KR20060132869A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
KR20060132869A
KR20060132869A KR1020067014363A KR20067014363A KR20060132869A KR 20060132869 A KR20060132869 A KR 20060132869A KR 1020067014363 A KR1020067014363 A KR 1020067014363A KR 20067014363 A KR20067014363 A KR 20067014363A KR 20060132869 A KR20060132869 A KR 20060132869A
Authority
KR
South Korea
Prior art keywords
freezing
refrigerating
compressor
cooler
refrigerator
Prior art date
Application number
KR1020067014363A
Other languages
Korean (ko)
Inventor
미노루 뎀묘
다카히로 요시오카
히데타케 하야시
Original Assignee
가부시끼가이샤 도시바
도시바 콘슈머 마케팅 가부시끼 가이샤
도시바 가덴세이조 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바, 도시바 콘슈머 마케팅 가부시끼 가이샤, 도시바 가덴세이조 가부시끼가이샤 filed Critical 가부시끼가이샤 도시바
Publication of KR20060132869A publication Critical patent/KR20060132869A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/173Speeds of the evaporator fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0682Two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Abstract

A refrigerator where a variable- performance freezing cycle that has coolers for freezing and cold storage and is formed as a two-stage compression-type is controlled by freezing space temperature information, so that a freezing space and a cold storage space are each appropriately controlled at its storage temperature. A refrigerator where a freezing cycle is formed by an inverter-driven variable-performance compressor (9) where a compression element is constituted of a low stage side compression section (9a) and a high stage side compression section (9b), by a switching valve (11) for controlling a flow rate together with a refrigerant flow path provided on the exit side of a condenser (10) receiving a discharge gas from the compressor, and by cooler (4) for freezing and a cooler (5) for cold storage that are respectively connected through pressure reducing devices (12, 13) to the switching valve, wherein the rotating speed of the compressor is determined by a freezing space temperature (Fa) and a target value (Fr) for the freezing space temperature.

Description

냉장고{REFRIGERATOR}Refrigerator {REFRIGERATOR}

본 발명은 2단 압축식 능력 가변 압축기를 사용한 냉장고에 관한 것으로, 특히 저장 공간 온도에 의해 압축기의 회전수를 결정하는 것에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator using a two stage compression capacity variable compressor, and more particularly, to determining the rotation speed of the compressor based on the storage space temperature.

최근, 냉장고는 인버터 제어에 의한 능력 가변의 압축기를 탑재한 것이 많고 그 냉동 능력을 가변함으로써, 부하에 대응하는 냉각 성능을 얻음과 동시에 소비전력의 감소를 도모하도록 하고 있다.In recent years, many refrigerators are equipped with a compressor of variable capacity by inverter control, and the refrigeration capacity of the refrigerator is variable, thereby achieving cooling performance corresponding to the load and reducing power consumption.

가정용으로서 보급되고 있는 냉장고는 -18 ~ -20℃ 정도로 냉각되는 냉동공간과, +1 ~ +5℃ 정도로 유지하는 냉장 공간이나 야채 보존 공간을 갖는 것이 일반적이고, 단일 냉각기에 의해 쌍방의 공간을 냉각하는 것은 댐퍼 등에 의해 냉동 및 냉장공간으로의 냉기류의 분배를 제어하고, 전체 부하에 따라서 압축기를 구동 또는 정지하고, 인버터 제어에 의해 또한 압축기의 회전수를 제어함으로써 쌍방의 저장공간을 소정의 온도로 유지하고 있었다.Commonly used refrigerators have a freezing space to be cooled to about -18 to -20 ° C, and a refrigerating space or vegetable preservation space to be kept at +1 to + 5 ° C, and both rooms are cooled by a single cooler. Controlling the distribution of cold air flow into the refrigeration and refrigerating spaces by dampers, etc., driving or stopping the compressor according to the total load, and controlling the rotational speed of the compressor by inverter control and controlling both storage spaces to a predetermined temperature. Was keeping up.

또한, 냉동 및 냉장공간의 각각에 냉각기를 구비한 타입에서는 냉매의 유로를 전환함으로서 상기 각 냉각공간에 배치한 냉각기로의 냉매류를 분배 제어하고, 냉각공간 전체의 온도나 온도차 등의 부하에 따라서 압축기를 제어하고 있다.Moreover, in the type provided with a cooler in each of the refrigerating and refrigerating spaces, the flow of refrigerant is switched to control the distribution of the coolant to the coolers arranged in the respective cooling spaces, and according to the load of the temperature and temperature difference of the entire cooling space. The compressor is being controlled.

한편, 현재 시장에서 공급되고 있는 냉동 냉장고에 사용되고 있는 압축기는 압축기 케이스 내에 단일 압축부가 존재하는, 소위 1단 압축 방식이지만, 최근에는 도 13에 도시한 바와 같이, 밀폐 용기 내에 모터와 함께 저단 압축 요소(39a)와 고단 압축 요소(39b)를 구비한 2단 압축기(39)를 설치하고, 고단 압축 요소(39b)로부터의 토출관(46)에 접속한 응축기(40)의 출구측에 중간압용 팽창장치(43)를 접속하고, 저단측 압축 요소(39a)의 토출측 및 고단측 압축 요소(39b)의 흡입측과 중간압용 흡입 파이프(47)를 연통시켜, 상기 중간압용 흡입 파이프(47)와 상기 중간압용 팽창장치(43) 사이에 중간압용 증발기(35)를 접속하고 또한, 응축기(40)의 출구측과 접속된 저압용 팽창장치(42)와 2단 압축기의 저단 압축 요소의 흡입측(45) 사이에 저압용 증발기(34)를 접속하여 이루어지고, 저단 압축 요소(39a)의 토출측과 고단 압축 요소(39b)의 흡입측을 밀폐 용기(39)내에 연통시킴으로써, 고내의 온도제어의 정밀도를 높이고 또한 고내 각부의 온도의 균일화나 고효율화, 저소비 전력화를 도모하도록 한 2단 압축 냉동 냉장 장치의 사상이 공개되어 있다(예를 들어, 일본 공개특허공보 2001-74325호).On the other hand, the compressor used in the refrigeration refrigerator currently supplied in the market is a so-called single stage compression method in which a single compression unit exists in the compressor case, but recently, as shown in FIG. 13, a low stage compression element together with a motor in a sealed container. A two-stage compressor 39 having a 39a and a high stage compression element 39b is provided, and an expansion for intermediate pressure is provided on the outlet side of the condenser 40 connected to the discharge pipe 46 from the high stage compression element 39b. The apparatus 43 is connected and the discharge side of the low stage side compression element 39a and the suction side of the high stage side compression element 39b communicate with the suction pipe 47 for intermediate pressure, so that the medium pressure suction pipe 47 and the A medium pressure evaporator 35 is connected between the medium pressure expansion device 43 and a suction side 45 of the low pressure expansion device 42 of the two stage compressor and the low pressure expansion device 42 connected to the outlet side of the condenser 40. By connecting the low pressure evaporator 34 between the By communicating the discharge side of the low stage compression element 39a and the suction side of the high stage compression element 39b in the hermetically sealed container 39, the accuracy of temperature control in the refrigerator is increased, and the temperature of each part of the refrigerator is increased, and the efficiency of the high efficiency and low power consumption are increased. The idea of a two-stage compressed refrigeration apparatus has been disclosed (for example, Japanese Patent Laid-Open No. 2001-74325).

(발명이 해결하고자 하는 과제)(Tasks to be solved by the invention)

상기 일본 공개특허공보 2001-74325호에 기재된 냉동 사이클에서는 냉장용 냉각기인 중간압용 증발기(35)의 증발온도를 냉동용 냉각기인 저압용 증발기(34)의 증발온도 보다 높게 함으로써 사이클 효율이 향상된다. 그러나, 2단 압축 사이클에 의한 냉동용 냉각기(34)의 흡입관은 압축기의 저단측 압축부(39a)에 직결되고, 냉장용 냉각기(35)의 흡입관(47)은 압축기(39)의 중간압부에 접속되어 있으므로, 냉동공간의 냉동능력은 냉장용 냉각기(35)로 흐르는 냉매의 영향을 받기 어려운 것이고, 냉동측 부하와 냉장측 부하의 총부하에서 압축기(39)의 회전수를 제어하는 종래 방법에서는, 예를 들어 냉동공간의 냉각 정도가 충분하고, 냉장공간이 냉각 과다되는 경우에는 압축기의 회전수를 저하시키게 되어, 결과적으로 냉동공간의 냉각이 부족해지는 문제를 발생시키고 있었다.In the refrigerating cycle described in Japanese Laid-Open Patent Publication No. 2001-74325, the cycle efficiency is improved by making the evaporation temperature of the intermediate pressure evaporator 35 that is a refrigeration cooler higher than the evaporation temperature of the low pressure evaporator 34 that is a refrigeration cooler. However, the suction pipe of the refrigeration cooler 34 by the two-stage compression cycle is directly connected to the compressor 39a at the lower stage of the compressor, and the suction pipe 47 of the refrigeration cooler 35 is connected to the intermediate pressure of the compressor 39. Since it is connected, the freezing capacity of the refrigerating space is hardly influenced by the refrigerant flowing to the refrigerating cooler 35, and in the conventional method of controlling the rotation speed of the compressor 39 at the total load of the freezing side load and the refrigerating side load. For example, when the degree of cooling of the refrigerating space is sufficient and the refrigerating space is excessively cooled, the number of revolutions of the compressor is reduced, resulting in a problem that the cooling of the freezing space is insufficient.

본 발명은 상기점을 고려하여 이루어진 것으로, 냉동용 및 냉장용 냉각기를 구비하고 2단 압축식으로 한 능력 가변 냉동 사이클을 냉동 공간 온도 정보에 의해 제어함으로써, 냉동 공간과 냉장 공간을 각각의 저장 온도로 적절하게 제어할 수 있도록 한 냉장고를 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and by controlling the capacity variable refrigeration cycle of refrigeration and refrigerating chillers and having a two-stage compression type according to the freezing space temperature information, the freezing space and the refrigerating space are stored at respective storage temperatures. It is an object of the present invention to provide a refrigerator which can be properly controlled.

(과제를 해결하기 위한 수단)(Means to solve the task)

상기 과제를 해결하기 위해 본 발명의 냉장고는 압축요소가 저단측 압축부와 고단측 압축부로 구성된 인버터 구동에 의한 능력 가변의 압축기와, 상기 압축기로부터의 토출가스를 받는 응축기의 출구측에 설치된 냉매 유로와 함께 유량을 제어하는 전환밸브와, 상기 전환밸브로부터 각각 감압 장치를 통하여 접속된 냉동용 냉각기 및 냉장용 냉각기로부터 냉동 사이클을 형성한 냉장고에서, 냉동 공간 온도와 그 목표값에 의해 상기 압축기의 회전수를 결정하는 것을 특징으로 하는 것이다.In order to solve the above problems, the refrigerator of the present invention has a compressor having a variable capacity compressor driven by an inverter comprising a low stage compression unit and a high stage compression unit, and a refrigerant passage provided at an outlet side of a condenser receiving discharge gas from the compressor. Rotation of the compressor according to the freezing space temperature and the target value in a refrigerator having a refrigeration cycle formed from a switching valve for controlling the flow rate and a refrigeration cooler and a refrigerating cooler respectively connected from the switching valve via a decompression device. It is characterized by determining the number.

또한, 청구항 2의 발명에 의한 냉장고는 압축요소가 저단측 압축부와 고단측 압축부로 구성된 인버터 구동에 의한 능력 가변의 압축기와, 상기 압축기로부터의 토출가스를 받는 응축기의 출구측에 설치된 냉매 유로와 함께 유량을 제어하는 전환밸브와, 상기 전환밸브로부터 각각 감압 장치를 통하여 접속된 냉동용 냉각기 및 냉장용 냉각기로부터 냉동 사이클을 형성한 냉장고에 있어서, 냉동 공간 온도와 그 목표값과 함께 냉장 공간 온도와 그 목표값에 의해 압축기의 회전수를 결정하는 것으로, 회전수 결정시에는 냉장공간보다 냉동공간측의 온도정보의 피드백량을 크게 하는 것을 특징으로 하는 것이다.In addition, the refrigerator according to the invention of claim 2 is characterized in that the compressor has a variable capacity compressor driven by an inverter comprising a low stage compression unit and a high stage compression unit, and a refrigerant passage provided at an outlet side of a condenser receiving discharge gas from the compressor. A switching valve for controlling the flow rate, and a refrigerator having a freezing cycle from a freezing cooler and a refrigerating cooler respectively connected from the switching valve via a decompression device, the freezer space temperature and its target value together with the freezer space temperature and The rotation speed of the compressor is determined based on the target value, and the amount of feedback of the temperature information on the side of the freezing space is larger than that of the refrigerating space when the rotation speed is determined.

(발명의 효과)(Effects of the Invention)

상기 구성에 의해, 냉동용 및 냉장용 냉각기의 쌍방을 각 저장공간의 냉각에 맞는 증발온도로서, 냉동 사이클의 효율 향상과 함께 각각의 냉각기로의 유로 전환이나 유량 등 냉매류 제어가 가능해질 뿐만 아니라, 냉동공간과 냉장공간을 동시에 냉각함으로써 각 공간 내의 온도 변동을 억제하고, 각 공간온도를 적절하게 제어할 수 있다.With the above configuration, both of the freezing and refrigerating coolers are evaporated temperatures suitable for the cooling of each storage space, and the refrigerant flow control such as the flow path to each cooler and the flow rate can be controlled while improving the efficiency of the refrigeration cycle. By simultaneously cooling the freezing space and the refrigerating space, temperature fluctuations in each space can be suppressed, and each space temperature can be appropriately controlled.

이하, 도면에 기초하여 본 발명의 일실시형태에 대해서 설명한다. 도 2에 종단면도를 도시한 냉장고 본체(1)는 단열 상자체의 내부에 저장공간을 형성하고, 간막이벽에 의해 냉동실이나 제빙실의 냉동공간(2), 냉장실이나 야채실의 냉장공간(3) 등 복수의 저장실로 구분하고 있다.EMBODIMENT OF THE INVENTION Hereinafter, one Embodiment of this invention is described based on drawing. The refrigerator main body 1 shown in the longitudinal cross-sectional view of FIG. 2 forms a storage space inside the heat insulation box, and the freezing space 2 of the freezer compartment or the ice-making compartment, the refrigerating compartment 3 of the refrigerator compartment or the vegetable compartment by the partition wall. It is divided into a plurality of storage rooms.

각 저장실은 냉동공간이나 냉장공간마다 배치한 냉동용 냉각기(4)와 냉장용 냉각기(5), 및 냉기순환팬(6, 7)에 의해 각각 소정의 설정온도로 냉각 유지되고, 각 냉각기(4, 5)는 본체 배면 하부의 기계실(8)에 설치한 압축기(9)로부터 공급되는 냉매에 의해 냉각된다.Each storage compartment is cooled and maintained at a predetermined set temperature by the refrigerator cooler 4, the refrigerator cooler 5, and the cold air circulation fans 6 and 7 arranged in each of the freezing space and the refrigerating space. , 5) is cooled by the refrigerant supplied from the compressor 9 provided in the machine room 8 in the lower part of the main body rear surface.

도 1은 상기 본 발명의 냉장고에서의 냉동 사이클을 도시하는 것으로, 상기 압축기(9), 응축기(10), 냉매 유로의 전환밸브(11) 및 병렬로 접속한 상기 냉동용 및 냉장용 냉각기(4, 5)를 환형상으로 연결하고 있다. 상기 응축기(10)는 평판형상이며 상기 기계실(8)의 전방에서의 냉장고 본체(1)의 바깥 바닥면 공간에 설치되어 있고, 응축기(10)에서 액화된 냉매는 전환밸브(11)를 통하여 각각 감압 장치인 모세관(12, 13)을 경유하여 냉동용 냉각기(4) 또는 냉장용 냉각기(5)에 공급되어 증발됨으로써 냉각기를 저온화하고, 냉기팬(6, 7)에 의한 순환에 의해 저장실내를 소정 공기온도로 냉각하는 것이고, 증발 기화한 냉매는 어큐물레이터(14)를 통하여 다시 압축기(9)로 되돌아가도록 구성되어 있다.1 shows a refrigerating cycle in the refrigerator of the present invention, wherein the compressor 9, the condenser 10, the switching valve 11 of the refrigerant flow path and the refrigerating and refrigerating coolers 4 connected in parallel. , 5) is connected in an annular shape. The condenser 10 has a flat plate shape and is installed in an outer bottom space of the refrigerator main body 1 in front of the machine room 8, and the refrigerant liquefied in the condenser 10 is switched through the switching valve 11, respectively. It is supplied to the freezing cooler 4 or the freezing cooler 5 through the capillary tubes 12 and 13, which are pressure reducing devices, and evaporated to lower the cooler, and the inside of the storage compartment by circulation by the cold air fans 6 and 7. Is cooled to a predetermined air temperature, and the vaporized refrigerant is configured to return to the compressor 9 through the accumulator 14 again.

그러나, 압축기(9)는 그 상세한 내용을 도 3에 도시한 바와 같이, 압축요소가 저단측 압축부(9a)와 고단측 압축부(9b)로 구성된 레시프로식 2단 압축기이고, 밀폐 케이스(9c)내에 수납한 전동기구(9d)의 회전축(9e)의 회전에서 편심하여 회전하는 편심축(9f)에 의해 커넥팅 로드(9g)를 왕복 운동시키도록 구성되어 있다.However, as shown in FIG. 3, the compressor 9 is a recipe-type two-stage compressor composed of a low stage compression unit 9a and a high stage compression unit 9b, as shown in FIG. The connecting rod 9g is reciprocated by the eccentric shaft 9f which is eccentrically rotated by the rotation of the rotary shaft 9e of the electric mechanism 9d accommodated in 9c).

커넥팅 로드(9g)의 선단에는 볼 조인트(9h)로 피스톤(9i)이 삽입 고정되어 있고, 실린더(9j)내의 피스톤(9i)의 왕복운동에 의해 상기 저단측 압축부(9a)와 고단측 압축부(9b)에 대해 교대로 냉매를 흡입하고 압축하여 토출하는 것으로, 상기 압축부로의 볼 조인트(9h)의 채용에 의해, 용적 효율을 향상시키고 2개의 압축부(9a, 9b)를 필요로 하는 2단 압축기(9)의 외형 스페이스의 확대를 억제하고 있다.The piston 9i is inserted and fixed at the distal end of the connecting rod 9g by the ball joint 9h, and the low end compression section 9a and the high end compression are caused by the reciprocating movement of the piston 9i in the cylinder 9j. By alternately sucking, compressing and discharging the refrigerant to the portion 9b, by employing the ball joint 9h to the compression portion, the volumetric efficiency is improved and the two compression portions 9a and 9b are required. The expansion of the external space of the two stage compressor 9 is suppressed.

저단측 압축부(9a)의 흡입구(9k)는 상기 냉동용 냉각기(4)로부터 어큐물레이터(14)를 통하여 연결한 흡입관(15)의 단부에 접속되어 있고, 압축한 냉매가스를 토출하는 토출구(9m)를 케이스(9c)내에 개구시키고, 고단측 압축부(9b)의 토출구 (9n)는 응축기(10)로의 토출관(16)에 접속되어 있다.A suction port 9k of the low stage side compression section 9a is connected to an end of the suction pipe 15 connected from the freezer cooler 4 via the accumulator 14, and discharges the discharge port of the compressed refrigerant gas. 9m is opened in the case 9c, and the discharge port 9n of the high stage side compression part 9b is connected to the discharge pipe 16 to the condenser 10. As shown in FIG.

상기 어큐물레이터(14)는 기액을 분리하고, 냉각기(4)에서 다 증발되지 않았던 액상 냉매를 저류하여 가스상 냉매만을 송출하고, 압축기(9)의 실린더(9j)에 액체 냉매가 유입되는 것에 기인하는 지장을 방지하는 작용을 하는 것으로, 본 실시예에서는 냉동용 냉각기(4)의 후단에만 설치하고 있다.The accumulator 14 separates the gas liquid, stores the liquid refrigerant which has not evaporated in the cooler 4, sends only the gaseous refrigerant, and introduces the liquid refrigerant into the cylinder 9j of the compressor 9. In the present embodiment, only the rear end of the refrigeration cooler 4 is provided.

상기 냉장용 냉각기(5)로부터의 흡입관(17)은 밀폐 케이스(9c)내의 중간압이 되는 공간부에 냉매를 도입하도록 접속하고 있다. 따라서, 냉장용 냉각기(5)로부터의 흡입 냉매는 직접 압축기의 실린더내에 유입되지 않으므로, 냉장용 냉각기(5)의 후단에는 어큐물레이터를 설치할 필요가 특별히 없고, 설치하는 경우 소형의 것이어도 좋다. 계속해서, 냉장용 냉각기측의 흡입관(17)으로부터 흡입된 냉매 가스는 상기 저단측 압축부(9a)의 토출구(9m)로부터 토출되는 냉매 가스와 함께 연통하는 고단측 압축부(9b)의 흡입구(9p)에 흡입되어 압축되도록 구성하고 있다.The suction pipe 17 from the refrigerating cooler 5 is connected to introduce a coolant into a space to be intermediate pressure in the sealed case 9c. Therefore, since the suction refrigerant from the refrigeration cooler 5 does not directly flow into the cylinder of the compressor, it is not necessary to install an accumulator at the rear end of the refrigeration cooler 5, and when it is installed, it may be small. Subsequently, the suction port of the high stage compression section 9b communicating with the refrigerant gas discharged from the discharge port 9m of the low stage compression section 9a communicates with the refrigerant gas sucked from the suction pipe 17 on the refrigeration cooler side ( It is configured to be sucked into 9p) and compressed.

상기 압축기(9)는 인버터 제어에 의해 능력 가변으로 되어 있고, 냉동 및 냉장 공간의 검출온도나 목표 설정 온도와의 차, 온도 변화율 등에 기초하여 예를 들어 30~70㎐ 사이에서 회전 주파수를 결정하고, 마이크로 컴퓨터 등으로 구성되는 제어장치에 의해 운전된다.The compressor 9 is variable in capacity by inverter control, and determines the rotation frequency, for example, between 30 and 70 Hz based on the detected temperature of the freezing and refrigerating space, the difference from the target set temperature, the temperature change rate, and the like. It is operated by the control device which consists of a microcomputer.

전환밸브(11)는 압축기(9)로부터의 토출가스를 받는 응축기(10)의 출구측에 설치되어 냉각기(4, 5)측으로의 냉매유로전환과 함께 유량을 제어하는 것으로, 도 4에 도시한 바와 같이, 밸브 케이스(18)내에 냉동용 냉각기(4)측으로의 밸브구A(19a)와 냉장측 냉각기(5)로의 밸브구B(19b)를 형성한 밸브시트(19)를 설치하고, 밸브시트(19)에 대해서 밸브체(20)를 그의 상부에 배치한 삼방향 밸브이다.The switching valve 11 is installed at the outlet side of the condenser 10 receiving the discharge gas from the compressor 9 to control the flow rate along with the refrigerant flow path to the cooler 4 and 5 side, as shown in FIG. As described above, in the valve case 18, a valve seat 19 having a valve port A 19a to the refrigeration cooler 4 side and a valve port B 19b to the refrigerating side cooler 5 is provided. This is a three-way valve in which the valve body 20 is disposed above the seat 19.

밸브체(20)는 상기 밸브구A(19a) 및 밸브구B(19b)와 회전 궤적상에서 각각 대응하도록 소정 길이에 걸쳐 원호형상으로 연장하고, 회전축(20c)의 중심으로부터 회전 이동 반경을 다르게 한 2개의 단면 V자형상 오목홈A(20a) 및 오목홈B(20b)를 소정의 단 가장자리 형상으로 성형한 두꺼운 계단부(20d)의 하면에 형성되어 있고, 밸브시트(19)의 상부면과 밸브체(20)를 밀착시켜 중첩시키고, 상부에 설치한 도시하지 않은 스텝핑 모터에 의한 0~85의 펄스 스텝으로 회전 구동하는 것이다.The valve body 20 extends in an arc shape over a predetermined length so as to correspond to the valve tool A 19a and the valve tool B 19b on the rotational trajectory, respectively, and has a rotational radius different from the center of the rotation shaft 20c. It is formed on the lower surface of the thick step portion 20d formed by forming two cross-sectional V-shaped concave grooves A 20a and concave grooves B 20b into a predetermined short edge shape, and the upper surface of the valve seat 19 The valve body 20 is brought into close contact with each other, and is rotated in a pulse step of 0 to 85 by a stepping motor (not shown) provided in the upper portion.

상기 전환밸브(11)는 냉동 사이클 제어신호에 의한 펄스 신호에서 밸브체(20)를 회전시키고 소정의 펄스 위치에서 상기 밸브체의 회전 반경 외측의 오목홈A(20a)와 밸브구A(19a)가 상하로 중첩하여 연통된 경우에는 유입밸브구(21)로부터 밸브 케이스(18)내에 유입된 냉매가, 오목홈A(20a)의 상기 두꺼운 계단부(20d)의 개방 단 가장자리로부터 V자형상의 오목홈A(20a)내에 진입하고, 오목홈A와 연통하는 밸브구A(19a)로부터 유출되어 냉동용 모세관(12)에 도입되고, 냉동용 냉각기(4)에서 증발 기화되는 것이다.The switching valve 11 rotates the valve body 20 in the pulse signal by the refrigeration cycle control signal, and the recess A 20a and the valve mechanism A 19a outside the rotation radius of the valve body at a predetermined pulse position. When the upper and lower surfaces communicate with each other, the refrigerant flowing into the valve case 18 from the inlet valve opening 21 is recessed in a V shape from the open end edge of the thick step portion 20d of the recessed groove A 20a. It enters into the groove A 20a, flows out from the valve port A 19a communicating with the recessed groove A, is introduced into the freezing capillary 12, and evaporated and evaporated in the freezing cooler 4.

한편, 동일하게 회전 반경 내측의 오목홈B(20b)과 밸브구B(19b)가 연통한 경우에는 오목홈B(20b)에 유입된 냉매는 연통하는 밸브구B(19b)로부터 냉장용 모세관(13)에 유입되어 냉장용 냉각기(5)에서 증발한다.On the other hand, when the concave groove B (20b) and the valve port B (19b) of the inside of the turning radius is in communication with each other, the refrigerant introduced into the concave groove (20b) is a cooling capillary tube ( 13) and evaporates in the refrigeration cooler (5).

또한, 냉장측인 오목홈B(20b)은 V자 형상 홈이 회전 선단으로부터 두꺼운 계단부(20d)의 개방단쪽으로 향함에 따라서 그 단면적이 점진적으로 확대하도록 형성되어 있고, 밸브체(20)의 회전에 의해 최소부터 최대의 유통 개구 면적이 되어 밸 브구B(19b)에 연통하도록 하고 있고, 유로의 전환이나 유량 조정은 매우 세밀하게 제어할 수 있으므로, 펄스에 의한 회전 제어에 의해 냉매 유량을 효율 좋게 선형으로 변경할 수 있다.Further, the concave groove B 20b on the refrigerating side is formed so that its cross-sectional area is gradually enlarged as the V-shaped groove is directed from the rotation end toward the open end of the thick step portion 20d. It is made to rotate from the minimum to the maximum flow opening area to communicate with the valve port B 19b. Since the flow path switching and the flow rate adjustment can be controlled very precisely, the refrigerant flow rate is efficiently controlled by the rotation control by the pulse. You can change it linearly.

삼방향 밸브(20)에서의 밸브의 개방 제어는 냉동용 냉각기(4)와 냉장측 냉각기(5)로의 밸브(19a, 19b)의 개구도를 쌍방 모두 완전 개방, 또는 완전 폐쇄, 및 냉동측 밸브개구를 스로틀하여 냉장측을 완전 개방하거나 또는 냉장측의 밸브 개구를 스로틀하여 냉동측을 완전 개방하는 등 여러가지 패턴을 선택할 수 있지만, 본 실시예에서는 냉동용 냉각기(4)와 냉장용 냉각기(5)를 병렬로 접속하고 있고, 냉각제어는 냉동 냉장측의 동시 냉각과 냉동측만 냉각하는 2가지로 하고 있다.Control of the opening of the valve in the three-way valve 20 allows the opening degree of the valves 19a and 19b to the refrigeration cooler 4 and the refrigerating side cooler 5 to be fully open, or fully closed, and to the freezing side valve. Various patterns can be selected, such as throttle the opening to fully open the refrigerating side, or throttle the refrigeration side to the valve opening, to fully open the freezing side. However, in this embodiment, the freezing cooler 4 and the refrigerating cooler 5 are selected. Are connected in parallel, and cooling control is made into two types of simultaneous cooling on the freezing refrigerating side and cooling only on the freezing side.

냉동측 밸브구A(19a)로부터 유출된 냉매는 냉동 공간(2)에서의 냉각 온도에 입각한 증발온도가 되도록 설정한 모세관(12)을 통과하여 감압되어 냉동용 냉각기(4)에서 -25℃ 정도로 증발하고, 냉장용 밸브구B(19b)로부터도 동일하게, 냉장공간(3)에서의 냉각온도에 근사하는 -5℃ 정도의 증발온도가 되도록 설정한 냉장용 모세관(13)을 통하여 냉장용 냉각기(5)로 냉매가 유입되어 증발한다.The refrigerant flowing out of the refrigeration side valve port A (19a) is decompressed through a capillary tube (12) set to be an evaporation temperature based on the cooling temperature in the freezing space (2) and is reduced to -25 ° C in the freezing refrigerator (4). Evaporate to a degree and refrigeration through the refrigerating capillary tube 13 which is set so that the evaporation temperature of -5 degreeC approximates to the cooling temperature in the refrigerating space 3 also from refrigeration valve port B19b. The refrigerant flows into the cooler 5 and evaporates.

또한, 상기 냉동 사이클에서의 냉동용 및 냉장용 모세관(12, 13)은 냉동용 냉각기(4) 및 냉장용 냉각기(5)에서의 냉매 증발 온도에 온도차를 가하기 위해, 냉동측 모세관(12)의 스로틀을 강하게 하고 있는 결과, 상기와 같이 냉동 냉장 쌍방으로 냉매를 흐르게 하는 경우에는 필연적으로 저항이 작은 냉장측으로 냉매가 흐르기 쉬워지고, 냉동측으로는 냉매가 흐르기 어려워지는 경향이 있고, 극단적인 경우 냉동측에는 냉매가 흐르지 않는 상황이 발생한다.In addition, the freezing and refrigerating capillary tubes 12 and 13 in the refrigerating cycle are used to provide a temperature difference to the refrigerant evaporation temperature in the freezing cooler 4 and the refrigerating cooler 5. As a result of the throttle being strong, when the refrigerant flows in both the refrigeration and cooling as described above, the refrigerant tends to easily flow to the refrigeration side with low resistance, and the refrigerant tends to be difficult to flow on the freezing side. There is a situation where the refrigerant does not flow.

이를 개선하기 위해 상기 전환밸브(11)에서는 냉동 및 냉장공간(2, 3)의 각 냉각을 위한 냉매류 제어와 함께, 소위 냉매 흐름의 편중을 방지하기 위해, 냉매가 흐르기 쉬운 냉장측으로의 냉매 유량을 약간 스로틀하도록 하는 제어를 가하고 있다.In order to improve this, the switching valve 11 controls the refrigerant flow for cooling each of the refrigerating and refrigerating spaces 2 and 3, and in order to prevent a so-called deflection of the refrigerant flow, the refrigerant flow rate toward the refrigerating side where the refrigerant is likely to flow. We're doing some control to throttle a bit.

그리고, 냉동측의 오목홈A(20a)와 밸브구A(19a)가 연통하여 완전 개방되면 냉장측의 냉매류 상태에 거의 영향을 받지 않고, 냉동측 냉각기(4)는 거의 소정의 냉동능력을 얻을 수 있게 되고, 냉장측의 냉동능력에 대해서도 상기 전환밸브(11)의 오목홈B(20b)와 밸브구(19b)의 연통 상태에 의한 폐쇄부터 개방의 범위, 및 압축기(9)의 회전수 변화로 극히 세밀하게 제어할 수 있는 것이다.When the concave groove A 20a and the valve port A 19a on the freezing side communicate with each other and are completely opened, the refrigeration side cooler 4 has almost no freezing capacity. The refrigeration capacity of the refrigerating side can be obtained, and the range from closing to opening due to the communication state between the recessed groove B 20b of the selector valve 11 and the valve port 19b and the rotation speed of the compressor 9 can be obtained. Change is extremely fine control.

상기 냉매류 제어에 의해, 냉장용 냉각기(5)의 증발온도를 냉동측과 온도차를 갖고 고온으로 할 수 있고, 냉장실 온도를 1~2℃로 냉각할 수 있지만, 냉장용 냉각기(5)의 전열 표면적을 크게 하여 냉장공간 냉각으로의 열교환량을 크게 하도록 하면 더욱 증발온도를 높이는 것도 가능하고, 이 경우에는 냉장공간(3)의 냉각온도와 냉각기 온도의 온도차가 보다 작아져 냉장용 냉각기(5)에 부착되는 성에량이 적어지고, 공간내의 건조를 방지하여 고내의 습도를 높게 유지하는 효과를 갖는다.By controlling the refrigerant flow, the evaporation temperature of the refrigerating cooler 5 can be set to a high temperature with a temperature difference with the freezing side, and the refrigerating chamber temperature can be cooled to 1 to 2 ° C., but the heat transfer of the refrigerating cooler 5 is performed. It is also possible to increase the evaporation temperature further by increasing the surface area to increase the heat exchange amount for cooling the refrigerating space, and in this case, the temperature difference between the cooling temperature of the refrigerating space 3 and the cooler temperature becomes smaller and thus the refrigerating cooler 5 The amount of frost adhering to it is reduced, and it has the effect of preventing the drying in space and keeping humidity in a high place.

또한, 일반 가정용 냉장고에서는 냉동공간과 냉장공간의 냉각에 필요한 냉동능력은 거의 동등한 점에서, 냉장용 냉각기(5)의 전열 표면적을 냉동용 냉각기(4)와 동등하게 또는 보다 크게 함으로써, 각 냉각공간을 효율적으로 냉각하는 것이 가능해진다.In addition, since the freezing capacity required for the cooling of the freezing space and the refrigerating space is almost the same in a general home refrigerator, the heat transfer surface area of the refrigerating cooler 5 is equal to or larger than that of the refrigerating cooler 4, whereby each cooling space is provided. Can be efficiently cooled.

다음에, 냉동 사이클의 동작에 대해서 설명한다. 전원 투입에 의해 압축기(9)가 구동되면, 압축되어 고온 고압이 된 냉매 가스는 토출관(16)으로부터 응축기(10)에 토출되어 전환밸브(11)에 도달한다. 전환밸브(11)는 상기와 같이 여러가지 패턴 설정이 가능하지만, 상기 전원 투입시에는 냉동, 냉장공간(2, 3) 모두 미냉각 상태이므로, 밸브구A(19a), 밸브구B(19b)는 완전 개방 상태가 되고, 냉매는 냉동용 및 냉장용 모세관(12, 13)에 유입되어 감압되고 냉동용 및 냉장용 냉각기(4, 5)에 각각 유입되어 각 증발온도에서 증발하고, 각 냉각기를 소정 온도로 냉각한다.Next, the operation of the refrigeration cycle will be described. When the compressor 9 is driven by turning on the power, the refrigerant gas, which has been compressed and becomes high temperature and high pressure, is discharged from the discharge tube 16 to the condenser 10 and reaches the switching valve 11. Although the switch valve 11 can be set in various patterns as described above, since the refrigeration and refrigerating spaces 2 and 3 are both uncooled at the time of power supply, the valve ports A 19a and B 19b are In the fully open state, the refrigerant flows into the freezing and refrigerating capillaries 12 and 13 and is decompressed, respectively, into the freezing and refrigerating coolers 4 and 5 and evaporates at each evaporation temperature. Cool to temperature.

냉동용 냉각기(4)로부터의 냉매는 어큐물레이터(14)에 유입되고, 만일 냉각기 중에서 완전히 증발하지 않았던 액체 냉매가 남아 있는 경우에는 어큐물레이터(14) 내부에 저류되고, 가스 냉매만이 흡입관(15)으로부터 압축기(9)의 저단측 압축부(9a)에 흡입된다. 또한, 냉장용 냉각기(5)에서 증발한 가스 냉매는 흡입관(17)을 경유하여 상기 압축기(9)의 중간압을 갖는 밀폐 케이스(9c)내에 도입된다.Refrigerant from the freezer cooler 4 flows into the accumulator 14, and if a liquid coolant that has not evaporated completely in the cooler remains, it is stored in the accumulator 14, and only the gas coolant is a suction pipe. It is sucked into the low stage compression part 9a of the compressor 9 from (15). In addition, the gas refrigerant evaporated in the refrigerating cooler 5 is introduced into the sealed case 9c having the intermediate pressure of the compressor 9 via the suction pipe 17.

냉동용 냉각기(4)로부터 저단측 압축부(9a)에 흡입되고, 압축되어 토출구(9m)로부터 케이스(9c)내에 토출된 냉매 가스와 냉장용 냉각기(5)로부터 밀폐 케이스(9c)의 중간압부에 유입된 냉매 가스는 합류하여 흡입구(9p)로부터 고단측 압축부(9b)에 흡입되고, 압축되어 토출구(9n)에서 토출관(16)으로 토출되어 응축기(10)로 인도되는 냉동 사이클을 형성한다.The intermediate pressure portion of the sealed case 9c from the refrigeration cooler 5 and the refrigerant gas sucked into the low stage compression part 9a from the freezing cooler 4 and compressed and discharged into the case 9c from the discharge port 9m. The refrigerant gas introduced into the gas is joined to the high stage side compression section 9b from the suction port 9p, compressed, discharged from the discharge port 9n to the discharge tube 16, and formed into a condenser 10. do.

따라서, 상기 냉동 사이클에 의하면 냉동 공간(2) 및 냉장 공간(3)의 각각의 설정온도에 맞춘 증발온도가 되도록 각각 모세관(12, 13)을 구비한 냉동 및 냉장용 냉각기(4, 5)를 설치하고, 냉장용 냉각기(5)에서 증발한 냉매가스를 냉동측보다 압 력이 높은 중간압의 상태로 직접 압축기 케이스(9c)내의 중간압부에 흡입시킴으로써, 냉장용 냉각기(5)의 증발온도를 냉동용 냉각기(4)에 대해 실내 냉각 온도에 입각하여 높게 할 수 있을 뿐만 아니라, 압축기 입력이 작아지므로 사이클 효율을 높이고 소비 전력을 감소시킬 수 있다.Therefore, according to the refrigerating cycle, the refrigerating and refrigerating coolers 4 and 5 having the capillary tubes 12 and 13 are respectively provided such that the evaporation temperature is adjusted to the respective set temperatures of the refrigerating space 2 and the refrigerating space 3. And the refrigerant gas evaporated in the refrigerating cooler 5 is directly sucked to the intermediate pressure in the compressor case 9c in a state of medium pressure having a higher pressure than the freezing side, whereby the evaporation temperature of the refrigerating cooler 5 is reduced. Not only can the refrigeration cooler 4 be made high on the basis of the room cooling temperature, but also the compressor input is reduced, so that the cycle efficiency can be increased and the power consumption can be reduced.

또한, 냉장용 냉각기(5)의 증발온도를 상승시켜 냉장공간과의 온도차를 적게 함으로써 냉각기(5)에 부착되는 성에량을 적게 하고, 냉장공간내의 건조를 방지하여 고내의 습도를 높게 유지하고, 식품 선도를 장기에 걸쳐 유지할 수 있는 것으로, 또한 냉동용 및 냉장용 냉각기(4, 5)의 쌍방으로 동시에 냉매를 흐르게 하여 냉각시킬 수 있으므로, 종래의 교대 냉각 방식에 비해 각 실내의 온도변동을 억제할 수 있다.In addition, by increasing the evaporation temperature of the refrigerating cooler (5) to reduce the temperature difference with the refrigerating space to reduce the amount of frost attached to the cooler (5), to prevent drying in the refrigerating space to maintain high humidity in the high, Since the food freshness can be maintained for a long time, and the refrigerant can be simultaneously cooled by both of the freezing and refrigerating coolers 4 and 5, the temperature fluctuation of each room can be suppressed as compared with the conventional alternate cooling method. can do.

또한, 냉동 사이클은 도 1과 동일한 부분에 동일한 부호를 붙인 도 5에 도시한 바와 같이, 상기 압축기(9), 응축기(10), 냉매유로의 전환밸브(11)에 대해서 냉동용 냉각기(4) 및 냉장용 냉각기(10)를 직렬로 연결하고, 전환밸브(11)로부터 냉장용 모세관(13)과 냉장용 냉각기(5)를 우회하는 측로관(22)을 기액분리기(23)를 통하여 냉동용 모세관(12)으로부터 냉동용 냉각기(4)에 접속하고 또한 상기 기액 분리기(23)의 상부와 압축기(9)의 밀폐 케이스(9c) 내의 중간압부인 공간부를 흡입관(24)으로 접속하도록 해도 좋다.In addition, the refrigeration cycle, as shown in Fig. 5 with the same reference numerals as in Fig. 1, for the compressor 9, the condenser 10, the switching valve 11 of the refrigerant flow path for the refrigeration cooler (4) And a refrigeration cooler 10 connected in series, and a side pipe 22 for bypassing the refrigerating capillary 13 and the refrigerating cooler 5 from the switching valve 11 through the gas-liquid separator 23. The capillary tube 12 may be connected to the freezing cooler 4, and the upper portion of the gas-liquid separator 23 and the space portion, which is an intermediate pressure portion in the sealed case 9c of the compressor 9, may be connected to the suction tube 24.

이와 같이 하면, 냉매는 상기와 동일하게 제어되는 전환밸브(11)에 의해 냉장용 냉각기(5) 및 냉동용 냉각기(4)로 동시에, 또는 선택적으로 흐르고, 측로관(22) 또는 냉장용 냉각기(5)로부터의 냉매는 기액 분리기(23)에서 가스상 냉매와 액상 냉매로 분리되고, 액상 냉매는 냉동용 냉각기(4)측으로 흐르고, 가스상 냉매는 냉장측 흡입관(24)을 통하여 압축기(9)의 중간압부에 귀환되고 또한 액상 냉매는 냉동용 냉각기(4)에서 저온에서 증발하여 압축기(9)의 저단측으로 다시 되돌아가는 것으로, 전술한 실시예와 동일하게 사이클 효율을 좋게, 각 저장실내를 소정 온도로 냉각할 수 있는 작용 효과를 갖는다. In this way, the refrigerant flows simultaneously or selectively to the refrigerating cooler 5 and the refrigerating cooler 4 by the switching valve 11 controlled in the same manner as described above, and the side pipe 22 or the refrigerating cooler ( The refrigerant from 5) is separated into a gaseous refrigerant and a liquid refrigerant in the gas-liquid separator 23, the liquid refrigerant flows to the freezing cooler 4 side, and the gaseous refrigerant flows in the middle of the compressor 9 through the refrigeration side suction pipe 24. The liquid refrigerant is returned to the pressure portion and the liquid refrigerant evaporates at a low temperature in the freezing cooler 4 and returns to the low stage side of the compressor 9 again. As in the above-described embodiment, the cycle efficiency is improved and the inside of each storage chamber is maintained at a predetermined temperature. It has a cooling effect.

도 6은 냉동용 냉각기(4) 및 냉장용 냉각기(5)의 증발온도, 또한 응축기(10)의 응축온도를 일정값으로 하고, 소정의 회전수로 압축기(9)를 운전했을 때의 냉동측과 냉장측의 냉동 능력을 나타낸 것으로, 종축에 냉장측의 냉동 능력, 횡축에 냉동측의 냉동능력을 취하고 있다. 도면 중, a점은 전환밸브에 의해 냉장측 냉각기(5)에만 냉매를 흐르게 한 경우를 나타내고, b점은 냉동측 냉각기(4)에만 냉매를 흐르게 한 경우, c점은 냉동용 및 냉장용 냉각기(4, 5)의 쌍방으로 밸브 개구(19a, 19b)를 완전 개방 상태에서 냉매를 흐르게 한 경우를 나타내고 있다.6 shows the freezing side when the compressor 9 is operated at a predetermined rotational speed with the evaporation temperature of the freezing cooler 4 and the refrigerating cooler 5 as well as the condensing temperature of the condenser 10 being a constant value. And the freezing capacity on the refrigeration side, and the freezing capacity on the refrigeration side on the vertical axis and the freezing capacity on the freezing side on the horizontal axis. In the figure, point a represents a case where the refrigerant flows only to the refrigerating side cooler 5 by a switching valve, and point b represents a case where the refrigerant flows only to the freezing side cooler 4, and point c represents a freezing and refrigerating cooler. The case where the refrigerant | coolant flowed in the valve opening 19a, 19b in the fully open state in both (4, 5) is shown.

상기 그래프에서 냉동용 냉각기(4)로부터 압축기(9)의 저단측 압축부(9a)에 직접 흡입되는 냉매의 질량 또는 체적은 저단측 압축부의 실린더 배제 용적으로 결정되는 것이고, 대응하는 냉동력은 냉동측에만 흐르는 경우가 69W인 것에 대해, 냉동냉장 동시에 흐르게 한 경우에는 64W이고, 냉장용 냉각기(5)로부터 압축기(9)의 중간압부로 되돌아가는 냉매의 영향을 거의 받지 않고 거의 일정해지는 것을 나타내고 있다.In the graph, the mass or volume of the refrigerant sucked directly from the freezer cooler 4 to the low stage compression unit 9a of the compressor 9 is determined by the cylinder exclusion volume of the low stage compression unit, and the corresponding freezing force is the freezing force. While only 69W flows on the side, it is 64W when the refrigeration is simultaneously flown, and it is almost constant without being affected by the refrigerant returning from the refrigerating cooler 5 to the intermediate pressure portion of the compressor 9. .

이에 대해서 냉장측은 냉장용 냉각기(5)로부터 압축기(9)에 흡입되는 냉매량에 대응하는 냉동력이, 냉장측만의 경우에는 155W인 것에 대해 냉동냉장 동시 흐름 의 경우에는 75W 정도까지 크게 저하되는 것이고, 냉장측의 냉동능력은 냉동용 냉각기(4)로부터 흡입되는 냉매의 유무, 즉 냉장용 냉각기(5)로부터의 냉매만인지, 냉동용 냉각기(4)로부터 흡입되는 냉매와의 합류량인지에서 크게 변화하게 된다.On the other hand, in the refrigerating side, the refrigerating force corresponding to the amount of refrigerant sucked into the compressor 9 from the refrigerating cooler 5 is 155 W only in the refrigerating side, whereas the refrigerating side is greatly reduced to about 75 W in the case of simultaneous refrigeration flow. The refrigerating capacity on the refrigerating side varies greatly depending on the presence or absence of the refrigerant sucked from the freezing cooler 4, that is, only the refrigerant from the refrigerating cooler 5 or the amount of confluence with the refrigerant sucked from the freezing cooler 4. do.

또한, 일반적으로 냉장공간의 실내온도는 +3 ~ 5℃인데 비해, 냉동공간온도는 -18 ~ -20℃인 점에서 실외온도와의 온도차가 커지고, 냉동공간의 냉각에 필요한 냉동능력은 냉장공간의 냉각에 필요로 하는 값보다 커지고, 이와 같이 냉동측의 냉동능력이 냉장측의 냉동능력보다 큰 경우, 즉 냉동측의 부하가 냉장측보다 크다고 설정한 경우의 냉동운전은 도 6을 모식적으로 나타낸 도 7에 도시한 바와 같이 냉동측의 냉동능력이 큰 영역인 도면 중의 사선 영역 부분을 사용하게 된다.In addition, in general, the indoor temperature of the refrigerating space is +3 ~ 5 ℃, whereas the freezing space temperature is -18 ~ -20 ℃ temperature difference with the outdoor temperature increases, the freezing capacity required for cooling the freezing space is the refrigerating space In the case where the freezing capacity on the freezing side is greater than the freezing capacity on the refrigerating side, that is, when the load on the freezing side is set to be larger than the refrigerating side, the freezing operation is schematically shown in FIG. As shown in Fig. 7, the portion of the diagonal region in the drawing, which is a region having a large freezing capacity on the freezing side, is used.

그 때문에, 전술한 바와 같이 냉동측 냉동능력은 냉장용 냉각기(5)로부터 되돌아오는 냉매의 영향을 받기 어려운 점으로부터, 냉동공간의 냉각제어는 압축기(9)의 회전수에 의해 제어하면 좋고, 냉각 부족의 경우에는 화살표로 나타낸 바와 같이 압축기(9)의 회전수를 높여 냉동능력을 증대시키고 냉각 과잉의 경우에는 그 회전수를 저하 또는 정지시킴으로써 냉각 온도를 적정하게 유지할 수 있는 것이다. 그리고, 냉장측은 압축기(9)의 회전수 대신에, 전환밸브(11)의 밸브 개구의 개폐 제어에서 냉매 유량을 조정함으로써 그 냉각온도를 제어하도록 한다.Therefore, as described above, the refrigeration side refrigeration capacity is less likely to be affected by the refrigerant returned from the refrigerating cooler 5, so that the cooling control of the refrigerating space may be controlled by the rotation speed of the compressor 9. In the case of shortage, as shown by the arrow, the rotation speed of the compressor 9 is increased to increase the freezing capacity, and in the case of excessive cooling, the cooling temperature can be properly maintained by decreasing or stopping the rotation speed. The refrigerating side controls the cooling temperature by adjusting the refrigerant flow rate in the opening and closing control of the valve opening of the switching valve 11 instead of the rotation speed of the compressor 9.

제어 블럭도인 도 8에 의해 본 발명의 압축기 회전수 제어의 일실시예를 설명한다. 냉온도 센서에 의해 검지된 냉동공간, 예를 들어 냉동실(4)의 실내온도(Fa)는 소정의 목표값(Fr)과 비교되고, 그 편차가 압축기의 주파수 결정을 위한 PID 컨트롤러(25)에 입력된다.An embodiment of the compressor speed control of the present invention will be described with reference to FIG. 8, which is a control block diagram. The freezing space detected by the cold temperature sensor, for example, the room temperature Fa of the freezing compartment 4 is compared with a predetermined target value Fr, and the deviation is transmitted to the PID controller 25 for determining the frequency of the compressor. Is entered.

그리고, 냉동공간(2)의 온도가 목표값(Fr)보다 높으면 편차에 의해 PID 계산값이 증가하고 압축기(9)의 회전수를 소정량 증가시킴으로써 냉동공간(2)의 냉각을 촉진하고 소정 온도로 인도하도록 운전 제어한다. 또한, 냉동공간(2)의 온도가 목표치(Fr)보다 낮으면 반대로 회전수를 저하, 또는 정지하여 냉동력을 저하시키는 것이다.If the temperature of the freezing space 2 is higher than the target value Fr, the PID calculated value increases due to the deviation and the rotational speed of the compressor 9 is increased by a predetermined amount to promote the cooling of the freezing space 2 and to maintain the predetermined temperature. Control your driving to lead to. When the temperature of the freezing space 2 is lower than the target value Fr, the rotation speed is lowered or stopped to decrease the freezing force.

다음에, 본 발명의 압축기 회전수 제어의 다른 실시예에 대해서 설명한다. 상기 실시예는 냉동공간(2)의 온도정보에 의해 압축기(9)의 회전수를 제어하는 것이었지만, 냉장고의 운전 조건에 따라서는 냉동공간(2)에 대해서 냉장공간(3)의 냉동능력이 부족한 경우도 고려된다.Next, another embodiment of the compressor rotation speed control of the present invention will be described. In the above embodiment, the rotation speed of the compressor 9 is controlled by the temperature information of the freezing space 2. However, depending on the operating conditions of the refrigerator, the freezing capacity of the refrigerating space 3 with respect to the freezing space 2 is reduced. Inadequate cases are also considered.

그래서, 냉동공간(2)의 온도정보와 함께 냉장공간(3)의 온도정보도 입력하여 도 7에서의 사선 영역 내에서 압축기(9)를 운전시키면, 압축기(9)의 회전수를 높여 냉동능력을 증가시킴으로써 냉동공간(2)과 함께 냉장공간(3)의 냉동능력도 증가시킬 수 있다.Thus, when the compressor 9 is operated in the diagonal region in FIG. 7 by inputting the temperature information of the refrigerating space 3 together with the temperature information of the freezing space 2, the rotation speed of the compressor 9 is increased to increase the freezing capacity. By increasing the cooling capacity of the refrigerating space (3) together with the freezing space (2) can also be increased.

그러나, 냉동공간(2)이 목표값 이하로 냉각되어 있는 경우의 압축기(9)의 회전수의 증가는 냉동공간(2)을 불필요하게 냉각하여 쓸데없는 전력소비를 가져오므로, 도 9에 도시한 블럭도에서는 냉동공간온도(Fa)와 그 목표값(Fr)과 함께 냉장공간온도(Ra)와 그 목표값(Rr)을 PID 컨트롤러(25)에 입력하지만, 압축기(9)의 회전수 결정시에는 냉동공간측의 고내 온도(Fa)와 목표 온도(Fr)의 편차 데이터값을 예를 들어 2배로 가산하여 입력하는 등, 냉장공간(3)보다 냉동공간(2)측의 온도정보 데이터의 피드백량을 크게 한 것이다.However, the increase in the number of revolutions of the compressor 9 when the freezing space 2 is cooled below the target value unnecessarily cools the freezing space 2, resulting in unnecessary power consumption. In one block diagram, the refrigerating space temperature Ra and its target value Rr are input to the PID controller 25 together with the freezing space temperature Fa and its target value Fr. Feedback of the temperature information data on the freezing space 2 side than the refrigerating space 3 is inputted by adding twice the deviation data value between the internal temperature Fa and the target temperature Fr on the freezing space side, for example, to be inputted. The amount is increased.

이에 의해, 압축기(9)의 회전수는 실제보다 크게 간주된 편차값인 냉동공간(2)측의 피드백된 온도정보에 의해 냉동측을 기준으로 결정되지만, 냉동공간(2)이 충분히 냉각되어 있는 경우에는 압축기(9)의 회전수를 증가시키지 않고 전환밸브(11)에 의한 냉장용 냉각기(5)로의 냉매류를 제어함으로써 냉장측의 냉동능력을 증감하고 냉동측 과냉각을 초래하지 않고 냉장측을 적절한 온도로 유지되도록 제어하는 것이다.Thereby, the rotation speed of the compressor 9 is determined based on the refrigeration side by the feedback temperature information of the refrigeration space 2 side, which is a deviation value considered larger than the actual value, but the refrigeration space 2 is sufficiently cooled. In this case, by controlling the coolant flow to the refrigerating cooler 5 by the selector valve 11 without increasing the rotation speed of the compressor 9, the refrigerating side is increased without increasing the refrigerating side of the refrigerating side and causing the refrigerating side to be overcooled. The control is to maintain the proper temperature.

또한, 상기 실시예에서는 냉장공간(3)의 온도정보를 추가하여 압축기(9)의 회전수를 결정하는 것에 대해서 설명했지만, 만일 외부 기온이 저하되어 냉장공간(3) 온도가 목표값(Rr)보다 낮아진 바와 같은 경우에는 상기 피드백 신호에 의해 압축기(9)의 회전수가 저하되고, 그 결과로서 냉동공간(2)측의 냉동능력이 저하되는 문제가 발생한다.In addition, in the above embodiment, the temperature information of the refrigerating space 3 is added to determine the rotation speed of the compressor 9. However, if the external temperature is lowered, the temperature of the refrigerating space 3 is set to the target value Rr. In the case of lowering, the rotation speed of the compressor 9 is lowered by the feedback signal, and as a result, a problem occurs that the freezing capacity of the freezing space 2 side is lowered.

도 10은 이와 같은 만일의 경우에 대응하는 블럭도이고, 냉장공간(3)의 온도가 목표값(Rr)보다 높은 경우에만 그 온도정보를 피드백하는 함수(Fx)에 도입한 것이고, 냉장공간온도(Ra)와 목표값(Rr)의 차가 작은 경우에는 그 값이 입력되지만, 마이너스 값인 경우에는 제로 신호가 PID 컨트롤러(25)에 입력된다.FIG. 10 is a block diagram corresponding to such a case, and is introduced into the function Fx for feeding back the temperature information only when the temperature of the refrigerating space 3 is higher than the target value Rr, and the refrigerating space temperature. If the difference between Ra and the target value Rr is small, the value is input, but if it is a negative value, a zero signal is input to the PID controller 25.

이러한 제어에 의해 냉장공간(3)의 부하가 가볍고 목표 설정값(Rr)보다 실제 온도(Ra)가 낮아지는 경우에도 냉동공간(2)은 그 온도정보에 의한 냉동력으로 목표값(Fr)을 유지하는 것이고, 냉동력의 저하에 의해 냉동공간(2) 온도가 목표값(Fr)보다 높아지는 것을 방지할 수 있다.Even if the load of the refrigerating space 3 is light and the actual temperature Ra is lower than the target set value Rr by this control, the freezing space 2 maintains the target value Fr by the freezing force based on the temperature information. The temperature of the freezing space 2 can be prevented from being higher than the target value Fr due to the decrease in the freezing force.

또한 다른 실시예를 설명한다. 도 11은 압축기(9)를 어느 일정 회전수로 구 동하고, 응축온도가 일정한 조건에서의 냉장용 냉각기(5)의 온도를 변화시켰을 때의 냉동용 및 냉장용 사이클의 냉동능력(QF1, QR1)의 변화를 나타낸 것이다.Further embodiments will be described. 11 shows the freezing capacity (QF1, QR1) of the freezing and refrigerating cycles when the compressor 9 is operated at a certain rotational speed and the temperature of the refrigerating cooler 5 is changed under a condition where the condensation temperature is constant. ) Is shown.

이 때, 냉장용 냉각기(5)는 그 표면 온도를 낮춤으로써 그 냉동능력(QR1)을 저하시키고, 그 표면 온도를 높임으로써 냉동능력을 상승시킬 수 있는 것이며, 또한 냉동측 냉동능력(QF1)은 냉각기 온도가 예를 들어 -23.5℃로 일정하고 냉장측의 냉동능력의 변동에 의해서도 큰 영향을 받지 않는 것을 알 수 있다.At this time, the refrigerating cooler 5 can lower its freezing capacity QR1 by lowering its surface temperature and increase its freezing capacity by increasing its surface temperature. It can be seen that the cooler temperature is constant at, for example, -23.5 ° C and is not significantly affected by the change in the freezing capacity on the refrigerating side.

그리고, 냉장용 냉각기(5)에 대해서는 냉장용 팬(7)의 회전수를 변화, 예를 들어 회전수를 낮추면 냉장용 냉각기(5)에서의 열교환량이 저하되고 냉각기(5)의 표면온도가 내려가는 결과, 냉동 사이클의 냉동능력(QR1)도 저하되는 것이고, 반대로 팬(7)의 회전수를 증가시키면 열교환량이 증가함으로써 냉각기(5)의 표면 온도가 상승하여 사이클의 냉동능력(QR1)은 증대된다.For the refrigerating cooler 5, if the rotational speed of the refrigerating fan 7 is changed, for example, the rotational speed is lowered, the amount of heat exchange in the refrigerating cooler 5 is lowered and the surface temperature of the cooler 5 is lowered. As a result, the refrigerating capacity QR1 of the refrigerating cycle is also lowered. Conversely, if the rotation speed of the fan 7 is increased, the heat exchange amount is increased so that the surface temperature of the cooler 5 is increased and the refrigerating capacity QR1 of the cycle is increased. .

즉, 냉장공간(3)의 냉각제어에 대해서는 냉장용 팬(7)의 회전수를 증감시킴으로써 공간온도를 제어할 수 있는 것이고, 냉장공간온도(Ra)가 그 목표값(Rr)보다 높은 경우에는 냉장측 냉각팬(7)의 회전수를 높임으로써 냉각할 수 있고, 목표값(Rr)이하로 과냉각되어 있는 경우에는 팬 회전수를 낮춤으로써 냉동력을 약화시켜 소정의 적절한 온도로 제어할 수 있다.That is, in the cooling control of the refrigerating space 3, the space temperature can be controlled by increasing or decreasing the rotation speed of the refrigerating fan 7, and when the refrigerating space temperature Ra is higher than the target value Rr. It is possible to cool by increasing the rotation speed of the refrigerating side cooling fan 7, and when it is subcooled below the target value Rr, the cooling power can be weakened and the control can be controlled to a predetermined appropriate temperature by lowering the fan rotation speed. .

또한 도 12는 냉동용 냉각기(4)의 온도를 변화시켰을 때의 냉동용 및 냉장용 사이클의 냉동능력(QF2, QR2)의 변화를 도시한 것으로, 냉동용 냉각기(4)의 온도를 낮춤으로써, 냉동용 냉각기(4)를 통하여 압축기(9)의 저단측에 흡입되는 냉매순환량이 감소되고, 냉동측 사이클의 냉동 능력(QF2)이 저하된다. 또한, 압축기(9)의 저단측으로부터 고단측 압축부에 보내어지는 냉매량도 적어지므로, 고단측 압축부의 배제 용적의 관계로부터 냉장용 냉각기(5)로부터 중간압부로 되돌아가 고단측 압축부에 흡입되는 냉매량이 증가하게 되고, 냉장측 사이클의 냉동능력(QR2)은 증대된다.12 shows the change in the freezing capacity (QF2, QR2) of the freezing and refrigerating cycle when the temperature of the freezing cooler 4 is changed, and by lowering the temperature of the freezing cooler 4, The refrigerant circulation amount sucked into the low end side of the compressor 9 through the freezing cooler 4 is reduced, and the freezing capacity QF2 of the freezing side cycle is lowered. In addition, since the amount of refrigerant sent to the high stage compression section from the low stage side of the compressor 9 also decreases, the refrigerant is returned to the intermediate pressure section from the refrigerator 5 for cooling in the high stage compression section due to the exclusion volume of the high stage compression section. The amount of refrigerant is increased, and the freezing capacity QR2 of the refrigeration side cycle is increased.

이점에서, 냉장공간(3)의 온도가 목표값(Rr)보다 높고 냉각이 부족한 경우, 또는 냉동공간(2)의 냉동력이 과대한 경우에는 냉동측 냉각팬(6)의 회전수를 낮추고, 냉동용 냉각기(4)에서의 열교환량을 적게 하고 냉각기(4)의 표면온도를 낮춤으로써, 냉장측의 사이클 능력(QR2)을 증대시키고, 또는 냉동측 사이클 능력(QF2)을 저하시켜 각각의 냉각공간을 적절한 온도로 제어할 수 있다.Advantageously, when the temperature of the refrigerating space 3 is higher than the target value Rr and the cooling is insufficient, or when the freezing force of the freezing space 2 is excessive, the rotation speed of the freezing side cooling fan 6 is lowered, By reducing the amount of heat exchange in the freezer cooler 4 and lowering the surface temperature of the cooler 4, the cycle capacity on the refrigeration side (QR2) is increased, or the refrigeration side cycle capacity (QF2) is lowered and the respective cooling is performed. The space can be controlled to an appropriate temperature.

상기에 의해, 냉동공간(2)과 냉장공간(3)은 냉동용 냉각기(4)로의 냉매 흐름과 함께 냉장용 냉각기(5)로 냉매를 동시에 흘려 증발온도를 높게 할 수 있는 점에서 사이클 효율을 좋게 냉각할 수 있고, 각 저장공간에 수시 투입되는 온도 부하에 대해서도 삼방향 밸브로 구성된 냉매류 제어 전환밸브(11)에 의한 적절한 냉매량의 분배에 의해 냉동공간 및 냉장공간의 온도변동을 억제하여 각 공간온도를 적절하게 제어할 수 있다.By the above, the freezing space (2) and the refrigerating space (3) has a cycle efficiency in that the evaporation temperature can be increased by simultaneously flowing the refrigerant to the refrigerating cooler (5) together with the refrigerant flow to the refrigerating cooler (4). It is possible to cool properly, and even for temperature loads that are occasionally introduced into each storage space, the temperature fluctuations in the freezing space and the refrigerating space can be suppressed by distributing the appropriate amount of refrigerant by the refrigerant flow control switching valve 11 composed of three-way valves. Space temperature can be controlled appropriately.

이상 설명한 냉동 사이클에서는 냉동 및 냉장용 냉각기(4, 5)로의 냉매류를 쌍방 동시에 흐르게 하는 제어를 할 수 있어, 종래 2개의 냉각기에 교대로 냉매를 흐르게 하는 제어에 비해, 한쪽의 냉각기에 냉매가 편중되지 않고, 냉동 사이클에 필요로 되는 냉매량이 필요 이상으로 증대되는 일은 없다. 따라서, 탄화수소계 냉매 등 가연성 냉매를 채용한 경우에도 냉매 충전량을 적게 할 수 있으므로 안전성 이 향상된다.In the refrigerating cycle described above, it is possible to control the flow of refrigerant to both the freezing and refrigerating coolers 4 and 5 simultaneously, so that the refrigerant is supplied to one cooler as compared to the control of flowing the coolant to the two coolers alternately. It is not biased and the amount of refrigerant required for the refrigeration cycle does not increase more than necessary. Therefore, even when a flammable refrigerant such as a hydrocarbon refrigerant is employed, the amount of refrigerant charge can be reduced, thereby improving safety.

또한, 상기 실시예에서의 2단 압축기(9)는 압축기 케이스(9c)내의 압력이 중간압인 것으로 설명했지만, 이에 한정되지 않고 특별히 도시하지 않지만 저압 케이스로서 냉동용 냉각기로부터의 흡입관을 압축기 케이스내 공간에 연통시키고, 냉장용 냉각기로부터의 흡입관은 저단측 압축부의 토출구와 고단측 압축부의 흡입구의 연결부에 접속되도록 해도 좋다. 또한, 동일하게 고압 케이스로서 냉동용 냉각기로부터의 흡입관을 저단측 압축부의 흡입구에 접속하고 또한 냉장용 냉각기로부터의 흡입관은 저단측 압축부의 토출구와 고단측 압축부의 흡입구의 연결부에 접속되고, 고단측 압축부로부터의 토출가스를 고압 케이스내로부터 응축기로의 토출관으로 토출되도록 해도 좋다.In addition, although the pressure in the compressor case 9c was demonstrated that the pressure in the compressor case 9c is an intermediate pressure in the said Example, it is not limited to this, Although it does not show in figure, the suction pipe from a refrigeration cooler as a low pressure case is a space in a compressor case. The suction pipe from the refrigerator for cooling may be connected to the connection portion between the discharge port of the low stage compression section and the suction port of the high stage compression section. Similarly, the suction tube from the freezer cooler is connected to the suction port of the low stage compression section as a high pressure case, and the suction tube from the refrigeration cooler is connected to the connection portion of the discharge port of the low stage compression section and the suction port of the high stage compression section. The discharge gas from the portion may be discharged from the high pressure case to the discharge tube to the condenser.

본 발명에 의하면 2단 압축식 냉동 사이클 구성에 의해, 사이클 효율을 향상시킨 냉장고에 이용할 수 있다.According to this invention, it can use for the refrigerator which improved cycle efficiency by the two-stage compression type refrigeration cycle structure.

(도면의 간단한 설명)(Short description of the drawing)

도 1은 본 발명의 일실시형태를 도시한 냉장고의 냉동 사이클도,1 is a refrigeration cycle diagram of a refrigerator showing one embodiment of the present invention;

도 2는 도 1의 냉동 사이클을 탑재한 냉장고의 개략 종단면도,FIG. 2 is a schematic longitudinal sectional view of the refrigerator equipped with the refrigeration cycle of FIG. 1;

도 3은 도 1에서의 2단 압축기의 상세한 내용을 도시한 종단면도,3 is a longitudinal sectional view showing the details of the two stage compressor in FIG. 1;

도 4는 도 1에서의 3방향 밸브의 주요부의 상세한 내용을 도시한 평면도,4 is a plan view showing details of main parts of the three-way valve in FIG. 1;

도 5는 냉동 사이클의 다른 실시예를 도시한 구성도,5 is a configuration diagram showing another embodiment of the refrigeration cycle,

도 6은 냉동 및 냉장측 냉동 능력과 냉매류의 관계 그래프,6 is a relationship graph between refrigeration and refrigerating side refrigeration capacity and refrigerants;

도 7은 도 6의 모식도,7 is a schematic view of FIG. 6,

도 8은 압축기 회전수 제어의 블럭도,8 is a block diagram of compressor rotation speed control,

도 9는 도 8의 제어에 냉장온도정보를 부가한 회전수 제어 블럭도,FIG. 9 is a rotation speed control block diagram in which refrigeration temperature information is added to the control of FIG. 8; FIG.

도 10은 도 9의 제어를 더욱 개량한 회전수 제어 블럭도,10 is a rotation speed control block diagram further improving the control of FIG.

도 11은 본 발명의 냉장용 냉각기 온도를 변화시킨 경우의 냉동 및 냉장 냉동 능력의 변화를 도시한 설명도,11 is an explanatory view showing a change in freezing and refrigerating freezing capacity when the refrigerating cooler temperature of the present invention is changed;

도 12는 본 발명의 냉동용 냉각기 온도를 변화시킨 경우의 냉동 및 냉장 냉동 능력의 변화를 도시한 설명도, 및 12 is an explanatory diagram showing a change in freezing and refrigerating freezing capacity when the freezing cooler temperature of the present invention is changed, and

도 13은 종래의 냉장고의 냉동 사이클도이다.13 is a refrigeration cycle diagram of a conventional refrigerator.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1: 냉장고 본체 2: 냉동 공간1: refrigerator body 2: freezer space

3: 냉장 공간 4: 냉동용 냉각기3: refrigerating space 4: refrigeration cooler

5: 냉장용 냉각기 6, 7: 냉각팬5: chiller 6, 7: cooling fan

8: 기계실 9: 2단 압축기8: machine room 9: two stage compressor

9a: 저단 압축부 9b: 고단 압축부9a: low stage compression unit 9b: high stage compression unit

9c: 케이스 10: 응축기9c: case 10: condenser

11: 전환밸브 12: 냉동용 모세관11: switching valve 12: refrigeration capillary

13: 냉장용 모세관 14: 어큐물레이터13: refrigeration capillary 14: accumulator

15: 냉동측 흡입관 16: 토출관15: refrigeration side suction tube 16: discharge tube

17, 24: 냉장측 흡입관 18: 밸브 케이스17, 24: refrigeration side suction pipe 18: valve case

19: 밸브 시트 19a: 냉동측 밸브구A19: valve seat 19a: refrigeration side valve port A

19b: 냉장측 밸브구B 20: 밸브체19b: Refrigerating side valve port B 20: Valve body

20a: 냉동측 오목홈A 20b: 냉장측 오목홈B20a: Refrigeration side recessed groove A 20b: Refrigeration side recessed groove B

20c: 회전축 20d: 두꺼운 단부20c: axis of rotation 20d: thick end

21: 유입 밸브구 22: 측로관21: inlet valve port 22: side pipe

23: 기액분리기 25: PID 컨트롤러23: gas-liquid separator 25: PID controller

Claims (5)

압축요소가 저단측 압축부와 고단측 압축부로 구성된 인버터 구동에 의한 능력 가변의 압축기, 상기 압축기로부터의 토출 가스를 받는 응축기의 출구측에 설치된 냉매 유로와 함께 유량을 제어하는 전환 밸브, 상기 전환 밸브로부터 각각 감압장치를 통하여 접속된 냉동용 냉각기 및 냉장용 냉각기로 냉동 사이클을 형성한 냉장고에 있어서,Compressor of variable capacity by inverter drive consisting of low stage side compression section and high stage side compression section, switching valve for controlling flow rate together with refrigerant flow path installed at outlet side of condenser receiving discharge gas from said compressor, said switching valve In the refrigerator which formed the refrigerating cycle with the refrigerator | cooler for refrigeration and the refrigerator | cooler for refrigeration respectively connected through the decompression device from 냉동공간온도와 그 목표값에 의해 상기 압축기의 회전수를 결정하는 것을 특징으로 하는 냉장고.And a rotation speed of the compressor is determined by a freezing space temperature and a target value thereof. 압축요소가 저단측 압축부와 고단측 압축부로 구성된 인버터 구동에 의한 능력가변의 압축기, 상기 압축기로부터의 토출가스를 받는 응축기의 출구측에 설치된 냉매 유로와 함께 유량을 제어하는 전환 밸브, 상기 전환 밸브로부터 각각 감압장치를 통하여 접속된 냉동용 냉각기 및 냉장용 냉각기로 냉동 사이클을 형성한 냉장고에 있어서,Compressor whose variable capacity is driven by an inverter drive consisting of a low stage side compression unit and a high stage side compression unit, a switching valve for controlling the flow rate along with a refrigerant flow path installed at an outlet side of a condenser receiving discharge gas from the compressor, the switching valve In the refrigerator which formed the refrigerating cycle with the refrigerator | cooler for refrigeration and the refrigerator | cooler for refrigeration respectively connected through the decompression device from 냉동공간온도와 그 목표값과 함께 냉장공간온도와 그 목표값에 의해 압축기의 회전수를 결정하는 것으로, 회전수 결정시에는 냉장공간보다 냉동공간측의 온도정보의 피드백량을 크게 하는 것을 특징으로 하는 냉장고.The rotational speed of the compressor is determined by the refrigerating space temperature and the target value together with the freezing space temperature and the target value. When the rotational speed is determined, the feedback amount of the temperature information on the freezing space side is larger than the refrigerating space. Refrigerator. 제 2 항에 있어서,The method of claim 2, 냉장공간온도가 그 목표값보다 높은 경우에만 그 온도정보를 압축기 회전수의 결정에 채용하는 것을 특징으로 하는 냉장고.A refrigerator, characterized in that the temperature information is employed to determine the compressor rotation speed only when the refrigerator space temperature is higher than the target value. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 냉장공간온도가 그 목표값보다 높은 경우에는 냉장측 냉각팬의 회전수를 크게 하는 것을 특징으로 하는 냉장고.The refrigerator characterized in that the number of revolutions of the refrigeration-side cooling fan is increased when the refrigerated space temperature is higher than the target value. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 냉장공간온도가 그 목표값보다 높은 경우에는 냉동측 냉각팬의 회전수를 저하시키는 것을 특징으로 하는 냉장고.And when the refrigerating space temperature is higher than the target value, the rotation speed of the freezing side cooling fan is reduced.
KR1020067014363A 2003-12-24 2004-11-30 Refrigerator KR20060132869A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003427845A JP2005188783A (en) 2003-12-24 2003-12-24 Refrigerator
JPJP-P-2003-00427845 2003-12-24

Publications (1)

Publication Number Publication Date
KR20060132869A true KR20060132869A (en) 2006-12-22

Family

ID=34708912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067014363A KR20060132869A (en) 2003-12-24 2004-11-30 Refrigerator

Country Status (6)

Country Link
US (1) US20070144190A1 (en)
JP (1) JP2005188783A (en)
KR (1) KR20060132869A (en)
CN (1) CN100417876C (en)
TW (1) TWI257472B (en)
WO (1) WO2005061970A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080918A (en) * 2011-01-04 2011-06-01 合肥美的荣事达电冰箱有限公司 Method and device for controlling refrigerator noise
KR20120136057A (en) * 2011-06-08 2012-12-18 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
KR20150017182A (en) * 2013-08-06 2015-02-16 엘지전자 주식회사 A refrigerator
KR20200060317A (en) * 2020-05-20 2020-05-29 엘지전자 주식회사 A refrigerator

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180874A (en) * 2003-12-22 2005-07-07 Toshiba Corp Refrigerator
FR2895786B1 (en) * 2006-01-04 2008-04-11 Valeo Systemes Thermiques RELAXATION MODULE FOR AIR CONDITIONING INSTALLATION WITH TWO EVAPORATORS
JP4811080B2 (en) * 2006-03-28 2011-11-09 トヨタ自動車株式会社 COOLING SYSTEM, AUTOMOBILE MOUNTING THE SAME, AND COOLING SYSTEM CONTROL METHOD
JP5097361B2 (en) 2006-05-15 2012-12-12 ホシザキ電機株式会社 Cooling storage and operation method thereof
JP4699285B2 (en) * 2006-05-29 2011-06-08 株式会社 長谷川電気工業所 Operation control method of cold / hot water pump in air conditioning equipment
JP4327823B2 (en) * 2006-06-15 2009-09-09 トヨタ自動車株式会社 COOLING SYSTEM, AUTOMOBILE MOUNTING THE SAME, AND COOLING SYSTEM CONTROL METHOD
KR100785118B1 (en) 2006-08-07 2007-12-11 엘지전자 주식회사 Refrigerator
KR101130638B1 (en) * 2007-02-26 2012-04-02 호시자키 덴키 가부시키가이샤 Refrigerating storage cabinet and control method for compressor thereof
CN101809372B (en) * 2007-09-28 2013-12-18 大金工业株式会社 Compressor operation control device and air conditioner using same
KR101314622B1 (en) * 2007-11-05 2013-10-07 엘지전자 주식회사 Controlling method for the refrigerator
KR101314621B1 (en) 2007-11-05 2013-10-07 엘지전자 주식회사 Controlling method for the refrigerator
CN101539151B (en) * 2008-03-18 2013-06-12 海尔集团公司 Method and device for controlling inverter compressor
KR101815579B1 (en) * 2010-07-28 2018-01-05 엘지전자 주식회사 Refrigerator and method for driving thereof
JP5931329B2 (en) * 2010-10-07 2016-06-08 株式会社東芝 refrigerator
EP2532991B1 (en) 2011-06-08 2019-10-30 LG Electronics Inc. Refrigerating cycle apparatus and method for operating the same
KR101940488B1 (en) * 2012-05-10 2019-01-21 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
JP5738174B2 (en) * 2011-12-27 2015-06-17 住友重機械工業株式会社 Cryopump system, cryogenic system, control device for compressor unit, and control method therefor
KR101904870B1 (en) * 2012-01-30 2018-10-08 엘지전자 주식회사 Apparatus and method for controlling compressor, and refrigerator having the same
JP5847626B2 (en) * 2012-03-26 2016-01-27 ハイアールアジア株式会社 Refrigerator and operation method thereof
JP2014031947A (en) * 2012-08-03 2014-02-20 Mitsubishi Electric Corp Refrigerator-freezer
US9228762B2 (en) 2013-02-28 2016-01-05 Whirlpool Corporation Refrigeration system having dual suction port compressor
US9347694B2 (en) 2013-02-28 2016-05-24 Whirlpool Corporation Dual suction compressor with rapid suction port switching mechanism for matching appliance compartment thermal loads with cooling capacity
US9528727B2 (en) * 2013-03-15 2016-12-27 Whirlpool Corporation Robust fixed-sequence control method and appliance for exceptional temperature stability
DE102014116437B3 (en) * 2014-11-11 2015-12-17 E³Xpert Ug (Haftungsbeschränkt) Heat pump apparatus
CN105241144B (en) * 2015-11-12 2017-12-26 珠海格力电器股份有限公司 A kind of closing method of low temperature unit, system, low temperature unit and refrigeration system
US10126032B2 (en) * 2015-12-10 2018-11-13 TestEquity LLC System for cooling and methods for cooling and for controlling a cooling system
CN112797705B (en) * 2015-12-15 2023-03-31 Lg电子株式会社 Refrigerator control method
CN106766526A (en) * 2016-12-26 2017-05-31 青岛海尔股份有限公司 Connection in series-parallel Dual-evaporator refrigeration system, the refrigerator with the system and control method
JP2019074300A (en) * 2017-04-17 2019-05-16 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigeration cycle device, its control method, and three-way flow rate control valve
WO2020042768A1 (en) * 2018-08-28 2020-03-05 艾默生环境优化技术(苏州)有限公司 Refrigerant circulation system
JP7344651B2 (en) * 2019-02-26 2023-09-14 東芝ライフスタイル株式会社 refrigerator
CN112484369A (en) * 2019-09-12 2021-03-12 博西华电器(江苏)有限公司 Refrigerator and method for refrigerator
CN112484368A (en) * 2019-09-12 2021-03-12 博西华电器(江苏)有限公司 Refrigerator and method for refrigerator
CN112484367A (en) * 2019-09-12 2021-03-12 博西华电器(江苏)有限公司 Refrigerator and method for refrigerator
EP3819568A1 (en) * 2019-11-05 2021-05-12 Electrolux Appliances Aktiebolag Refrigerating appliance
CN112833604B (en) * 2019-11-25 2024-01-12 博西华电器(江苏)有限公司 Refrigeration device and method for a refrigeration device
CN112923635B (en) * 2019-12-05 2024-03-05 博西华电器(江苏)有限公司 Refrigeration appliance and method for a refrigeration appliance
CN111623545B (en) * 2020-04-28 2021-07-30 珠海格力电器股份有限公司 Refrigerating system and control method thereof
US11273687B2 (en) * 2020-04-30 2022-03-15 Thermo King Corporation System and method of energy efficient operation of a transport climate control system
CN112097411B (en) * 2020-10-23 2022-02-25 长虹美菱股份有限公司 Double-circulation refrigerating system of variable frequency refrigerator and control method thereof
CN113915873A (en) * 2021-03-29 2022-01-11 海信(山东)冰箱有限公司 A kind of refrigerator
WO2024012657A1 (en) * 2022-07-12 2024-01-18 Electrolux Appliances Aktiebolag Control of refrigerator with multiple evaporators

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148868A (en) * 1935-07-15 1939-02-28 Honeywell Regulator Co Control system
US2458560A (en) * 1946-08-13 1949-01-11 Westinghouse Electric Corp Two temperature refrigeration apparatus
US3119240A (en) * 1962-06-19 1964-01-28 Philco Corp Refrigeration apparatus with defrost means
KR900000809B1 (en) * 1984-02-09 1990-02-17 미쓰비시전기 주식회사 Room-warming/cooling and hot-water supplying heat-pump apparatus
JP2557903B2 (en) * 1987-09-10 1996-11-27 株式会社東芝 Air conditioner
US5056328A (en) * 1989-01-03 1991-10-15 General Electric Company Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
JPH037853A (en) * 1989-06-05 1991-01-16 Toshiba Corp Air conditioner
US6286326B1 (en) * 1998-05-27 2001-09-11 Worksmart Energy Enterprises, Inc. Control system for a refrigerator with two evaporating temperatures
KR100268502B1 (en) * 1998-07-30 2000-10-16 윤종용 Uniform cooling apparatus for refrigerator and control method thereof
JP2000146398A (en) * 1998-11-09 2000-05-26 Toshiba Corp Device for controlling refrigerator
JP2002277082A (en) * 2001-03-15 2002-09-25 Matsushita Refrig Co Ltd Freezer
US6532754B2 (en) * 2001-04-25 2003-03-18 American Standard International Inc. Method of optimizing and rating a variable speed chiller for operation at part load
JP3922891B2 (en) * 2001-05-11 2007-05-30 株式会社東芝 refrigerator
JP2003207248A (en) * 2002-01-15 2003-07-25 Toshiba Corp Refrigerator
JP2005180874A (en) * 2003-12-22 2005-07-07 Toshiba Corp Refrigerator
US20080156009A1 (en) * 2006-12-28 2008-07-03 Whirlpool Corporation Variable capacity modular refrigeration system for kitchens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080918A (en) * 2011-01-04 2011-06-01 合肥美的荣事达电冰箱有限公司 Method and device for controlling refrigerator noise
KR20120136057A (en) * 2011-06-08 2012-12-18 엘지전자 주식회사 Refrigerating cycle and method for operating the refrigerating cycle
KR20150017182A (en) * 2013-08-06 2015-02-16 엘지전자 주식회사 A refrigerator
KR20200060317A (en) * 2020-05-20 2020-05-29 엘지전자 주식회사 A refrigerator

Also Published As

Publication number Publication date
TW200526912A (en) 2005-08-16
CN1898505A (en) 2007-01-17
JP2005188783A (en) 2005-07-14
CN100417876C (en) 2008-09-10
WO2005061970A1 (en) 2005-07-07
US20070144190A1 (en) 2007-06-28
TWI257472B (en) 2006-07-01

Similar Documents

Publication Publication Date Title
KR20060132869A (en) Refrigerator
US9933188B2 (en) Refrigerator and control method thereof
KR20030062212A (en) Refrigerator
US9857103B2 (en) Refrigerator having a condensation loop between a receiver and an evaporator
EP2868997B1 (en) Refrigerator
KR20170067559A (en) A refrigerator and a method for controlling the same
JPH11148761A (en) Refrigerator
KR100743753B1 (en) Refrigerator and controlling method thereof
KR102287961B1 (en) A refrigerator and a control method the same
KR102237596B1 (en) A refrigerator and a control method the same
JP2005134080A (en) Refrigerator
JP2005188784A (en) Refrigerator
JP4380905B2 (en) refrigerator
KR102494567B1 (en) A refrigerator and a control method the same
KR100894473B1 (en) Apparatus for supply the cool air of refrigerator
KR100461657B1 (en) Refrigeration cycles with multi-evaporator
JP4175847B2 (en) refrigerator
KR100568526B1 (en) Control method for refrigerator
KR102246351B1 (en) A refrigerator
JP2005214483A (en) Refrigerator
KR100747844B1 (en) Refrigerator
JP2005140483A (en) Refrigerator
JP2005214461A (en) Refrigerator
KR20040056734A (en) Refrigerator
KR100461656B1 (en) Refrigeration cycles with multi-evaporator

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid