JP2005158284A - ガス燃焼装置における開閉弁制御方法 - Google Patents

ガス燃焼装置における開閉弁制御方法 Download PDF

Info

Publication number
JP2005158284A
JP2005158284A JP2003390818A JP2003390818A JP2005158284A JP 2005158284 A JP2005158284 A JP 2005158284A JP 2003390818 A JP2003390818 A JP 2003390818A JP 2003390818 A JP2003390818 A JP 2003390818A JP 2005158284 A JP2005158284 A JP 2005158284A
Authority
JP
Japan
Prior art keywords
valve
gas
condensed water
gas combustion
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003390818A
Other languages
English (en)
Inventor
Karuki Hamada
香留樹 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003390818A priority Critical patent/JP2005158284A/ja
Publication of JP2005158284A publication Critical patent/JP2005158284A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 システムの複雑化及びコストや質量の増加を招くことが無く、着火性及び燃焼性能を向上させることのできるガス燃焼装置を提供する。
【解決手段】 燃料電池スタックから排出される凝縮水を含んだカソードオフガスを、開閉弁13を介してガス燃焼装置5の燃焼器8内に導入させる際に、凝縮水のストークス(Stokes)数が1を超えるときには、前記開閉弁13をカソードオフガスの流れ方向Aと略平行に傾け(X1の状態)、凝縮水のストークス(Stokes)数が1近傍部であるときには、前記開閉弁13をカソードオフガスの流れ方向Aに対して傾斜(X2の状態)させ、凝縮水のストークス(Stokes)数が1未満であるときには、前記開閉弁13をカソードオフガスの流れ方向と略平行に傾ける(X1の状態)。
【選択図】 図2

Description

本発明は、ガス燃焼装置における開閉弁制御方法に関し、詳細には、燃料電池スタックから排出された酸化剤に含まれる凝縮水に影響されることなく該酸化剤と燃料の混合気を効率良く燃焼させるための燃焼性能向上技術に関する。
燃料電池スタックから排出されるカソードオフガスには凝縮水(水分)が多く含まれることから、このカソードオフガスを触媒燃焼器に流入させる前に、加熱器に導入してオフガス中の水分を気化させる技術が知られている(特許文献1など参照)。
特開2002−198076号公報(第3頁〜第5頁、第1図および第2図)
しかしながら、特許文献1に記載の燃料電池システムでは、間欠的にオフガスが排出される場合、熱交換が不可能となったり、熱交換しても燃焼器に入る前の配管内で冷やされて凝縮し、触媒表面を水分が覆い触媒反応が妨げられ、アノードオフガスが未燃焼のまま排出される恐れがあった。
また、特許文献1に記載の燃料電池システムでは、加熱器を設置することにより、システムが複雑化し、コストや質量の増加にもつながる。また、この燃料電池システムでは、加熱器によってオフガスの圧損が増加するためシステム効率が低下する恐れがある。
そこで、本発明は、システムの複雑化及びコストや質量の増加を招くことが無く、着火性及び燃焼性能を向上させることのできるガス燃焼装置における開閉弁制御方法を提供することを目的とする。
本発明のガス燃焼装置における開閉弁制御方法では、燃料電池スタックから排出される凝縮水を含んだ酸化剤を、開閉弁を介してガス燃焼装置の燃焼器内に導入させる際に、酸化剤に含まれる凝縮水のストークス(Stokes)数に応じて、燃焼器内へと流入する酸化剤の流れに対する前記開閉弁の弁角度を可変させる。
ここで定義するストークス(Stokes)数は、凝縮水(液水)の空力反応の時定数(aerodynamic response time of droplet)対ガス全体としての流れる時定数(time scale of continuous phase)の比率を表す。具体的には、ストークス(Stokes)数=(ρd/18μ)/(D/U)で表される。但し、ρ=水の密度、d=水粒径、μ=水の粘度、D=燃焼器内径、U=平均気体流速とする。
本発明のガス燃焼装置における開閉弁制御方法によれば、酸化剤に含まれる凝縮水のストークス(Stokes)数に応じて、燃焼器内へと流入する酸化剤の流れに対する開閉弁の弁角度を可変させることにより、酸化剤に含まれる水分(液水)と燃料とを分離させることができ、低液水濃度でかつ高燃料濃度の部分を核として着火性および燃焼性能を向上させることができる。
以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。
[燃料電池システム全体の構成]
先ず、燃料電池システム全体の構成について簡単に説明する。図1は燃料電池システムの概略構成図である。
この燃料電池システムでは、図1に示すように、例えば従来公知の空気供給システムであるコンプレッサー1によって外部空気が供給され、その供給された外部空気がやはり従来公知の空気加湿技術を用いた加湿器2にて加湿される。
加湿された空気は、燃料電池スタック(FCスタック)3のカソード側に供給され、発電に用いられた後にカソードオフガス(酸化剤)としてFCスタック3より排出される。排出されたカソードオフガスは、従来公知の除湿技術を用いた除湿器4にて除湿された後にガス燃焼装置5へと供給され、アノードオフガスと燃焼後に排気配管よりシステム外に排出される。
なお、カソードオフガスは、除湿器4にて完全に除湿しきれないため、配管内で水分が凝縮して燃焼に悪影響を及ぼすことから、後述するガス燃焼装置5に本発明の技術を用いることによってこの問題を解決する。
一方、燃料を水素とした場合、水素は、図示を省略する水素供給源よりFCスタック3のアノードイン側に供給される。この他、炭化水素を燃料とした場合、改質器等水素リッチな改質ガスを供給するシステムより、同様にこの改質ガスがFCスタック3のアノードイン側に供給される。
そして、FCスタック3より発電に使用されなかったガスは、水素循環システムに供給され、再度アノードインガスとしてFCスタック3へ供給される。または、このFCスタック3で発電に使用されなかったガスは、アノードオフガスとしてガス燃焼装置5に供給され、燃焼処理後システムより排出される。
[ガス燃焼装置の構成]
次に、本実施の形態のガス燃焼装置5について図面を参照しながら詳細に説明する。ガス燃焼装置5は、図1および図2に示すように、円筒形状をなす燃焼器8に、酸化剤(酸素)を内部に流入させる酸化剤流入部9と、燃料(水素)を内部に噴出させる燃料噴出部10と、流入された酸化剤と噴出された燃料とを混合させる混合部11と、混合部11で混合された酸化剤及び燃料を燃焼させる燃焼部12とを形成してなる。
そして、このガス燃焼装置5においては、除湿器4よりガス燃焼装置5へと流入させるカソードオフガスの流量制御及び燃焼器8に流入したカソードオフガスとアノードオフガスの混合状態を制御するための可変角度弁である開閉弁13を、酸化剤流入部9の前方に設けている。
燃焼器8は、燃焼温度・圧力に耐えられる材質、例えばステンレス(SUS304)などから形成され、所定の大きさとされた円筒形状として形成されている。また、この燃焼器8は、燃焼システムとして要求されるガス流量・発熱量などの要求を満足できる設計になれば、その他の形状、材質などとしてもよい。
酸化剤流入部9は、円錐の先端側の一部を切断してなる円筒形として形成されている。この酸化剤流入部9は、開閉弁13と接続される開口端から後端側に亘ってその開口径を次第に大きくする円筒体とされている。具体的には、酸化剤流入部9は、酸化剤流入部9の開口部9aにおける開口径を直径5cmとし、後端部9bにおける開口径を直径7cmとしたときに、それら直径5cmの円と直径7cmの円を直線で繋いだ形状としている。
なお、酸化剤流入部9を除いた部分の燃焼器8の形状は、酸化剤流入部9の後端部9bでの開口径と同じ直径とされた円筒形状とされている。この燃焼器8は、酸化剤流入部9の後端部9bから排気管と接続される燃焼器後端部8aまでの間は、同一の直径とされた円筒体とされている。
燃料噴出部10は、アノードオフガスを燃焼器8内に噴出する部分であり、アノードオフガス配管に接続された燃料噴出パイプ14などから構成されている。そして、この燃料噴出部10は、その燃料噴出パイプ14の先端側部を燃焼器8内に突出させ、その先端側部に形成した燃料噴出孔からアノードオフガスを噴出させる。この燃料噴出部10は、例えば先端に穴の空いている1/4インチのステンレスパイプからなる配管とされ、そのパイプ周面にアノードオフガスを噴出する燃料噴出孔を有している。この燃料噴出孔は、パイプ周面の中心に一箇所でもよく、または、円周方向に複数箇所設けてもよい。
アノードオフガスを燃焼器8内に噴出させる燃料供給経路としては、ガス燃焼装置5の上流から導入したり、燃料供給部の流れに対して直角に導入したり、燃料供給部の下流側から導入しても良い。ただし、下流側から導入する場合、導入管による混合気形成への影響および燃焼部12から発生する熱による導入管および燃料への影響を考慮した設計を行なう必要がある。
混合部11は、アノードオフガスとカソードオフガスを混合させて混合気を形成する部分であり、燃料噴出部10の排気方向下流側に位置して設けられている。この混合部11は、例えば空間を設ける、スワラー、複数枚の多孔板などの従来公知のガス混合技術を用いて作製することが可能である。
燃焼部12は、混合部11で混合されたアノードオフガスとカソードオフガスによる混合気を燃焼させる部分であり、混合部11の後方(下流)に位置して設けられている。燃焼部12は、例えばグロープラグ、スパークプラグなどの従来公知の着火源と、フレームホルダー、フレームスタビライザーなどの従来公知の炎安定化技術を有する気層燃焼の場を設計することが可能である。また、この燃焼部12には、触媒を用いて触媒燃焼を行なうことも可能である。触媒には、メタルハニカムやセラミックハニカム等の担体に白金等の貴金属を丹治した、従来公知の触媒技術を用いることができる。
開閉弁13は、主として除湿器4よりガス燃焼装置5へと流入させるカソードオフガスの流量を制御すると共に、燃焼器8に流入したカソードオフガスとアノードオフガスの混合状態を制御するために使用される。そして特に、本実施の形態では、カソードオフガスに含まれる凝縮水のストークス(Stokes)数に応じて開閉弁13の開閉角度を制御することにより、凝縮水に影響されることなく効率良くカソードオフガス及びアノードオフガスの混合気を燃焼させるようにする。
前記開閉弁13は、その弁の角度が任意の角度となるように回動自在とされており、その弁角度を調整することでカソードオフガスの流量制御と混合気の混合状態を制御すると共に、混合気を効率良く燃焼させる。なお、この開閉弁13には、例えばバタフライバルブ、ボールバルブなどのバルブの角度を制御可能な従来公知の技術が採用される。
なお、本実施の形態のガス燃焼装置5においては、図2(b)に示すように、混合部11及び燃焼部12の断面中心位置C1が一致しており、且つ、これら混合部11および燃焼部12の断面中心位置C1に対して前記酸化剤流入部9の開口部9aにおける断面中心位置C2をずらしている。図2(b)は、カソードオフガスの流れ方向である上流側に設けられた開閉弁13から下流側を見たときの酸化剤流入部9の開口部9aにおける開口断面と、混合部11および燃焼部12の開口断面をそれぞれ重ね合わせた図である。
[ストークス(Stokes)数に応じた開閉弁の制御]
以上のように構成されたガス燃焼装置5の開閉弁13の制御について以下に説明する。先ず、開閉弁13の制御方法を説明する前に、カソードオフガスに含まれる凝縮水のストークス(Stokes)数とガス流との関係と、ガス燃焼装置5内における凝縮水および燃料の濃度分布と、ガス燃焼装置5内の凝縮水に作用する力及び凝縮水の挙動について説明する。
図3は、凝縮水流動に対する大規模乱流渦の影響のストークス(Stokes)数比較イメージを示す図である。この図から判るように、ストークス(Stokes)数が1を超える(ストークス(Stokes)数>>1)程度の充分大きな凝縮水は、ガス流に影響されないが、ストークス(Stokes)数が1近傍(ストークス(Stokes)数〜1前後)の凝縮水になると、ガス流に発生する大規模乱流渦に乗り渦の外側へと弾かれる。また、ストークス(Stokes)数が1未満程度(ストークス(Stokes)数<<1)の充分に小さな凝縮水は、ガス流に乗り気体と同様な動きをする。
図4は、凝縮水および燃料の濃度分布を示す図である。凝縮水および燃料の濃度分布を表す図4を参照すると、燃焼部12では、燃料濃度は全体的に一定となるのに対して、液水濃度は濃度が薄いリーン部と濃度が濃いリッチ部とに分かれている。酸化剤流入部9の入口から流入した凝縮水を含むカソードオフガスは、図4の破線Xで示すようにそのまま入口から出口へとほぼ直進する。この液水濃度のリッチ部は、水分を多く含むため着火し難いが、それ以外の部分は水分の量が少ないため着火可能である。このため、一部に着火し難い領域があっても全体として着火し易い領域が多く存在するため、水素と酸素の混合気を効率良く燃焼する。
図5は、ガス燃焼装置内の凝縮水に作用する力及び凝縮水の挙動を示す図である。凝縮水(液水)は、上流からの圧力、下方向への重力加速度、各地点での凝縮水と周辺ガスの速度差による粘性力を受ける(式1)。
Δv x m = -g +ΔPAc + τAs ・・・式1
但し、v=凝縮水速度、g=重力加速度、P=ガス圧力、Ac=凝縮水断面積、τ=粘性応力、As=凝縮水表面積とする。
下記する式2で表されるストークス(Stokes)数が大きな(>>1)凝縮水においては、τAの影響を無視できる(液水の自らの慣性によってガス流中を移動する)ことが従来より公知となっている。
ストークス(Stokes)数=(ρd/18μ)/(D/U) ・・・式2
但し、ρ=水の密度、d=水粒径、μ=水の粘度、D=燃焼器内径、U=平均気体流速とする。
したがって、凝縮水は、基本的には圧力差ΔPを原動力に上流→下流へと流され、また重力によって下方へ加速され、さらにガス流の乱流成分にはほとんど影響されない。これにより、ガス燃焼装置5内へと流入する凝縮水は、システム圧力および自己の慣性エネルギーによって、酸化剤流入部9からまっすぐに燃焼部12へと移動する。ただし、重力の影響を受けるため、凝縮水は、酸化剤流入部9より下方に移動することがある。
上記したように、ストークス(Stokes)数が十分に大きな(>>1)凝縮水はガス流に影響されないが、ストークス(Stokes)数が1前後の凝縮水になると、凝縮水はガス流に発生する大規模乱流渦に乗り渦の外側へと弾かれ、ストークス(Stokes)数が小さな(<<1)凝縮水となるとガス流の流れに乗る。
これを防止するため、酸化剤流入部9の前方に設置した開閉弁13の弁角度を、以下のように制御することにより、次の効果(A)、(B)、(C)が得られる。
(A)大粒(Stokes数>>1)な凝縮水が多い場合は、図2の破線X1の状態で示すように、酸化剤流れ方向Aと略平行に開閉弁13を傾ければ(開閉弁13を全開にする)、当該開閉弁13の影響を流れに与えずに、前記したように高液水濃度部分と燃焼部分とに分けることができ、着火性および燃焼性能を向上させることができる。さらに、開閉弁13を酸化剤流れ方向Aに沿って全開にすることで、開閉弁13により発生する圧力損失を最小限に抑えることができるため、システム全体としての低圧力損失化から効率化が可能となる。
(B)Stokes数が1程度の凝縮水が多い場合は、図2の破線X2の状態で示すように、開閉弁13の弁角度を酸化剤流れ方向Aに対して角度を持たせて傾斜させることにより、弁下流のガス流に大規模乱流渦を発生させ、その発生した渦により凝縮水を燃焼部12の内壁面方向へ飛散させることによって、着火性および燃焼効率を改善させることができる。燃焼部12の内壁面に付着した凝縮水は、蒸発するため、着火性および燃焼効率の妨げにならない。また、渦発生効果として、混合気の燃料濃度分布をより均一することが可能となる。
(C)小粒(Stokes数<<1)な凝縮水が多い場合は、乱流を発生させすぎると、凝縮水も燃焼部12に均一に分布されてしまう恐れがある。そこで、開閉弁13の弁角度を酸化剤流れ方向Aと略平行(開閉弁13を全開)にすれば、開閉弁13の影響を流れに与えずに済むため、凝縮水を燃焼中心部より下方の燃焼部壁面に付着させることができ、付着させた水滴を蒸発させて燃焼の妨げを防止できる。
以上のことから、ガス燃焼装置上流の運転条件によって発生する凝縮水の直径分布(ストークス(Stokes)数分布)を求めれば、凝縮水直径分布毎に応じて上記(A)・(B)・(C)の制御を効率的に行なうことが可能となる。また、燃焼部12で不均一な燃料濃度分布になるガス燃焼装置5を設計した場合、運転条件に応じて開閉弁13の弁角度を制御することにより、開閉弁13を流れに沿って(全開)制御すれば燃料濃度分布を不均一とでき、また、このガス燃焼装置上流の運転条件によって発生する凝縮水の開閉弁13を流れに対して弁角度を付けて制御すれば、燃料濃度分布を均一に制御することが可能となる。
[その他の実施の形態]
以上、本発明を適用した具体的な実施の形態について説明したが、本発明は、上述の実施の形態に制限されることなく種々の変更が可能である。
例えば、(D)ストークス(Stokes)数が大きな(>>1)凝縮水の場合には、ガス流れの影響をほとんど受けずに自己の慣性によって凝縮水が流れるため、その他の制御因子によって設定される条件に応じて、開閉弁13の角度を、凝縮水濃度分布に影響を与えずに制御することが可能である。したがって、凝縮水直径分布に応じて前記(D)・(B)・(C)の制御を行うことも可能である。
燃料電池システムの概略構成図である。 ガス燃焼装置の構成図である。 凝縮水流動に対する大規模乱流渦の影響のストークス(Stokes)数比較イメージを示す図である。 凝縮水および燃料の濃度分布を示す図である。 ガス燃焼装置内の凝縮水に作用する力及び凝縮水の挙動を示す図である。
符号の説明
3…燃料電池スタック(FCスタック)
4…除湿器
5…ガス燃焼装置
8…燃焼器
9…酸化剤流入部
10…燃料噴出部
11…混合部
12…燃焼部
13…開閉弁

Claims (5)

  1. 燃料電池スタックから排出される凝縮水を含んだ酸化剤を、開閉弁を介してガス燃焼装置の燃焼器内に導入させる際に、
    前記酸化剤に含まれる凝縮水のストークス(Stokes)数に応じて、前記燃焼器内へと流入する酸化剤の流れに対する前記開閉弁の弁角度を可変する
    ことを特徴とするガス燃焼装置における開閉弁制御方法。
  2. 請求項1に記載のガス燃焼装置における開閉弁制御方法であって、
    前記凝縮水のストークス(Stokes)数が1を超えるときには、前記開閉弁を前記酸化剤の流れ方向と略平行に傾ける
    ことを特徴とするガス燃焼装置における開閉弁制御方法。
  3. 請求項1に記載のガス燃焼装置における開閉弁制御方法であって、
    前記凝縮水のストークス(Stokes)数が1近傍部であるときには、前記開閉弁を前記酸化剤の流れ方向に対して傾斜させる
    ことを特徴とするガス燃焼装置における開閉弁制御方法。
  4. 請求項1に記載のガス燃焼装置における開閉弁制御方法であって、
    前記凝縮水のストークス(Stokes)数が1未満であるときには、前記開閉弁を前記酸化剤の流れ方向と略平行に傾ける
    ことを特徴とするガス燃焼装置における開閉弁制御方法。
  5. 請求項1に記載のガス燃焼装置における開閉弁制御方法であって、
    前記凝縮水のストークス(Stokes)数が1を超えるときには、前記開閉弁を前記酸化剤の流れ方向と略平行に傾け、
    前記凝縮水のストークス(Stokes)数が1近傍部であるときには、前記開閉弁を前記酸化剤の流れ方向に対して傾斜させ、
    前記凝縮水のストークス(Stokes)数が1未満であるときには、前記開閉弁を前記酸化剤の流れ方向と略平行に傾ける
    ことを特徴とするガス燃焼装置における開閉弁制御方法。
JP2003390818A 2003-11-20 2003-11-20 ガス燃焼装置における開閉弁制御方法 Pending JP2005158284A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390818A JP2005158284A (ja) 2003-11-20 2003-11-20 ガス燃焼装置における開閉弁制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390818A JP2005158284A (ja) 2003-11-20 2003-11-20 ガス燃焼装置における開閉弁制御方法

Publications (1)

Publication Number Publication Date
JP2005158284A true JP2005158284A (ja) 2005-06-16

Family

ID=34718073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390818A Pending JP2005158284A (ja) 2003-11-20 2003-11-20 ガス燃焼装置における開閉弁制御方法

Country Status (1)

Country Link
JP (1) JP2005158284A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134064A (ja) * 2005-11-08 2007-05-31 Nissan Motor Co Ltd 燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134064A (ja) * 2005-11-08 2007-05-31 Nissan Motor Co Ltd 燃料電池システム

Similar Documents

Publication Publication Date Title
US7273505B2 (en) Hydrogen generator and fuel cell power generation system
JP2009504558A5 (ja)
US7713056B2 (en) Catalytic combustor
JP5057938B2 (ja) 水素生成装置、およびこれを備えた燃料電池システム
US20110123880A1 (en) Hydrogen generator and fuel cell system including the same
JP6309743B2 (ja) 燃料改質装置及び燃料電池システム
JP2005158284A (ja) ガス燃焼装置における開閉弁制御方法
JP2007073455A (ja) 燃料電池システムの異常検知方法
JP2002083620A (ja) 燃料電池用の改質装置
JP4747469B2 (ja) 燃焼装置
JP2005158283A (ja) ガス燃焼装置
JP4609157B2 (ja) 水素生成器及び燃料電池システム
JP2004134253A (ja) 燃料電池システムの水素製造装置用加熱器
JP4784078B2 (ja) 触媒燃焼器
JP2003282113A (ja) 固体酸化物燃料電池システム
JP2002280042A (ja) 燃料改質器用オフガス燃焼器
JP6773522B2 (ja) 燃料電池システム
JP2004175637A (ja) Co除去器及び水素製造装置
JP4343037B2 (ja) 熱風発生装置
JP6101653B2 (ja) 燃焼器の点火方法
JP2005155993A (ja) ガス燃焼装置の燃焼制御方法
JPWO2008149516A1 (ja) 水素生成装置
JP2006001780A (ja) 水素製造装置およびその起動方法
JP4197906B2 (ja) 燃料改質用バーナ
JP2002348101A (ja) 水素発生装置