JP2005174176A - レギュレータ用集積回路 - Google Patents

レギュレータ用集積回路 Download PDF

Info

Publication number
JP2005174176A
JP2005174176A JP2003416211A JP2003416211A JP2005174176A JP 2005174176 A JP2005174176 A JP 2005174176A JP 2003416211 A JP2003416211 A JP 2003416211A JP 2003416211 A JP2003416211 A JP 2003416211A JP 2005174176 A JP2005174176 A JP 2005174176A
Authority
JP
Japan
Prior art keywords
transistor
voltage
resistor
emitter
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003416211A
Other languages
English (en)
Inventor
Mitsuharu Ota
光治 大田
Masataka Tsuji
雅孝 辻
Shintaro Miyata
伸太郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003416211A priority Critical patent/JP2005174176A/ja
Publication of JP2005174176A publication Critical patent/JP2005174176A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】本発明は、使用する電源電圧が低下しても、フォトカップラを駆動するダイナミックレンジを確保できるレギュレータ用集積回路を提供する。
【解決手段】トランジスタ5及び8のエミッタにそれぞれ、抵抗6、7による直列回路と、抵抗9、10による直列回路と接続し、その直列接続点に差動増幅器Gを構成するトランジスタ11、15のベースを接続し、その差動増幅器Gの出力にNPN型、PNP型、NPN型のトランジスタ20、22、25でなる3段の増幅段を構成する。そして、最終段のトランジスタ25でフォトカップラPの発光ダイオードを駆動する。
【選択図】図1

Description

本発明は、バンドギャップ方式の基準電圧を用いて低電圧まで動作し温度変化が少なく、出力ダイナミックレンジが広いレギュレータ用集積回路に関する。
従来のバンドギャップ方式の基準電圧回路としては、例えば、特許文献1や、特許文献2などで紹介されている。これらの基準電圧回路には誤差増幅器が用いられるが、一般的な誤差増幅器としてオペレーショナルアンプ(以下、OPアンプという)が使用される。一般的にOPアンプを動作させるには、最低でも2V以上の電源電圧が必要であった。
一般的な従来の基準電圧回路について、図7を用いて説明する。従来例では、OPアンプの電源電圧として2V以上必要であり、バンドギャップの基準電圧である1.25Vまでの、さらにそれ以下の低電圧で使用するのは困難であった。
バンドギャップ基準電圧Vref(端子Rの電圧)は、
V7=V10+VOFFset
ΔV6=Vbe8−Vbe5
=VT・In(I8・Is5/I5・Is8)
=VT・In(R7・Is5/R10・Is8)
V7=(R7/R6)ΔV6
V7=(R7/R6)VT・In(R7・Is5/R10・Is8)
Vref=Vbe8+VOFFset+(R7/R6)VT・In(R7・Is5/R10・Is8)・・・(1)
と表される。
ここでV7はOPアンプの+入力電圧、V10は、OPアンプの−入力電圧、I5はトランジスタ5のエミッタ電流、I8はトランジスタ8のエミッタ電流、ΔV6は抵抗6の端子間電圧、Vbe5はトランジスタ5のベース−エミッタ間電圧、Vbe8はトランジスタ8のベース−エミッタ間電圧、R6、R7、R10は抵抗6、7、10の抵抗値、Is5はトランジスタ5の電流密度、Is8はトランジスタ8の電流密度、VOFFsetはOPのオフセット電圧、熱起電圧VTはVT=kT/qで表される。但し、qは電子の電荷、kはボルツマン定数、Tは絶対温度である。
一般にVbeは−2mV/℃、VTは+0.085mV/℃の温度特性を有し、R6とR7の抵抗比、R10とR7の抵抗比、及びトランジスタ5、8の電流密度すなわちエミッタ面積を適切に設定することにより、(1)式のVbe8以外の項目を+2mV/℃の温度特性に設定すれば、端子Rの温度変化を0に設計できる。温度変化を0に設計したこの電圧を一般にバンドギャップ電圧と言われ約1.25Vとなる(VOFFsetの温度変化は0とする)。図7に示すバンドギャップ基準電圧回路を可変シャントレギュレータ用に使用するには、図8に示す構成とする。可変シャントレギュレータの場合、Cはカソード、GNDをアノード、Rはレファレンスと呼ばれる。可変シャントレギュレータの主要な用途としてスイッチングレギュレータの2次側電圧のセンシング用フォトカップラ駆動に使用され、応用例のブロック図を図4に示す。
AC−DC制御用スイッチングレギュレータIC、SWの2次側出力電圧センサ用のフォトカップラ駆動用に可変シャントレギュレータSを使用する。AC−DC制御用スイッチングレギュレータSWで、商用交流電源を高周波でスイッチングし、トランスの1次側巻線に流し、2次側巻線に低電圧を得る。2次側で整流、平滑し、低電圧直流の大電流を得る。2次側の出力電圧を一定に制御するためAC−DC制御用スイッチングレギュレータのセンサ信号として1次側から絶縁された2次側出力電圧に比例した信号を得る必要があるため、可変シャントレギュレータSでフォトカップラPを駆動し前記スイッチングレギュレータSWの制御信号としている。例えば2次側の電圧が可変シャントレギュレータSで設定した電圧より高い場合、フォトカップラPに内蔵された発光ダイオードに流れる電流が増加し、発光ダイオードの発光量が増加し、発光ダイオードと対に配置されたフォトトランジスタの電流が増加する。この信号が前記スイッチングレギュレータSWのセンサ信号となり、スイッチングレギュレータSWのPWM制御によりパワーMOSFETのON時間を制御しトランスの2次側電圧を低下する方向に動作し電圧を一定に制御する動作を実行する。2次側電圧が低下する方向の場合は、上記とは逆の動作により一定に制御される。
可変シャントレギュレータの一般的なシンボルを用いて可変シャントレギュレータとフォトカップラとの説明を図9に示す。
Sは可変シャントレギュレータでAがアノード、Rがレファレンス、Cがカソードであり、レファレンスRは分割抵抗31、32の中点に接続され、中点電圧はレファレンス電圧のVrefに制御される。
抵抗31、32の抵抗値をR31、R32とすればe点の電圧Veは次式で表される。
Ve=(Vref・R31/R32)+Vref ・・・(2)
フォトカップラの発光ダイオード順方向電圧は、1.2V程度である。可変シャントレギュレータの電源電圧(この例では、カソード電圧)は2V程度必要であり、合計で3.2V必要となる。
この関係を図3の(ロ)に示す。e点の電圧が3.2V以上でないと可変シャントレギュレータのカソードに電流が流れない。つまり(2)式でR32を∞に設定し、VeをVref電圧の1.25Vに計算上設定した場合にもe点の電圧が3.2V以上でないとフォトカップラの発光ダイオードに電流が流れずフォトカップラが動作しない。また発光ダイオードの輝度制御のダイナミックレンジを0.5V必要と考えれば、すべての合計で3.7Vとなる。つまり、e点の電圧は、3.7V以上でないとフォトカップラの制御ができない。
特開平04−143811号公報 特許第2695515号公報
近年、電子機器の小型化、省電力化が顕著に進められており、従来、5V仕様で設計されていた電源電圧が3.3Vに、更には1.8Vが標準になりつつあり、電源電圧を低電圧化すると、フォトカップラを駆動制御することができないという不都合があった。
本発明は、使用する電源電圧が低下して、バンドギャップ電圧の1.25V程度に下がっても、さらにフォトカップラを駆動するダイナミックレンジを確保でき、外付部品の少ないレギュレータ用集積回路を提供する。
本発明のレギュレータ用集積回路は、電源端子aへダイオード接続した第1のトランジスタのエミッタを接続し、ベースとコレクタの接続点を第2のトランジスタのコレクタへ接続しエミッタを第1の抵抗を介して最低電位のアノード端子へ接続し、前記第2のトランジスタのベースを第2の抵抗を介して第3のトランジスタのベースと第4のトランジスタのベースに接続するとともに、レファレンス端子とし、第3、第4のトランジスタのコレクタを共に電源端子aに接続し、第3のトランジスタのエミッタを第3の抵抗と第4の抵抗の直列接続を介してアノード端子に接続すると共に、第4のトランジスタのエミッタを第5、第6の抵抗の直列接続を介してアノード端子に接続し、前記第3と第4の抵抗の中間接続点および第5、第6の抵抗の中間接続点に、差動増幅器を構成する第5、第6のトランジスタのベースをそれぞれ接続し、差動増幅器の出力をNPN型、PNP型、NPN型のトランジスタで3段増幅を行ない、3段目のNPNトランジスタのエミッタをアノード端子へ接続し、該トランジスタのコレクタをカソード端子とし、差動増幅器の出力から3段目のNPNトランジスタのコレクタへコンデンサと抵抗を直列接続した構成である。
また更には、2段目のPNPトランジスタのエミッタへもコンデンサを接続する帰還回路を設けてもよい。
前記説明から明らかなように、本発明の図1および図2に示す、可変シャントレギュレータの回路構成により、位相余裕が十分とれ、集積回路化した場合の外付け位相補償が不要になり、さらに起動時の初期電流も不要になるため初期電流用の抵抗も不要になり、小型、低価格が実現できる。またバンドギャップ基準電圧の調整が抵抗のトリミングで簡単にでき、さらにカソード端子と電源端子を別端子に分けることで、カソード端子の最低電圧を出力トランジスタの飽和電圧 約0.1Vまで動作させて使用することが可能となり、負荷のダイナミックレンジが増大し、従来と比較し約2Vの低電圧化が可能であるため低電圧の電源まで使用でき、大幅な低消費電力化、応用範囲の拡大が可能となる。
本発明の一実施の形態である図1を基に説明すれば、電源端子aからダイオード接続されたPNPトランジスタ1のエミッタを接続しトランジスタ1とカレントミラー構成したトランジスタ14を設け、トランジスタ1のベースとコレクタの接続点をNPNトランジスタ2のコレクタに接続しトランジスタ2のエミッタを抵抗3を介して接地しトランジスタ2のベースを抵抗4を介して基準電圧(Vref)端子Rに接続する。バンドギャップ基準電圧を構成するトランジスタ5のコレクタを電源端子aに接続しエミッタを直列接続した抵抗6、7を介して接地しベースをVref端子Rに接続すると共に、バンドギャップ基準電圧を構成する他の一方のトランジスタ8のコレクタを電源端子aに接続しエミッタを直列接続した抵抗9、10を介して接地しベースをVref端子Rに接続する。抵抗6、7および抵抗9、10の直列接続点を、差動増幅器を構成するPNPトランジスタ11、15のそれぞれのベースに接続すると共にトランジスタ11、15のそれぞれのエミッタを共通に接続すると共に、前記トランジスタ14のコレクタにも接続し、トランジスタ11のコレクタを、カレントミラー構成のNPNトランジスタ12のコレクタ、ベース接続点に接続し、カレントミラーを構成する他方のNPNトランジスタ16のコレクタは、前記差動増幅器を構成するトランジスタ15のコレクタに接続し、カレントミラーを構成するトランジスタ12、16のそれぞれのエミッタにそれぞれ、抵抗13、17を介して接地する。差動増幅器の出力であるトランジスタ15とトランジスタ16のそれぞれのコレクタの接続点をNPNトランジスタ20のベースに接続し、トランジスタ20のエミッタを接地し、コレクタを抵抗19を介して、電源端子aに接続すると共に、電源端子aから、抵抗21を介してエミッタに接続したPNPトランジスタ22のベースに接続する。前記トランジスタ22のコレクタを抵抗23を介して接地すると共に、出力トランジスタ26のベースに接続し、トランジスタ26のエミッタを接地し、コレクタを抵抗25とコンデンサ24の直列接続を介し、前記トランジスタ20のベースに接続すると共にカソード端子Cとして出力する。前記トランジスタ22のエミッタから、トランジスタ20のベース間に位相補償のコンデンサ18を接続する。前記カソード端子C、電源端子aおよび、Vref端子R、接地端子Aをそれぞれ出力端子とする集積回路化した構成とする。
(1)式からOPアンプ(本発明では、差動増幅器を構成するトランジスタ11、15、12、16のアンプ部)のオフセット電圧を微調整する事によりVref電圧を調整する事ができる。具体的には、差動増幅器を構成するトランジスタ12及び16のエミッタに接続する抵抗13、17をトリミングすることで、簡単にバンドギャップ電圧Vrefを調整することができる。
また、出力トランジスタ26のコレクタを単独でカソード端子Cとすることにより、Cの電圧は、出力トランジスタ26の飽和電圧まで動作することができ、フォトカップラ駆動のダイナミックレンジを大幅に広げることができる。また、従来、起動時に初期電流を流す抵抗が必要であったが、本発明はカソード端子が、独立しているため初期電流用の抵抗は不要になり、集積回路の外付部品を少なくできる。
具体的な動作を本発明の一実施の形態である図2を基に説明する。電源端子aに電圧を印加すると、PNPトランジスタ1、トランジスタ2がONし、トランジスタ1とカレントミラーを構成するトランジスタ14もONする。バンドギャップを構成するトランジスタ5、8および抵抗6、7、9、10と、差動増幅器を構成するトランジスタ11、12、15、16および20、22と駆動トランジスタ26でバンドギャップ回路が構成されて、バンドギャップ電圧は、1.25Vに制御される。
動作の説明のため、バンドギャップを構成するトランジスタ5、8のベースと出力トランジスタ26のコレクタを接続し、さらに直列接続した抵抗31と32の直列接続点に、トランジスタ26のコレクタを接続し、抵抗32の他方をGND、抵抗31を33の抵抗値をもつインピーダンスの高い電源に接続した場合、バンドギャップ電圧をVrefとすれば下記式(3)で設定される。
Vref+Vref(R31/R32)=Va
Vref=VaR32/(R31+R32) ・・・(3)
ここでVaはa点の電圧、R31は抵抗31の抵抗値、R32は抵抗32の抵抗値である。
バンドギャップを構成するトランジスタ8のエミッタにも抵抗9を接続し、後段にある差動増幅回路のインピーダンスの影響を少なくしている。
位相補償用コンデンサ18をトランジスタ20のベースとトランジスタ22のエミッタ間に接続すると共にトランジスタ20のベースと出力トランジスタ26のコレクタ間にコンデンサ24と抵抗25を直列接続することにより、回路全体の発振を防止するための位相補償を行なう。この位相補償により大きな位相余裕が得られ、集積回路化した場合、外付けでの位相補償が不要となり、小型化、低価格化に対応できる。
また、(3)式よりR31が0Ωの場合
Va=Vrefとなり、可変シャントレギュレータの電源電圧はバンドギャップ電圧Vref=1.25Vで正常に動作する必要があるが、本発明は可能である。
電圧低下で制約を受ける回路部分は、差動増幅回路部分であり、
VR13+Vbe12+VCEsat11+VCEsat14<Vref・・・(4)
の関係を成立させる必要がある。
ここで、VR13は、抵抗13の電圧降下、Vbe12はトランジスタ12のベース、エミッタ間電圧、VCEsat11はトランジスタ11のコレクタ、エミッタ間飽和電圧、VCEsat14はトランジスタ14のコレクタ、エミッタ間飽和電圧である。
(4)式を計算すると、左辺は0.1V+0.7V+0.1V+0.1V=1.0Vとなり、一方右辺はVref=1.25Vであるから、上記式(4)の関係が成立する。
本発明は、電源電圧がバンドギャップ電圧と同じに低下した場合にも正常に動作する。
具体例について説明するため、本発明の一実施の形態を図1に示す。
Eは、起動回路および差動増幅回路への定電流を形成し、Fは、バンドギャップ部、Gは、差動回路部で、FとGでバンドギャップ基準電圧回路を構成し、H部は出力トランジスタ26のコレクタを単独で出力端子とすることにより出力端子Cの電圧は、トランジスタ26の飽和電圧まで動作することができフォトカップラ駆動の場合、駆動範囲のダイナミックレンジを大幅に拡大することができる。
FとGで構成されるバンドギャップ基準電圧は(1)式と類似の式で計算される。
通常、コンピュータによるシミュレーションにより正確に計算され、抵抗6、7、9、10の抵抗値およびトランジスタ5、8のエミッタ面積を適切に選ぶことにより、温度変化の少ない基準電圧に設定する。この場合も基準電圧値は、1.25Vに選定される。
Gの差動増幅回路の位相補償のコンデンサ18を約30PFと共に、抵抗25とコンデンサ数PFの24との直列接続の負帰還回路を構成することにより、位相余裕が大きく取れ、集積回路外の位相補償用コンデンサを不要にでき小型化、低価格が実現できる。
一例として、位相−周波数特性を図6に示す。
Jが本発明のゲイン特性であり、Kが本発明の位相特性である。
jが従来の可変シャントレギュレータのゲイン特性で、kが位相特性である。従来例では、外付けで位相補償しない場合、位相余裕(ゲイン0時の位相)は30度と少なく、ゲイン特性も0になった後ピークが発生し発振の可能性がある。
本発明の特性は、位相余裕が100度あり、周波数特性にピークは無く、外付けで位相補償しない場合でも発振の危険はない。
カソード端子CをフォトカップラPの発光ダイオード駆動に接続して使用する。
端子aの電圧Veは、(2)式で示される。この設定電圧より端子aの電圧が高くなるとカソード端子Cから電流が流れ込みフォトカップラの発光ダイオードの電流が増大し、発光量が増加しフォトトランジスタの動作電流も増大する。図1に示す回路には、負帰還回路が構成されていない。
可変シャントレギュレータを一般的なシンボルとして記入し、フォトカップラ駆動部分の説明図を図5に示す。
Qは本発明の可変シャントレギュレータであり、Pはフォトカップラで、スイッチングレギュレータの2次電圧検出用に使用される。eはフォトカップラの駆動電圧で、この電圧をVeとすれば、(2)式で表される電圧に制御される。
また、eは絶縁型スイッチングレギュレータの2次出力でもあり、この電圧が設定より低下した場合、レファレンス端子RのVref電圧も低下し、可変シャントレギュレータQは、R端子を規定のVref電圧になるようカソード端子Cの吸込み電流を減少させ、フォトカップラ内の発光ダイオードの発光量が減少し、フォトカップラの信号として、スイッチングレギュレータの2次側出力電圧eを高める制御が行われeの電圧を一定に制御する動作が実行される。eの電圧が設定より高くなった場合は、上記説明の逆の動作を実行し、eの電圧を一定に制御する動作が実行される。応用例のブロック図を示す図4の可変シャントレギュレータにも簡単にそのまま応用でき、動作は上記説明の通りである。
従来は、可変シャントレギュレータのカソード端子Cが可変シャントレギュレータの電源と共通であったためカソード電圧は、バンドギャップ電圧Vref=1.25V以下の動作が不可能であり、フォトカップラ内の発光ダイオードの順方向電圧約1.2Vを考慮すれば、駆動電圧は3.7V以上が必要になっていた。
本発明は、電源端子をカソードCとは別端子とし、駆動トランジスタ26のオープンコレクタをカソード端子Cとする。駆動トランジスタ26の飽和電圧を0.1V、フォトカップラの順方向電圧を1.2V、輝度制御のダイナミックレンジ0.5Vを考慮しても、eの駆動電圧は、1.8Vの低電圧で正常に動作することができる。
この関係を図3の(イ)に示す。本発明の制御では、eの電圧が1.3Vでフォトカップラの発光ダイオードに電流を流し始めることができる。実際の制御は、ダイナミックレンジが必要で、この電圧に0.5Vを加えた1.8V以上が必要になる。従来例の(ロ)と比較し、約2Vの低電圧化が可能である。
また、素子のバラツキ等のためバンドギャップ基準電圧が設定値よりズレ、調整が必要になった場合、差動増幅回路のエミッタ抵抗13または17の抵抗値をトリミングすることにより簡単に調整が可能である。これはオペアンプのオフセット電圧調整の場合と同じ方法が利用でき、技術が確立しているため、高い信頼性が期待できる。
前記説明から明らかなように、本発明の図1および図2に示す、可変シャントレギュレータの回路構成により、位相余裕が十分とれ、集積回路化した場合の外付け位相補償が不要になり、さらに起動時の初期電流も不要になるため初期電流用の抵抗も不要になり、小型、低価格が実現できる。またバンドギャップ基準電圧の調整が抵抗のトリミングで簡単にでき、さらにカソード端子と電源端子を別端子に分けることで、カソード端子の最低電圧を出力トランジスタの飽和電圧 約0.1Vまで動作させて使用することが可能となり、負荷のダイナミックレンジが増大し、従来と比較し約2Vの低電圧化が可能であるため低電圧の電源まで使用でき、大幅な低消費電力化、応用範囲の拡大が可能となる。
本発明の可変シャントレギュレータの一実施の形態を示す図 本発明の可変シャントレギュレータ説明用の一実施の形態を示す図 フォトカップラ内の発光ダイオードに流れる電流とe端子電圧との関係を本発明の制御と従来の制御の特性を比較した特性図例を示す図 AC−DCスイッチングレギュレータに可変シャントレギュレータを使用しフォトカップラ駆動に応用した例を示す図 本発明の可変シャントレギュレータを使用したフォトカップラの駆動回路例を示す図 本発明の可変シャントレギュレータと従来の可変シャントレギュレータの周波数−位相特性例を示す図 バンドギャップ基準電圧の基本回路例を示す図 従来の可変シャントレギュレータの回路例を示す図 従来のシャントレギュレータを使用したフォトカップラの駆動回路例を示す図
符号の説明
1、2、5、8、11、12、14、15、16、20、22、26 トランジスタ
3、4、6、7、9、10、13、17、19、21、23、25、31、32、33 抵抗
18、24 コンデンサ
A アノード端子
a 可変シャントレギュレータの電源端子
C カソード端子
E 起動回路部分
e トランスの2次側電圧を整流、平滑した電圧
F バンドギャップ部分
G 差動増幅部分
H 出力トランジスタ部分
J、j ゲイン−周波数特性
K,k 位相−周波数特性
OP オペアンプ
P フォトカップラ
Q 本発明の可変シャントレギュレータ
R レファレンス端子
S 従来の可変シャントレギュレータ
SW AC−DC制御用スイッチングレギュレータIC
(イ)本発明の制御の特性例
(ロ)従来の制御の特性例

Claims (2)

  1. 電源端子へダイオード接続した第1のトランジスタのエミッタを接続し、ベースとコレクタの接続点を第2のトランジスタのコレクタへ接続しエミッタを第1の抵抗を介して最低電位へ接続し、前記第2のトランジスタのベースを第2の抵抗を介して第3のトランジスタのベースと第4のトランジスタのベースに接続すると共にレファレンス端子とし、第3、第4のトランジスタのコレクタを共に電源端子に接続し、第3のトランジスタのエミッタを第3の抵抗と第4の抵抗の直列接続を介して最低電位へ接続し、さらに第4のトランジスタのエミッタを第5の抵抗と第6の抵抗の直列接続を介して最低電位へ接続し、前記第3と第4の抵抗の直列接続点および第5と第6の抵抗の直列接続点に、差動増幅器を構成する第5と第6のトランジスタのベースをそれぞれ接続し、差動増幅器の出力をNPN型、PNP型、NPN型のトランジスタで3段の増幅を行い、3段目のNPN型トランジスタのエミッタを最低電位へ接続し、3段目のトランジスタのコレクタをカソード端子とし、前記最低電位をアノード端子とし前記レファレンス端子と電源端子とを合せて4端子を外部端子とするレギュレータ用集積回路。
  2. 差動増幅器の出力から3段目のNPNトランジスタのコレクタへコンデンサと抵抗を直列接続すると共に、2段目のPNPトランジスタのエミッタへコンデンサを接続する帰還回路を設けた請求項1に記載のレギュレータ用集積回路。
JP2003416211A 2003-12-15 2003-12-15 レギュレータ用集積回路 Pending JP2005174176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416211A JP2005174176A (ja) 2003-12-15 2003-12-15 レギュレータ用集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416211A JP2005174176A (ja) 2003-12-15 2003-12-15 レギュレータ用集積回路

Publications (1)

Publication Number Publication Date
JP2005174176A true JP2005174176A (ja) 2005-06-30

Family

ID=34735461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416211A Pending JP2005174176A (ja) 2003-12-15 2003-12-15 レギュレータ用集積回路

Country Status (1)

Country Link
JP (1) JP2005174176A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212311A (ja) * 2011-03-31 2012-11-01 New Japan Radio Co Ltd 定電流回路
JP2013102218A (ja) * 2007-08-10 2013-05-23 Rohm Co Ltd 駆動装置
CN103440013A (zh) * 2013-08-30 2013-12-11 江苏物联网研究发展中心 基于标准cmos工艺的不含无源元件的带隙基准电压源结构
JP2016158388A (ja) * 2015-02-24 2016-09-01 ローム株式会社 シャントレギュレータ回路、それを用いた絶縁型のdc/dcコンバータ、電源装置、電源アダプタおよび電子機器
US10938303B2 (en) 2007-08-10 2021-03-02 Rohm Co., Ltd. Driving device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102218A (ja) * 2007-08-10 2013-05-23 Rohm Co Ltd 駆動装置
US8796956B2 (en) 2007-08-10 2014-08-05 Rohm Co., Ltd. Driving device
US9104215B2 (en) 2007-08-10 2015-08-11 Rohm Co., Ltd. Driving device
US10170983B2 (en) 2007-08-10 2019-01-01 Rohm Co., Ltd. Driving device
US10938303B2 (en) 2007-08-10 2021-03-02 Rohm Co., Ltd. Driving device
US11133744B2 (en) 2007-08-10 2021-09-28 Rohm Co., Ltd. Driving device
US11863068B2 (en) 2007-08-10 2024-01-02 Rohm Co., Ltd. Driving device
JP2012212311A (ja) * 2011-03-31 2012-11-01 New Japan Radio Co Ltd 定電流回路
CN103440013A (zh) * 2013-08-30 2013-12-11 江苏物联网研究发展中心 基于标准cmos工艺的不含无源元件的带隙基准电压源结构
JP2016158388A (ja) * 2015-02-24 2016-09-01 ローム株式会社 シャントレギュレータ回路、それを用いた絶縁型のdc/dcコンバータ、電源装置、電源アダプタおよび電子機器

Similar Documents

Publication Publication Date Title
US7679353B2 (en) Constant-current circuit and light-emitting diode drive device therewith
US5939867A (en) Low consumption linear voltage regulator with high supply line rejection
US7151365B2 (en) Constant voltage generator and electronic equipment using the same
US8933682B2 (en) Bandgap voltage reference circuit
US6563295B2 (en) Low temperature coefficient reference current generator
KR100547236B1 (ko) 전력증폭기에서의 바이어스 안정화 회로
JP3710469B1 (ja) 電源装置、及び携帯機器
US7012791B2 (en) Constant-voltage power supply unit
US7619479B2 (en) Semiconductor integrated circuit
US7541872B2 (en) Startup circuit for subregulated amplifier
JP7173915B2 (ja) 電源回路
US6570437B2 (en) Bandgap reference voltage circuit
JP2005174176A (ja) レギュレータ用集積回路
EP1275195B1 (en) On chip current source
US8013582B2 (en) Voltage control circuit
JP3907640B2 (ja) 過電流防止回路
JP3542022B2 (ja) レギュレータ
JP4904954B2 (ja) 基準電圧発生回路
JP2004094788A (ja) ボルテージ・レギュレータ
US20190384344A1 (en) Circuit for Generating a Negative Higher Order Temperature Coefficient Current
JP2003153539A (ja) カレントバランス回路
CN117097133A (zh) 抑制磁饱和的电源供应器
JP2003345449A (ja) 基準電圧発生回路
JP2003323223A (ja) 安定化電源回路およびそれを備えた電源装置
JPH08255025A (ja) 半導体装置