JP2005158091A - 磁気記録媒体の製造方法 - Google Patents

磁気記録媒体の製造方法 Download PDF

Info

Publication number
JP2005158091A
JP2005158091A JP2003390626A JP2003390626A JP2005158091A JP 2005158091 A JP2005158091 A JP 2005158091A JP 2003390626 A JP2003390626 A JP 2003390626A JP 2003390626 A JP2003390626 A JP 2003390626A JP 2005158091 A JP2005158091 A JP 2005158091A
Authority
JP
Japan
Prior art keywords
magnetic
film
layer
magnetic layer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003390626A
Other languages
English (en)
Inventor
Kenichi Moriwaki
健一 森脇
Kazuyuki Usuki
一幸 臼杵
Shinji Saito
真二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003390626A priority Critical patent/JP2005158091A/ja
Publication of JP2005158091A publication Critical patent/JP2005158091A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】室温で磁性層を形成することによって、高性能で高信頼性を有し、かつ安価な高容量磁気記録媒体を提供すること。
【解決手段】支持体の少なくとも一方の面に、少なくともグラニュラ構造を有する磁性層を形成する磁気記録媒体の製造方法であって、上記磁性層は、DCパルススパッタ法により形成することを特徴とする磁気記録媒体の製造方法。
【選択図】 なし

Description

本発明は、デジタル情報の記録に使用する磁気記録媒体の製造方法に関する。
近年、インターネットの普及により、パーソナル・コンピュータを用いて大容量の動画情報や音声情報の処理を行う等、コンピュータの利用形態が変化してきている。これに伴い、ハードディスク等の磁気記録媒体に要求される記憶容量も増大している。
ハードディスク装置においては、磁気ディスクの回転に伴い、磁気ヘッドが磁気ディスクの表面からわずかに浮上し、非接触で磁気記録を行っている。このため、磁気ヘッドと磁気ディスクとの接触によって磁気ディスクが破損するのを防止している。高密度化に伴って磁気ヘッドの浮上高さは次第に低減されており、鏡面研磨された超平滑なガラス基板上に磁気記録層等を形成した磁気ディスクを用いることにより、現在では10nm〜20nmの浮上高さが実現されている。媒体においては、一般的にCoPtCr系磁性層/Cr下地層が用いられており、200℃〜500℃の高温にすることで、Cr下地層によりCoPtCr系磁性層の磁化容易方向が膜面内となるよう制御している。さらに、CoPtCr系磁性層中のCrの偏析を促し、磁性層中の磁区を分離している。この様なヘッドの低浮上量化、ヘッド構造の改良、ディスク記録膜の改良等の技術革新によってハードディスクドライブの面記録密度と記録容量はここ数年で飛躍的に増大してきた。
取り扱うことができるデジタルデータ量が増大することによって、動画データの様な大容量のデータを可換型媒体に記録して、移動させるというニーズが生まれてきた。しかしながら、ハードディスクは基板が硬質であって、しかも上述のようにヘッドとディスクの間隔が極わずかであるため、フレキシブルディスクや書き換え型光ディスクの様に可換媒体として使用しようとすると、動作中の衝撃や塵埃の巻き込みによって故障を発生する懸念が高く、使用できない。
さらに、媒体製造において高温スパッタ成膜法を用いた場合、生産性が悪いばかりでなく、大量生産時のコスト上昇につながり、安価に生産できない。
一方、フレキシブルディスクは基板がフレキシブルな高分子フィルムであり、接触記録可能な媒体であるため可換性に優れており、安価に生産できるが、現在市販されているフレキシブルディスクは記録膜が磁性体を高分子バインダーや研磨剤とともに高分子フィルム上に塗布した構造であるため、スパッタ法で磁性膜を形成しているハードディスクと比較すると、磁性層の高密度記録特性が悪く、ハードディスクの1/10以下の記録密度しか達成できていない。
そこで記録膜をハードディスクと同様のスパッタ法で形成する強磁性金属薄膜型のフレキシブルディスクも提案されているが、ハードディスクと同様の磁性層を高分子フィルム上に形成しようとすると、高分子フィルムの熱ダメージが大きく、実用化が困難である。このため高分子フィルムとして耐熱性の高いポリイミドや芳香族ポリアミドフィルムを使用する提案もなされているが、これらの耐熱性フィルムが非常に高価であり、実用化が困難となっている。また高分子フィルムに熱ダメージを生じないように、高分子フィルムを冷却した状態で磁性膜を形成しようとすると、磁性層の磁気特性が不十分となり、記録密度の向上が困難となっている。
それに対し、強磁性金属合金と非磁性酸化物からなる強磁性金属薄膜磁性層、Ru系下地層を用いた場合、室温で成膜した場合においても、200℃〜500℃の高温条件下で成膜したCoPtCr系磁性層とほぼ同等の磁気特性を得られることがわかってきた。このような強磁性金属合金と非磁性酸化物からなる強磁性金属薄膜磁性層はハードディスクで提案されているいわゆるグラニュラ構造であり、特許文献1〜4に記載されているものが使用できる。
しかし、特許文献5に記載のように磁性層成膜の際にRF(高周波)スパッタ法を用いた場合、基板が高熱にさらされるため、基板変形が発生し、ヘッドとの摺動磨耗性が劣化するだけでなく、成膜レートが遅いため、生産性が低い。また、特許文献6に記載のように磁性層成膜時にDC(直流)スパッタ法を用いた場合、基板の熱変形の問題は回避されるが、グラニュラターゲット表面の帯電が生じ、アークによる欠陥等が生じる可能性がある。また、成膜された磁性層中の磁性粒子の分布が良好でないため、さらなる高密度記録においてGMRヘッド等を用いた記録再生において、充分な低ノイズ媒体が得られず、特性改善が課題である。
DVD−R/RWに代表される追記型および書き換え型光ディスクは磁気ディスクのようにヘッドとディスクが近接していないため、可換性に優れており、広く普及している。しかしながら光ディスクは、光ピックアップの厚みとコストの問題から、高容量化に有利な磁気ディスクのように両面を記録面としたディスク構造を用いることが困難であるといった問題がある。さらに、磁気ディスクと比較すると面記録密度が低く、データ転送速度も低いため、書き換え型の大容量記録媒体としての使用を考えると、未だ十分な性能とはいえない。
上記の通り、大容量の書き換え可能な可換型記録媒体は、その要求が高いものの、性能、信頼性、コストを満足するものが存在しない。
特開平5−73880号公報 特開平7−311929号公報 特開2001−236643号公報 特開2003−99918号公報 特開2001−236643号公報 特開2003−99918号公報
本発明は上記従来技術の問題点に鑑みなされたものであり、本発明の目的は、室温で磁性層を形成することによって、高性能で高信頼性を有し、かつ安価な高容量磁気記録媒体を提供することにある。
前記目的を達成するための手段は以下の通りである。
1)支持体の少なくとも一方の面に、少なくともグラニュラ構造を有する磁性層を形成する磁気記録媒体の製造方法であって、上記磁性層は、DCパルススパッタ法により形成することを特徴とする磁気記録媒体の製造方法。
2)前記支持体を可撓性高分子支持体としたことを特徴とする上記1)に記載の磁気記録媒体。
本発明によると、高密度磁気記録装置に用いて好適な、強磁性体間の相互作用が小さく、低ノイズでかつ、高信頼性を有する磁気記録媒体を室温成膜で安価に生産することができる。
本発明の磁気記録媒体は、支持体の少なくとも一方の面に、少なくともグラニュラ構造を有する磁性層を形成する磁気記録媒体を製造する際に、上記磁性層を、DCパルススパッタ法により形成することを特徴とする。
つまり、本発明の磁気記録媒体は、少なくともグラニュラ構造を有する磁性層を備えているので、室温成膜した場合においてもハードディスクのような高記録密度記録が可能となり、高容量化が可能となる。
さらに、磁性層成膜時にDCパルススパッタ法を用いることによって、熱による支持体の変形がなく、成膜レートも早いため効率よく、良好なサンプル作製が可能となる。また、成膜中にグラニュラターゲット表面が帯電することなく、アーク等による欠陥発生の懸念もない。
この様な磁性層を使用することによって、従来のような基板加熱が不要となり、基板温度が室温であっても、良好なS/N特性と充分な走行耐久性を有する磁気記録媒体を得ることが可能となる。このため、ガラス基板やAl基板だけでなく、支持体が高分子フィルムであっても熱ダメージを生じることなく、接触記録に耐性のある、平坦な磁気テープやフレキシブルディスクも提供することが可能となる。
本実施の形態に係る磁気記録媒体の支持体は、Al基板、ガラス基板を用いることもできるが、可撓性高分子フィルムを用いることが生産性の点で、より好ましい。本実施はテープ形状でもフレキシブルディスク形状でも用いることができる。
可撓性高分子フィルム支持体を用いた本実施フレキシブルディスクは、中心部にセンターホールが形成された構造であり、プラスチック等で形成されたカートリッジ内に格納されている。なお、カートリッジには、通常、金属性のシャッタで覆われたアクセス窓を備えており、このアクセス窓を介して磁気ヘッドが導入されることにより、フレキシブルディスクへの信号記録や再生が行われる。
以下、フレキシブルディスクについて説明するが、その内容はテープについても適用可能である。
フレキシブルディスクは可撓性高分子フィルムからなるディスク状支持体の両面の各々に、少なくとも磁性層を有するものが好ましく、さらに、表面性とガスバリヤ性を改善する下塗り層、密着性・ガスバリヤ性等の機能を有するガスバリヤ層、磁性層の結晶配向性を制御するための下地層、磁性層、磁性層を腐食や磨耗から保護する保護層、及び走行耐久性および耐食性を改善する潤滑層が、この順に積層されて構成されていることが好ましい。
磁性層は、磁化容易軸が支持体に対して水平方向に配向している面内磁気記録膜でも、支持体に対して垂直方向に配向している垂直磁気記録膜でもかまわない。この磁化容易軸の方向は下地層の材料や結晶構造および磁性膜の組成と成膜条件によって制御することができる。
磁性層は、グラニュラ構造を有するものであり、これをグラニュラ磁性層ともいう。グラニュラ磁性層は、強磁性金属合金と非磁性酸化物からなる。グラニュラ構造は、強磁性金属合金と非磁性酸化物はマクロ的には混合されているが、ミクロ的には強磁性金属合金微粒子を非磁性酸化物が被覆するような構造となっており、強磁性金属合金粒子の大きさは1nmから110nm程度である。この様な構造となることで、高い保磁力を達成でき、また磁性粒子サイズの分散性が均一となるため、低ノイズ媒体を達成することができる。
強磁性金属合金としてはCo、Cr、PtとNi、Fe、B、Si、Ta、Nb、Ru等の元素との合金が使用できるが、記録特性を考慮するとCo−Pt−Cr、Co−Pt−Cr−Ta、Co−Pt−Cr−B、Co−Ru−Cr等が特に好ましい。
非磁性酸化物としてはSi、Zr、Ta、B、Ti、Al、Cr、Ba、Zn、Na、La、In、Pb等の酸化物が使用できるが、記録特性を考慮するとSiOxが最も好ましい。
強磁性金属合金と非磁性酸化物の混合比(モル比)は、強磁性金属合金:非磁性酸化物=95:5〜80:20の範囲であることが好ましく、90:10〜85:15の範囲であることが特に好ましい。該混合比を上記のように調整することにより、磁性粒子間の分離が十分となり、保磁力が確保されると共に磁化量が確保されるので信号出力が確保される。
グラニュラ磁性層の厚みとしては好ましくは5nm〜60nm、さらに好ましくは5nm〜30nmの範囲とすることにより、ノイズの低減と共に熱揺らぎの影響を抑えて出力を確保することができ、かつヘッド-メディア接触時にかかる応力に対する耐性を確保し、走行耐久性を確保することができる。
本発明においてグラニュラ磁性層を形成するには、DCパルススパッタ法を用いる。DCパルススパッタ法とは、逆電圧バイアスパルスを通常のDC波形に加えることにより行うスパッタ法を意味する。DCパルススパッタ法は、良質な超薄膜が容易に成膜可能であり、支持体に熱がかかりにくく、かつターゲット表面の帯電を防止し、アークの発生を抑制し、良好な膜質の磁性層が形成できる。また、DCパルススパッタ法を用いることにより、比較的早い成膜レートが実現でき、生産性の観点からも充分である。更に、磁気記録媒体の面ぶれを抑制することができる。パルス帯域は、1〜300kHzの範囲で制御することが可能だが、1〜200kHzが望ましく、1〜100kHzが更に望ましい。パルス周波数を上げることで、ターゲット表面の帯電防止、アーク抑制が可能となるが、一方で成膜レートも低下するため、結果的に基板への影響を受けやすくなる。また、その他のパルス各種設定は、適宜選定される。例えば、パルス波形は、矩形が好ましく、デューティ(duty)は、5〜50%が好ましい。
装置としては、連続フィルム上に連続して成膜するウェブスパッタ装置が好適であるが、ハードディスクの製造に使用されるような枚様式スパッタ装置や通過型スパッタ装置も使用可能である。
スパッタ時のスパッタガスとしては一般的なアルゴンガスが使用できるが、その他の希ガスを使用しても良い。また非磁性酸化物の酸素含有率の調整や表面酸化の目的で微量の酸素ガスを導入してもかまわない。
DCパルススパッタ法でグラニュラ磁性層を形成するためには強磁性金属合金ターゲットと非磁性酸化物ターゲットの2種を用い、これらの共スパッタ法を使用することも可能であるが、磁性粒子サイズの分散性を改善し、均質な膜を作成するため、強磁性金属合金と非磁性酸化物の合金ターゲットを用いることが好ましい。この合金ターゲットはホットプレス法で作成することができる。
DCパルススパッタ法でグラニュラ磁性層を形成する際のAr圧としては、5〜100mTorr(0.7〜13.3Pa)が好ましく、10〜50mTorr(1.3〜6.7Pa)が特に好ましい。成膜時Ar圧をこの範囲とすることにより、磁性層の結晶性及び磁性粒子間の分離が確保されて、充分な磁気特性が得られ、低ノイズで、膜強度のある信頼性の高い磁気記録媒体を提供することができる。
DCパルススパッタ法でグラニュラ磁性層を形成する際の投入電力としては、0.1〜100W/cm2が好ましく、1〜50W/cm2が特に好ましく、結晶性及び膜の密着性が確保されると共に支持体変形やスパッタ膜へのクラック発生を防止することができる。
下地層は磁性層の結晶配向性を制御する目的で設けることが望ましい。そのような下地層としては、Ru系合金等を用いることができるが、その他の元素を含む合金も用いることができる。この様な下地層を用いることによって、磁性層の配向性を改善できるため、記録特性が向上する。
下地層の厚みは5nm〜200nmが好ましく、5nm〜100nmが特に好ましい。この範囲とすると、磁気特性が向上し、かつ生産性が確保されると共に結晶粒の肥大化が抑制され、ひいてはノイズの増加が抑制され、また、ヘッド-メディア接触時にかかる応力に対する耐性が確保されるため、走行耐久性が確保される。
下地層を成膜する方法としては真空蒸着法、スパッタ法などの真空成膜法が使用できる。中でもスパッタ法は良質な超薄膜が容易に成膜可能であることから、本発明に好適である。スパッタ法としては、公知のDCスパッタ法、RFスパッタ法等を用いることができる。スパッタ法は、可撓性高分子フィルムを支持体としたフレキシブルディスクの場合、連続フィルム上に連続して成膜するウェブスパッタ装置が好適であるが、Al基板やガラス基板を用いる場合に使用されるような枚様式スパッタ装置や通過型スパッタ装置も使用できる。
下地層スパッタ時のスパッタガスとしては一般的なアルゴンガスが使用できるが、その他の希ガスを使用しても良い。また、下地層の格子定数制御の目的で、微量の酸素ガスを導入してもかまわない。
下地層の結晶配向性向上・導電性付与等の目的で、下地層と支持体の間にシード層を設けても構わない。
このようなシード層としては、Ti系、W系の合金を用いることが望ましいが、それ以外の合金を用いても構わない。
シード層の厚みは、1nmから30nmが好ましい。この範囲とすることにより生産性が確保されると共に、結晶粒の肥大化が抑制されることによりノイズが抑制される。
シード層を形成する方法としては、真空蒸着法、スパッタ法などの真空成膜法が使用でき、中でもスパッタ法は良質な超薄膜が容易に成膜可能である。
密着性の改善、ガスバリヤ性の目的で、支持体と下地層との間にガスバリヤ層を設けることが望ましい。尚、シード層を設ける場合には、ガスバリヤ層は、シード層と支持体の間に設けることが好ましい。
このようなガスバリヤ層としては、非金属元素単体かその混合物、もしくはTiと非金属元素の化合物からなるものを用いることができる。これらの材料は、ヘッド-メディア接触時の応力に対しても、耐性を有する。
上記ガスバリヤ層の厚みは5nm〜200nmが好ましく、5nm〜100nmが特に好ましい。この範囲とすることにより生産性が確保されると共に、結晶粒の肥大化が抑制されることによりノイズが抑制される。
ガスバリヤ層を形成する方法としては、真空蒸着法、スパッタ法などの真空成膜法が使用でき、中でもスパッタ法は良質な超薄膜が容易に成膜可能である。
支持体は、可撓性を備えた樹脂フィルム(可撓性高分子支持体)が好ましく、磁気ヘッドと磁気ディスクとが接触した時の衝撃を回避することができる。このような樹脂フィルムとしては、芳香族ポリイミド、芳香族ポリアミド、芳香族ポリアミドイミド、ポリエーテルケトン、ポリエーテルサルフォン、ポリエーテルイミド、ポリサルフォン、ポリフェニレンサルファイド、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネート、トリアセテートセルロース、フッ素樹脂等からなる樹脂フィルムが挙げられる。本発明では支持体を加熱することなく良好な記録特性を達成することができるため、価格や表面性の観点からポリエチレンテレフタレートまたはポリエチレンナフタレートが特に好ましい。
また、支持体として樹脂フィルムを複数枚ラミネートしたものを用いてもよい。ラミネートフィルムを用いることにより、支持体自身に起因する反りやうねりを軽減することができ、磁性層の耐傷性を著しく改善することがきる。
ラミネート手法としては、熱ローラによるロールラミネート、平板熱プレスによるラミネート、接着面に接着剤を塗布してラミネートするドライラミネート、予めシート状に成形された接着シートを用いるラミネート等が挙げられる。接着剤の種類は、特に限定されず、一般的なホットメルト接着剤、熱硬化性接着剤、UV(紫外線)硬化型接着剤、EB(電子線)硬化型接着剤、粘着シート、嫌気性接着剤などを使用することができる。
支持体の厚みは、10μm〜200μm、好ましくは20μm〜150μm、さらに好ましくは30μm〜100μmであることにより、高速回転時の安定性が維持され、面ぶれが抑えられると共に回転時の剛性を低く維持し、接触時の衝撃を回避することができ、磁気ヘッドの跳躍を防止することができる。
支持体の腰の強さは、下記式で表され、b=10mmでの値が0.5kgf/mm2〜2.0kgf/mm2(4.9〜19.6MPa)の範囲にあることが好ましく、0.7kgf/mm2〜1.5kgf/mm2(6.9〜14.7MPa)がより好ましい。
支持体の腰の強さ=Ebd3/12
なお、この式において、Eはヤング率、bはフィルム幅、dはフィルム厚さを各々表す。
支持体の表面は、磁気ヘッドによる記録を行うために、可能な限り平滑であることが好ましい。支持体表面の凹凸は、信号の記録再生特性を著しく低下させる。具体的には、後述する下塗り層を使用する場合では、光学式の表面粗さ計で測定した表面粗さが中心線平均粗さRaで5nm以内、好ましくは2nm以内、触針式粗さ計で測定した突起高さが1μm以内、好ましくは0.1μm以内である。また、下塗り膜を用いない場合では、光学式の表面粗さ計で測定した表面粗さが中心線平均粗さRaで3nm以内、好ましくは1nm以内、触針式粗さ計で測定した突起高さが0.1μm以内、好ましくは0.06μm以内である。
支持体表面には、平面性の改善とガスバリヤ性を目的として下塗り層を設けることが好ましい。磁性層をスパッタリング等で形成するため、下塗り層は耐熱性に優れることが好ましく、下塗り層の材料としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、シリコン樹脂、フッ素系樹脂等を使用することができる。熱硬化型ポリイミド樹脂、熱硬化型シリコン樹脂は、平滑化効果が高く、特に好ましい。下塗り層の厚みは、0.1μm〜3.0μmが好ましい。支持体に他の樹脂フィルムをラミネートする場合には、ラミネート加工前に下塗り層を形成してもよく、ラミネート加工後に下塗り層を形成してもよい。
熱硬化性ポリイミド樹脂としては、例えば、丸善石油化学社製のビスアリルナジイミド「BANI」のように、分子内に末端不飽和基を2つ以上有するイミドモノマーを、熱重合して得られるポリイミド樹脂が好適に用いられる。このイミドモノマーは、モノマーの状態で支持体表面に塗布した後に、比較的低温で熱重合させることができるので、原料となるモノマーを支持体上に直接塗布して硬化させることができる。また、このイミドモノマーは汎用溶剤に溶解させて使用することができ、生産性、作業性に優れると共に、分子量が小さく、その溶液粘度が低いために、塗布時に凹凸に対する回り込みが良く、平滑化効果が高い。
熱硬化性シリコン樹脂としては、有機基が導入されたケイ素化合物を原料としてゾルゲル法で重合したシリコン樹脂が好適に用いられる。このシリコン樹脂は、二酸化ケイ素の結合の一部を有機基で置換した構造からなりシリコンゴムよりも大幅に耐熱性に優れると共に、二酸化ケイ素膜よりも柔軟性に優れるため、可撓性フィルムからなる支持体上に樹脂膜を形成しても、クラックや剥離が生じ難い。また、原料となるモノマーを支持体上に直接塗布して硬化させることができるため、汎用溶剤を使用することができ、凹凸に対する回り込みも良く、平滑化効果が高い。更に、縮重合反応は、酸やキレート剤などの触媒の添加により比較的低温から進行するため、短時間で硬化させることができ、汎用の塗布装置を用いて樹脂膜を形成することができる。また熱硬化性シリコン樹脂はガスバリヤ性に優れており、磁性層形成時に支持体から発生する磁性層または下地層の結晶性、配向性を阻害するガスを遮蔽するガスバリヤ性が高く、特に好適である。
下塗り層の表面には、磁気ヘッドと磁気ディスクとの真実接触面積を低減し、摺動特性を改善することを目的として、微小突起(テクスチャ)を設けることが好ましい。また、微小突起を設けることにより、支持体のハンドリング性も良好になる。微小突起を形成する方法としては、球状シリカ粒子を塗布する方法、エマルジョンを塗布して有機物の突起を形成する方法などが使用できるが、下塗り層の耐熱性を確保するため、球状シリカ粒子を塗布して微小突起を形成するのが好ましい。
微小突起の高さは5nm〜60nmが好ましく、l0nm〜30mmがより好ましい。微小突起の高さが高すぎると記録再生ヘッドと媒体のスペーシングロスによって信号の記録再生特性が劣化し、微小突起が低すぎると摺動特性の改善効果が少なくなる。微小突起の密度は0.1〜100個/μm2が好ましく、1〜10個/μm2がより好ましい。微小突起の密度が少なすぎる場合は摺動特性の改善効果が少なくなり、多過ぎると凝集粒子の増加によって高い突起が増加して記録再生特性が劣化する。
また、バインダーを用いて微小突起を支持体表面に固定することもできる。バインダーには、十分な耐熱性を備えた樹脂を使用することが好ましく、耐熱性を備えた樹脂としては、溶剤可溶型ポリイミド樹脂、熱硬化型ポリイミド樹脂、熱硬化型シリコン樹脂を使用することが特に好ましい。
保護層は、磁性層に含まれる金属材料の腐蝕を防止し、磁気ヘッドと磁気ディスクとの擬似接触または接触摺動による摩耗を防止して、走行耐久性、耐食性を改善するために設けられる。保護層には、シリカ、アルミナ、チタニア、ジルコニア、酸化Co、酸化ニッケルなどの酸化物、窒化チタン、窒化ケイ素、窒化ホウ素などの窒化物、炭化ケイ素、炭化クロム、炭化ホウ素等の炭化物、グラファイト、無定型カーボンなどの炭素等の材料を使用することができる。
保護層としては、磁気ヘッド材質と同等またはそれ以上の硬度を有する硬質膜であり、摺動中に焼き付きを生じ難くその効果が安定して持続するものが、摺動耐久性に優れており好ましい。また、同時にピンホールが少ないものが、耐食性に優れておりより好ましい。このような保護層としては、CVD法やイオンビーム法、ECRスパッタ法、ECR−CVD法等で作製されるDLC(ダイヤモンドライクカーボン)と呼ばれる硬質炭素膜が挙げられる。
保護層は、性質の異なる2種類以上の薄膜を積層した構成とすることができる。例えば、表面側に摺動特性を改善するための硬質炭素保護膜を設け、磁気磁性層側に耐食性を改善するための窒化珪素などの窒化物保護膜を設けることで、耐食性と耐久性とを高い次元で両立することが可能となる。
保護層上には、走行耐久性および耐食性を改善するために、潤滑層が設けられる。潤滑層には、公知の炭化水素系潤滑剤、フッ素系潤滑剤、極圧添加剤等の潤滑剤が使用される。
炭化水素系潤滑剤としては、ステアリン酸、オレイン酸等のカルボン酸類、ステアリン酸ブチル等のエステル類、オクタデシルスルホン酸等のスルホン酸類、リン酸モノオクタデシル等のリン酸エステル類、ステアリルアルコール、オレイルアルコール等のアルコール類、ステアリン酸アミド等のカルボン酸アミド類、ステアリルアミン等のアミン類などが挙げられる。
フッ素系潤滑剤としては、前記炭化水素系潤滑剤のアルキル基の一部または全部をフルオロアルキル基もしくはパーフルオロポリエーテル基で置換した潤滑剤が挙げられる。パーフルオロポリエーテル基としては、パーフルオロメチレンオキシド重合体、パーフルオロエチレンオキシド重合体、パーフルオロ−n−プロピレンオキシド重合体(CF2CF2CF2O)n、パーフルオロイソプロピレンオキシド重合体(CF(CF3)CF2O)n、またはこれらの共重合体等である。具体的には、分子量末端に水酸基を有するパーフルオロメチレン−パーフルオロエチレン共重合体(アウジモント社製、商品名「FOMBLIN Z−DOL」)等が挙げられる。
極圧添加剤としては、リン酸トリラウリル等のリン酸エステル類、亜リン酸トリラウリル等の亜リン酸エステル類、トリチオ亜リン酸トリラウリル等のチオ亜リン酸エステルやチオリン酸エステル類、二硫化ジベンジル等の硫黄系極圧剤などが挙げられる。
前記の潤滑剤は単独もしくは複数を併用して使用することができ、潤滑剤を有機溶剤に溶解した溶液を、スピンコート法、ワイヤーバーコート法、グラビアコート法、ディップコート法等で保護層表面に塗布するか、真空蒸着法により保護層表面に付着させればよい。潤滑剤の塗布量としては、1〜30mg/m2が好ましく、2〜20mg/m2が特に好ましい。
また、耐食性をさらに高めるために、防錆剤を併用することが好ましい。防錆剤としては、ベンゾトリアゾール、ベンズイミダゾール、プリン、ピリミジン等の窒素含有複素環類およびこれらの母核にアルキル側鎖等を導入した誘導体、ベンゾチアゾール、2−メルカプトンベンゾチアゾール、テトラザインデン環化合物、チオウラシル化合物等の窒素および硫黄含有複素環類およびこの誘導体等が挙げられる。これら防錆剤は、潤滑剤に混合して保護層上に塗布してもよく、潤滑剤を塗布する前に保護層18上に塗布し、その上に潤滑剤を塗布してもよい。防錆剤の塗布量としては、0.1〜10mg/m2が好ましく、0.5〜5mg/m2が特に好ましい。
以下に本発明の具体的実施例について説明するが、本発明はこれに限定されるものではない。
(実施例1)
厚み63μm、表面粗さRa=1.4nmのポリエチレンナフタレートフィルム上に3−グリシドキシプロピルトリメトキシシラン、フェニルトリエトキシシラン、塩酸、アルミニウムアセチルアセトネート、エタノールからなる下塗り液をグラビアコート法で塗布した後、100℃で乾燥と硬化を行い、厚み1.0μmのシリコン樹脂からなる下塗り層を作成した。この下塗り層上に粒子径25nmのシリカゾルと前記下塗り液を混合した塗布液をグラビアコート法で塗布して、下塗り層上に高さ15nmの突起を10個/μm2の密度で形成した。この下塗り層は支持体フィルムの両面に形成した。ウェブスパッタ装置にこの原反を設置し、水冷したキャン上にフィルムを密着させながら搬送し、下塗り層上に、DCマグネトロンスパッタ法で、Cからなるガスバリヤ層を30nmの厚みで形成し、Ruからなる下地層をAr圧:20mTorr(2.7Pa)条件下、20nmの厚みで形成し、(Co70−Pt20−Cr1088−(SiO212からなる磁性層を5kHzのDCパルススパッタ法でAr圧:20mTorr(2.7Pa)条件下、20nmの厚みで形成した。このガスバリヤ層、下地層、磁性層はフィルムの両面に成膜した。次にこの原反をウェブ式の保護層成膜装置に設置し、エチレンガス、窒素ガス、アルゴンガスを反応ガスとして用いたイオンビームデポジション法によりC:H:N=62:29:7(mol比)からなる窒素添加DLC保護層を5nmの厚みで形成した。この保護層もフィルムの両面に成膜した。次にこの保護層表面に分子末端に水酸基を有するパーフルオロポリエーテル系潤滑剤(モンテフルオス社製FOMBLIN Z−DOL)をフッ素系潤滑剤(住友スリーエム社製HFE−7200)に溶解した溶液をグラビアコート法で塗布し、厚み1nmの潤滑層を形成した。この潤滑層もフィルムの両面に形成した。次にこの原反から3.7inchサイズのディスクを打ち抜き、これをテープバーニッシュした後、樹脂製カートリッジ(富士写真フイルム社製Zip100用)に組み込んで、フレキシブルディスクを作製した。
(実施例2)
実施例1において下塗り層を形成した原反から直径130mmの円盤状シートを打ち抜き、これを円形のリングに固定した。このシートに対してバッチ式スパッタ装置を用いて、実施例1と同一組成のガスバリヤ層、下地層、磁性層を両面に形成し、さらにDLC保護層を形成した。このシート上にディップコート法で実施例1と同一の潤滑層を形成した。次にこのシートから3.7inchサイズのディスクを打ち抜き、これをテープバーニッシュした後、樹脂製カートリッジ(富士写真フイルム社製Zip100用)に組み込んで、フレキシブルディスクを作製した。
(実施例3)
実施例1において100kHz−DCパルススパッタ法により磁性層を形成した以外は、実施例1と同様にしてフレキシブルディスクを作製した。
(実施例4)
実施例2において支持体として鏡面研磨した3.7inchガラス基板を用いた以外は実施例2と同様にしてハードディスクを形成した。但し、下塗りは付与せず、カートリッジにも組み込まなかった。
(比較例1)
実施例1においてRFスパッタ法を用いて磁性層を形成した以外は実施例1と同様にしてフレキシブルディスクを作製した。
(比較例2)
実施例1においてDCスパッタ法を用いて磁性層を形成した以外は実施例1と同様にしてフレキシブルディスクを作製した。
上記試料を以下により評価し、結果を表1に示した。
(評価)
(1)磁気特性
保磁力HcをVSMで測定した。
(2)面ぶれ
フレキシブルディスクおよびハードディスクを4200rpmで回転させ、中心から半径35mmの位置における面ぶれ(μm)をレーザー変位計で測定した。
(2)記録再生特性
再生トラック幅0.25μm、再生ギャップ0.09μmのGMRヘッドを用いて、線記録密度400kFCIの記録再生を行い、再生信号/ノイズ(S/N)比を測定した。なおこのとき回転数は4200rpm、半径位置は35mmとした。なお、S/N値は実施例1での値を基準として、その値からの増減を示した。
(3)走行耐久性
得られたメディアに対し、記録再生を繰り返し行いながら走行させ、出力が(初期値マイナス3)dBとなった時点で走行を中止し、耐久時間とした。なお、環境は23℃、50%RHとし、試験は最大300時間とした。
Figure 2005158091
前記結果からわかるように、本発明のフレキシブルディスクおよびハードディスクはGMRヘッドによる高密度記録再生時において低ノイズ特性を達成していることがわかる。また、支持体の変形がなく、充分な走行耐久性も有していることが分かる。一方、RFスパッタ法を用いた比較例1においては、熱による支持体の変形が生じ、走行耐久性が劣化した。また、DCスパッタ法を用いた比較例2では、走行耐久時間が実施例に比べてわずかに劣化しているとともに、S/N特性が実施例に比べて低い。サンプル表面を評価したところ、比較例2はわずかに欠陥数が多く、走行耐久時間の劣化をもたらしたと考えられる。

Claims (2)

  1. 支持体の少なくとも一方の面に、少なくともグラニュラ構造を有する磁性層を形成する磁気記録媒体の製造方法であって、上記磁性層は、DCパルススパッタ法により形成することを特徴とする磁気記録媒体の製造方法。
  2. 前記支持体を可撓性高分子支持体としたことを特徴とする請求項1に記載の磁気記録媒体。
JP2003390626A 2003-11-20 2003-11-20 磁気記録媒体の製造方法 Pending JP2005158091A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390626A JP2005158091A (ja) 2003-11-20 2003-11-20 磁気記録媒体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390626A JP2005158091A (ja) 2003-11-20 2003-11-20 磁気記録媒体の製造方法

Publications (1)

Publication Number Publication Date
JP2005158091A true JP2005158091A (ja) 2005-06-16

Family

ID=34717943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390626A Pending JP2005158091A (ja) 2003-11-20 2003-11-20 磁気記録媒体の製造方法

Country Status (1)

Country Link
JP (1) JP2005158091A (ja)

Similar Documents

Publication Publication Date Title
EP1365389A2 (en) Perpendicular magnetic recording medium
US6875505B2 (en) Magnetic recording medium
JP2005092991A (ja) 磁気記録媒体
US7112376B2 (en) Magnetic recording medium
JP2005004899A (ja) 磁気記録媒体およびその製造方法
JP2005353191A (ja) 磁気記録媒体の製造方法
JP2004171604A (ja) 小型可換型磁気記録媒体
JP2005004807A (ja) フレキシブル磁気ディスク媒体
JP2005353140A (ja) 磁気記録媒体
JP2005004843A (ja) 磁気記録媒体
JP2005158091A (ja) 磁気記録媒体の製造方法
JP2005018913A (ja) 磁気記録媒体
JP2005129207A (ja) 磁気記録媒体およびその製造方法
JP2005158130A (ja) 磁気記録媒体およびその製造方法
JP2005004919A (ja) 磁気記録媒体
JP2004234826A (ja) 磁気記録媒体
JP2005259325A (ja) 磁気記録媒体の製造方法および製造装置
JP2005004844A (ja) 磁気記録媒体
JP2004220656A (ja) 磁気記録媒体
JP2003099917A (ja) 磁気記録媒体
JP2004227621A (ja) 磁気記録媒体の製造方法およびその製造装置
JP2005038540A (ja) 磁気記録媒体の製造方法
JP2003346325A (ja) 磁気記録媒体
JP2005353139A (ja) 磁気記録媒体
JP2004220655A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327