。
【0054】
図4に示すように、交互冷却運転を継続するよりも、常時冷蔵冷却運転を行うと、R室30を常時冷却しつつ、F室40も冷却するため、高負荷食品が投入されたR室30の温度も下がり、F室40の庫内温度も上昇することがない。
【0055】
(4−3)常時冷蔵冷凍冷却運転
次に、R室30とF室40に同時に高負荷食品が投入された場合の常時冷蔵冷凍冷却運転について、図7のフローチャート及び図5のグラフに基づいて説明する。なお、図5のグラフにおいて、実線が本運転を示し、点線が従来の交互冷却運転を継続した場合を示す。
【0056】
ステップ1において、交互冷却運転が行われているときに、R室30とF室40の2つの部屋に同時に高負荷食品が投入される。
【0057】
ステップ2において、F室40の庫内温度が冷凍室高温検知レベルTF2に到達しているためステップ3に進む。
【0058】
ステップ3において、R室の庫内温度が冷蔵室高温検知レベルTR2に到達しているためステップ4に進む。
【0059】
ステップ13において、同時冷却モードを行い、F室40とR室30を同時に冷却する。これによって、両部屋の庫内温度が次第に低下してくる。このモードのときは、能力可変型の圧縮機15の能力を最大にし、Rファン11及びFファン13の回転を高速回転とし、冷気をより多くR室30とF室40に送り、冷却を促進する。
【0060】
ステップ14において、F室40の庫内温度がFC温度まで低下すればステップ20に進み、低下していなければステップ15に進む。
【0061】
ステップ15において、R室30の庫内温度がRC温度まで低下すればステップ16に進み、そうでなければステップ13に戻って同時モードを継続する。
【0062】
ステップ16においては、F室40の庫内温度はまだ低下せず、R室30の庫内温度がRC温度まで低下しているため、Fモードを行い、F室40を冷却する。そして所定時間経過後にステップ17に進む。
【0063】
ステップ17において、同時冷却モードを行いF室40を冷却しつつR室30も冷却する。そして所定時間後ステップ18に進む。
【0064】
ステップ18において、F室40がFC温度まで低下すればステップ19に進み、低下していなければステップ16に戻りFモードと同時冷却モードを交互に更に続ける。
【0065】
ステップ19においては、F室40もFC温度まで低下しており、また、R室30もRC温度以下に低下しているので、交互冷却運転を開始する必要がある。そのため、まずRモードを行い、その後ステップ1に戻って交互冷却運転を復活させる。
【0066】
また、ステップ14において、F室40の庫内温度がFC温度まで低下している場合には、ステップ20に進む。
【0067】
ステップ20においては、R室30の庫内温度が高いためRモードを所定時間行いステップ21に進む。
【0068】
ステップ21において、R室30を冷却しつつ、F室40も冷却する同時冷却運転を行う。そしてステップ22に進む。
【0069】
ステップ22において、R室30の温度がRC温度まで低下した場合にはステップ23に進み、低下していなければステップ20に戻って、Rモードと同時冷却モードを交互に行う。
【0070】
ステップ23において、F室40の庫内温度がFC温度まで低下し、R室30の庫内温度がRC温度まで低下しているため、Fモードを行った後、ステップ1に戻って交互冷却運転を行う。
【0071】
図5に示すように、交互冷却運転を継続するよりも、常時冷蔵冷凍冷却運転を行うと、R室30とF室40の両方に高負荷食品が投入されても、同時冷却モードによって両部屋を冷却するため、庫内温度が上昇することがない。
【0072】
(4−4)片流れが発生した場合
上記の(4−1)から(4−3)の制御の途中において、Rエバ10またはFエバ12の検知温度が所定温度以上に上昇する場合がある。これは、冷媒の片流れ状態が発生した場合である。この片流れは各蒸発器の温度、圧力状態や冷媒の状態、3方弁22内部での冷媒の片寄りなど種々の状態で発生する可能性があり、この片流れが発生した場合は冷媒が流れない部屋の温度上昇や冷媒の液バック現象が発生するため、即座に片流れを阻止する必要がある。そのため、Rエバ10とFエバ12の温度を常に検知し、図6に示すように、一方の蒸発器の温度が所定温度以上に上昇した場合には、同時冷却運転を停止し、冷媒をどちらか一方のRエバ10またはFエバ12に流す交互冷却運転を復活させる。
【0073】
これによって、片流れの発生を確実に防止することができる。
【0074】
(変更例1)
上記実施例では、高負荷食品が部屋に投入された場合に、常時冷却運転を行ったが、これに限らず、強制冷却運転をユーザから指示された時にも行ってもよい。
【0075】
(変更例2)
上記各実施例では、不燃性冷媒を用いたが、これに代えて可燃性冷媒(HC冷媒)も用いることができる。これは、上記各実施例では、冷媒の量を少なくできるために、可燃性冷媒でも安全だからである。
【0076】
【発明の効果】
以上により本発明の冷蔵庫によれば、冷凍室及び冷蔵室のどちらか一方、または両方に高負荷食品が投入され、庫内温度が上昇しても、その食品が投入された部屋の温度を下げつつ他方の部屋も庫内温度を下げる運転を行うことができ、バランスの良い冷却を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例の冷蔵庫の縦断面図である。
【図2】同じく冷凍サイクルの構成図である。
【図3】F室に高負荷食品を投入した場合のグラフである。
【図4】R室に高負荷食品を投入した場合のグラフである。
【図5】R室とF室の両方に高負荷食品を投入した場合のグラフである。
【図6】片流れ現象が発生した場合のグラフである。
【図7】本実施例の制御方法のフローチャートである。
【符号の説明】
1 冷蔵庫本体
2 断熱仕切壁
3 冷蔵仕切板
4 冷蔵貯蔵庫
5 野菜室
6 第1冷凍室
7 第2冷凍室
8 内箱
9 断熱箱体
10 Rエバ
11 Rファン
12 Fエバ
13 Fファン
14 機械室
1 5 圧縮機
16 アキュームレータ
17 逆止弁
18 冷気循環路
30 R室
40 F室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator in which an evaporator is provided in each of a refrigerator compartment and a freezer compartment.
[0002]
[Prior art]
Generally, a refrigerator constitutes a refrigeration cycle in which refrigerant discharged from a compressor passes through a condenser, a throttling mechanism (capillary tube), and an evaporator, and then returns to the compressor. It was cooling.
[0003]
On the other hand, in recent years, an evaporator is disposed in each of the refrigerating room and the freezing room via capillary tubes having arbitrary diameters, and the refrigerating cooling mode (hereinafter referred to as R mode) for cooling the refrigerating room by switching the refrigerant flow path, There has been proposed a refrigerator that alternately cools a refrigeration cooling mode (hereinafter referred to as an F mode) for cooling a room, and controls the evaporation temperature suitable for the temperature zone of each room by changing the rotation speed of the compressor.
[0004]
That is, the refrigerant flowing out of the compressor selectively controls the flow to a refrigerated capillary tube connected to the refrigerator compartment evaporator and a refrigerated capillary tube connected to the freezer compartment evaporator by a three-way valve.
[0005]
Further, an accumulator and a check valve are connected to the outlet of the freezer compartment evaporator, join with a pipe connected from the outlet of the refrigerator compartment evaporator, and return to the compressor (Japanese Patent Application No. 11-173729).
[0006]
[Problems to be solved by the invention]
The refrigerator that alternately cools the F mode and the R mode as described above has the following problems.
[0007]
That is, when food with high temperature and high load is put into the freezer compartment, when the alternate cooling operation is performed, the refrigerator compartment is cooled in the R mode even though the internal temperature of the freezer compartment rises. And there is a problem that the freezer compartment is not cooled and the internal temperature rises.
[0008]
On the contrary, when food with high temperature and high load is put into the refrigerator compartment, if the alternate cooling operation is performed, the refrigerator compartment is not cooled in the F mode, and the temperature inside the refrigerator rises. is there.
[0009]
Therefore, in view of the above problems, the present invention can cool each room without causing an increase in the temperature of the charged room even when a food with high temperature and high load is charged into the freezer or refrigerated room. The refrigerator which can be provided is provided.
[0010]
[Means for Solving the Problems]
According to the first aspect of the present invention, a compressor, a condenser, and a switching valve are sequentially connected, and a refrigeration room evaporator and a freezing room evaporator are connected to the switching valve in parallel via a throttle mechanism. A refrigerating cooling mode for cooling the refrigerating chamber and a refrigerating cooling for cooling the refrigerating chamber by switching the refrigerant flow path to the refrigerating chamber evaporator or the freezing chamber evaporator alternately by the switching valve. In the refrigerator that alternately performs the mode, the control means of the refrigerator is configured such that when the inside temperature of the refrigerator compartment is in a predetermined temperature range, when the inside temperature of the freezer compartment is equal to or higher than a predetermined temperature, or the freezer compartment When a forced cooling signal for forcibly cooling is input, a refrigeration cooling mode and a simultaneous cooling mode in which the switching valve is fully opened and refrigerant flows through both the refrigerator compartment evaporator and the freezer compartment evaporator Continuous freezing Performs retirement operation, then, the internal temperature of the freezing compartment is a refrigerator which is characterized in that the alternate cooling operation performed alternately with refrigerated cooling mode frozen cooling mode when it is below a predetermined temperature.
[0011]
In the invention of claim 2, a compressor, a condenser, and a switching valve are sequentially connected, and a refrigerating room evaporator and a freezing room evaporator are connected to the switching valve in parallel via a throttle mechanism, respectively. A refrigerating cooling mode for cooling the refrigerating chamber and a refrigerating cooling for cooling the refrigerating chamber by switching the refrigerant flow path to the refrigerating chamber evaporator or the freezing chamber evaporator alternately by the switching valve. In the refrigerator that alternately performs the mode, the control means of the refrigerator is configured such that when the inside temperature of the freezer compartment is in a predetermined temperature range, when the inside temperature of the refrigerator compartment becomes a predetermined temperature or more, or the refrigerator compartment When a forced cooling signal for forcibly cooling is input, a refrigeration cooling mode and a simultaneous cooling mode in which the switching valve is fully opened and the refrigerant flows through both the refrigerator compartment evaporator and the freezer compartment evaporator Always refrigerated for alternating Performs retirement operation, then, the internal temperature of the refrigerating compartment is a refrigerator which is characterized in that the alternate cooling operation performed alternately with refrigerated cooling mode frozen cooling mode when it is below a predetermined temperature.
[0012]
According to a third aspect of the present invention, the control means of the refrigerator is configured such that the temperature in the refrigerator compartment is equal to or higher than a predetermined temperature and the temperature in the freezer compartment is equal to or higher than a predetermined temperature, or When a forced cooling signal for forcibly cooling the refrigerator compartment is input, the simultaneous cooling mode is performed, and then the refrigerator compartment temperature or the refrigerator compartment temperature falls below a predetermined temperature. The refrigerator according to claim 1, wherein a normal refrigeration cooling operation or a normal refrigeration cooling operation is performed.
[0013]
According to a fourth aspect of the present invention, the compressor is a variable capacity compressor, the cold room evaporator is provided with a cold air circulation fan for the cold room, and the freezer room evaporator is provided with a cold air circulation fan for the freezer room. The control means of the refrigerator increases the capacity of the compressor in the simultaneous cooling mode, rotates the cold air circulation fan for the freezer compartment at a high speed, and rotates the cold air circulation fan for the refrigerator compartment at a low speed. The refrigerator according to claim 1.
[0014]
According to a fifth aspect of the present invention, the compressor is a variable capacity compressor, the cold room evaporator is provided with a cold air circulation fan for the cold room, and the freezer room evaporator is provided with a cold air circulation fan for the freezer room. The control means of the refrigerator increases the capacity of the compressor in the simultaneous cooling mode, rotates the cold air circulation fan for the freezer compartment at a low speed, and rotates the cold air circulation fan for the refrigerator compartment at a high speed. The refrigerator according to claim 2.
[0015]
According to a sixth aspect of the present invention, the compressor is a variable capacity compressor, the cold room evaporator is provided with a cold air circulation fan for the cold room, and the freezer room evaporator is provided with a cold air circulation fan for the freezer room. The control means of the refrigerator increases the capacity of the compressor in the simultaneous cooling mode, and rotates the cold air circulation fan for the freezer compartment and the cold air circulation fan for the refrigerator compartment at a high speed. It is a refrigerator of description.
[0016]
According to a seventh aspect of the present invention, the control means of the refrigerator performs an alternate cooling operation when the temperature of the refrigerator compartment evaporator or the temperature of the freezer compartment evaporator exceeds a predetermined temperature in the simultaneous cooling mode. It is a refrigerator of Claim 1 to 6 characterized by the above-mentioned.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the present invention will be specifically described below with reference to the drawings.
[0018]
(1) Structure of refrigerator FIG. 1 is a cross-sectional view of a cold-cooled refrigerator showing the first embodiment.
[0019]
The refrigerator body 1 is formed of a heat insulating box 9 and an inner box 8. And it is divided into the refrigeration temperature zone (henceforth R room) 30 and the freezing temperature zone (henceforth F room) 40 by the heat insulation partition wall 2, and the cold air of these rooms is completely independent, and each cold air mixes. It has no structure.
[0020]
The inside of the R room 30 is divided into the refrigerated room 4 and the vegetable room 5 by the refrigeration partition plate 3, and the inside of the F room 40 is composed of the first freezing room 6 and the second freezing room 7, and each room is opened and closed. It has doors 51-54.
[0021]
A refrigeration room evaporator (hereinafter referred to as “R EVA”) 10 and a cold air circulation fan (hereinafter referred to as “R fan”) 11 for the refrigeration room are disposed on the back of the vegetable room 5. Driven arbitrarily. The rear surface of the refrigerator compartment 4 serves as a cold air circulation path 18 for supplying cold air into the R chamber 30. The R fan 11 is variable speed by inverter control.
[0022]
A freezer compartment evaporator (hereinafter referred to as “F EVA”) 12 and a freezer compartment cold air circulation fan (hereinafter referred to as “F fan”) 13 are arranged on the back walls of the first and second freezer compartments 6 and 7 to circulate the cold air. Thus, the first and second freezing chambers 6 and 7 are cooled. The F fan 12 is variable speed by inverter control.
[0023]
A variable capacity compressor 15 and a condenser 21 are disposed in the machine room 14 below the back wall of the refrigerator main body 1. Further, a fan (hereinafter referred to as C fan) 25 that radiates heat from the condenser 21 is provided. The C fan 25 is variable speed by inverter control.
[0024]
Further, defrosting heaters 60 and 62 are disposed below the R and F EVAs 10 and 12.
[0025]
Furthermore, the control part 64 consisting of the microcomputer which controls this refrigerator is provided in the back upper part of the refrigerator main body 1. As shown in FIG.
[0026]
(2) Configuration of refrigeration cycle FIG. 2 is a refrigeration cycle of a refrigerator.
[0027]
The incombustible refrigerant discharged from the compressor 15 passes through the condenser 21, and then the refrigerant flow path is switched by the refrigerant switching mechanism of the three-way valve 22.
[0028]
The refrigerated capillary tube 23 and the R evaporator 10 are sequentially connected to one outlet of the three-way valve 22, and the refrigerated capillary tube 24, the F evaporator 12 and the accumulator 16 are sequentially connected to the other outlet of the three-way valve 22. Yes. The three-way valve 22 is in a state where the refrigerant is sent only to the refrigerated capillary tube 23, a state where the refrigerant is sent only to the frozen capillary tube 24, a fully opened state where the refrigerant is sent to either side, and a fully closed state where no refrigerant is sent to either side. Two states can be realized.
[0029]
A check valve 17 is connected to the outlet pipe of the accumulator 16 in the machine chamber 14, and the outlet side of the check valve 17 merges with the outlet pipe of the R EVA 10 and is connected to the suction side of the compressor 15.
[0030]
(3) Alternate cooling operation First, the alternate cooling operation in the refrigerator will be described.
[0031]
In the alternate cooling operation, the high-temperature refrigerant compressed and pressurized by the compressor 15 is radiated by the condenser 21, and the refrigerant leaving the refrigerant enters the three-way valve 22 to cool the R-evaporator 10 or the F-evaporator 12. This is an operation in which a refrigeration cooling mode (hereinafter referred to as R mode) and a refrigeration cooling mode (hereinafter referred to as F mode) described below are alternately performed.
[0032]
(3-1) R mode In the R mode, the three-way valve 22 is switched, a refrigerant flows through the refrigerated capillary tube 23, evaporates by the R evaporator 10, and the R chamber 30 is cooled. The evaporated and gasified refrigerant returns to the compressor 15. Since the temperature of the F EVA 12 is lower than the evaporation temperature in the R mode, the check valve 17 is installed in the flow path on the F EVA 12 side so that the refrigerant flows into the F EVA 12 and does not recondense.
[0033]
(3-2) F mode In the F mode, the three-way valve 22 is switched, the refrigerant flow path is switched so that the refrigerant flows through the refrigeration capillary tube 24, evaporated by the F evaporator 12, and passes through the accumulator 16 and the check valve 17. Return to the compressor 15.
[0034]
Since these evaporators 10 and 12 are heat exchangers that exchange heat with air by forced convection, the R fan 11 in the R mode and the F fan 13 in the F mode are operated simultaneously with the switching of the refrigerant flow path. Cool inside.
[0035]
(3-3) Timing of switching between the R mode and the F mode When the R mode and the F mode are alternately performed as described above, the switching of the mode is performed every predetermined time or in the chamber of the R chamber 30. When the temperature becomes higher than the set temperature (hereinafter referred to as R mode start temperature) TR1, or when the internal temperature of the F chamber 40 becomes higher than the set temperature (hereinafter referred to as F mode start temperature) TF1, Start.
[0036]
(4) Continuous cooling operation The above alternate cooling operation is performed when the temperature of the food put into the R chamber 30 and the F chamber 40 is not so high, but the R chamber 30 or the F chamber 40 has a high temperature and a high load. When the food (hereinafter referred to as “high load food”) is introduced, the cooling operation is always performed. The control method will be described based on the flowchart of FIG. 7 and the graphs of FIGS.
[0037]
(4-1) Continuous freezing / cooling operation During the alternate cooling operation, when the high-load food is put into the F chamber 40 and the R chamber 30 is in the normal temperature range, the freezing / cooling operation is always performed. . This operation will be described based on the flowchart of FIG. 7 and the graph of FIG. In addition, in the graph of FIG. 3, a continuous line shows this driving | operation and a dotted line shows the case where the conventional alternate cooling operation is continued.
[0038]
In step 1, the above-described alternate cooling operation is performed. In this state, the high-load food is put into the F chamber 40.
[0039]
In step 2, since the high-load food is put into the F chamber 40, the internal temperature of the F chamber 40 reaches the freezer compartment high temperature detection level TF2. The freezer compartment high temperature detection level TF2 is set to a temperature higher than the F mode start temperature TF1 in the F mode. Then, the process proceeds to Step 3.
[0040]
In step 3, since the R chamber 30 is in the range of the normal internal temperature, the process proceeds to step 4.
[0041]
In step 4, since the internal temperature of the F chamber 40 is high, the F mode is first performed to cool the internal temperature of the F chamber 40. And it progresses to step 5 after predetermined time (for example, 30 minutes).
[0042]
In step 5, the three-way valve 22 is fully opened, the refrigerant is sent to both the R and F EVAs 10 and 12, and the simultaneous cooling mode in which the R chamber 30 and the F chamber 40 are simultaneously cooled is performed. In the simultaneous cooling mode, the capacity of the variable capacity compressor 15 is maximized, the F fan 13 is rotated at a high speed, and the R fan 11 is rotated at a low speed. As a result, more cold air is sent to the F chamber 40 and cooled.
[0043]
In step 6, as shown in FIG. 3, if the internal temperature of the R chamber 30 falls to the freezer compartment alternate cooling start level (hereinafter referred to as FC temperature), the process proceeds to step 7, and if not lowered, the process returns to step 4, The F mode and the simultaneous cooling mode are further alternately performed.
[0044]
In step 7, when the internal temperature of the F chamber 40 decreases to the FC temperature, the R mode is first performed in order to start the alternate cooling operation. And it returns to the alternate cooling operation of step 1.
[0045]
When the constant freezing and cooling operation is performed, even if a high-load food is put into the F chamber 40, the F mode and the simultaneous cooling mode are alternately performed, so that the temperature of the F chamber 40 is reliably lowered (the state of the solid line in FIG. 3). The time to reach the FC temperature is earlier than the state in which the conventional alternate cooling operation is continued (the state of the dotted line in FIG. 3).
[0046]
(4-2) Always refrigerated cooling operation When a high-load food is put into the R chamber 30, and the internal temperature of the F chamber 40 is within the normal internal temperature range, the refrigerated cooling operation is always performed. This operation will be described based on the flowchart of FIG. 7 and the graph of FIG. In the graph of FIG. 4, the solid line indicates the main operation, and the dotted line indicates the case where the conventional alternate cooling operation is continued.
[0047]
In step 1, the high-load food is put into the R chamber 30 in the state where the alternate cooling operation is performed.
[0048]
In Step 2, since the internal temperature does not rise in the F chamber 40, the freezer compartment high temperature detection level TF2 has not been reached, and the process proceeds to Step 8.
[0049]
In Step 8, since the high load food is put into the R chamber 30, the internal temperature of the R chamber 30 reaches the freezer compartment high temperature detection level TR2. In this case, the refrigerating room high temperature detection level TR2 is higher than the R mode start temperature TR1 for starting the R mode.
[0050]
In step 9, since the high-load food has been put into the R chamber 30, the R chamber 30 is first cooled in the R mode and the process proceeds to step 10.
[0051]
In step 10, the three-way valve 22 is fully opened, and the simultaneous cooling mode is performed in which the refrigerant flows simultaneously through the R and F EVAs 10 and 12, thereby simultaneously cooling the F chamber 40 and the R chamber 30. In the simultaneous cooling mode, the capacity of the variable capacity compressor 15 is maximized, the F fan 13 is rotated at a low speed, and the R fan 11 is rotated at a high speed. As a result, more cold air is sent to the R chamber 30 and cooling is performed quickly.
[0052]
In step 11, when the internal temperature of the R chamber 30 is lowered to the refrigerating chamber alternate cooling start level (hereinafter referred to as RC temperature) as shown in FIG. 4, the process proceeds to step 12, and if not yet lowered. Returning to Step 9, the R mode and the simultaneous cooling mode are alternately performed.
[0053]
In step 12, since the R chamber 30 has dropped to the RC temperature, the F mode is performed, and then the alternate cooling operation is resumed.
[0054]
As shown in FIG. 4, when the refrigeration cooling operation is always performed rather than continuing the alternate cooling operation, the R chamber 30 is always cooled and the F chamber 40 is also cooled. The temperature of 30 does not decrease, and the temperature inside the F chamber 40 does not increase.
[0055]
(4-3) Continuously refrigerated freezing / cooling operation Next, based on the flowchart of FIG. 7 and the graph of FIG. 5, the continuous refrigerated freezing / cooling operation in the case where a high-load food is put into the R chamber 30 and the F chamber 40 simultaneously. explain. In the graph of FIG. 5, the solid line indicates the main operation, and the dotted line indicates the case where the conventional alternate cooling operation is continued.
[0056]
In step 1, when the alternate cooling operation is performed, the high load food is put into the two rooms of the R room 30 and the F room 40 at the same time.
[0057]
In Step 2, since the internal temperature of the F room 40 has reached the freezer compartment high temperature detection level TF2, the process proceeds to Step 3.
[0058]
In Step 3, since the internal temperature of the R room has reached the refrigerator compartment high temperature detection level TR2, the process proceeds to Step 4.
[0059]
In step 13, the simultaneous cooling mode is performed to cool the F chamber 40 and the R chamber 30 simultaneously. As a result, the internal temperature of both rooms gradually decreases. In this mode, the capacity of the variable capacity compressor 15 is maximized, the rotation of the R fan 11 and the F fan 13 is set to a high speed rotation, and more cooling air is sent to the R chamber 30 and the F chamber 40 to promote cooling. To do.
[0060]
In step 14, if the internal temperature of the F chamber 40 is lowered to the FC temperature, the process proceeds to step 20, and if not, the process proceeds to step 15.
[0061]
In step 15, if the internal temperature of R room 30 falls to RC temperature, it will progress to step 16, otherwise it will return to step 13 and will continue simultaneous mode.
[0062]
In step 16, since the internal temperature of the F chamber 40 has not yet decreased and the internal temperature of the R chamber 30 has decreased to the RC temperature, the F mode is performed and the F chamber 40 is cooled. Then, after a predetermined time has passed, the process proceeds to step 17.
[0063]
In step 17, the simultaneous cooling mode is performed to cool the F chamber 40 while cooling the R chamber 30. Then, after a predetermined time, the process proceeds to step 18.
[0064]
In step 18, if the F chamber 40 is lowered to the FC temperature, the process proceeds to step 19, and if not, the process returns to step 16 to continue the F mode and the simultaneous cooling mode alternately.
[0065]
In step 19, since the F chamber 40 is also lowered to the FC temperature, and the R chamber 30 is also lowered to the RC temperature or lower, it is necessary to start the alternate cooling operation. Therefore, the R mode is first performed, and then the process returns to step 1 to restore the alternate cooling operation.
[0066]
If the internal temperature of the F chamber 40 has decreased to the FC temperature in step 14, the process proceeds to step 20.
[0067]
In step 20, since the internal temperature of the R chamber 30 is high, the R mode is performed for a predetermined time and the process proceeds to step 21.
[0068]
In step 21, a simultaneous cooling operation for cooling the F chamber 40 while cooling the R chamber 30 is performed. Then, the process proceeds to Step 22.
[0069]
In step 22, if the temperature of the R chamber 30 has decreased to the RC temperature, the process proceeds to step 23. If not, the process returns to step 20 to alternately perform the R mode and the simultaneous cooling mode.
[0070]
In step 23, since the internal temperature of the F chamber 40 has decreased to the FC temperature and the internal temperature of the R chamber 30 has decreased to the RC temperature, after performing the F mode, the process returns to step 1 to perform the alternate cooling operation. I do.
[0071]
As shown in FIG. 5, when the refrigeration cooling operation is always performed rather than continuing the alternate cooling operation, both rooms are switched by the simultaneous cooling mode even if a high-load food is put into both the R chamber 30 and the F chamber 40. The inside temperature does not rise because the air is cooled.
[0072]
(4-4) When single flow occurs In the course of the control from (4-1) to (4-3), the detected temperature of the R EVA 10 or the F EVA 12 may rise above a predetermined temperature. This is a case where a single flow state of the refrigerant occurs. This single flow may occur in various states such as the temperature of each evaporator, the pressure state, the state of the refrigerant, the deviation of the refrigerant inside the three-way valve 22, and the refrigerant does not flow when this single flow occurs. Since the temperature of the room rises and the liquid back phenomenon of the refrigerant occurs, it is necessary to immediately prevent the single flow. For this reason, the temperatures of the R evaporator 10 and the F evaporator 12 are always detected, and as shown in FIG. 6, when the temperature of one evaporator rises above a predetermined temperature, the simultaneous cooling operation is stopped, The alternate cooling operation that flows to one of the R and F EVAs 10 or 12 is restored.
[0073]
Thereby, generation | occurrence | production of a single flow can be prevented reliably.
[0074]
(Modification 1)
In the above embodiment, the cooling operation is always performed when a high-load food is put into the room. However, the present invention is not limited to this, and the forced cooling operation may be performed when instructed by the user.
[0075]
(Modification 2)
In each of the above embodiments, a nonflammable refrigerant is used, but a flammable refrigerant (HC refrigerant) can be used instead. This is because, in each of the above embodiments, the amount of refrigerant can be reduced, so that even a flammable refrigerant is safe.
[0076]
【The invention's effect】
As described above, according to the refrigerator of the present invention, even when one or both of the freezing room and the refrigeration room is loaded with high-load food, the temperature of the room into which the food is loaded is lowered even if the internal temperature rises. However, the other room can also be operated to lower the internal temperature, so that well-balanced cooling can be performed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a refrigerator according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of the refrigeration cycle.
FIG. 3 is a graph when a high-load food is put into the F room.
FIG. 4 is a graph when a high-load food is put into the R room.
FIG. 5 is a graph when a high-load food is put into both the R room and the F room.
FIG. 6 is a graph when a single flow phenomenon occurs.
FIG. 7 is a flowchart of a control method according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 2 Heat insulation partition wall 3 Refrigeration partition plate 4 Refrigerated storage 5 Vegetable room 6 1st freezing room 7 2nd freezing room 8 Inner box 9 Thermal insulation box 10 R EVA 11 R Fan 12 F Eva 13 F Fan 14 Machine room 1 5 Compressor 16 Accumulator 17 Check valve 18 Cold air circulation path 30 R room 40 F room

Claims (7)

圧縮機、凝縮器、切替弁が順次接続され、
この切替弁には、冷蔵室蒸発器と冷凍室蒸発器とが、各々絞り機構を介して並列に接続された冷凍サイクルを有し、
前記冷蔵室蒸発器、または、前記冷凍室蒸発器への冷媒流路を前記切替弁によって交互に切替えることによって、冷蔵室を冷却する冷蔵冷却モードと冷凍室を冷却する冷凍冷却モードを交互に行う冷蔵庫において、
前記冷蔵庫の制御手段は、
冷蔵室の庫内温度が所定温度範囲にあるときに、冷凍室の庫内温度が所定温度以上になったときに、または、冷凍室を強制的に冷却を行う強制冷却信号が入力したときに、冷凍冷却モードと、前記切替弁を全開状態にして前記冷蔵室蒸発器と前記冷凍室蒸発器のどちらにも冷媒が流れる同時冷却冷却モードを交互に行う常時冷凍冷却運転を行い、その後、冷凍室の庫内温度が所定温度以下になったときに冷蔵冷却モードと冷凍冷却モードを交互に行う交互冷却運転を行う
ことを特徴とする冷蔵庫。
Compressor, condenser and switching valve are connected in sequence,
The switching valve has a refrigeration cycle in which a refrigerator compartment evaporator and a freezer compartment evaporator are connected in parallel through respective throttle mechanisms,
By alternately switching the refrigerant flow path to the refrigerating room evaporator or the freezing room evaporator with the switching valve, a refrigerating cooling mode for cooling the refrigerating room and a refrigerating cooling mode for cooling the freezing room are alternately performed. In the refrigerator
The refrigerator control means includes:
When the internal temperature of the freezer compartment is within the predetermined temperature range, when the internal temperature of the freezer compartment exceeds the predetermined temperature, or when a forced cooling signal for forcibly cooling the freezer compartment is input A freezing / cooling mode, and a continuous cooling / cooling operation in which the cooling valve and the freezing chamber evaporator are alternately opened in the refrigerating / cooling mode and the simultaneous cooling / cooling mode in which the refrigerant flows through both the freezer and the freezer. A refrigerator characterized by performing an alternate cooling operation in which a refrigeration cooling mode and a refrigeration cooling mode are alternately performed when the temperature inside the room becomes equal to or lower than a predetermined temperature.
圧縮機、凝縮器、切替弁が順次接続され、
この切替弁には、冷蔵室蒸発器と冷凍室蒸発器とが、各々絞り機構を介して並列に接続された冷凍サイクルを有し、
前記冷蔵室蒸発器、または、前記冷凍室蒸発器への冷媒流路を前記切替弁によって交互に切替えることによって、冷蔵室を冷却する冷蔵冷却モードと冷凍室を冷却する冷凍冷却モードを交互に行う冷蔵庫において、
前記冷蔵庫の制御手段は、
冷凍室の庫内温度が所定温度範囲にあるときに、冷蔵室の庫内温度が所定温度以上になったときに、または、冷蔵室を強制的に冷却を行う強制冷却信号が入力したときに、冷蔵冷却モードと、前記切替弁を全開状態にして前記冷蔵室蒸発器と前記冷凍室蒸発器のどちらにも冷媒が流れる同時冷却モードを交互に行う常時冷蔵冷却運転を行い、その後、冷蔵室の庫内温度が所定温度以下になったときに冷蔵冷却モードと冷凍冷却モードを交互に行う交互冷却運転を行う
ことを特徴とする冷蔵庫。
Compressor, condenser and switching valve are connected in sequence,
The switching valve has a refrigeration cycle in which a refrigerator compartment evaporator and a freezer compartment evaporator are connected in parallel through respective throttle mechanisms,
By alternately switching the refrigerant flow path to the refrigerating room evaporator or the freezing room evaporator with the switching valve, a refrigerating cooling mode for cooling the refrigerating room and a refrigerating cooling mode for cooling the freezing room are alternately performed. In the refrigerator
The refrigerator control means includes:
When the freezer compartment temperature is in the specified temperature range, when the refrigerator compartment temperature exceeds the specified temperature, or when a forced cooling signal is input to forcibly cool the refrigerator compartment A refrigerating / cooling mode and a continuous refrigerating / cooling operation in which the switching valve is fully opened and a simultaneous cooling mode in which refrigerant flows through both the refrigerating room evaporator and the freezing room evaporator alternately. A refrigerator characterized by performing an alternate cooling operation in which a refrigeration cooling mode and a refrigeration cooling mode are alternately performed when the inside temperature of the refrigerator becomes equal to or lower than a predetermined temperature.
前記冷蔵庫の制御手段は、
冷蔵室の庫内温度が所定温度以上になり、かつ、冷凍室の庫内温度が所定温度以上になったときに、または、冷凍室及び冷蔵室を強制的に冷却を行う強制冷却信号が入力したときに、同時冷却モードを行い、その後、冷凍室の庫内温度、または、冷蔵室の庫内温度が所定温度以下になったときに、常時冷凍冷却運転、または、常時冷蔵冷却運転を行う
ことを特徴とする請求項1、2記載の冷蔵庫。
The refrigerator control means includes:
Inputs a forced cooling signal that forcibly cools the freezer compartment and the refrigerator compartment when the inside temperature of the refrigerator compartment exceeds the prescribed temperature and the inside temperature of the freezer compartment exceeds the prescribed temperature. The simultaneous cooling mode is performed, and then the freezing cooling operation or the normal refrigeration cooling operation is performed when the freezer compartment temperature or the refrigerator compartment temperature falls below a predetermined temperature. The refrigerator according to claim 1 or 2 characterized by things.
前記圧縮機が能力可変型圧縮機であり、
前記冷蔵室蒸発器には冷蔵室用冷気循環ファンが配され、
前記冷凍室蒸発器には冷凍室用冷気循環ファンが配され、
前記冷蔵庫の制御手段は、
同時冷却モードにおいて、前記圧縮機の能力を上げ、前記冷凍室用冷気循環ファンを高速回転させ、前記冷蔵室用冷気循環ファンを低速回転させる
ことを特徴とする請求項1記載の冷蔵庫。
The compressor is a variable capacity compressor;
The cold room evaporator is provided with a cold air circulation fan for the cold room,
The freezer compartment evaporator is provided with a freezer cold air circulation fan,
The refrigerator control means includes:
2. The refrigerator according to claim 1, wherein in the simultaneous cooling mode, the capacity of the compressor is increased, the cold air circulation fan for the freezer compartment is rotated at a high speed, and the cold air circulation fan for the refrigerator compartment is rotated at a low speed.
前記圧縮機が能力可変型圧縮機であり、
前記冷蔵室蒸発器には冷蔵室用冷気循環ファンが配され、
前記冷凍室蒸発器には冷凍室用冷気循環ファンが配され、
前記冷蔵庫の制御手段は、
同時冷却モードにおいて、前記圧縮機の能力を上げ、前記冷凍室用冷気循環ファンを低速回転させ、前記冷蔵室用冷気循環ファンを高速回転させる
ことを特徴とする請求項2記載の冷蔵庫。
The compressor is a variable capacity compressor;
The cold room evaporator is provided with a cold air circulation fan for the cold room,
The freezer compartment evaporator is provided with a freezer cold air circulation fan,
The refrigerator control means includes:
The refrigerator according to claim 2, wherein in the simultaneous cooling mode, the capacity of the compressor is increased, the cold air circulation fan for the freezer compartment is rotated at a low speed, and the cold air circulation fan for the refrigerator compartment is rotated at a high speed.
前記圧縮機が能力可変型圧縮機であり、
前記冷蔵室蒸発器には冷蔵室用冷気循環ファンが配され、
前記冷凍室蒸発器には冷凍室用冷気循環ファンが配され、
前記冷蔵庫の制御手段は、
同時冷却モードにおいて、前記圧縮機の能力を上げ、前記冷凍室用冷気循環ファン及び前記冷蔵室用冷気循環ファンを高速回転させる
ことを特徴とする請求項3記載の冷蔵庫。
The compressor is a variable capacity compressor;
The cold room evaporator is provided with a cold air circulation fan for the cold room,
The freezer compartment evaporator is provided with a freezer cold air circulation fan,
The refrigerator control means includes:
4. The refrigerator according to claim 3, wherein in the simultaneous cooling mode, the capacity of the compressor is increased, and the cold air circulation fan for the freezer compartment and the cold air circulation fan for the refrigerator compartment are rotated at a high speed.
前記冷蔵庫の制御手段は、
同時冷却モードにおいて、前記冷蔵室蒸発器の温度、または、前記冷凍室蒸発器の温度が所定温度以上になったときに交互冷却運転を行う
ことを特徴とする請求項1から6記載の冷蔵庫。
The refrigerator control means includes:
The refrigerator according to any one of claims 1 to 6, wherein, in the simultaneous cooling mode, an alternate cooling operation is performed when the temperature of the refrigerator compartment evaporator or the temperature of the freezer compartment evaporator becomes equal to or higher than a predetermined temperature.
JP2001142409A 2001-05-11 2001-05-11 refrigerator Expired - Fee Related JP3922891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142409A JP3922891B2 (en) 2001-05-11 2001-05-11 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142409A JP3922891B2 (en) 2001-05-11 2001-05-11 refrigerator

Publications (2)

Publication Number Publication Date
JP2002333254A JP2002333254A (en) 2002-11-22
JP3922891B2 true JP3922891B2 (en) 2007-05-30

Family

ID=18988715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142409A Expired - Fee Related JP3922891B2 (en) 2001-05-11 2001-05-11 refrigerator

Country Status (1)

Country Link
JP (1) JP3922891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007799A (en) * 2010-06-24 2012-01-12 Sanyo Electric Co Ltd Cooling storage

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188783A (en) * 2003-12-24 2005-07-14 Toshiba Corp Refrigerator
WO2008111149A1 (en) * 2007-03-12 2008-09-18 Hoshizaki Denki Kabushiki Kaisha Cooling storage building
KR101314622B1 (en) * 2007-11-05 2013-10-07 엘지전자 주식회사 Controlling method for the refrigerator
KR101314621B1 (en) 2007-11-05 2013-10-07 엘지전자 주식회사 Controlling method for the refrigerator
JP5624289B2 (en) * 2009-07-01 2014-11-12 株式会社東芝 refrigerator
JP5927409B2 (en) * 2011-09-08 2016-06-01 パナソニックIpマネジメント株式会社 refrigerator
JP2013200081A (en) * 2012-03-26 2013-10-03 Panasonic Corp Cooling storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007799A (en) * 2010-06-24 2012-01-12 Sanyo Electric Co Ltd Cooling storage

Also Published As

Publication number Publication date
JP2002333254A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
US6598410B2 (en) Refrigerator with a plurality of parallel refrigerant passages
US6935127B2 (en) Refrigerator
KR100404984B1 (en) Refrigerator and controlling method therefor
KR100691587B1 (en) Refrigerator
TWI379985B (en)
WO2020175825A1 (en) Refrigerator control method
JP2001263902A (en) Refrigerator
JP2001082850A (en) Refrigerator
JP4104900B2 (en) refrigerator
JP3922891B2 (en) refrigerator
JP3476361B2 (en) Refrigerator cooling operation control device
JP3906637B2 (en) Freezer refrigerator
JPH11148761A (en) Refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
JP2002071255A (en) Refrigerator and its controlling method
JP2000205612A (en) Cold storage air conditioner
JP5862867B2 (en) refrigerator
JP2003065619A (en) Refrigerator
JP4011314B2 (en) refrigerator
JP4013875B2 (en) Freezer refrigerator
JP2002071233A (en) Refrigerator and its controlling method
WO2020175824A1 (en) Method for controlling refrigerator
JP3725397B2 (en) refrigerator
JP2002267312A (en) Freezing refrigerator
JP2002206840A (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees