JP2005164264A - 振動式測定装置 - Google Patents

振動式測定装置 Download PDF

Info

Publication number
JP2005164264A
JP2005164264A JP2003399849A JP2003399849A JP2005164264A JP 2005164264 A JP2005164264 A JP 2005164264A JP 2003399849 A JP2003399849 A JP 2003399849A JP 2003399849 A JP2003399849 A JP 2003399849A JP 2005164264 A JP2005164264 A JP 2005164264A
Authority
JP
Japan
Prior art keywords
sensor
straight pipe
bent portion
pair
sensor tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399849A
Other languages
English (en)
Inventor
Terufumi Iwata
照史 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003399849A priority Critical patent/JP2005164264A/ja
Publication of JP2005164264A publication Critical patent/JP2005164264A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】 本発明はピックアップからの検出信号にノイズが重畳されないことを課題とする。
【解決手段】 質量流量計10において、センサチューブ18,20、加振器22,24、ピックアップ26,28及びブラケット62,64,70,72をベース16の中心を通る軸線Oに対して点対称となるように配置した。そのため、質量流量計10では、センサチューブ18,20を加振器22,24により振動させる際に不要な振動が発生しにくくなり、コリオリ力による振動成分のみをピックアップ26,28によって検出することが可能になるので、例えば、比重(相対密度)の小さい圧縮性流体を計測する場合でも正確に流量計則することが可能になる。
【選択図】 図1

Description

本発明は振動式測定装置に係り、特にセンサチューブを加振してコリオリ力によるセンサチューブの変位を検出して流量または密度を計測するよう構成した振動式測定装置に関する。
流体が供給された管路を振動させて流体の物理量を測定する振動式測定装置として、例えばコリオリ式質量流量計又は振動式密度計がある。以下、コリオリ式質量流量計について説明する。
このコリオリ式質量流量計では、被測流体が通過するセンサチューブを加振器により半径方向に振動させ、流量に比例したコリオリ力によるセンサチューブの変位をピックアップにより検出するよう構成されている。また、振動式密度計も上記コリオリ式質量流量計と同様な構成になっており、センサチューブが被測流体の密度に応じた周波数で振動する。
従来の振動式測定装置としては、例えば、コリオリ式質量流量計の場合、一対のセンサチューブに流体を流し、加振器(駆動コイル)の駆動力により一対のセンサチューブを互いに近接、離間する方向に振動させる構成とされている(例えば、特許文献1参照)。
また、加振器及びピックアップは、マグネットとコイルとから構成されており、加振器の駆動コイルに駆動パルスまたは正負のある交番電圧(交流信号)が入力されると、センサチューブに取り付けられた駆動用マグネットに対して吸引力または反発力を作用させてセンサチューブを振動させ、振動するセンサチューブに取り付けられた検出用マグネットの変位をピックアップのセンサコイル(検出部)から出力される検出信号により検出するようになっている。
そして、コリオリの力は、センサチューブの振動方向に働き、かつ入口側と出口側とで逆向きであるのでセンサチューブに捩れが生じ、この捩れ角が質量流量に比例する。従って、一対のセンサチューブの入口側及び出口側夫々の捩れる位置に振動を検出するピックアップ(振動センサ)を設け、両センサの出力検出信号の時間差(位相差)を計測することで上記センサチューブの捩れ、つまり質量流量を計測している。
ところが、例えば自動車の燃料として使用されるCNG(Compressed Natural Gas)等の高圧に加圧された圧縮性天然ガスを給送するガス供給系路に上記質量流量計を設けて流量計測を行う場合、センサチューブの耐圧強度を高める必要がある。
また、近年、燃料電池の開発が進むと共に、燃料電池に供給される水素の充填装置にもコリオリ式質量流量計を用いることが検討されている。
しかしながら、センサチューブの肉厚を厚くすると、センサチューブを振動させる加振器の駆動力を大きくしなければならず、且つセンサチューブの剛性が高くなった分、計測時の共振振幅が小さくなって外乱の影響を受けやすくなったり、流量計測時、流入側及び流出側の振動センサの位相差(ねじれ角)が小さくなったりして、計測精度が低下するといった課題が生じる。
特開平2−262017号公報
上記のように構成された振動式測定装置では、圧縮されたガスの流量を計測する場合、ガスの種類によって比重(相対密度)の差異によって計測時に得られるセンサコイルから出力が変化するため、例えば、比重の小さい流体を計測する場合には、センサチューブの入口側及び出口側の位相差を微小な検出信号から検出することになる。
そのため、比重の小さい圧縮性流体を計測することができるように、センサチューブの剛性を下げたり、ピックアップの検出感度を上げるなどの改良が進められている。
しかしながら、振動式測定装置においては、計測感度を高めることにより、振動するセンサチューブの不要なノイズまで検出してしまい、ピックアップのセンサコイルから出力された信号には、本来検出すべきコリオリ力による変位を検出した検出信号に、センサチューブの不要な振動に伴うノイズが重畳されてしまうため、正確な計測ができなくなるおそれがあった。
そこで、本発明は上記問題を解決した振動式測定装置を提供することを目的とする。
請求項1記載の発明は、被測流体の流入口と前記被測流体の流出口とを有するベースと、
一端が前記流入口に連通され、他端が前記流出口に連通され、被測流体が流れる同一形状の一対のセンサチューブと、
前記一対のセンサチューブの夫々を加振する一対の加振器と、
前記一対のセンサチューブの流入側の相対変位を検出する流入側ピックアップと、
前記一対のセンサチューブの流出側の相対変位を検出する流出側ピックアップと、
を有する振動式測定装置において、
前記一対のセンサチューブを、任意の軸線に対して軸方向から見て点対称となるように配置し、該センサチューブに、前記各加振器及び前記各ピックアップも前記軸線に対して点対称となるように配置したことを特徴とするものである。
請求項3記載の発明は、前記一対のセンサチューブが、第1乃至第4の直管部が平行に延在形成され、且つ長さが同一寸法に形成されたことを特徴とするものである。
請求項4記載の発明は、前記第1のセンサチューブの第1の曲げ部に前記第1の加振器のコイルを取り付け、
前記第1のセンサチューブの第3の曲げ部に前記第1の加振器のマグネットを取り付け、
前記第2のセンサチューブの第1の曲げ部に前記第2の加振器のマグネットを取り付け、
前記第2のセンサチューブの第3の曲げ部に前記第2の加振器のコイルを取り付け、
前記第1のセンサチューブの第1の直管に前記流入側ピックアップのマグネットを取り付け、
前記第2のセンサチューブの第1の直管に前記流入側ピックアップのコイルを取り付け、
前記第1のセンサチューブの第4の直管に前記流出側ピックアップのコイルを取り付け、
前記第2のセンサチューブの第4の直管に前記流出側ピックアップのマグネットを取り付けたことを特徴とするものである。
本発明によれば、センサチューブ、加振器、ピックアップの配置によるバランスが取れているので、センサチューブを加振器により振動させる際に不要な振動が発生しにくくなり、コリオリ力による振動成分のみをピックアップによって検出することが可能になるので、例えば、比重(相対密度)の小さい圧縮性流体を計測する場合でも正確に流量計則することが可能になる。
以下、図面と共に本発明の一実施例について説明する。
図1は本発明になる振動式測定装置の一実施例としてのコリオリ式質量流量計の正面図である。図2はコリオリ式質量流量計の側面図である。図3はコリオリ式質量流量計の平面図である。尚、図1及び図2において、ベース16の内部が分かるように、一部断面で示してある。
また、振動式測定装置は、被測流体の密度、及び密度を利用して質量流量を求めることができるため、振動式密度計及びコリオリ式質量流量計として用いられる。振動式密度計とコリオリ式質量流量計とは、同様な構成であるので、本実施例では質量流量計として用いた場合について詳細に説明する。
図1乃至図3に示されるように、質量流量計10は、流入口12と流出口14とを有するベース16と、一対のセンサチューブ18,20と、一対のセンサチューブ18,20をXa,Xb方向に加振する一対の加振器22,24と、振動するセンサチューブ18,20の流入側の変位を検出する流入側ピックアップ26と、振動するセンサチューブ18,20の流出側の変位を検出する流出側ピックアップ28とを有する。
ベース16の下面に設けられた流入口12は、分流路30,32を介して流入側接続部材34,36に連通されている。また、ベース16に設けられた流出口14も同様に、分流路38,40を介して流入側接続部材42,44に連通されている。
流入側接続部材34,36及び流出側接続部材42,44は、中空形状の円筒部材により形成されており、ベース16の上面側に設けられた取付孔16a〜16dに挿入された状態で溶接等により固着されている。
そして、センサチューブ18,20の両端部は、流入側接続部材34,36及び流出側接続部材42,44の内部を貫通する貫通孔34a,36a,42a,44aに挿入されており、ベース16上に固定されると共に、半径方向への振動に耐えられるように補強されている。
ここで、図4を参照してセンサチューブ18,20の構成について説明する。図4はセンサチューブ18,20の構成を説明するための図であり、(A)は左側面図、(B)は正面図である。
図4(A)(B)に示されるように、センサチューブ18,20は、夫々同一形状に形成されており、一端が流入口12に連通されるように流入側接続部材34,36に挿入された第1の直管部46と、第1の直管部46の他端に連通された第1の曲げ部48と、一端が第1の曲げ部48の他端に連通された第2の直管部50と、第2の直管部50の他端に連通され、第1の曲げ部48と直交する方向に曲げられた第2の曲げ部52と、一端が第2の曲げ部52の他端に連通された第3の直管部54と、第3の直管部54の他端に連通され、第1の曲げ部48と同じ方向に曲げられた第3の曲げ部56と、一端が第3の曲げ部56の他端に連通され、他端が流出口14に連通されるように流出側接続部材42,44の挿入された第4の直管部58とを有する。
第1の曲げ部48及び第3の曲げ部56は、加振器22,24による振動方向(Xa,Xb方向)と直交するY方向平面で湾曲されており、第2の曲げ部52は振動方向(Xa,Xb方向)のX方向平面で湾曲されている。また、第1の曲げ部48と第3の曲げ部56は、同一の曲率半径となるように曲げ加工されている。センサチューブ18,20は、夫々左右対称な形状に形成されており、且つセンサチューブ18と20とは、上方からみて前後方向及び左右方向で共に対称な構成になっている。従って、センサチューブ18,20を構成する各部は、ベース16上に固定されることにより、ベース16の中心を通る軸線Oに対して対称となるように配置される。
ここで、軸線Oは、本発明の任意の軸線である。そして、図3に示すように各第1の直管部46、各第4の直管部58は、これら4本の直管部が軸線O中心とする仮想円E上に配設される。この結果、図3に示すように、センサチューブ18,20は、軸線Oの軸方向から見て、軸線Oに対して点対称となっている。すなわち、一対のセンサチューブ18,20は、任意の軸線Oに対して軸方向から見て点対称となるように配置され、センサチューブ18,20には、各加振器22,24、及び各ピックアップ26,28も軸線Oに対して点対称となるように配置されている。
また、各直管部46,50,54,58は、ベース16の上方に横架された支持部材60に固着されており、この支持部材60による固着部分が支点となって振動することになる。そして、支持部材60より上方に延在する長手方向(図4では鉛直方向)の長さが同一寸法になるように形成されている。この支持部材60は、図3に示されるように、センサチューブ18と20との間でY方向に延在する第1の支持部60aと、第1の支持部60aの両端よりXa,Xb方向に延在して各直管部46,50,54,58の外周に結合された第2、第3の支持部60b,60cとを有する。
また、内側に配置される第1の直管部46と第4の直管部58との間には、ピックアップ26,28がブラケット64,62を介して取り付けられるため、外側に配置される第2の直管部50、第3の直管部54の外周には、振動時にブラケット62,64とのバランスを取るため、金属板からなるバランサ66,68が固着されている。
ここで、上記加振器22,24の構成及び取付構造について説明する。図5は加振器22,24の構成及び取付構造を示す拡大図である。尚、図5においては、加振器22,24のみを断面で示している。
センサチューブ18,20の第1の曲げ部48と第3の曲げ部56との間には、ブラケット70,72を介して加振器22,24がXa,Xb方向に装架されるように取り付けられている。加振器22,24は、円筒形状に形成された駆動コイル74と、駆動コイル74の中空部分に挿入されたロッド状の駆動マグネット76とから構成されている。
加振器22の駆動コイル74は、ブラケット70によりセンサチューブ18の第1の曲げ部48の中間点(図1中、最上端位置)に支持されており、ブラケット70は第1の曲げ部48の中間点の外周に固着されている。また、加振器22の駆動マグネット76は、永久磁石からなり、ブラケット72により第3の曲げ部56の中間点(図1中、最上端位置)に支持されており、ブラケット72は第3の曲げ部56の中間点の外周に固着されている。
また、加振器24の駆動コイル74は、ブラケット70によりセンサチューブ20の第1の曲げ部48の中間点(図1中、最上端位置)に支持されており、ブラケット70は第1の曲げ部48の中間点の外周に固着されている。また、加振器24の駆動マグネット76は、永久磁石からなり、ブラケット72により第3の曲げ部56の中間点(図1中、最上端位置)に支持されており、ブラケット72は第3の曲げ部56の中間点の外周に固着されている。
すなわち、加振器22と24とは、図3に示されるように、180度逆向きに設けられており、ベース16の軸線Oに対して点対称となるように配置されている。
従って、駆動コイル74に駆動パルスまたは正負のある交番電圧(交流信号)が入力されると、駆動マグネット76に対して吸引力または反発力を作用させて第1の曲げ部48、第3の曲げ部56をXa,Xb方向に加振する。そして、加振器22,24は、第1の曲げ部48と第3の曲げ部56とを互いに近接する方向、あるいは離間させる方向に駆動力を発生させるため、センサチューブ18,20の各直管部46,50,54,58は、図6中破線で示すように、支持部材60に固着された部分を支点として第1の曲げ部48及び第3の曲げ部56に連続する上端部分がXa,Xb方向に振動する。
この振動状態のセンサチューブ18,20に被測流体が流れると、被測流体の質量に応じた大きさのコリオリ力がセンサチューブ18,20に作用する。そして、流入側の直管部46,50では、振動方向と逆方向にコリオリ力が作用して検出信号の位相が遅れ、流出側の直管部54,58では、振動方向にコリオリ力が作用して検出信号の位相が進む。この流入側と流出側との位相差が質量流量に比例しており、位相差に基づいて流量を計測することができる。
ここで、上記ピックアップ26,28の構成及び取付構造について説明する。
図3に示されるように、流入側ピックアップ26は、センサチューブ18,20の流入側の直管部46間に装架されるように取り付けられている。また、流出側ピックアップ28は、センサチューブ18,20の流出側の直管部58間に装架されるように取り付けられている。
流入側ピックアップ26は、検出用マグネット80とセンサコイル82とから構成されている。センサコイル82は、垂直状態に支持されており、上方から見るとコ字状に形成された検出用マグネット80の凹部80aに挿入されている。そのため、検出用マグネット80とセンサコイル82との間で相対変位が生じると、センサコイル82に電磁誘導電流が流れ、センサチューブ18,20の振幅に応じた大きさの検出信号が出力される。
流入側ピックアップ26の検出用マグネット80は、ブラケット62を介してセンサチューブ18の直管部46の上端付近に取り付けられており、ブラケット62はセンサチューブ18の直管部46の外周に固着されている。流入側ピックアップ26のセンサコイル82は、ブラケット64を介してセンサチューブ20の直管部46の上端付近に取り付けられており、ブラケット62はセンサチューブ20の直管部46の外周に固着されている。
流出側ピックアップ28は、上記流入側ピックアップ26と同様に、検出用マグネット80とセンサコイル82とから構成されている。そして、ピックアップ26,28の検出用マグネット80及びセンサコイル82は、ベース16の軸線Oに対して上方から見て点対称となるように配置されている。すなわち、流出側ピックアップ28では、検出用マグネット80は、ブラケット62を介してセンサチューブ20の直管部58の上端付近に取り付けられており、ブラケット62はセンサチューブ20の直管部58の外周に固着されている。流入側ピックアップ28のセンサコイル82は、ブラケット64を介してセンサチューブ18の直管部58の上端付近に取り付けられており、ブラケット62はセンサチューブ18の直管部58の外周に固着されている。
さらに、加振器22,24の駆動コイル74及びピックアップ26,28のセンサコイル82は、流量計測制御回路(図示せず)に接続されており、流量計測制御回路は、本質安全防爆バリア回路、励振・時間差検出回路、ヤング率・V/F変換回路、出力回路、電源回路、減衰率検出回路、判別回路、制御回路(夫々図示せず)等を有する。
流量計測時、上記構成になる質量流量計10において、流量計測制御回路によって加振器22,24が駆動され、センサチューブ18,20の振動特性(固有振動数)に応じた周期、振幅でセンサチューブ18,20の第1の曲げ部48と第3の曲げ部56とをXa,Xb方向に加振させる。
このように、振動するセンサチューブ18,20に流体が流れると、その流量に応じた大きさのコリオリ力が発生する。そのため、センサチューブ18,20の流入側の直管部48と流出側の直管部58で動作遅れが生じ、これにより流入側ピックアップ26と流出側ピックアップ28との出力信号に位相差が生じる。
流量計測制御回路80は、上記流入側の出力信号と流出側の出力信号との位相差が流量に比例するため、当該位相差に基づいて流量を演算する。よって、センサチューブ18,20の相対変位がピックアップ26,28により検出されると、上記センサチューブ18,20の振動に伴う上記位相差が流量計測制御回路により質量流量に変換される。
本実施例の質量流量計10では、図3に示されるように、センサチューブ18,20、加振器22,24、ピックアップ26,28、各ブラケット62,64,70,72の配置がベース16の軸線Oに対して点対称に配置されているので、各部のバランスが取れており、センサチューブ18,20の振動に伴って不要な振動を極力抑えることができる。そのため、質量流量計10では、センサチューブ18,20を共振状態に加振させているにも拘らず、ピックアップ26,28からの検出信号にノイズが重畳することが防止され、計測精度をより高めることが可能になる。従って、例えば、比重の小さい圧縮性流体の質量流量を計測する場合でも、ピックアップ26,28からの検出信号を判別することが可能になり、被測流体の質量流量を正確に計測することが可能になる。
尚、上記実施例では、CNGや水素のような可燃性ガスを被測流体として流量計測する場合を例に挙げたが、これに限らず、他の高圧、高温の流体を計測するのにも適用できるのは勿論である。
また、上記実施例では、センサチューブの形状を4本の直管部と3本の曲げ部の組み合わせた構成としたが、これに限らず、他の形状のセンサチューブにも適用することができるのは言うまでも無い。
本発明になる振動式測定装置の一実施例としてのコリオリ式質量流量計の正面図である。 コリオリ式質量流量計の側面図である。 コリオリ式質量流量計の平面図である。 センサチューブ18,20の構成を説明するための図であり、(A)は左側面図、(B)は正面図である。 加振器22,24の構成及び取付構造を示す拡大図である。 センサチューブの振動状態を示す側面図である。 センサチューブの振動状態を示す平面図である。
符号の説明
10 質量流量計
16 ベース
18,20 センサチューブ
22,24 加振器
26 流入側ピックアップ
28 流出側ピックアップ
46 第1の直管部
48 第1の曲げ部
50 第2の直管部
52 第2の曲げ部
54 第3の直管部
56 第3の曲げ部
58 第4の直管部
60 支持部材
62,64,70,72 ブラケット
74 駆動コイル
76 駆動マグネット
80 検出用マグネット
82 センサコイル

Claims (4)

  1. 被測流体の流入口と前記被測流体の流出口とを有するベースと、
    一端が前記流入口に連通され、他端が前記流出口に連通され、被測流体が流れる同一形状の一対のセンサチューブと、
    前記一対のセンサチューブの夫々を加振する一対の加振器と、
    前記一対のセンサチューブの流入側の相対変位を検出する流入側ピックアップと、
    前記一対のセンサチューブの流出側の相対変位を検出する流出側ピックアップと、
    を有する振動式測定装置において、
    前記一対のセンサチューブを、任意の軸線に対して軸方向から見て点対称となるように配置し、該センサチューブに、前記各加振器及び前記各ピックアップも前記軸線に対して点対称となるように配置したことを特徴とする振動式測定装置。
  2. 前記一対のセンサチューブは、
    一端が前記流入口に連通される第1の直管部と、
    該第1の直管部の他端に連通された第1の曲げ部と、
    一端が前記第1の曲げ部の他端に連通された第2の直管部と、
    該第2の直管部の他端に連通され、前記第1の曲げ部と異なる方向に曲げられた第2の曲げ部と、
    一端が前記第2の曲げ部の他端に連通された第3の直管部と、
    該第3の直管部の他端に連通され、前記第1の曲げ部と同じ方向に曲げられた第3の曲げ部と、
    一端が前記第3の曲げ部の他端に連通され、他端が前記流出口に連通された第4の直管部と、
    を有することを特徴とする請求項1記載の振動式測定装置。
  3. 前記一対のセンサチューブは、第1乃至第4の直管部が平行に延在形成され、且つ長さが同一寸法に形成されたことを特徴とする請求項2記載の振動式測定装置。
  4. 前記第1のセンサチューブの第1の曲げ部に前記第1の加振器のコイルを取り付け、
    前記第1のセンサチューブの第3の曲げ部に前記第1の加振器のマグネットを取り付け、
    前記第2のセンサチューブの第1の曲げ部に前記第2の加振器のマグネットを取り付け、
    前記第2のセンサチューブの第3の曲げ部に前記第2の加振器のコイルを取り付け、
    前記第1のセンサチューブの第1の直管に前記流入側ピックアップのマグネットを取り付け、
    前記第2のセンサチューブの第1の直管に前記流入側ピックアップのコイルを取り付け、
    前記第1のセンサチューブの第4の直管に前記流出側ピックアップのコイルを取り付け、
    前記第2のセンサチューブの第4の直管に前記流出側ピックアップのマグネットを取り付けたことを特徴とする請求項2または3記載の振動式測定装置。

JP2003399849A 2003-11-28 2003-11-28 振動式測定装置 Pending JP2005164264A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399849A JP2005164264A (ja) 2003-11-28 2003-11-28 振動式測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399849A JP2005164264A (ja) 2003-11-28 2003-11-28 振動式測定装置

Publications (1)

Publication Number Publication Date
JP2005164264A true JP2005164264A (ja) 2005-06-23

Family

ID=34724284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399849A Pending JP2005164264A (ja) 2003-11-28 2003-11-28 振動式測定装置

Country Status (1)

Country Link
JP (1) JP2005164264A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066433A1 (en) * 2012-10-22 2014-05-01 Goodbread Joseph H Method and device for measuring fluid properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066433A1 (en) * 2012-10-22 2014-05-01 Goodbread Joseph H Method and device for measuring fluid properties

Similar Documents

Publication Publication Date Title
CA2484668C (en) Vibratory transducer
RU2492430C2 (ru) Вибрационный измерительный преобразователь, а также поточный контрольно-измерительный прибор с указанным преобразователем
US6851323B2 (en) Vibratory transducer
RU2557409C2 (ru) Измерительная система для измерения плотности или весовой пропускной способности протекающей в трубопроводе среды
JP3947111B2 (ja) 振動式トランスデューサ
JP2004538449A (ja) 振動型トランスデューサ
JP2011515697A (ja) 二重ピックオフ振動式流量計
JPH04236328A (ja) 質量流量計
KR100857981B1 (ko) 3차 모드 진동식 코리올리 유량계
JP5096365B2 (ja) 振動型測定変換器
JP2004286514A (ja) 渦流量計センサ及び渦流量計
KR100797728B1 (ko) 코리올리 유량계
RU2298165C2 (ru) Измерительный преобразователь вибрационного типа, прибор для измерения вязкости протекающей по трубопроводу жидкости, а также массового расхода и/или плотности и применение измерительного преобразователя для измерения вязкости протекающей по трубопроводу жидкости
JP2005164264A (ja) 振動式測定装置
JP2005106573A (ja) 振動式測定装置
JP2008209223A (ja) コリオリ式質量流量計
JP2006084372A (ja) 三次モード振動式コリオリ流量計
US20010045133A1 (en) Coriolis flowmeter
JPH067324Y2 (ja) 質量流量計
JP2004061125A (ja) 振動式測定装置
JP2014006230A (ja) コリオリ流量計
JPH1151733A (ja) 振動式測定装置
JPH0979882A (ja) 振動式測定装置
JP2004294090A (ja) 振動式測定装置
JP2005106575A (ja) 振動式測定装置