JP2005181295A - 流動トリガー装置 - Google Patents

流動トリガー装置 Download PDF

Info

Publication number
JP2005181295A
JP2005181295A JP2004308403A JP2004308403A JP2005181295A JP 2005181295 A JP2005181295 A JP 2005181295A JP 2004308403 A JP2004308403 A JP 2004308403A JP 2004308403 A JP2004308403 A JP 2004308403A JP 2005181295 A JP2005181295 A JP 2005181295A
Authority
JP
Japan
Prior art keywords
channel
liquid
microfluidic device
trigger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004308403A
Other languages
English (en)
Inventor
Patrick Griss
グリス パトリック
Vuk Siljegovic
シルジェゴヴィック ヴク
Martin Kopp
コップ マルティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2005181295A publication Critical patent/JP2005181295A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0017Capillary or surface tension valves, e.g. using electro-wetting or electro-capillarity effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0076Fabrication methods specifically adapted for microvalves using electrical discharge machining [EDM], milling or drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

【課題】毛管力により液体を運ぶことができるマイクロ流体装置の提供。
【解決手段】1つの液体供給コンパートメント、および、前記液体供給コンパートメントに連結され、前記液体供給コンパートメントの下流に配置された少なくとも1つの非閉鎖型バルブを有している第1のチャンネル、および、第2のチャンネルを有するマイクロ流体チャンネルシステムを有している。これの第2のチャンネルは、前記液体供給コンパートメントの下流であるが前記少なくとも1つの非閉鎖型バルブの上流で前記第1のチャンネルから分岐しており、前記非閉鎖型バルブの位置のところで前記第1のチャンネルと再合流して排出チャンネルを形成している。第2のチャンネルは非閉鎖型または閉鎖型バルブを有しておらず、その結果、前記液体供給コンパートメントと排出チャンネルを連結する遮るもののない液体流動通路をつくっている。
【選択図】 図10

Description

本発明は、マイクロ流体装置における、毛管力により駆動される液体の流動挙動を制御することに関する。
WO 90/13034には、毛細管流動装置および方法が開示されている。抗凝集剤が加えられていない全血サンプルをハウジングの中に収容されている毛細管トラックに施与することによる、サンプルの活性化部分トロンボプラスチン時間(APTT)分析を行うための方法および装置が提供されている。さらに、APTT分析を開始することができる試薬も開示されており、この場合毛細管トラックおける血液流動の停止により凝固時間が測定される。毛細管流動装置は、進入開口部、第1の毛細管ユニット、試薬チャンバー、第2の毛細管ユニットおよび排出開口部を有している連続毛細管通路が収容されているハウジングを有する。上記試薬チャンバー内には試薬が入っている。前記第1の毛細管ユニットは、幅が0.75〜2mm、高さが0.05〜0.125mm、長さが5〜15mmの毛細管チャンネルを有する。前記試薬チャンバーは、長さが5〜15mmで、幅が3〜8mmで、高さが0.05〜0.125mmの毛細管チャンバーを有する。前記第2の毛細管ユニットは、0.05〜0.175mmの開始半径と血液サンプルに毛細管流動を与える終点半径とをもつ毛細管チャンネルを有する。このチャンネルは1つの平坦面をもち、このチャンネルの残りの面は、平坦表面または湾曲表面が角をつくることなく合わさることにより形成されている。全ての湾曲表面は、前記平坦面に対して凸状であり、この場合、この第2の毛細管の少なくとも一部分は有効直径が、その試薬チャンバーからの距離の増大と共に増大する。上記試薬は、活性化部分トロンボプラスチン時間の活性化物質、および、血液凝固を開始させるのに十分な量のリン脂質混合物を含む。上記毛細管トラックの合計容積は20〜100μLである。
論文「Microfabricated liquid chromatography columns based on collocated monolith support structures”, Journal of Pharmaceutical and Biomedical Analysis 17 (1998) pages 925 - 932」は、マイクロ流体装置に関するものである。開示されている概念は、ミニチュア化により、エレクトロニクスと同じように、多数の操作を小さい空間において並行して行うことが可能になるというものである。半導体と同じように進めて、in situミクロ機械加工により、単一ウエハー上の複数液体クロマトグラフィーカラムに、何百万ものミクロンサイズの、粒子様構造物を同時に作製できることが示された。この広く用いられているバイオ分析手段をナノリットル容積の並列処理チップフォーマットに縮小することは、チップ上の分析室[laboratories-on-a-chip]に向けての重要な1つのステップである。
WO 97/00125は、流動性物質の受動的混合のためのフローセルに関するものである。少なくとも2つの流動性物質を受動的に混合するためのフローセルは、それぞれの物質のための進入開口部、共通の排出開口部、およびそれら物質を混合するための平坦フローベッドを有する。各物質に対して、対象の物質のための進入開口部と前記フローベッドとの間に配置された、該物質を複数の物理的に分離された薄いストリーム(流れ)に分けるための分配器が設けられている。この分配器により、上記の薄いストリームは、フローベッドで、互いに接触して隣接する薄いストリームがそれぞれ異なる物質を含むようにそのフローベッドに供給される。この方法による各分配器は、少なくとも1つの供給チャンネル、分配溝、および少なくとも2つの分配チャンネルを有する。この供給チャンネルは、対象物質のための付属進入開口部から付属分配溝まで延び、加えて、上記分配チャンネルはそれぞれ、一方の末端部において分配溝の中に開口しており、他方の末端部においてフローベッドの中に開口している。この結果、物質は、対応する進入開口部から、供給チャンネル、対応する分配溝および分配チャンネルを通って、フローベッドの中に通ることができる。
EP 02 077 317.2は、試験サンプル中の検体の有無を検出するための方法および装置に関するものである。この方法は、試験サンプルをチャンバーの中に導入すること、およびそのチャンバー内で以下の操作を行うことを含んでなる。すなわち、その試験サンプル中に含まれている核酸を捕捉するが、この捕捉は、チャンバー内に配置された結合用表面を使用することでなされる。上記結合用表面は、核酸を捕捉するための高い結合親和力を有している。次に、捕捉された核酸の一部である標的核酸配列を増幅する。この後、増幅された標的核酸配列の有無を検出する。この装置は、チャンバーの中に、試験サンプルを含んでいる液体を導入するための密封可能な進入開口部、および、このチャンバーから液体が出て行くことを可能にする密封可能な排出開口部を有している。チャンバーは、試験サンプルに含まれる核酸を補足するように作製された結合用表面を有し、試験サンプルを含んでいる上記液体はチャンバーを通って流れる。上記チャンバーは、チャンバーの内容物の加熱および冷却を可能とする少なくとも1つの壁を有している。このチャンバーの温度は、チャンバーの中で、捕捉された核酸の一部である標的核酸配列を増幅するための処理を行えるように変更可能となっている。
上記チャンバーの一部分には、チャンバー中に含まれる増幅された標的拡散配列の有無を検出するための光学的手段によりチャンバーの内容物の検査が可能となるゾーンがある。
US 2002/0003001 A1は、マイクロ流体用の、表面張力バルブに関するものである。この出願には、マイクロ流体システムで用いるための受動型バルブが開示されている。この受動型バルブは、第1の進入部および第1の排出部をもつ第1のマイクロ流体チャンネルを有する。さらに、この受動型バルブは、上記第1の進入部と上記第1の排出部との間で上記第1のチャンネルと交差する、第2の進入部をもつ第2のチャンネルを有する。この第2の進入チャンネルと前記第1のチャンネルの交差点に第1の領域が配置され、この第1の領域では表面張力が増大されている。この第2のチャンネル内を、上記第1の領域における表面張力に打ち勝つことができない液体推進力をもち、そのために流動がその第2のチャンネル内に保持される第1の液体が流れる。第2の液体が上記第1のチャンネル内を流れて上記交差点に接触するが、その結果、第2の液体が第1の領域のところの上記停止液体に接触し、第1の液体が第1の領域のところの表面張力に打ち勝つことができ、それによって、第1および第2の液体が、第1のチャンネル内を、その排出部まで流れる。上記第1の領域には、疎水性または親水性のどちらかのコーティングが施されている。別の方法として、上記第1のチャンネルを疎水性材料からつくることもできるし、あるいは第2のチャンネルを疎水性材料からつくることもできる。
US 6,591,852 B1は、受動型流体動力学に基づいた流体回路部品に関するものである。急激なマイクロチャンネルの拡大からなる受動型バルブまたはストップ手段の使用による、マイクロチャンネルの中を流れる流体流動を制御するための方法および装置が提供されている。そのような受動型流体流動障壁は圧力障壁をつくり、その圧力障壁の力に打ち勝つのに十分な力が蓄積されるまで、受動型流体流動障壁を通ろうとする溶液流動を遮る。このような受動型障壁または受動型バルブとして機能するストップ手段の使用により、マイクロチャンネルの中を通る流体の流動を調節することが可能となり、流体を、単一チャンネルを経て導入された後混合または希釈すること、あるいは、個々にピペット操作をすることの必要なしに複数のチャンネルに分割することが可能となる。上記複数のチャンネルの中を通る流動を調節して、先ず一連の姉妹ウェルまたはチャンバーを全て満たし、その後その姉妹ウェルまたはチャンバーのどれかを越えて流体が流動するようにすることができる。このようなやり方で姉妹ウェルまたはチャンバーを満たすことにより、全てのウェルまたはチャンバー内で一致して反応を行わせることが可能となる。マイクロチャンネル中に空気がトラップされることを防ぐためにマイクロチャンネル中に空気ダクトを使用することも開示されている。
WO 03/052428 A1は、受動型流体制御構造体を組み込んだ3次元マイクロ流体構造体に関するものである。密封状態で1つに組み立てられた実質的に平坦な複数の層を有する多層マイクロ流体装置が開示されている。マイクロ流体構造体は、マイクロ流体装置の少なくとも2つの上記平坦層に対応する少なくとも2つの平面に横たわり、少なくとも1つのマイクロ流体構造体が1つ以上の隣接する平坦層を貫通し、異なる平面にあるマイクロ流体構造体間に流体連通をつくっている。このマイクロ流体構造体は、1つ以上のチャンネル、ウェル、分割部、混合部、バルブ、空気ダクトまたは空気ベントを有し、上記複数の平坦層の少なくとも1つは疎水性表面をもつ。
WO 02/072264 A1は、アレイにマイクロ流体接続するための方法およびシステムに関するものである。スライド上で種々の化学反応または処理工程を行うための、スライド上に固定された生体分子またはその他のサンプルのマイクロアレイを担持しているスライドに流体接続させるための方法およびシステムが開示されている。接続装置がスライドを密封して、マイクロアレイの全てもしくは一部を含む1つまたは複数のチャンバーを形成しており、その結果スライドの一部への選択的アクセスが可能となっている。この接続装置は、液体サンプルおよび試薬をスライド表面を評価するチャンバーに導入すること、また、そこからそれらを取り出すことを可能とする進入開口部および排出開口部を有する。アレイ前およびアレイ後マイクロ流体回路をこの接続装置に含めてもよいし、あるいは、取付式モジュールに含めてもよい。このシステムは、廃棄流体を回収および貯蔵するための1以上のコンパートメントを含み得る。
Jessica Melin, Niclas Roxhed, Guillem Gimenez, Patrick Griss, Wouter van der Vijngaart and Goeran Stemmeの論文「A liquid-triggered liquid microvalve", Transducers 2003, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003, pages 1562 - 1565」には表面張力および幾何形状に基づく液体トリガー式[triggered(引きがね式)]液体マイクロバルブが開示されている。バルブ合流部における異なる液体貯槽からの2つの液体プラグが同時に存在すると、その液体のさらなる移動がトリガーされ、装置のストップバルブ機能に打ち勝つ。この基礎となるマイクロバルブは、この公開論文の図2から導き出せるように、2つの進入開口部に連結された異なる液体が入った2つの異なる貯槽、および1つの排出開口部をもつY字型合流部からなる。合流部は、開口部1または開口部2からの液体がこの地点、すなわち合流部に到達すると形状型ストップバルブとして働く。毛管力または外的力のどちらかにより合流部に到達した一方の進入開口部からの液体が、もう一方の進入開口部からの液体が合流部に到達するのを待ち、到達すると排出部を通って移動する。すなわち、第1の液体の移動が、第2の液体が合流部に来ることでトリガーされる。
本発明の1つの目的は、マイクロ流体チャンバーまたはチャンネル中の体積流動を大幅に遅くする、あるいは停止さえさせることである。その結果、流体制御により、チャンバー中での化学処理または物理処理例えば乾燥試薬の溶解の制御、および/またはその反応時間の制御が可能となる。
本発明のさらなる目的は、複数のチャンネルからの液体を、1つの共通の流入口と、泡の無い状態で確実に合流させることである。
本発明によれば、開示される1つの解決法は、外的駆動や制御要素をもたない受動型流体装置中の液体流動を制御することである。本発明によるその解決法は、本発明による流体装置中の液体流動を減速または加速することである。この目的のためには、少なくとも1つの非閉鎖型バルブ、および、1本のチャンネルが、機能チャンバーを画定していてもよいまた流体供給部に連結されている第1のチャンネルから分岐しているチャンネルシステムを有している本発明のマイクロ流体装置は、前記非閉鎖型バルブの前で前記第1のチャンネルから分岐し、前記非閉鎖型バルブの位置のところで前記第1のチャンネルと再合流するトリガーチャンネルを有する。このトリガーチャンネルを適宜設計することにより、すなわちそのそれぞれの長さ、その巻き数およびその流動抵抗により、上記トリガーチャンネルを、マイクロ流体装置の特定のニーズや要求事項に応えさせることができる。トリガーチャンネルの長さは、上記機能チャンバー内の液体の滞留時間に大きく影響する。運ばれる液体が、非閉鎖型バルブと呼ばれる形状型または受動型バルブのようなバルブに到達するのに移動しなければならない距離が長ければ長いほど、達成できる滞留時間は長くなる。本発明によれば、毛管力により駆動される液体の流動挙動の調節を制御することができる。本発明の解決法に従えば、機能チャンバー中の液体流動を大幅に遅くさせて、あるいは停止さえさせて、そのチャンバー中における液体分子の滞留時間を長くし、例えばチャンバー内の乾燥試薬の溶解を改善することが可能である。さらに、複数のチャンネルからの液体を1つのチャンネルの中に入れるという泡の無い確実な合流が達成される。機能チャンバー内に入っている乾燥試薬の溶解のほかにも例を挙げると、本発明によるマイクロ流体装置は、液体流動制御により液体の化学反応を制御するのに、あるいは物質混合のためのインキュベーション時間を長くするのに、あるいはその他の特定の目的のために用いることができる。トリガーチャンネルはいかなる非閉鎖型バルブをも有しておらず、その結果、液体供給コンパートメントと排出チャンネルを連結する遮るもののない液体流動通路をつくっている。トリガーチャンネルのトリガー機能は、そのそれぞれの長さにより達成される。2チャンネル方式が開示されているUS 2002/0003901にある解決法とは対照的に、本チャンネルのそれぞれは受動型バルブを有している。つまり、上記2チャンネル方式のうちの一方に流体が存在しない場合、両方のチャンネルにおける流体流動は停止する。本発明では、第1のチャンネルに液体が存在しない場合でも、トリガーチャンネル内の流体流動は停止しない。
マイクロ流体装置またはマイクロ流体ネットワークの基板内に含まれているマイクロチャンネルのネットワーク中の液体流動を制御する上記トリガーチャンネルは、進入チャンネルに比較してより小さい幅または直径をもち得る。それぞれのトリガーチャンネルの長さは、上記分岐位置から上記非閉鎖型バルブまでの液体の流動通路の長さを超える。
本発明によるマイクロ流体装置は機能チャンバーを有しているが、これは、その液体内に乾燥試薬を溶解させるために設けられている。液体流動の一部が通る本トリガーチャンネルを適宜設計することにより、機能チャンバー中で乾燥試薬などの物質で処理される液体の混合を、その機能チャンバー内での液体の滞留時間を延ばすことによって大幅に改善することができる。本発明の1つの実施形態では、それぞれのトリガーチャンネルは、機能チャンバーの排出チャンネルから分岐している。機能チャンバーはピラー[pillar(柱状)]アレイとして配置されていてもよい。本発明のさらなる実施形態では、それぞれのトリガーチャンネルは、それぞれの機能チャンバーへの進入チャンネルから分岐していてもよく、機能チャンバーの下流に向けられており、機能チャンバーの下流で排出チャンネルに合流する。つまり、後者の実施形態では、分岐したトリガーチャンネル内では、機能チャンバー内に入っている乾燥試薬が既に溶解している処理済み液体の代わりに未溶解または未処理の液体が媒体として使用される。
開示されたこのトリガーチャンネルは、分割されたチャンネルのうちの1つがトリガーチャンネルとなっている分割チャンネルのアレイを有している流動分割装置内のトリガーチャンネルとして用いることもできる。この流動分割装置では、分割チャンネルアレイのそれぞれのマイクロチャンネルの開口部が形状型または受動型バルブを含むことができる。そのような分割チャンネルは、互いに重なり合って、平面状の平坦基板の両面上に配置され、その結果上記形状型、受動型バルブを形成することができる。この第1のチャンネルは、第2のチャンネルと、少なくとも2つの分割チャンネルのアレイとに分割され、その分割チャンネルのそれぞれは、第2のチャンネルの分岐の下流に配置された少なくとも1つの非閉鎖型バルブを有し、一方、第2のチャンネルは、アレイの分割チャンネルのそれぞれと、上記非閉鎖型バルブの下流で再合流して、排出チャンネルを形成している。
マイクロ流体装置またはマイクロ流体ネットワークは、例えばプラスチック射出成型による複製により、あるいは高温セラミックエンボス複製によりエッチングまたは複製することができる。複製の1つの方法はCD複製である。本発明によれば、ディスクのそのような部分は、それぞれ、貯槽から収容要素への液体流動を制御するためのそれぞれの対応する1つのトリガーチャンネルが割り当てられている機能チャンバーを有することができる。別の形態では、そのような部分に、マイクロ流体構造体のカスケード(縦続)配置部を含ませることもでき、それぞれの対応するトリガーチャンネルの長さにより液体貯蔵部からの液体流動を制御することができる。このカスケード配置部を適宜設計することにより、CDのそのような部分に多数のマイクロ流体装置を配置することができる。
本発明による装置および方法の好ましい実施形態を、以下、例として、添付の図面を参照して説明する。
図1および2は、本発明との関係において機能要素を構成する受動型形状型バルブの実施形態を示すものであるが、それ自体は知られているものである。本明細書において以下に記載されるマイクロ流体装置では、液体19の輸送は、ポンプ要素などにより発生させられる外的エネルギーを加えることなく毛管力により達成される。以下に詳細に記載するマイクロ流体装置内における液体19の移動は、毛管力により達成させられる。システムの液体19と、液体19が通るチャンネルの表面との接触角は、90度より小さい。それぞれの接触角は、運ばれる液体19のタイプによって変わり得ることは理解されるところである。液体19/チャンネル表面のシステムにおいては、上記接触角は、基板3の前面、もしくは後面、または両面に形成されているそれぞれのチャンネルの表面特性を変えることによって変えることができる。それぞれの基板用の材料は、例を挙げると、複製ができるポリマー材料(例えば、ポリカーボネート、ポリスチロール、ポリ(メチルメタクリレート))、エッチングができる材料(例えば、シリコン、スチール、ガラス)、あるいは従来法により粉砕・機械加工ができる材料(例えば、ポリカーボネート、ポリスチロール、ポリ(メチルメタクリレート)、スチール)である。
図1および2による例はそれぞれ知られている非閉鎖型バルブ1を示すものである。基板3にはチャンネル2が設けられていて非閉鎖型バルブ1を形成している。基板3中のチャンネル2の幅4は一定である。図1にある例では、チャンネル2は、U字形状で、実質的に長方形の形状をしている。基板3の上面にあるチャンネル2の開放面は、ここでは図示されていないがさらなる基板により覆われていてもよい。図1にある実施形態によるU字形状をしたチャンネル2の代わりに、チャンネル2は、連続的に閉じた外周をもつチューブの形状をしていてもよい。
一定でない幅をもつチャンネル2のさらなる例が図2に示されている。図2によるチャンネル2は、ギャップ7の領域内で第1の幅5と第2の幅6をもつ。隣接して配置されている基板3の第1の表面8と第2の表面9はギャップ7を定めている。第2の幅6をもつこのギャップ7は、形状型バルブなどの非閉鎖型バルブ要素1を構成する。
図3は、互いに液体連通で配置されている、マイクロ流体装置の進入チャンネルとトリガーチャンネルを示す。チューブの形状をもつことができるか、あるいは図1に示すような長方形の形状のチャンネルをもつことができる進入チャンネル10は液体19を運ぶ。進入チャンネル10の幅または、別の形態では、直径は、符号11で示されている。分岐位置16において、トリガーチャンネル12は進入チャンネル10から分岐している。進入チャンネル10内に入っている液体19は毛管力により推進される。液体19の流動方向に見られるように、形状型バルブなどの非閉鎖型バルブ1が設けられている。この関連において、非閉鎖型バルブ1とは、そのバルブ位置におけるチャンネルが開口されていて、物理的な手段により遮られていない場合でも、液体19がチャンネルのその特定の位置で停止されるバルブを意味する。形状型バルブは非閉鎖型バルブであり、この非閉鎖型バルブにおいてはそのバルブ機能は、そのチャンネルの特定の屈曲または形状により得られ、その場合、その表面特性は、1つのチャンネルに関しては一定なものである。符号17は、トリガーチャンネル12と非閉鎖型バルブ1とが会う領域を示す。すなわち合流位置を構成する。
分岐位置16において、トリガーチャンネル12は分岐している。トリガーチャンネル12は、符号13で印された直径または幅をそれぞれもつ。トリガーチャンネル12の直径または幅13は、進入チャンネル10の直径または幅11より小さい。分岐位置16と合流位置17との間のトリガーチャンネル12の長さは、分岐位置16から形状型バルブ1の末端部、すなわち支持要素3のエッジ部26までの進入チャンネル10内の距離よりも実質的に長く、分岐位置16から非閉鎖バルブまでの液体流動通路の長さを超える。
図4は形成されたメニスカスを示すもので、このメニスカスは、図3の進入チャンネルを通るさらなる流動を妨げている。
形状型バルブなどの非閉鎖型バルブ1の作用により、進入チャンネル10の中を流動する液体19は停止させられる。トリガーチャンネル12の幅または直径13によって決まる毛管力により、液体19のある量がトリガーチャンネル12の中に引き込まれる。分岐位置16と合流位置17の間の液体流動はチャンネル10内で第1のメニスカス20のところで停止させられる。しかしながら、液体はゆっくりとトリガーチャンネル12の中に入る。液体19のこのゆっくりとした流れの方向は矢印22により示されている。第1のメニスカス20は形状型バルブなどの非閉鎖型バルブ1の領域で形成される。この段階では、排出チャンネル14の合流位置17には液体19は存在しない。
図5は、トリガーチャンネルの長さ一杯に流れる液体量を示す。
トリガーチャンネル12の限られた幅または直径13のため、液体19は、漏斗形状領域18の中に開口しているトリガーチャンネル12の合流位置17の方に流れるのにはいくらかの時間を要する。進入チャンネル10の底部のところの第1のメニスカス20はまだ有効で、分岐位置16と合流位置17の間の流体流動は停止させられるが、液体はトリガーチャンネル12の中にゆっくりと入っていく。トリガーチャンネル12内に蓄積された液体19はまだ合流位置17に到達していない。トリガーチャンネル12内に液体19が存在するかぎり、分岐位置16の前の進入チャンネル10内の液体19の本流は、図3の状況と比べた場合、遅くなる。このときの進入チャンネル10内の液体19の流動は、トリガーチャンネル12の断面積13によって決まる。チャンネル12がチャンネル10より狭ければ狭いほど、流体はゆっくりと流れる。
図6は、トリガーチャンネルと進入チャンネル中の液体容量が互いに合わさって、排出チャンネルに向かって1つの共通のメニスカスを形成しているところを示すものである。
図6に示される段階で、トリガーチャンネル12内に蓄積された液体19は合流位置17に到達している。いったん液体19がトリガーチャンネル12から流れ出ると、1つの共通の第2のメニスカス21が形成される。液体19はこの結果排出チャンネル14に向かって引き込まれるが、この排出チャンネルは、進入チャンネル10とトリガーチャンネル12それぞれの断面積11,13に相当する幅または直径15をそれぞれもつ。進入チャンネル10とトリガーチャンネル12を通るこの2つの流れは互いに合わさり、毛管力により排出チャンネル14の中に引き込まれる。
図7は、排出チャンネルを通る液体排出流を示す。
いったんトリガーチャンネル12を通る流れが、排出チャンネル14の中に開口している合流位置17に到達すると、符号24により示されている流れの方向をもつ液体19の本流23がつくられる。図7の段階で、進入チャンネル10を通る流れが再び始まるが、トリガーチャンネル12内を液体19の部分容量がなお流れる。この段階で、進入チャンネル10の底部エッジ部26のところの非閉鎖型バルブ1はもはや働いてない。トリガーチャンネル12における流動抵抗を高めに選ぶ場合は、トリガーチャンネルを流動する液体の割合は非常に小さいものである。
外的な駆動または制御要素なしにマイクロ流体装置中の液体19の流速を制御することにより、その液体の流れを大幅に遅くする、あるいは停止さえすることができ、その結果、例えば処理または機能チャンバー中の液体分子の滞留時間を長くすることができ、その結果その機能チャンバー中に含まれる乾燥試薬の溶解を改善することができる。トリガーチャンネル12のもう1つの重要な利点は、後で詳細に記載するが、分割進入チャンネルのような1つの共通の進入開口部を有している複数チャンネルからの液体を、1つの共通の排出チャンネルの中に確実に合流させることである。
図8は、進入チャンネルとトリガーチャンネルの配置具合のさらなる別の実施形態を示すものである。図8に示されるこの別の実施形態では、進入チャンネル10と排出チャンネル14は互いに非閉鎖型バルブ1により連結されており、この非閉鎖型バルブは排出チャンネル14に、その円弧状をした凹状部分30で結合している。図8による実施形態では、非閉鎖型バルブ1とトリガーチャンネル12の末端部との間の角度αは約45度であるが、図1と2に示した実施形態によるそのような角度αはそれぞれ約90度である。トリガーチャンネル12の合流領域と、非閉鎖型バルブ1との間の角度αは、システムの表面/液間の特性やその他の特定の必要要件、例えば基板3のサイズや材質などに応じて選ぶことができる。実質的に平面状の基板3の材質は次に掲げる材料の1つから選ぶことができる。すなわち、複製ができるポリマー材料(例えば、ポリカーボネート、ポリスチロール、ポリ(メチルメタクリレート))、エッチングができる材料(例えば、シリコン、スチール、ガラス)または従来法により機械加工ができる材料(例えば、ポリカーボネート、ポリスチロール、ポリ(メチルメタクリレート)、スチール)である。それぞれの進入チャンネル10、排出チャンネル14およびトリガーチャンネル12は、エッチングまたはプラスチック複製法により、シリコン基板中に作製することができる。
図9〜12は、機能チャンバーが設けられているマイクロ流体装置の実施形態の概略を示すものである。
機能チャンバー40は、乾燥試薬を溶解するなどの機能をする。機能チャンバー40内で乾燥試薬を溶解するには、液体19の液体分子の滞留時間を長くするのが有利である。機能チャンバー40はさらに、化学反応、乾燥試薬の溶解、あるいは物質の混合を行うという目的を果たすことができる。機能チャンバー40中で行われるさらなる機能はインキュベーション、すなわち液体の滞留時間を長くすることである。液体19/乾燥試薬のシステムによって、その乾燥試薬が溶解される時間長さは大きく変わり得る。従って、それぞれの、液体19と乾燥試薬の混合物の滞留時間を、それぞれの液体19/乾燥試薬システムの溶解時間に対応させることが重要である。これは、いっさい非閉鎖型バルブを有さない、従って、液体供給コンパートメントと排出チャンネル14を連結する遮るもののない液体流動通路をつくっているトリガーチャンネル12の長さを変えることによりできる。
図3〜8の実施形態に関連して上記で詳細に記載したように、トリガーチャンネル12は、機能チャンバー40を液体19で満たすことを可能にする。いったん液体19が非閉鎖型バルブ1に到達すると、上述したように、機能チャンバー40の中への流速が大幅に遅くなり、機能チャンバー40中で特定の機能が行われることにたいしてより長い時間がもたらされる。機能チャンバー40は単純な液体容器として構成されていてもよいし、あるいはピラー[柱]のアレイからなっていてもよいし、あるいは多数の液体チャンネルからなっていてもよい。さらに、流体供給部と連結されている第1のチャンネルを機能チャンバーとして形成することも考えられる。
図9の実施形態では、進入チャンネル10により機能チャンバー40を液体19で満たすことができる。図9に示されている実施形態の機能チャンバー40の排出部には、トリガーチャンネル12が割り当てられている。この機能チャンバー40の排出部は、機能チャンバー40の下に配置される非閉鎖型バルブ要素1に対する進入部を構成する。分岐位置16においてトリガーチャンネル12は、機能チャンバー40の下流でその排出部から分岐している。トリガーチャンネル12は、図3〜7でより詳細に示した形状型バルブ1の下の合流位置において排出チャンネル14に合流する。図10は、機能チャンバー40の排出部が、それぞれが非閉鎖型バルブをもつ複数42の平行チャンネル41として配置されている機能チャンバーの1実施形態を示すものである。機能チャンバー40内にピラーアレイを組み込むこともできる。
トリガーチャンネル12は、合流位置17(図3〜7の実施形態を参照されたい)において排出チャンネル14に合流する。断面積13およびトリガーチャンネル12の長さを変えることにより、機能チャンバー40内の液体19の滞留時間を長くすることができる。例えば、本発明によるマイクロ流体装置の機能チャンバー40内で化学反応を行うことができるし、あるいは別の例としては機能チャンバー40内で乾燥試薬を溶解させることもできる。
図11は、機能チャンバー40を有しているマイクロ流体装置の異なる実施形態を示すものである。この実施形態によれば、長いトリガーチャンネル43が機能チャンバー40を迂回している。第1の迂回トリガーチャンネル43は、進入チャンネル10が機能チャンバー40の中へ入る前で、第2の分岐位置45において分岐している。この実施形態では、迂回トリガーチャンネル43は、機能チャンバー40の上流で第1のチャンネル10から分岐している。第1の迂回トリガーチャンネル43は、機能チャンバー40の下にある、非閉鎖型バルブ要素を有している平行チャンネル42の配置部の下で排出チャンネル14に合流する。それぞれの対応する第2の分岐位置45において分岐している第1の迂回トリガーチャンネル43は、液体が機能チャンバー40の中に入る前に液体を分岐させることを可能にしている。第1の迂回トリガーチャンネル43内に入っている液体19は、機能チャンバー40の機能化された液体を含んでおらず、むしろ純粋な液体19である。その結果、機能チャンバー40内に入っている液体の量を、それぞれ図9、10に示した実施形態のように、液体の一部をそれぞれのトリガーチャンネル12の中に分岐させるということなく、全部使うことができる。
図12は、本発明によるマイクロ流体装置の中に組み込まれた機能チャンバーのさらなる実施形態を示すものである。
図12の実施形態では、第2の迂回トリガーチャンネル44が、進入チャンネル10が機能チャンバー40の中に入る前のところ、すなわち機能チャンバー40の上流に配置された第2の分岐位置45において分岐している。第2の迂回トリガーチャンネル44は、領域18内で排出チャンネル14に合流する。図12の実施形態の機能チャンバー40の排出チャンネル14内には、形状型バルブなどの非閉鎖型バルブ1が組み込まれている。符号24は、第2の迂回トリガーチャンネル44が液体19で完全に満たされた場合の機能チャンバー40からの本流の流れの方向を示している。
図13は、本発明による流動分割装置の平面図を示すものである。試薬はしばしば上述のマイクロ流体チャンネルに付着し、液体19で溶解される。この溶解工程の速度は、関係する分子の拡散が律速となっている。一般に、マイクロ流体システムには乱流は存在しない。すなわち、分子が混ざり合うのは、主に拡散による工程律速である。さらなる側面は、試薬の生成物とその溶媒の溶解度である。本発明による流動分割装置により、マイクロ流体装置として具現化される流動分割装置の表面対体積比を大幅に大きくすることができる。以下でより詳細に記載する流動分割装置の実施形態では、一般に1つの進入チャンネルが数個のチャンネルに分割されており、これが表面対体積比を大きくしている。本発明による解決法は、排出流れ内に泡を導入または発生させることなく制御されたやり方で、これらの分割チャンネル中を流動する液体19を再び1つの単一排出チャンネルに合流させるという利点を提供する。加えて、分割チャンネル中の液体の流れを遅くする。
図13の実施形態は平面図を示すもので、詳細に示されているように、プラスチック中に複製することができる。第1の流動分割装置が符号60により示されており、進入チャンネル10、62をそれぞれ有している。図13の平面図には、分割チャンネル63のアレイ64が示されている。分割チャンネル63は実質的に互いに平行に延びている。第1の流動分割装置60はトリガーチャンネル12を有している。各分割チャンネル63は、第2のチャンネル12すなわちトリガーチャンネルの分岐の下流に配置された少なくとも1つの非閉鎖型バルブ65を有している。トリガーチャンネル12は、非閉鎖型バルブ65の下流でアレイ64の分割チャンネル63のそれぞれと再合流して、排出チャンネル14を形成している。各分割チャンネル63は、1つの共通排出チャンネル14の中に開口している。各分割チャンネル63の前記開口部は、非閉鎖型バルブ65を構成している。分割チャンネル63のアレイ64のトリガーポイントは符号61で示されている。上記した第1の流動分割装置60に入る液体19が一旦トリガーチャンネル12および各分割チャンネル63の中に入ると、各分割チャンネル63中の液体は、それぞれの分割チャンネル63の各末端部に配置されている1つの非閉鎖型バルブ65のところで停止する。トリガーチャンネル12への液体の流れがトリガーポイント61に到達すると、液体の流れが、それぞれのトリガーポイント61に最も近く配置された分割チャンネル63で始まって、次々と開始される。図13に示されている実施形態によれば、下の方に垂直方向に流動する液体19は、第1の流動分割装置60を出てくる液体の流れの方向において断面積が次第に大きくなっている前記した1つの共通の排出チャンネル14を満たしていく。
図14は流動分割装置のさらなる実施形態を示すものであり、この装置内には重ね合わせにより形状型ストップバルブがつくられている。
図14による流動分割装置の実施形態は、複数の分割チャンネル63に分割されて1つの分割チャンネルアレイ64を形成している1つの共通進入チャンネル10、62をそれぞれ示すものである。分割チャンネル63は、実質的に互いに平行に延びている。図14による流動分割装置は一般に、非常に薄いスチール(鋼鉄製)フォイル(箔)などの基板3の中にエッチングすることができる平面設計のものである。図14の実施形態では、スチールフォイルなどの基板3は、その両面においてエッチングされている。つまり図14によれば、フォイル71の一方の面上の分割チャンネル63は、フォイル71の背面にあるエッチングされたチャンネルと重なり合い、その結果各分割チャンネル63の末端部において重なり合い領域72を形成している。共通の排出チャンネル14の中へのそれぞれの合流位置に配置されているこの重なり合い領域72には、形状型バルブ73が確立されている。分割チャンネル63のアレイ64は、フォイル71の前面に配置されたトリガーチャンネル12と、フォイル71のそれぞれのもう一方の面に配置された共通の排出チャンネル14とを連結している1つの開口部により、フォイル71の背面にある共通の排出チャンネル14と連結されている。この流動分割装置の実施形態で、面を変えること、すなわち前面から後面に変えることおよびその逆も達成することができる。このような単一の分割チャンネル63はそれぞれ、形状型(非閉鎖型)バルブ73として形成されている末端部分を有している。
図15〜17は、流体評価用の、プラスチック中に複製される流体トリガー構造を示すものである。
図15は、射出成型または高温エンボス加工されたものなどの支持構造体3を示すものである。図15による支持構造体3の上面には、3つの異なるマイクロ流体システムが配置されている。
図15に示されている支持構造体のセクション3上には、液体評価用の上記3つの異なるマイクロ流体システムが配置されている。3つのシステムのそれぞれは、液体供給部81と液体貯槽82をそれぞれ有している。液体は、液体供給部81から流動方向83に進入チャンネル10を経て、図15によればカスケード配置84に形成されている流動分割装置に供給される。カスケード配置部84の各段階には、個別のトリガーチャンネル12が割り当てられており、排出チャンネル14を経ての液体貯槽82の中への泡の無い流動を可能としている。図15によるカスケード配置部84に含まれる支流は2〜4の間で変わり得、それぞれの支流は、それぞれのカスケード84に配置されるトリガーチャンネル12によりトリガーされる。
図16は、支持構造体要素3上に配置された本発明による第2の液体トリガー構造体を示すものである。
支持構造体要素3は、これまでに記載したように、図16のマイクロ流体装置の複製ができるプラスチック材料であることができる。
図15の第1の流体トリガー構造体80とは対照的に、図16の第2の流体トリガー構造体90は2つのマイクロ流体システムを有している。図16の支持構造体要素3上に示されているマイクロ流体システムのうちの1つは機能チャンバー40を有しており、この機能チャンバーには進入チャンネル10により液体供給部91から供給が行われる。液体の流動方向が矢印93により示されている。機能チャンバー40に入っている液体の一部は、1つの非閉鎖型バルブを各々有している機能チャンバー40の一連の4つの排出チャンネル(アレイ42)に割り当てられたトリガーチャンネル12の中に入る。機能チャンバー40の排出部は、トリガーチャンネル12に対する進入部を構成している。機能チャンバー40に対して割り当てられたトリガーチャンネル12の長さおよび断面積により、機能チャンバー40に入っている液体19の滞留時間が決まる。さらに、図16による第2の流体トリガー構造体90の実施形態では、流動分割装置60が組み込まれている。液体供給部91から液体が流動方向93に進入チャンネル10を経て、カスケード配置部94をもつ第1の流動分割装置60に供給される。各カスケードは平行状態にある4つのマイクロチャンネルを有しており、これの1つにトリガーチャンネル12が割り当てられて、貯槽92への液体の泡の無い輸送を可能としている。図16、17に示されている実施形態では、第1の流動分割装置60のカスケード配置部94で1つのカスケード84、94、104の各排出部は、その次のカスケードに対する進入部をそれぞれ構成していることは理解すべきである。
図17による実施形態では、本発明による第3の液体トリガー構造体が支持構造体要素3上に配置されている。
この実施形態では、液体供給部101内に入っている液体は進入チャンネル10を経て流動方向103に貯槽102まで流動する。この進入チャンネル10は、3つのトリガーチャンネル12が割り当てられているカスケード配置部104に連結されている。図17に示されているこの第3の液体トリガー構造体100では、上記基板3は、液体供給部101の液体を貯槽102に運ぶためのさらなるトリガー構造体を有している。図17の基板3上に示されている1つの実施形態では、このカスケード配置部104は、トリガーチャンネル12の各1つがそれぞれ割り当てられている流動分割装置を有している。図17の上半分右側には、互いに平行に延びている2つのチャンネルを有しているカスケード配置部104が示されている。この実施形態では、上記実質的に互いに平行に延びているチャンネルの対のそれぞれに対して1つの別々のトリガーチャンネル12が割り当てられている。
図18は、既に言及した非閉鎖型バルブの概略を示すものである。この非閉鎖型バルブ1の実施形態によれば、第1のチャンネル110が、厚み116の薄い基板3の前面113の中にエッチングされている。この第1のチャンネル110は、例えば非常に薄くてエッチング可能なスチールフォイル、またはポリイミドフォイルなどからつくられている薄い基板3の背面114上にある第2のチャンネル111と連結されている。第1のチャンネル110と第2のチャンネル111は開口部115により互いに連結されている。第1のチャンネル110の深さは符号117により示されている。非常に薄い基板3の対応する背面114上にエッチングされた第2のチャンネル111も同様な深さである。第1のチャンネル110の深さ117と第2のチャンネル111の深さは両方のチャンネル110、111が流体連通を確立するように選ばれるが、これにより、この非常に薄い基板3の前面113からその対応する背面114への開口115を経ての液体の移動が可能となる。チャンネルの表面は112と表示されている。
本発明によるマイクロ流体装置は、ヒトの血液サンプル、体液サンプルまたはその他の体液サンプル、試薬の水溶液、有機溶液または油分を含有する液体を処理するのに使用することができる。本発明によるマイクロ流体装置を使用することで、インキュベーション時間または反応時間を延ばすことができ、その結果、例えば機能チャンバー40内に入っている乾燥試薬を溶解するための液体19の滞留時間を長くすることが可能である。
図1は、受動型の形状型バルブを示す。 図2は、受動型の形状型バルブを示す。 図3は、進入部、およびそれと連通して配置されている本発明のトリガーチャンネルを示す。 図4は、図3の進入チャンネルを通る流動を妨げているメニスカスを示す。 図5は、本発明のトリガーチャンネル中に蓄積されつつあるある量の液体を示す。 図6は、互いに合わさって、排出チャンネルに向かって1つの共通のメニスカスを形成している、トリガーチャンネルと進入チャンネル中の液体容量を示す。 図7は、排出チャンネルを通る液体排出流を示す。 図8は、進入チャンネルとトリガーチャンネルの配置のさらなる別の実施形態を示す。 図9は、トリガー要素と別の機能チャンバーを組み合せた実施形態の概略を示す。 図10は、トリガー要素と別の機能チャンバーを組み合せた実施形態の概略を示す。 図11は、トリガー要素と別の機能チャンバーを組み合せた実施形態の概略を示す。 図12は、トリガー要素と別の機能チャンバーを組み合せた実施形態の概略を示す。 図13は、平面状設計の流動分割装置を示す。 図14は、中に形状型ストップバルブが形成されている流動分割装置を示す。 図15は、流体評価用の、プラスチック中に複製される流体トリガー構造体を示す。 図16は、流体評価用の、プラスチック中に複製される流体トリガー構造体を示す。 図17は、流体評価用の、プラスチック中に複製される流体トリガー構造体を示す。 図18は、非閉鎖型バルブの概略を示す。
符号の説明
1 非閉鎖型バルブ(形状型バルブ)
2 チャンネル
3 基板
4 一定幅
5 第1の幅
6 第2の幅
7 ギャップ
8 第1の表面
9 第2の表面
10 進入チャンネル
11 進入チャンネルの幅
12 トリガーチャンネル
13 トリガーチャンネルの幅
14 排出チャンネル
15 排出チャンネルの幅
16 分岐位置
17 合流位置
18 漏斗形状領域
19 液体
20 第1のメニスカス
21 第2の(共通)メニスカス
22 液体19の遅延流
23 液体19の本流
24 排出流れ
26 エッジ部
30 凹部
31 円弧
40 機能チャンバー
41 平行チャンネル
42 非閉鎖型バルブのある複数の平行チャンネル
43 第1の迂回トリガーチャンネル
44 第2の迂回トリガーチャンネル
45 第2の分岐位置
60 流動分割装置
61 トリガーポイント
62 進入チャンネル
63 分割されたチャンネル
64 分割チャンネルのアレイ
65 形状型バルブ
71 フォイル
72 重なり合い領域
73 形状型バルブ
80 第1の流体トリガー構造体
81 液体供給部
82 貯槽
83 液体の流動方向
84 カスケード配置
90 第2の液体トリガー構造体
91 液体供給部
92 貯槽
93 流動方向
94 カスケード配置
100 第3の液体トリガー構造体
101 液体供給部
102 貯槽
103 流動方向
104 カスケード配置
110 第1のチャンネル
111 第2のチャンネル
112 チャンネル表面
113 前面
114 背面
115 開口部
116 基板の厚み
117 チャンネルの深さ

Claims (13)

  1. 毛管力により液体(19)を運ぶことができるマイクロ流体装置であって、
    i) 1つの液体供給コンパートメント(81、91、101);
    ii) 前記液体供給コンパートメント(81、91、101)に連結された第1のチャンネルであって、前記液体供給コンパートメント(81、91、101)の下流に配置された少なくとも1つの非閉鎖型バルブ(1、65、73)を有している第1のチャンネル(10);
    iii) 前記液体供給コンパートメント(81、91、101)の下流であるが前記少なくとも1つの非閉鎖型バルブ(1、65、73)の上流で前記第1のチャンネル(10)から分岐し、前記非閉鎖型バルブ(1、65、73)の位置で前記第1のチャンネル(10)と再合流して排出チャンネル(14)を形成している第2のチャンネル(12、43、44);
    を有するマイクロ流体チャンネルシステム(10、12、14;43、44;63、64)を有しているマイクロ流体装置において、
    前記第2のチャンネル(12、43、44)が非閉鎖型または閉鎖型バルブのいずれをも有しておらず、その結果、前記液体供給コンパートメント(81、91、101)と前記排出チャンネル(14)を連結する遮るもののない液体流動通路をつくっていることを特徴とする上記装置。
  2. 前記第2のチャンネル(12、43、44)が、前記第1のチャンネル(10)から前記排出チャンネル(14)への液体(19)の流動を制御するためのトリガーチャンネルである、請求項1に記載のマイクロ流体装置。
  3. 前記第2のチャンネル(12、43、44)の幅または直径(13)が、前記第1のチャンネル(10)の幅または直径よりも小さい、請求項1に記載のマイクロ流体装置。
  4. 前記第2のチャンネル(12、43、44)の長さが、前記分岐位置から前記非閉鎖型バルブ(1、65、73)までの前記液体(19)の前記流動通路の長さよりも長い、請求項1に記載のマイクロ流体装置。
  5. 前記非閉鎖型バルブ(1、65、73)が形状型バルブである、請求項1に記載のマイクロ流体装置。
  6. 前記第1のチャンネル(10)および前記排出チャンネル(14)が前記非閉鎖型バルブ(1、65、73)により連結されており、前記第2のチャンネル(12、43、44)が、前記非閉鎖型バルブ(1)の上流で分岐し、前記非閉鎖型バルブ(1、65、73)の排出部のところで前記排出チャンネル(14)に合流する、請求項1に記載のマイクロ流体装置。
  7. 乾燥試薬が入っている機能チャンバー(40)が設けられている、請求項1に記載のマイクロ流体装置。
  8. 前記第2のチャンネル(12、43、44)が、前記機能チャンバー(40)の上流で前記第1のチャンネル(10)から分岐している、請求項7に記載のマイクロ流体装置。
  9. 前記第2のチャンネル(12、43、44)が、前記機能チャンバー(40)の下流で前記第1のチャンネル(10)から分岐している、請求項7に記載のマイクロ流体装置。
  10. 前記第2のチャンネル(12、43、44)が、前記機能チャンバー(40)の下流で前記排出チャンネル(14)に合流する、請求項7〜9のいずれか1項に記載のマイクロ流体装置。
  11. 前記第1のチャンネル(10、62)が、前記第2のチャンネル(12、43、44)と、前記第2のチャンネル(12、43、44)の分岐の下流に配置された少なくとも1つの非閉鎖型バルブ(1、65、73)をそれぞれ有する少なくとも2つの分割チャンネル(63)のアレイ(64)とに分割されており、前記第2のチャンネル(12、43、44)が、前記非閉鎖型バルブ(1、65、73)の下流で前記アレイ(64)の前記分割チャンネル(63)のそれぞれと再合流して排出チャンネルを形成している、請求項1に記載のマイクロ流体装置。
  12. 前記進入チャンネル(62)が、平面状構造体(71)の両面に配置された分割チャンネル(63)のアレイ(64)に分割されている、請求項1に記載のマイクロ流体装置。
  13. 前記平面状支持体(71)の両面上の前記分割チャンネル(63)が重なり合う位置において形状型バルブ(73)が形成されている、請求項1に記載のマイクロ流体装置。
JP2004308403A 2003-10-23 2004-10-22 流動トリガー装置 Ceased JP2005181295A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03024419A EP1525916A1 (en) 2003-10-23 2003-10-23 Flow triggering device

Publications (1)

Publication Number Publication Date
JP2005181295A true JP2005181295A (ja) 2005-07-07

Family

ID=34384625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308403A Ceased JP2005181295A (ja) 2003-10-23 2004-10-22 流動トリガー装置

Country Status (4)

Country Link
US (1) US20050118070A1 (ja)
EP (1) EP1525916A1 (ja)
JP (1) JP2005181295A (ja)
CA (1) CA2485189A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126177A (ja) * 2006-11-22 2008-06-05 Fujifilm Corp 二液合流マイクロ流路チップ及び二液合流装置
JP2009150810A (ja) * 2007-12-21 2009-07-09 Konica Minolta Medical & Graphic Inc マイクロチップ
JP2009190314A (ja) * 2008-02-15 2009-08-27 Canon Inc インクタンクおよびインクジェットカートリッジ
WO2009130976A1 (ja) * 2008-04-25 2009-10-29 アークレイ株式会社 微細流路および分析用具
JP2010525319A (ja) * 2007-04-16 2010-07-22 オーミック・アーベー 液体サンプルを処理するための装置
JP2011163986A (ja) * 2010-02-10 2011-08-25 Fujifilm Corp マイクロ流路デバイス
JP2011257238A (ja) * 2010-06-08 2011-12-22 Sekisui Chem Co Ltd 微量液滴秤取構造、マイクロ流体デバイス及び微量液滴秤取方法
JP2012532327A (ja) * 2009-07-07 2012-12-13 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 血漿分離リザーバ
JP2013541014A (ja) * 2010-10-29 2013-11-07 エフ.ホフマン−ラ ロシュ アーゲー 試料液体を分析するためのマイクロ流体素子
JP2013545095A (ja) * 2010-10-28 2013-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 補助チャネルおよびバイパス・チャネルを含むマイクロ流体デバイス

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060153745A1 (en) 2005-01-11 2006-07-13 Applera Corporation Fluid processing device for oligonucleotide synthesis and analysis
US7601936B2 (en) 2005-01-11 2009-10-13 William Thomas Joines Microwave system and method for controling the sterlization and infestation of crop soils
FR2890578B3 (fr) * 2005-09-09 2007-11-30 Rhodia Chimie Sa Dispositif d'ecoulement microfluidique permettant de determiner des parametres d'une transformation physique et/ ou chimique, et son utilisation
CN1996009B (zh) * 2007-01-10 2010-05-19 博奥生物有限公司 一种用于多样品分析的微流体器件和使用方法
WO2008113112A1 (en) * 2007-03-16 2008-09-25 Cleveland Biosensors Pty Ltd Stop structure for microfluidic device
DE102007018383A1 (de) 2007-04-17 2008-10-23 Tesa Ag Flächenförmiges Material mit hydrophilen und hydrophoben Bereichen und deren Herstellung
DE102007026998A1 (de) 2007-06-07 2008-12-11 Tesa Ag Hydrophiler Beschichtungslack
DE102008051008A1 (de) 2008-10-13 2010-04-15 Tesa Se Haftklebeband mit funktionalisierter Klebmasse und dessen Verwendung
EP2486978A1 (de) 2010-10-28 2012-08-15 Roche Diagnostics GmbH Mikrofluidischer Testträger zum Aufteilen einer Flüssigkeitsmenge in Teilmengen
US9822890B2 (en) * 2011-08-30 2017-11-21 The Royal Institution For The Advancement Of Learning/Mcgill University Method and system for pre-programmed self-power microfluidic circuits
KR101411253B1 (ko) * 2012-12-21 2014-06-23 포항공과대학교 산학협력단 미세 유체 계량 디스크 및 미세 유체 계량 방법
CN103191791B (zh) * 2013-03-01 2014-09-10 东南大学 生物微粒高通量分选和计数检测的集成芯片系统及应用
WO2015019336A2 (en) * 2013-08-08 2015-02-12 Universiteit Leiden Fluid triggable valves
US9604209B2 (en) 2015-03-19 2017-03-28 International Business Machines Corporation Microfluidic device with anti-wetting, venting areas
US11925933B2 (en) 2016-04-15 2024-03-12 President And Fellows Of Harvard College Systems and methods for the collection of droplets and/or other entities
JP6433473B2 (ja) 2016-11-04 2018-12-05 シスメックス株式会社 液体封入カートリッジ、液体封入カートリッジの製造方法および送液方法
EP3978134A1 (en) * 2017-07-05 2022-04-06 miDiagnostics NV Arrangement in a capillary driven microfluidic system for dissolving a reagent in a fluid
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
CN109326488A (zh) * 2018-12-19 2019-02-12 成都洛的高新材料技术有限公司 一种水解式自溶延时触发器
CN111450906B (zh) * 2019-01-22 2022-02-25 北京纳米能源与系统研究所 自驱动型电润湿阀门、纸基微流体芯片及免疫检测器件
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US20230083434A1 (en) * 2020-02-12 2023-03-16 University Of Canterbury Microfluidic sealing valve and microfluidic circuit
EP4179310A1 (en) 2020-07-07 2023-05-17 Waters Technologies Corporation Mixer for liquid chromatography
EP4179311A1 (en) 2020-07-07 2023-05-17 Waters Technologies Corporation Combination mixer arrangement for noise reduction in fluid chromatography
WO2022040690A1 (en) * 2020-08-21 2022-02-24 Colorado State University Research Foundation Flow control in microfluidic devices
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer
US20240328957A1 (en) * 2023-04-03 2024-10-03 Burst Diagnostics Llc Chemiluminescence microfluidic immunoassay device and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527250A (ja) * 1998-10-13 2002-08-27 バイオマイクロ システムズ インコーポレイテッド 受動流体力学に基づく流体回路構成要素
JP2004225912A (ja) * 2003-01-23 2004-08-12 Steag Microparts Gmbh マイクロ流体スイッチ
JP2004529333A (ja) * 2001-03-19 2004-09-24 ユィロス・アクチボラグ 流体機能を規定する構造ユニット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
US6591852B1 (en) * 1998-10-13 2003-07-15 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6601613B2 (en) * 1998-10-13 2003-08-05 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6743399B1 (en) * 1999-10-08 2004-06-01 Micronics, Inc. Pumpless microfluidics
US20010042712A1 (en) * 2000-05-24 2001-11-22 Battrell C. Frederick Microfluidic concentration gradient loop
JP4148778B2 (ja) * 2001-03-09 2008-09-10 バイオミクロ システムズ インコーポレイティッド アレイとのミクロ流体的インターフェース機器
US6919058B2 (en) * 2001-08-28 2005-07-19 Gyros Ab Retaining microfluidic microcavity and other microfluidic structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527250A (ja) * 1998-10-13 2002-08-27 バイオマイクロ システムズ インコーポレイテッド 受動流体力学に基づく流体回路構成要素
JP2004529333A (ja) * 2001-03-19 2004-09-24 ユィロス・アクチボラグ 流体機能を規定する構造ユニット
JP2004225912A (ja) * 2003-01-23 2004-08-12 Steag Microparts Gmbh マイクロ流体スイッチ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126177A (ja) * 2006-11-22 2008-06-05 Fujifilm Corp 二液合流マイクロ流路チップ及び二液合流装置
JP2010525319A (ja) * 2007-04-16 2010-07-22 オーミック・アーベー 液体サンプルを処理するための装置
JP2009150810A (ja) * 2007-12-21 2009-07-09 Konica Minolta Medical & Graphic Inc マイクロチップ
JP2009190314A (ja) * 2008-02-15 2009-08-27 Canon Inc インクタンクおよびインクジェットカートリッジ
US8398937B2 (en) 2008-04-25 2013-03-19 Arkray, Inc. Microchannel and analyzing device
WO2009130976A1 (ja) * 2008-04-25 2009-10-29 アークレイ株式会社 微細流路および分析用具
JP5255628B2 (ja) * 2008-04-25 2013-08-07 アークレイ株式会社 微細流路および分析用具
JP2012532327A (ja) * 2009-07-07 2012-12-13 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 血漿分離リザーバ
JP2011163986A (ja) * 2010-02-10 2011-08-25 Fujifilm Corp マイクロ流路デバイス
CN102192977A (zh) * 2010-02-10 2011-09-21 富士胶片株式会社 微流体器件
CN102192977B (zh) * 2010-02-10 2014-10-29 富士胶片株式会社 微流体器件
JP2011257238A (ja) * 2010-06-08 2011-12-22 Sekisui Chem Co Ltd 微量液滴秤取構造、マイクロ流体デバイス及び微量液滴秤取方法
JP2013545095A (ja) * 2010-10-28 2013-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 補助チャネルおよびバイパス・チャネルを含むマイクロ流体デバイス
US9421540B2 (en) 2010-10-28 2016-08-23 International Business Machines Corporation Microfluidic device with auxiliary and bypass channels
JP2013541014A (ja) * 2010-10-29 2013-11-07 エフ.ホフマン−ラ ロシュ アーゲー 試料液体を分析するためのマイクロ流体素子

Also Published As

Publication number Publication date
EP1525916A1 (en) 2005-04-27
US20050118070A1 (en) 2005-06-02
CA2485189A1 (en) 2005-04-23

Similar Documents

Publication Publication Date Title
JP2005181295A (ja) 流動トリガー装置
US6919058B2 (en) Retaining microfluidic microcavity and other microfluidic structures
JP5907979B2 (ja) 補助チャネルおよびバイパス・チャネルを含むマイクロ流体デバイス
KR100509254B1 (ko) 미세 유체의 이송 시간을 제어할 수 있는 미세 유체 소자
KR100705361B1 (ko) 모세관 유동 제어 모듈 및 이를 구비한 랩온어칩
EP1483052B1 (en) Retaining microfluidic microcavity and other microfluidic structures
US20160279632A1 (en) Microfluidic device with longitudinal and transverse liquid barriers for transverse flow mixing
JP2005519751A (ja) 微小流体チャネルネットワークデバイス
KR20050063358A (ko) 미소 유체 제어소자 및 미소 유체의 제어 방법
CN110058007B (zh) 单通道微流控芯片
JP7175547B2 (ja) プログラマブル・マイクロ流体ノードを備えたカスタマイズ可能なマイクロ流体デバイス
KR20100004262A (ko) 유체 혼합 방법 및 유체 혼합 장치
US10556233B2 (en) Microfluidic device with multi-level, programmable microfluidic node
EP1874676A1 (en) Separation structure
EP1874469A1 (en) A microfluidic device with finger valves
KR100967414B1 (ko) 유체 방울 혼합용 미세 유체 제어 장치 및 이를 이용하여 유체 방울을 혼합하는 방법
EP1525919A1 (en) Flow triggering device
Puttaraksa et al. Development of a microfluidic design for an automatic lab-on-chip operation
Chen Droplet-based Microfluidic Chip Design for High Throughput Screening Applications
KR20210158139A (ko) 채널 내 미세버블의 제거가 가능한 일회용 마이크로 플루이딕 디바이스
CA2456421A1 (en) Retaining microfluidic microcavity and other microfluidic structures

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070423

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20080722